WorldWideScience

Sample records for ejection icme driven

  1. ICME-driven sheath regions deplete the outer radiation belt electrons

    Science.gov (United States)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward

  2. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  3. Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

    Science.gov (United States)

    Winslow, Reka M.; Schwadron, Nathan A.; Lugaz, Noé; Guo, Jingnan; Joyce, Colin J.; Jordan, Andrew P.; Wilson, Jody K.; Spence, Harlan E.; Lawrence, David J.; Wimmer-Schweingruber, Robert F.; Mays, M. Leila

    2018-04-01

    Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.

  4. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  5. Coronal mass ejections and their sheath regions in interplanetary space

    Science.gov (United States)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  6. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua

    2017-11-01

    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  7. Evaluating predictions of ICME arrival at Earth and Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Taktakishvili, A.; Pulkkinen, A.

    2011-01-01

    We present a study of interplanetary coronal mass ejection (ICME) propagation to Earth and Mars. Because of the significant space weather hazard posed by ICMEs, understanding and predicting their arrival and impact at Mars is important for current and future robotic and manned missions...... to the planet. We compare running ENLILv2.6 with coronal mass ejection (CME) input parameters from both a manual and an automated method. We analyze shock events identified at Mars in Mars Global Surveyor data in 2001 and 2003, when Earth and Mars were separated by...

  8. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  9. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Susan T. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143 (United States); Laming, J. Martin; Rakowski, Cara E. [Space Science Division, Naval Research Laboratory, Code 7674L, Washington, DC 20375-5321 (United States); Von Steiger, Rudolf [International Space Science Institute, Bern CH-3012 (Switzerland)

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, we present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.

  10. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A. [Space Research Group—Space Weather, Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares (Spain)

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  11. 3-D model of ICME in the interplanetary medium

    Science.gov (United States)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  12. Predicting the Magnetic Properties of ICMEs: A Pragmatic View

    Science.gov (United States)

    Riley, P.; Linker, J.; Ben-Nun, M.; Torok, T.; Ulrich, R. K.; Russell, C. T.; Lai, H.; de Koning, C. A.; Pizzo, V. J.; Liu, Y.; Hoeksema, J. T.

    2017-12-01

    The southward component of the interplanetary magnetic field plays a crucial role in being able to successfully predict space weather phenomena. Yet, thus far, it has proven extremely difficult to forecast with any degree of accuracy. In this presentation, we describe an empirically-based modeling framework for estimating Bz values during the passage of interplanetary coronal mass ejections (ICMEs). The model includes: (1) an empirically-based estimate of the magnetic properties of the flux rope in the low corona (including helicity and field strength); (2) an empirically-based estimate of the dynamic properties of the flux rope in the high corona (including direction, speed, and mass); and (3) a physics-based estimate of the evolution of the flux rope during its passage to 1 AU driven by the output from (1) and (2). We compare model output with observations for a selection of events to estimate the accuracy of this approach. Importantly, we pay specific attention to the uncertainties introduced by the components within the framework, separating intrinsic limitations from those that can be improved upon, either by better observations or more sophisticated modeling. Our analysis suggests that current observations/modeling are insufficient for this empirically-based framework to provide reliable and actionable prediction of the magnetic properties of ICMEs. We suggest several paths that may lead to better forecasts.

  13. PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi; Zhang, Lingqian [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Richardson, John D.; Belcher, John W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); Tu, Cui, E-mail: hli@spaceweather.ac.cn [Laboratory of Near Space Environment, National Space Science Center, CAS, Beijing, 100190 (China)

    2016-11-10

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  14. Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft

    Science.gov (United States)

    Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.

    2018-03-01

    The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the

  15. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  16. On interplanetary coronal mass ejection identification at 1 AU

    International Nuclear Information System (INIS)

    Mulligan, T.; Russell, C.T.; Gosling, J.T.

    1999-01-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978 - 1980. copyright 1999 American Institute of Physics

  17. Quantitative model for the generic 3D shape of ICMEs at 1 AU

    Science.gov (United States)

    Démoulin, P.; Janvier, M.; Masías-Meza, J. J.; Dasso, S.

    2016-10-01

    Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims: By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods: In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results: The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions: The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.

  18. Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B12 Enzyme IcmF.

    Science.gov (United States)

    Li, Zhu; Kitanishi, Kenichi; Twahir, Umar T; Cracan, Valentin; Chapman, Derrell; Warncke, Kurt; Banerjee, Ruma

    2017-03-10

    IcmF is a 5'-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 - 2011

    Science.gov (United States)

    Rodkin, D.; Slemzin, V.; Zhukov, A. N.; Goryaev, F.; Shugay, Y.; Veselovsky, I.

    2018-05-01

    We analyze the statistics, solar sources, and properties of interplanetary coronal mass ejections (ICMEs) in the solar wind. The total number of coronal mass ejections (CMEs) registered in the Coordinated Data Analysis Workshops catalog (CDAW) during the first eight years of Cycle 24 was 61% larger than in the same period of Cycle 23, but the number of X-ray flares registered by the Geostationary Operational Environmental Satellite (GOES) was 20 % smaller because the solar activity was lower. The total number of ICMEs in the given period of Cycle 24 in the Richardson and Cane list was 29% smaller than in Cycle 23, which may be explained by a noticeable number of non-classified ICME-like events in the beginning of Cycle 24. For the period January 2010 - August 2011, we identify solar sources of the ICMEs that are included in the Richardson and Cane list. The solar sources of ICME were determined from coronagraph observations of the Earth-directed CMEs, supplemented by modeling of their propagation in the heliosphere using kinematic models (a ballistic and drag-based model). A detailed analysis of the ICME solar sources in the period under study showed that in 11 cases out of 23 (48%), the observed ICME could be associated with two or more sources. For multiple-source events, the resulting solar wind disturbances can be described as complex (merged) structures that are caused by stream interactions, with properties depending on the type of the participating streams. As a reliable marker to identify interacting streams and their sources, we used the plasma ion composition because it freezes in the low corona and remains unchanged in the heliosphere. According to the ion composition signatures, we classify these cases into three types: complex ejecta originating from weak and strong CME-CME interactions, as well as merged interaction regions (MIRs) originating from the CME high-speed stream (HSS) interactions. We describe temporal profiles of the ion composition for

  20. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  1. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  2. 24th ICM

    CERN Document Server

    Yeung, David

    2003-01-01

    Since the first Congress in Zürich in 1897, the ICM has been an eagerly­ awaited event every four years. Many of these occasions are celebrated for historie developments and seminal contributions to mathematics. 2002 marks the year of the 24th ICM, the first of the new millennium. Also historie is the first ICM Satellite Conference devoted to game theory and applications. It is one of those rare occasions, in which masters of the field are able to meet under congenial surroundings to talk and share their gathered wisdom. As is usually the case in ICM meetings, participants of the ICM Satellite Conference on Game Theory and Applications (Qingdao, August 2(02) hailed from the four corners of the world. In addition to presentations of high qual­ ity research, the program also included twelve invited plenary sessions with distinguished speakers. This volume, which gathers together selected papers read at the conference, is divided into four sections: (I) Foundations, Concepts, and Structure. (II) Equilibrium P...

  3. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  4. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays

    Science.gov (United States)

    Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Rodriguez, L.; Janvier, M.

    2016-08-01

    Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims: The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods: We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results: We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions: The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.

  5. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  6. STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2018-03-01

    We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.

  7. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  8. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  9. Opening a Window on ICME Evolution and GCR Modulation During Propagation in the Innermost Heliosphere

    Science.gov (United States)

    Winslow, R. M.; Lugaz, N.; Schwadron, N.; Farrugia, C. J.; Guo, J.; Wimmer-Schweingruber, R. F.; Wilson, J. K.; Joyce, C.; Jordan, A.; Lawrence, D. J.

    2017-12-01

    We use multipoint spacecraft observations to study interplanetary coronal mass ejection (ICME) evolution and subsequent galactic cosmic ray (GCR) modulation during propagation in the inner heliosphere. We illustrate ICME propagation effects through two different case studies. The first ICME was launched from the Sun on 29 December 2011 and was observed in near-perfect longitudinal conjunction at MESSENGER and STEREO A. Despite the close longitudinal alignment, we infer from force-free field modeling that the orientation of the underlying flux rope rotated ˜80o in latitude and ˜65o in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interactions involving magnetic reconnection with corotating structures in the solar wind dramatically alter the ICME magnetic field. In particular, we observed at STEREO A a highly turbulent region with distinct properties within the flux rope that was not observed at MESSENGER; we attribute this region to interaction between the ICME and a heliospheric plasma sheet/current sheet. This is a concrete example of a sequence of events that can increase the complexity of ICMEs during propagation and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. Our second case study investigates changes with heliospheric distance in GCR modulation by an ICME event (launched on 12 February 2014) observed in near-conjunction at all four of the inner solar system planets. The ICME caused Forbush decreases (FDs) in the GCR count rates at Mercury (MESSENGER), Earth/Moon (ACE/LRO), and Mars (MSL). At all three locations, the pre-ICME background GCR rate was well-matched, but the depth of the FD of GCR fluxes with similar energy ranges diminished with distance from the Sun. A larger difference in FD size was observed between Mercury and Earth than between Earth and Mars, partly owing to the much larger

  10. DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States); Manchester, W. B.; Van der Holst, B.; Sokolov, I.; Tóth, G.; Gombosi, T. I. [Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Mullinix, R. E.; Taktakishvili, A.; Chulaki, A., E-mail: jinmeng@lmsal.com, E-mail: chipm@umich.edu, E-mail: richard.e.mullinix@nasa.gov, E-mail: Aleksandre.Taktakishvili-1@nasa.gov [Community Coordinated Modeling Center, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO /LASCO, and STEREO /COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson–Low configuration, we present a method to derive Gibson–Low flux rope parameters through a handful of observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).

  11. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  12. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    Science.gov (United States)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  13. Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars

    Science.gov (United States)

    Freiherr von Forstner, Johan L.; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Hassler, Donald M.; Temmer, Manuela; Dumbović, Mateja; Jian, Lan K.; Appel, Jan K.; Čalogović, Jaša.; Ehresmann, Bent; Heber, Bernd; Lohf, Henning; Posner, Arik; Steigies, Christian T.; Vršnak, Bojan; Zeitlin, Cary J.

    2018-01-01

    The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earth's orbit (1 AU) to Mars (˜1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts causes the so-called Forbush decrease, which can be detected as a reduction of galactic cosmic rays measured on ground. We have used galactic cosmic ray (GCR) data from in situ measurements at Earth, from both STEREO A and STEREO B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument on board Mars Science Laboratory on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or STEREO B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model.

  14. A demonstration experiment of steam-driven, high-pressure melt ejection

    International Nuclear Information System (INIS)

    Allen, M.D.; Pitch, M.; Nichols, R.T.

    1990-08-01

    A steam blowdown test was performed at the Surtsey Direct Heating Test Facility to test the steam supply system and burst diaphragm arrangement that will be used in subsequent Surtsey Direct Containment Heating (DCH) experiments. Following successful completion of the steam blowdown test, the HIPS-10S (High-Pressure Melt Streaming) experiment was conducted to demonstrate that the technology to perform steam-driven, high-pressure melt ejection (HPME) experiments has been successfully developed. In addition, the HIPS-10S experiment was used to assess techniques and instrumentation design to create the proper timing of events in HPME experiments. This document discusses the results of this test

  15. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    Science.gov (United States)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  16. An efficient, selective collisional ejection mechanism for inner-shell population inversion in laser-driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.

    2000-06-07

    A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.

  17. US-75 ICM system as-built design : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2015-05-01

    This As-Built document for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative. The basic premise behind the ICM initiative is that indepen...

  18. ICMS tributary administration

    Directory of Open Access Journals (Sweden)

    Francisco Santana de Souza

    2007-12-01

    Full Text Available This work aims to analyze the essential tools for the management of the ICMS (Value-Added Tax on Sales and Services. It was developed a calculation proce­dure of this tax which permits to demonstrate the importance of correctly perform fiscal and accounting entries. In order to demonstrate this calculation procedure, it was used Financial Mathematics concepts of simple interest and simple trade discount together with article 33, 1989 of ICMS Law of the State of São Paulo. It was concluded that it is essential to have a precise ICMS tributary administration, in order to firstly avoid contentious administrative tributary which would imply ad­ditional and unnecessary costs to the organization and secondly to use tax evasion correctly in order to avoid excessive taxes payment. Thus, the appropriate use of both instruments will reflect into a positive cash flow for the organization.

  19. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  20. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  1. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Science.gov (United States)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  2. THREE-DIMENSIONAL RECONSTRUCTIONS AND MASS DETERMINATION OF THE 2008 JUNE 2 LASCO CORONAL MASS EJECTION USING STELab INTERPLANETARY SCINTILLATION OBSERVATIONS

    International Nuclear Information System (INIS)

    Bisi, M. M.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Clover, J. M.; Tokumaru, M.; Fujiki, K.

    2010-01-01

    We examine and reconstruct the interplanetary coronal mass ejection (ICME) first seen in space-based coronagraph white-light difference images on 2008 June 1 and 2. We use observations of interplanetary scintillation (IPS) taken with the Solar-Terrestrial Environment Laboratory (STELab), Japan, in our three-dimensional (3D) tomographic reconstruction of density and velocity. The coronal mass ejection (CME) was first observed by the LASCO C3 instrument at around 04:17 UT on 2008 June 2. Its motion subsequently moved across the C3 field of view with a plane-of-the-sky velocity of 192 km s -1 . The 3D reconstructed ICME is consistent with the trajectory and extent of the CME measurements taken from the CDAW CME catalog. However, excess mass estimates vary by an order of magnitude from Solar and Heliospheric Observatory and Solar Terrestrial Relations Observatory coronagraphs to our 3D IPS reconstructions of the inner heliosphere. We discuss the discrepancies and give possible explanations for these differences as well as give an outline for future studies.

  3. The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Zubair; Bhaskar, Ankush [Indian Institute of Geomagnetism (IIG), New Panvel, Navi Mumbai-410218 (India); Raghav, Anil, E-mail: raghavanil1984@gmail.com [University Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400098 (India)

    2017-08-01

    The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation of the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.

  4. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); Odstrcil, Dusan [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO (United States)

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  5. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Temmer, Manuela; Rollett, Tanja; Möstl, Christian; Veronig, Astrid M.; Vršnak, Bojan; Odstrčil, Dusan

    2011-01-01

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉ , to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  6. QUANTITATIVE MEASUREMENTS OF CORONAL MASS EJECTION-DRIVEN SHOCKS FROM LASCO OBSERVATIONS

    International Nuclear Information System (INIS)

    Ontiveros, Veronica; Vourlidas, Angelos

    2009-01-01

    In this paper, we demonstrate that coronal mass ejection (CME)-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V > 1500 km s -1 ). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images, and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the three-dimensional shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.

  7. Integrated corridor management (ICM) knowledge and technology transfer (KTT).

    Science.gov (United States)

    2014-01-01

    The ICM approach involves aggressive, : proactive integration of infrastructure : along major corridors so that : transportation professionals can fully : leverage all existing modal choices : and assets. ICM helps transportation : leaders improve tr...

  8. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2018-05-01

    Full Text Available Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014], the tailed bacteriophages deliver their DNA into host cells via an “ejection” process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  9. About the Las Acacias, Trelew and Vassouras Magnetic Observatories Monitoring the South Atlantic Magnetic Anomaly Region Response to an Interplanetary Coronal Mass Ejection

    Science.gov (United States)

    Gianibelli, J. C.; Quaglino, N. M.

    2007-05-01

    The South Atlantic Magnetic Anomaly (SAMA) Region presents evolutive characteristics very important as were observed by a variety of satelital sensors. Important Magnetic Observatories with digital record monitor the effects of the Sun-Earth interaction, such as San Juan de Puerto Rico (SJG), Kourou (KOU), Vassouras (VSS), Las Acacias (LAS), Trelew (TRW), Vernadsky (AIA), Hermanus (HER) and Huancayo (HUA). In the present work we present the features registered during the geomagnetic storm in January 21, 2005, produced by a geoeffective Coronal Mass Ejection (CME) whose Interplanetary Coronal Mass Ejection (ICME) was detected by the instrumental onboard the Advanced Composition Explorer (ACE) Sonde. We analize how the Magnetic Total Intensity records at VSS, TRW and LAS Observatories shows the effect of the entering particles to ionospherical dephts producing a field enhancement following the first Interplanetary Shock (IP) arrival of the ICME. This process manifest in the digital record as an increment over the magnetospheric Ring Current field effect and superinpossed effects over the Antarctic Auroral Electrojet. The analysis and comparison of the records demonstrate that the Ring Current effects are important in SJG and KOU but not in VSS, LAS and TRW observatories, concluding that SAMA region shows a enhancement of the ionospherical currents oposed to those generated at magnetospheric heighs. Moreover in TRW, 5 hours after the ICME shock arrival, shows the effect of the Antarctic Auroral Electrojet counteracting to fields generated by the Ring Current.

  10. Texture recognition of medical images with the ICM method

    International Nuclear Information System (INIS)

    Kinser, Jason M.; Wang Guisong

    2004-01-01

    The Integrated Cortical Model (ICM) is based upon several models of the mammalian visual cortex and produces pulse images over several iterations. These pulse images tend to isolate segments, edges, and textures that are inherent in the input image. To create a texture recognition engine the pulse spectrum of individual pixels are collected and used to develop a recognition library. Recognition is performed by comparing pulse spectra of unclassified regions of images with the known regions. Because signatures are smaller than images, signature-based computation is quite efficient and parasites can be recognized quickly. The precision of this method depends on the representative of signatures and classification. Our experiment results support the theoretical findings and show perspectives of practical applications of ICM-based method. The advantage of ICM method is using signatures to represent objects. ICM can extract the internal features of objects and represent them with signatures. Signature classification is critical for the precision of recognition

  11. Empirical estimation of the arrival time of ICME Shocks

    Science.gov (United States)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  12. METALS IN THE ICM: WITNESSES OF CLUSTER FORMATION AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    Lorenzo Lovisari

    2013-12-01

    Full Text Available The baryonic composition of galaxy clusters and groups is dominated by a hot, X-ray emitting Intra-Cluster Medium (ICM. The mean metallicity of the ICM has been found to be roughly 0.3 ÷ 0.5 times the solar value, therefore a large fraction of this gas cannot be of purely primordial origin. Indeed, the distribution and amount of metals in the ICM is a direct consequence of the past history of star formation in the cluster galaxies and of the processes responsible for the injection of enriched material into the ICM. We here shortly summarize the current views on the chemical enrichment, focusing on the observational evidence in terms of metallicity measurements in clusters, spatial metallicity distribution and evolution, and expectations from future missions.

  13. Integrated Corridor Management (ICM) Initiative : ICM Surveillance and Detection Requirements for Arterial and Transit Networks

    Science.gov (United States)

    2008-10-01

    The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...

  14. RELATIVE CONTRIBUTION OF THE MAGNETIC FIELD BARRIER AND SOLAR WIND SPEED IN ICME-ASSOCIATED FORBUSH DECREASES

    International Nuclear Information System (INIS)

    Bhaskar, Ankush; Vichare, Geeta; Subramanian, Prasad

    2016-01-01

    We study 50 cosmic-ray Forbush decreases (FDs) from the Oulu neutron monitor data during 1997–2005 that were associated with Earth-directed interplanetary coronal mass ejections (ICMEs). Such events are generally thought to arise due to the shielding of cosmic rays by a propagating diffusive barrier. The main processes at work are the diffusion of cosmic rays across the large-scale magnetic fields carried by the ICME and their advection by the solar wind. In an attempt to better understand the relative importance of these effects, we analyze the relationship between the FD profiles and those of the interplanetary magnetic field (B) and the solar wind speed (V sw ). Over the entire duration of a given FD, we find that the FD profile is generally (anti)correlated with the B and V sw profiles. This trend holds separately for the FD main and recovery phases too. For the recovery phases, however, the FD profile is highly anti-correlated with the V sw profile, but not with the B profile. While the total duration of the FD profile is similar to that of the V sw profile, it is significantly longer than that of the B profile. Using the convection–diffusion model, a significant contribution of advection by solar wind is found during the recovery phases of the FD.

  15. RELATIVE CONTRIBUTION OF THE MAGNETIC FIELD BARRIER AND SOLAR WIND SPEED IN ICME-ASSOCIATED FORBUSH DECREASES

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Ankush; Vichare, Geeta [Indian Institute of Geomagnetism, Kalamboli Highway, New Panvel, Navi Mumbai 410218 (India); Subramanian, Prasad, E-mail: ankushbhaskar@gmail.com [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2016-09-10

    We study 50 cosmic-ray Forbush decreases (FDs) from the Oulu neutron monitor data during 1997–2005 that were associated with Earth-directed interplanetary coronal mass ejections (ICMEs). Such events are generally thought to arise due to the shielding of cosmic rays by a propagating diffusive barrier. The main processes at work are the diffusion of cosmic rays across the large-scale magnetic fields carried by the ICME and their advection by the solar wind. In an attempt to better understand the relative importance of these effects, we analyze the relationship between the FD profiles and those of the interplanetary magnetic field (B) and the solar wind speed (V {sub sw}). Over the entire duration of a given FD, we find that the FD profile is generally (anti)correlated with the B and V {sub sw} profiles. This trend holds separately for the FD main and recovery phases too. For the recovery phases, however, the FD profile is highly anti-correlated with the V {sub sw} profile, but not with the B profile. While the total duration of the FD profile is similar to that of the V {sub sw} profile, it is significantly longer than that of the B profile. Using the convection–diffusion model, a significant contribution of advection by solar wind is found during the recovery phases of the FD.

  16. Multi-point Shock and Flux Rope Analysis of Multiple Interplanetary Coronal Mass Ejections around 2010 August 1 in the Inner Heliosphere

    Science.gov (United States)

    Möstl, C.; Farrugia, C. J.; Kilpua, E. K. J.; Jian, L. K.; Liu, Y.; Eastwood, J. P.; Harrison, R. A.; Webb, D. F.; Temmer, M.; Odstrcil, D.; Davies, J. A.; Rollett, T.; Luhmann, J. G.; Nitta, N.; Mulligan, T.; Jensen, E. A.; Forsyth, R.; Lavraud, B.; de Koning, C. A.; Veronig, A. M.; Galvin, A. B.; Zhang, T. L.; Anderson, B. J.

    2012-10-01

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120° in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index (≈ - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  17. MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Moestl, C.; Liu, Y.; Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Kilpua, E. K. J. [Department of Physics, University of Helsinki, FI-00560 Helsinki (Finland); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD (United States); Eastwood, J. P.; Forsyth, R. [The Blackett Laboratory, Imperial College, London (United Kingdom); Harrison, R. A.; Davies, J. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Webb, D. F. [Institute for Scientific Research, Boston College, Newton, MA (United States); Temmer, M.; Rollett, T.; Veronig, A. M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, A-8010 Graz (Austria); Odstrcil, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Nitta, N. [Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Mulligan, T. [Space Science Applications Laboratory, The Aerospace Corporation, El Segundo, CA (United States); Jensen, E. A. [ACS Consulting, Houston, TX (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse (UPS), F-31400 Toulouse (France); De Koning, C. A., E-mail: christian.moestl@uni-graz.at [NOAA/SWPC, Boulder, Colorado (United States); and others

    2012-10-10

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120 Degree-Sign in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index ( Almost-Equal-To - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  18. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  19. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  20. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  1. Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically.

    Science.gov (United States)

    Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell

    2015-01-01

    Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

    Science.gov (United States)

    Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.

    2018-02-01

    The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward

  3. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  4. Impact-driven ejection of micro metal droplets on-demand

    NARCIS (Netherlands)

    Luo, Jun; Qi, Lehua; Tao, Yuan; Ma, Qian; Visser, C.W.

    2016-01-01

    On-demand metal droplet deposition will be a cornerstone technology in 3D metal printing. However, suitable small nozzles are hardly available, limiting the resolution and surface finish of final products. Here, the ejection of record-small metal droplets with a diameter of only 0.55±0.07 times the

  5. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it [INAF–Turin Astrophysical Observatory, via Osservatorio 20, I-10025 Pino Torinese (Italy)

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{sub ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.

  6. Thermodynamic analysis of a novel exhaust heat-driven non-adiabatic ejection-absorption refrigeration cycle using R290/oil mixture

    International Nuclear Information System (INIS)

    Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng

    2017-01-01

    Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.

  7. Empirical Modeling of ICMEs Using ACE/SWICS Ionic Distributions

    Science.gov (United States)

    Rivera, Y.; Landi, E.; Lepri, S. T.; Gilbert, J. A.

    2017-12-01

    Coronal Mass Ejections (CMEs) are some of the largest, most energetic events in the solar system releasing an immense amount of plasma and magnetic field into the Heliosphere. The Earth-bound plasma plays a large role in space weather, causing geomagnetic storms that can damage space and ground based instrumentation. As a CME is released, the plasma experiences heating, expansion and acceleration; however, the physical mechanism supplying the heating as it lifts out of the corona still remains uncertain. From previous work we know the ionic composition of solar ejecta undergoes a gradual transition to a state where ionization and recombination processes become ineffective rendering the ionic composition static along its trajectory. This property makes them a good indicator of thermal conditions in the corona, where the CME plasma likely receives most of its heating. We model this so-called `freeze-in' process in Earth-directed CMEs using an ionization code to empirically determine the electron temperature, density and bulk velocity. `Frozen-in' ions from an ensemble of independently modeled plasmas within the CME are added together to fit the full range of observational ionic abundances collected by ACE/SWICS during ICME events. The models derived using this method are used to estimate the CME energy budget to determine a heating rate used to compare with a variety of heating mechanisms that can sustain the required heating with a compatible timescale.

  8. Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events

    Science.gov (United States)

    Boroyev, R. N.; Vasiliev, M. S.

    2018-01-01

    In this work, the relation of high-latitude indices of geomagnetic activity (AE, Kp) with the rate of storm development and a solar wind electric field during the main phase of magnetic storm induced by the CIR and ICME events is investigated. 72 magnetic storms induced by CIR and ICME events have been selected. It is shown that for the CIR and ICME events the increase of average value of the Kp index (Kpaver) is observed with the growth of rate of storm development. The value of Kpaver index correlates with the magnitude of minimum value of Dst index (|Dstmin|) only for the ICME events. The analysis of average values of AE and Kp indices during the main phase of magnetic storm depending on the SW electric field has shown that for the CIR events, unlike the ICME events, the value of AEaver increases with the growth of average value of the electric field (Eswaver). The value of Kpaver correlates with the Eswaver only for the ICME events. The relation between geomagnetic indices and the maximum value of SW electric field (Eswmax) is weak. However, for the ICME events Kpaver correlates with Eswmax.

  9. ICM: an Integrated Compartment Method for numerically solving partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1981-05-01

    An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.

  10. Self-similar hierarchical energetics in the ICM of massive galaxy clusters

    Science.gov (United States)

    Miniati, Francesco; Beresnyak, Andrey

    Massive galaxy clusters (GC) are filled with a hot, turbulent and magnetised intra-cluster medium (ICM). They are still forming under the action of gravitational instability, which drives supersonic mass accretion flows. These partially dissipate into heat through a complex network of large scale shocks, and partly excite giant turbulent eddies and cascade. Turbulence dissipation not only contributes to heating of the ICM but also amplifies magnetic energy by way of dynamo action. The pattern of gravitational energy turning into kinetic, thermal, turbulent and magnetic is a fundamental feature of GC hydrodynamics but quantitative modelling has remained a challenge. In this contribution we present results from a recent high resolution, fully cosmological numerical simulation of a massive Coma-like galaxy cluster in which the time dependent turbulent motions of the ICM are resolved (Miniati 2014) and their statistical properties are quantified for the first time (Miniati 2015, Beresnyak & Miniati 2015). We combine these results with independent state-of-the art numerical simulations of MHD turbulence (Beresnyak 2012), which shows that in the nonlinear regime of turbulent dynamo (for magnetic Prandtl numbers>~ 1) the growth rate of the magnetic energy corresponds to a fraction CE ~= 4 - 5 × 10-2 of the turbulent dissipation rate. We thus determine without adjustable parameters the thermal, turbulent and magnetic history of giant GC (Miniati & Beresnyak 2015). We find that the energy components of the ICM are ordered according to a permanent hierarchy, in which the sonic Mach number at the turbulent injection scale is of order unity, the beta of the plasma of order forty and the ratio of turbulent injection scale to Alfvén scale is of order one hundred. These dimensionless numbers remain virtually unaltered throughout the cluster's history, despite evolution of each individual component and the drive towards equipartition of the turbulent dynamo, thus revealing a new

  11. ICME — A Mere Coupling of Models or a Discipline of Its Own?

    Science.gov (United States)

    Bambach, Markus; Schmitz, Georg J.; Prahl, Ulrich

    Technically, ICME — Integrated computational materials engineering — is an approach for solving advanced engineering problems related to the design of new materials and processes by combining individual materials and process models. The combination of models by now is mainly achieved by manual transformation of the output of a simulation to form the input to a subsequent one. This subsequent simulation is either performed at a different length scale or constitutes a subsequent step along the process chain. Is ICME thus just a synonym for the coupling of simulations? In fact, most ICME publications up to now are examples of the joint application of selected models and software codes to a specific problem. However, from a systems point of view, the coupling of individual models and/or software codes across length scales and along material processing chains leads to highly complex meta-models. Their viability has to be ensured by joint efforts from science, industry, software developers and independent organizations. This paper identifies some developments that seem necessary to make future ICME simulations viable, sustainable and broadly accessible and accepted. The main conclusion is that ICME is more than a multi-disciplinary subject but a discipline of its own, for which a generic structural framework has to be elaborated and established.

  12. Development of Gradient Cemented Carbides Through ICME Strategy

    Science.gov (United States)

    Du, Yong; Peng, Yingbiao; Zhang, Weibin; Chen, Weimin; Zhou, Peng; Xie, Wen; Cheng, Kaiming; Zhang, Lijun; Wen, Guanghua; Wang, Shequan

    An integrated computational materials engineering (ICME) including CALPHAD method is a powerful tool for materials process optimization and alloy design. The quality of CALPHAD-type calculations is strongly dependent on the quality of the thermodynamic and diffusivity databases. The development of a thermodynamic database, CSUTDCC1, and a diffusivity database, CSUDDCC1, for cemented carbides is described. Several gradient cemented carbides sintered under vacuum and various partial pressures of N2 have been studied via experiment and simulation. The microstructure and concentration profile of the gradient zones have been investigated via SEM and EPMA. Examples of ICME applications in design and manufacture for different kinds of cemented carbides are shown using the databases and comparing where possible against experimental data, thereby validating its accuracy.

  13. Establishing an Integrated Catchment Management (ICM) program in East Java, Indonesia.

    Science.gov (United States)

    Booth, C A; Warianti, A; Wrigley, T

    2001-01-01

    The Brantas is one of Indonesia's most important catchments. It is the "rice bowl" of Java and nationally important for its industrial activity. Surabaya, Indonesia's second largest city, is located at the mouth of the Brantas River which is pivotal to the city's water supply. The challenges associated with the institutional framework for natural resource management in East Java parallels that of many states and provinces around the globe. It is multi-layered and complex. Integrated Catchment Management (ICM) may be defined as "the co-ordinated and sustainable management of land, water, soil vegetation, fauna and other natural resources on a water catchment basis". Over a period of six months, an ICM Strategy was researched and facilitated for the Brantas River Catchment in East Java via a short term advisor attachment. The aim of the Strategy is to improve coordination, co-operation, communication and consistency of government and community efforts towards sustaining the catchment's environmental, economic and social values. The attachment was part of the Pollution Control Implementation (PCI) Project funded by AusAid and the Indonesian Government. The ICM Strategy developed was broad based and addressed the priority natural resource management issues facing the Brantas Catchment. It was co-ordinated by BAPEDALDA, the Provincial Environmental Protection Agency, and developed by all agencies involved in natural resource management in the catchment. Various Universities and Non Government Organisations (NGOs) were also involved in the ICM process which developed the Strategy. At the conclusion of the attachment, a draft ICM Strategy and a proposed institutional framework had been developed. A working group of key agencies was also established to further enhance local "ownership", finalise timescales and implementation responsibilities within the Strategy and bring the institutional arrangements into being through a Governor's Decree.

  14. Supernova mass ejection and core hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1978-01-01

    Simplifications that have emerged in the descriptions of stellar unstable collapse to a neutron star are discussed. The neutral current weak interaction leads to almost complete neutrino trapping in the collapse and to an electron fraction Y/sub e/ congruent to 0.35 in equilibrium with trapped electron neutrinos and ''iron'' nuclei. A soft equation of state (γ congruent to 1.30) leads to collapse, and bounce occurs on a hard core, γ = 2.5, at nuclear densities. Neutrino emission is predicted from a photosphere at r congruent to 2 x 10 7 cm and E/sub ν/ congruent to 10 MeV. The ejection of matter by an elastic core bounce and a subsequent escaping shock is marginal and may not be predicted for accurate values of the equation of state. A new concept of Rayleigh-Taylor driven core instabilities is invoked to predict an increased mass ejection either due to an increased flux and energy of neutrinos at second bounce time and, or, the rapid 0.1 to 0.4 second formation of a more energetically bound neutron star. The instability is caused by highly neutronized external matter from which neutrinos have escaped being supported by lighter matter of the lepton trapped core. An initial anisotropy of 10 -2 to 10 -3 should lead to adequately rapid (several milliseconds) overturn following several (2 to 4) bounces. Subsequent to the overturnwith or without a strong ejection shock, a weak ejection shock will allow an accretion shock to form on the ''cold'' neutron star core due to the reimplosion or rarefaction wave in the weakly ejected matter. The accretion shock forms at low enough mass accumulation rate, 1 / 2 M/sub solar/ sec -1 , such that a black body neutrino flux can escape from the shock front (kT congruent to 10 MeV, [E/sub ν/] congruent to 30 MeV). This strongly augments the weaker bounce ejection shock by heating the external matter in the mantle by electron neutrino scattering (congruent to 10 52 ergs) causing adequate mass ejection

  15. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  16. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Wenhan Zhu

    2011-03-01

    Full Text Available A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.

  17. High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME

    Science.gov (United States)

    Otis, Richard A.; Liu, Zi-Kui

    2017-05-01

    One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.

  18. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the sun to 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Möstl, C.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V. [Kanzelhöhe Observatory-IGAM, Institute of Physics, University of Graz (Austria); Amla, K.; Hall, J. R.; Liewer, P. C.; De Jong, E. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Colaninno, R. C. [Space Sciences Division, Naval Research Laboratory, Washington, DC (United States); Davies, J. A.; Harrison, R. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Lugaz, N.; Farrugia, C. J.; Galvin, A. B. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Vršnak, B., E-mail: christian.moestl@uni-graz.at [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000, Zagreb (Croatia)

    2014-06-01

    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700 km s{sup –1}). We track the CMEs to 34.9 ± 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of –26.4 ± 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Φ, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 ± 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 ± 288 km s{sup –1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 ± 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 ± 50 km s{sup –1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.

  19. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  20. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-05-10

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  1. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter

    OpenAIRE

    Nagai, Hiroki; Roy, Craig R.

    2001-01-01

    Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted Do...

  2. Training plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2013-01-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...

  3. Test report : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2015-05-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) : Demonstration Project for the Dallas region. Coordinated corridor operations and management is : predicated on being able to share transportation informa...

  4. Final report : Dallas Integrated Corridor Management (ICM) Demonstration Project.

    Science.gov (United States)

    2015-08-01

    The Dallas Area Rapid Transit (DART) is leading the US-75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...

  5. Data-driven Simulations of Magnetic Connectivity in Behind-the-Limb Gamma-ray Flares and Associated Coronal Mass Ejections

    Science.gov (United States)

    Jin, M.; Petrosian, V.; Liu, W.; Nitta, N.; Omodei, N.; Rubio da Costa, F.; Effenberger, F.; Li, G.; Pesce-Rollins, M.

    2017-12-01

    Recent Fermi detection of high-energy gamma-ray emission from the behind-the-limb (BTL) solar flares pose a puzzle on the particle acceleration and transport mechanisms in such events. Due to the large separation between the flare site and the location of gamma-ray emission, it is believed that the associated coronal mass ejections (CMEs) play an important role in accelerating and subsequently transporting particles back to the Sun to produce obseved gamma-rays. We explore this scenario by simulating the CME associated with a well-observed flare on 2014 September 1 about 40 degrees behind the east solar limb and by comparing the simulation and observational results. We utilize a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model) to track the dynamical evolution of the global magnetic field during the event and investigate the magnetic connectivity between the CME/CME-driven shock and the Fermi emission region. Moreover, we derive the time-varying shock parameters (e.g., compression ratio, Alfven Mach number, and ThetaBN) over the area that is magnetically connected to the visible solar disk where Fermi gamma-ray emission originates. Our simulation shows that the visible solar disk develops connections both to the flare site and to the CME-driven shock during the eruption, which indicate that the CME's interaction with the global solar corona is critical for understanding such Fermi BTL events and gamma-ray flares in general. We discuss the causes and implications of Fermi BTL events, in the framework of a potential shift of paradigm on particle acceleration in solar flares/CMEs.

  6. Guerra fiscal: ICMS e o comércio eletrônico

    OpenAIRE

    Maki Minato

    2015-01-01

    Este trabalho tem por objetivo analisar as disputas entre os estados envolvendo a tributação pelo ICMS das operações de circulação de mercadoria contratadas pela internet. A despeito da extensa disciplina sobre o tributo na Constituição Federal de 1988, intensificam-se os conflitos entre os estados em torno do ICMS. No caso do comércio eletrônico, a internet impulsiona o aumento das operações de compra e venda realizadas de forma remota. Tendo em vista que o parâmetro de origem foi adotado pe...

  7. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    Science.gov (United States)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  8. Elliptic-cylindrical analytical flux-rope model for ICMEs

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  9. The driving mechanisms of particle precipitation during the moderate geomagnetic storm of 7 January 2005

    Directory of Open Access Journals (Sweden)

    N. Longden

    2007-10-01

    Full Text Available The arrival of an interplanetary coronal mass ejection (ICME triggered a sudden storm commencement (SSC at ~09:22 UT on the 7 January 2005. The ICME followed a quiet period in the solar wind and interplanetary magnetic field (IMF. We present global scale observations of energetic electron precipitation during the moderate geomagnetic storm driven by the ICME. Energetic electron precipitation is inferred from increases in cosmic noise absorption (CNA recorded by stations in the Global Riometer Array (GLORIA. No evidence of CNA was observed during the first four hours of passage of the ICME or following the sudden commencement (SC of the storm. This is consistent with the findings of Osepian and Kirkwood (2004 that SCs will only trigger precipitation during periods of geomagnetic activity or when the magnetic perturbation in the magnetosphere is substantial. CNA was only observed following enhanced coupling between the IMF and the magnetosphere, resulting from southward oriented IMF. Precipitation was observed due to substorm activity, as a result of the initial injection and particles drifting from the injection region. During the recovery phase of the storm, when substorm activity diminished, precipitation due to density driven increases in the solar wind dynamic pressure (Pdyn were identified. A number of increases in Pdyn were shown to drive sudden impulses (SIs in the geomagnetic field. While many of these SIs appear coincident with CNA, SIs without CNA were also observed. During this period, the threshold of geomagnetic activity required for SC driven precipitation was exceeded. This implies that solar wind density driven SIs occurring during storm recovery can drive a different response in particle precipitation to typical SCs.

  10. Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

    Science.gov (United States)

    Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.

    2017-09-01

    The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

  11. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    International Nuclear Information System (INIS)

    Vemareddy, P.

    2017-01-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  12. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)

    2017-08-10

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  13. Concept of operations : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2010-06-01

    This concept of operations (Con Ops) for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US : Department of Transportation Integrated Corridor Management Initiative, which is an innovative research initiative ...

  14. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  15. 557 Test and Manage Protocol for 841 Patients Requiring Iodinated Contrast Media (Icm) in Pediatrics

    Science.gov (United States)

    Diaz, Maria Cristina; Lavrut, Alberto Jorge; Spinelli, Silvia Susana

    2012-01-01

    Background ICM's adverse effects are quite frequent and potentially serious. The use of protocols to test and manage patients receiving ICM could help to decrease the adverse effects because they advise against the studies or prescribe the administration of premedication; however, its use in pediatrics is still limited. We describe the results of the use of a test and management protocol for pediatric patients requiring ICM. Methods All the patients of a pediatric hospital prescribed with ICM between 31st January 2008 and 5th March 2011 were included. The following variables have been analyzed: age, sex, type of study to be performed, diagnoses and hospitalized or outpatient, risk (regular, increased or non-advised) and the presence of adverse reactions. We also analyzed the relation between risk and age, sex and condition (chi cuadrado o t test). Significance level P < 0.05. Results We included 841 patients (56.9% male, age = 92.7 ± 24.5 months, 60% hospitalized). The most frequent test was chest Tc (36%) and the most frequent diagnosis was solid tumors (25%). Patients with increased risk were significantly lower than those with regular risk (75.7 ± 69.7 months vs 109.7 ± 61.6, P < 0.001). During the research period there were no adverse effects. Conclusions The classification of risk groups by this Goverment Buenos Aires City protocols allows a rational management of the patients requiring ICM and minimize the adverse effects.

  16. Project management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2010-12-01

    The Dallas Integrated Corridor Management System Demonstration Project is a multi-agency, de-centralized operation which will utilize a set of regional systems to integrate the operations of the corridor. The purpose of the Dallas ICM System is to im...

  17. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Pogorelov, N. V. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2017-07-10

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.

  18. Proton ejection project for Saturne; Projet d'ejection des protons de saturne

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G; Gendreau, G

    1959-07-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [French] On donne d'abord les raisons du choix du systeme d'ejection, puis le principe. Apres les caracteristiques requises pour le faisceau ejecte, on decrit le processus d'ejection selon l'ordre chronologique vu par les protons: mouvement des particules compte tenu des divers elements composant le systeme (aimant interne, aimant externe, quadrupoles, enroulements correcteurs ejection, cibles mince et epaisse,. ..) et cahier de charge de ces elements. On estime, ensuite les delais de realisation et le cout du projet. Enfin, un resume des caracteristiques des aimants et quadrupoles est donne en appendice. (auteur)

  19. Operations and maintenance plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2014-01-01

    This Operations and Maintenance (O&M) Plan describes how the Integrated Corridor Management System (ICMS) will be used in daily transportation operations and maintenance activities. The Plan addresses the activities needed to effectively operate the ...

  20. System acceptance test plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2013-02-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) : Demonstration Project for the Dallas region. Coordinated corridor operations and management is : predicated on being able to share transportation informa...

  1. Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Arróyave, Raymundo; Talapatra, Anjana; Johnson, Luke; Singh, Navdeep; Ma, Ji; Karaman, Ibrahim

    2015-11-01

    Over the last decade, considerable interest in the development of High-Temperature Shape Memory Alloys (HTSMAs) for solid-state actuation has increased dramatically as key applications in the aerospace and automotive industry demand actuation temperatures well above those of conventional SMAs. Most of the research to date has focused on establishing the (forward) connections between chemistry, processing, (micro)structure, properties, and performance. Much less work has been dedicated to the development of frameworks capable of addressing the inverse problem of establishing necessary chemistry and processing schedules to achieve specific performance goals. Integrated Computational Materials Engineering (ICME) has emerged as a powerful framework to address this problem, although it has yet to be applied to the development of HTSMAs. In this paper, the contributions of computational thermodynamics and kinetics to ICME of HTSMAs are described. Some representative examples of the use of computational thermodynamics and kinetics to understand the phase stability and microstructural evolution in HTSMAs are discussed. Some very recent efforts at combining both to assist in the design of HTSMAs and limitations to the full implementation of ICME frameworks for HTSMA development are presented.

  2. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  3. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  4. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    International Nuclear Information System (INIS)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara

    2013-01-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux

  5. Systems engineering management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2010-12-01

    The purpose of the Dallas ICM System is to implement a multi-modal operations decision support tool enabled by real-time data pertaining to the : operation of freeways, arterials, and public transit. The system will be shared between information syst...

  6. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  7. Ejection Tower Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Ejection Tower Facility's mission is to test and evaluate new ejection seat technology being researched and developed for future defense forces. The captive and...

  8. Real-time forecasting of ICME shock arrivals at L1 during the "April Fool’s Day" epoch: 28 March – 21 April 2001

    Directory of Open Access Journals (Sweden)

    W. Sun

    Full Text Available The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.

    Key words. Interplanetary physics (flare and stream dynamics; interplanetary shocks – Magnetosheric physics (storms and substorms

  9. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis.

    Directory of Open Access Journals (Sweden)

    Fernando A Gómez

    Full Text Available Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.

  10. Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    Science.gov (United States)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2018-04-01

    We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.

  11. TURBULENCE AND DYNAMO IN GALAXY CLUSTER MEDIUM: IMPLICATIONS ON THE ORIGIN OF CLUSTER MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Xu Hao; Collins, David C.; Norman, Michael L.; Li Hui; Li Shengtai

    2009-01-01

    We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process. The ICM turbulence is shown to be generated and sustained by the frequent mergers of smaller halos. Furthermore, a cluster-wide dynamo process is shown to exist in the ICM and amplify the magnetic field energy and flux. The total magnetic energy in the cluster can reach ∼10 61 erg while micro Gauss (μG) fields can distribute over ∼ Mpc scales throughout the whole cluster. This finding shows that magnetic fields from AGNs, being further amplified by the ICM turbulence through small-scale dynamo processes, can be the origin of cluster-wide magnetic fields.

  12. Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet

    Directory of Open Access Journals (Sweden)

    Kai Li

    2017-01-01

    Full Text Available The piezoelectric micro-jet, which can achieve the drop-on-demand requirement, is based on ink-jet technology and small droplets can be ejected out by precise control. The droplets are driven out of the nozzle by the acoustic pressure waves which are generated by the piezoelectric vibrator. The propagation processes of the acoustic pressure waves are affected by the acoustic properties of the fluid and the shell material of the micro-jet, as well as the excitations and the structure sizes. The influences of the fluid density and acoustic velocity in the fluid on the nozzle pressure and support reaction force of the vibrator are analyzed in this paper. The effects of the shell material on the ejection performance are studied as well. In order to improve the ejection performance of the micro-jet, for ejecting a given fluid, the recommended methods of selecting the shell material and adjusting excitations are provided based on the results, and the influences of the factors on working frequencies are obtained as well.

  13. Re-visiting ICM theory and practice: Lessons learned from the Baltic Sea Region

    DEFF Research Database (Denmark)

    Støttrup, Josianne Gatt; Dinesen, Grete E.; Janssen, Holger

    2017-01-01

    Sustainable management of coastal systems requires an iterative process using a multidisciplinary approach that integrates the three pillars of sustainable development: envir nmental protection, social progress and economic growth. The Systems Approach Framework (SAF) provides a structure...... as instructed by the SAF led to an unbalanced participation of stakeholders, or in some cases, lack of involvement of stakeholders at the start of the process. Most of the ICM processes failed to include an integrated, cross-sectorial, ecological-socio-economic assessment. This extends from the lack of system...... thinking when defining the Policy Issue for the problem and when developing the conceptual model, which often leads to one-sectorial solutions, which may not be sustainable. Furthermore, the duration of some of the ICM processes was prolonged due to disagreement and opposition early in the process and...

  14. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  15. Advancement and Implementation of Integrated Computational Materials Engineering (ICME) for Aerospace Applications

    Science.gov (United States)

    2010-03-01

    thermodynamic modeling program), among others. These APIs provide data formats, variable identifiers, and callable routines that allow external programs...and possibly multiple alloys or even multiple alloy forms in the same bonded assembly. 32 ICME White Paper, Cowles and Backman January 31, 2010 36

  16. The association of coronal mass ejections with their effects near the Earth

    Directory of Open Access Journals (Sweden)

    R. Schwenn

    2005-03-01

    Full Text Available To this day, the prediction of space weather effects near the Earth suffers from a fundamental problem: The radial propagation speed of "halo" CMEs (i.e. CMEs pointed along the Sun-Earth-line that are known to be the main drivers of space weather disturbances towards the Earth cannot be measured directly because of the unfavorable geometry. From inspecting many limb CMEs observed by the LASCO coronagraphs on SOHO we found that there is usually a good correlation between the radial speed and the lateral expansion speed Vexp of CME clouds. This latter quantity can also be determined for earthward-pointed halo CMEs. Thus, Vexp may serve as a proxy for the otherwise inaccessible radial speed of halo CMEs. We studied this connection using data from both ends: solar data and interplanetary data obtained near the Earth, for a period from January 1997 to 15 April 2001. The data were primarily provided by the LASCO coronagraphs, plus additional information from the EIT instrument on SOHO. Solar wind data from the plasma instruments on the SOHO, ACE and Wind spacecraft were used to identify the arrivals of ICME signatures. Here, we use "ICME" as a generic term for all CME effects in interplanetary space, thus comprising not only ejecta themselves but also shocks as well. Among 181 front side or limb full or partial halo CMEs recorded by LASCO, on the one hand, and 187 ICME events registered near the Earth, on the other hand, we found 91 cases where CMEs were uniquely associated with ICME signatures in front of the Earth. Eighty ICMEs were associated with a shock, and for 75 of them both the halo expansion speed Vexp and the travel time Ttr of the shock could be determined. The function Ttr=203-20.77*ln (Vexp fits the data best. This empirical formula can be used for predicting further ICME arrivals, with a 95% error margin of about one day. Note, though, that in 15% of comparable cases, a

  17. Influence of edge conditions on material ejection from periodic grooves in laser shock-loaded tin

    Energy Technology Data Exchange (ETDEWEB)

    Rességuier, T. de; Roland, C. [Institut PPRIME, UPR 3346, CNRS, ENSMA, Université de Poitiers, 1 ave. Clément Ader, 86961 Futuroscope Cedex (France); Prudhomme, G.; Lescoute, E.; Mercier, P. [CEA, DAM, DIF, 91297 Arpajon (France); Loison, D. [Institut de Physique de Rennes, CNRS, Université de Rennes 1, 35042 Rennes (France)

    2016-05-14

    In a material subjected to high dynamic compression, the breakout of a shock wave at a rough free surface can lead to the ejection of high velocity debris. Anticipating the ballistic properties of such debris is a key safety issue in many applications involving shock loading, including pyrotechnics and inertial confinement fusion experiments. In this paper, we use laser driven shocks to investigate particle ejection from calibrated grooves of micrometric dimensions and approximately sinusoidal profile in tin samples, with various boundary conditions at the groove edges, including single groove and periodic patterns. Fast transverse shadowgraphy provides ejection velocities after shock breakout. They are found to depend not only on the groove depth and wavelength, as predicted theoretically and already observed in the past, but also, unexpectedly, on the edge conditions, with a jet tip velocity significantly lower in the case of a single groove than behind a periodic pattern.

  18. ICMS: problems from the oil well to gas station (a risk for the investment planning in the oil, gas and energy data); ICMS: problemas do poco ao posto (um risco para o planejamento de investimentos no setor de petroleo, gas e energia)

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Luciano [Lex Consult, Salvador, BA (Brazil)

    2004-07-01

    In 1988, by changing the Constitution, that taxed the oil, based products and electric power with single tax, of Federal responsibility, going to ICMS and, as a consequence, to the states, the tributes on this products, caused not only a tribute reform, but also, as a bad view an undesired administrative reform of electric power policy. The Union, that used to keep the control of policy and tributes on that section, kept with the policy, but had lost the control over theses tributes. The workability of these investment projects now has to consider the tax charged by ICMS. Is good to say that the public's policy, after 1988, those do not regard the ICMS, may not be possible to be done. Further this worrying situation, the ICMS application has been discordant with this section, promoting juridical obstacle and doubtful legal interpretation, from the upstream to the downstream. Facing this situation, what is wanted in this work is to stimulate discussion about the necessity to find alternatives ways out, either to rescue to the public section the effective conduction of the policy over this section, or to alert the investor about the necessity to make a suitable plan, looking forward to protect your investment from the dangers of tax legislation. (author)

  19. Créditos do ICMS: inconstitucionalidade da legislação complementar

    Directory of Open Access Journals (Sweden)

    Demilson Dagostim

    2005-11-01

    Full Text Available A não-cumulatividade do ICMS - Imposto sobre Circulação de Mercadorias e Serviços de transporte e comunicação é um princípio assegurado pela Constituição do Brasil de 1988 que faz nascer para o contribuinte um crédito fiscal financeiro toda vez que este adquire uma mercadoria ou um serviço com incidência do imposto. A Lei Complementar n° 87 de 1996 veio confirmar que o crédito no ICMS é financeiro, ou seja, não apenas produtos intermediários e matérias-primas dão direito a este crédito, como também bens do ativo fixo, de uso ou consumo, serviços, energia elétrica e comunicações. A legislação complementar vem adiando desde 1996 o direito dos contribuintes de utilizarem esse crédito financeiro, o que é inconstitucional. The no-cumulative of ICMS Tax on Circulation of Goods and trans port Services andcommunication is an insured rule for the Constitution of Brazi! 1988 that generatesfor the taxpayer financial fiscal credit when he acquires merchandise or servicewith incidence of the taxo The Law ComplementaI n' 87 of 1996 came to confirm thatthe credit in /CMS is financial, in other words, products notjust consumed in theproductive process they give right to the credit, also goods of the fixed assets, of useor consumption, services, electric power and communications. The ComplementaIlegislation is postponing since 1996 the taxpayers' right they to use that financialcredit, what is unconstitutional.

  20. Proton ejection project for Saturne

    International Nuclear Information System (INIS)

    Bronca, G.; Gendreau, G.

    1959-01-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [fr

  1. Accretion and ejection in resistive GR-MHD

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qian

    2017-05-10

    In this thesis, the accretion and ejection processes from a black hole accretion system is investigated by means of resistive general relativistic magnetohydrodynamic simulations. As a supplement to the results from prior research with non-relativistic simulations, my results confirm that the winds and outflows originated from thin accretion disks can also be observed in general relativistic simulations. In the first part, the execution of the implementation of resistivity, namely magnetic diffusivity, into the existing non-resistive general relativistic magnetohydrodynamic code HARM is illustrated. The test simulations of the new code rHARM include the comparison with analytical solution of the diffusion equation and a classic shock tube test. rHARM shows reliable performances in these tests. In the second part, rHARM is applied to investigate the evolution of magnetized tori. The results show that the existence of resistivity leads to inefficient accretions of matter from tori onto black holes by weakening the magnetorotational instability inside the tori. An indication for a critical magnetic diffusivity in this simulation setup is found beyond which no magnetorotational instability develops in the linear regime. In the third part, as the main purpose of this PhD project, rHARM is used to perform simulations of magnetically diffusive thin accretion disks that are threaded by a large-scale poloidal magnetic field around non-rotating and rotating black holes. These long-term simulations last 3000 code time units, which are about 195 rotation periods at the disk inner boundary, correspondingly. Their computational domains extend from black hole horizon to 80 Schwarzschild radii. Outflows driven from the accretion disk are clearly seen. These outflows have the typical radial velocity of 0.1 speed of light. In my analyses, I argue that these outflows are driven by the magnetic pressure gradient from the toroidal magnetic field generated by the rotation of the disk

  2. Optimization Using Metamodeling in the Context of Integrated Computational Materials Engineering (ICME)

    Energy Technology Data Exchange (ETDEWEB)

    Hammi, Youssef; Horstemeyer, Mark F; Wang, Paul; David, Francis; Carino, Ricolindo

    2013-11-18

    Predictive Design Technologies, LLC (PDT) proposed to employ Integrated Computational Materials Engineering (ICME) tools to help the manufacturing industry in the United States regain the competitive advantage in the global economy. ICME uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. With the advent of accurate modeling and simulation along with significant increases in high performance computing (HPC) power, virtual design and manufacturing using ICME tools provide the means to reduce product development time and cost by alleviating costly trial-and-error physical design iterations while improving overall quality and manufacturing efficiency. To reduce the computational cost necessary for the large-scale HPC simulations and to make the methodology accessible for small and medium-sized manufacturers (SMMs), metamodels are employed. Metamodels are approximate models (functional relationships between input and output variables) that can reduce the simulation times by one to two orders of magnitude. In Phase I, PDT, partnered with Mississippi State University (MSU), demonstrated the feasibility of the proposed methodology by employing MSU?s internal state variable (ISV) plasticity-damage model with the help of metamodels to optimize the microstructure-process-property-cost for tube manufacturing processes used by Plymouth Tube Company (PTC), which involves complicated temperature and mechanical loading histories. PDT quantified the microstructure-property relationships for PTC?s SAE J525 electric resistance-welded cold drawn low carbon hydraulic 1010 steel tube manufacturing processes at seven different material states and calibrated the ISV plasticity material parameters to fit experimental tensile stress-strain curves. PDT successfully performed large scale finite element (FE) simulations in an HPC environment using the ISV plasticity

  3. Probable cases which gives ICMS credit in electric power tariffs; Estudo de casos passiveis de credito de ICMS em tarifas de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lindemberg Nunes; Pinto, Danilo Pereira; Oliveira, Angelo Rocha de

    2006-07-01

    There are laws and many forms of using them that are ignored by a great part of the population. In this work one of those laws is emphasised, the complementary law n. 102/2000 of 11/07/2000 (that changed the C.L. 87/1996), that concerns the credit of ICMS in electric power taxes. The main focus of the work is the way the law is put into practice, how it can be used , who is able to receive the support of this law and who is not, ways of decisions that justifies the validation and two studies of real cases of companies that already process credits in his bill. In those two studies of accomplished cases they will be demonstrated in an emphatic way as you accomplish them and its importance. One of the cases is a consumer of small load, of the tax group B, where there is only a way of accomplishing the study, in case it is framed in the debit regime and credit. Already the second study of cases is of a consumer of the tax group A, of blue seasonal hour tax. As a last proposal of this work is the one of verifying, with those two accomplished cases, the difference of the decision evidentiary between the two companies and in that consumer kind (of the group A or B), it is usually the largest index of restitution of ICMS. (author)

  4. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  5. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.

    Directory of Open Access Journals (Sweden)

    Hayley J Newton

    Full Text Available The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has not been clearly defined. Here, we use a reporter system consisting of fusion proteins that have a β-lactamase enzyme (BlaM fused to C. burnetii effector proteins to study protein translocation by the Dot/Icm system. Translocation of BlaM fused to the effector proteins CBU0077, CBU1823 and CBU1524 was not detected until 8-hours after infection of HeLa cells, which are permissive for C. burnetii replication. Translocation of these effector fusion proteins by the Dot/Icm system required acidification of the Coxiella-containing vacuole. Silencing of the host genes encoding the membrane transport regulators Rab5 or Rab7 interfered with effector translocation, which indicates that effectors are not translocated until bacteria traffic to a late endocytic compartment in the host cell. Similar requirements for effector translocation were discerned in bone marrow macrophages derived from C57BL/6 mice, which are primary cells that restrict the intracellular replication of C. burnetii. In addition to requiring endocytic maturation of the vacuole for Dot/Icm-mediated translocation of effectors, bacterial transcription was required for this process. Thus, translocation of effector proteins by the C. burnetii Dot/Icm system occurs after acidification of the CCV and maturation of this specialized organelle to a late endocytic compartment. This indicates that creation of the specialized vacuole in which C. burnetii replicates represents a two-stage process mediated initially by host factors that regulate endocytic maturation and then by bacterial effectors delivered into

  6. PREFACE: International Conference on Magnetism (ICM 2009)

    Science.gov (United States)

    Goll, Gernot; Löhneysen, Hilbert v.; Loidl, Alois; Pruschke, Thomas; Richter, Manuel; Schultz, Ludwig; Sürgers, Christoph; Wosnitza, Jochen

    2010-11-01

    The International Conference on Magnetism 2009 (ICM 2009) was held in Karlsruhe, Germany, from 26-31 July 2009. Previous conferences in this series were organized in Edingburgh, United Kingdom (1991), Warsaw, Poland (1994), Cairns, Australia (1997), Recife, Brazil (2000), Rome, Italy (2003) and Kyoto, Japan (2006). As with previous ICM conferences, the annual Conference on Strongly Correlated Electron Systems (SCES) was integrated into ICM 2009. Conference photograph Participants of ICM 2009 in front of the Stadthalle Karlsruhe. Topics of ICM 2009 were: Strongly Correlated Electron Systems; Quantum and Classical Spin Systems; Magnetic Structures and Interactions; Magnetization Dynamics and Micromagnetics; Spin-Dependent Transport; Spin Electronics; Magnetic Thin Films, Particles, and Nanostructures; Soft and Hard Magnetic Materials and their Applications; Novel Materials and Device Applications; Magnetic Recording and Memories; Measuring Techniques and Instrumentation, as well as Interdisciplinary Topics. We are grateful to the International Advisory Committee for their help in putting up an attractive program encompassing practically all aspects of magnetism, both experimentally and theoretically. The program committee comprised A Loidl, Germany (Chair), M A Continentino, Brazil, D E Dahlberg, USA, D Givord, France, G Güntherodt, Germany, H Mikeska, Germany, D Kaczorowski, Poland, Ching-Ray Chang, South Korea, I Mertig, Germany, D Vollhardt, Germany and E F Wassermann, Germany was also head of the National Organizing Committee. His help is gratefully acknowledged. Photographs Left: Poster session in the Stadthalle Karlsruhe. Upper right: H v Löhneysen (Conference Chairman), Nobel Laureates A Fert and P. Grünberg, E Umbach (Chairman of the Executive Board of Forschungszentrum Karlsruhe) (left to right). Lower right: Nobel Laureate P W Anderson. The scientific program started on Monday 27 July 2009 with opening addresses by the Conference Chairman, the deputy

  7. Aircrew ejection experience: questionnaire responses from 20 survivors.

    Science.gov (United States)

    Taneja, Narinder; Pinto, Leslie J; Dogra, Manmohan

    2005-07-01

    Published studies on ejection have focused predominantly on the injuries sustained by aircrew and discussed their preventive measures from an aeromedical perspective. However, studies have not discussed aircrew experiences related to ejection or how they would like to advise other aircrew to successfully handle ejection as an event. Such information can assist in designing realistic indoctrination and training programs. This study was conducted to fill gaps in our understanding of aircrew perspectives of successful ejections. Aircrew reporting to the Institute of Aerospace Medicine (IAM), Indian Air Force, for post-ejection evaluation during the period of May 2003 to January 2005 completed a questionnaire that was designed for the study. A total of 20 aircrew completed this questionnaire. The mean age of the aircrew was 30.25 +/- 4.45 yr. Most of them had logged more than 500 flying hours. Some aircrew described their initial moments of ejection as "blacked out," "dazed, yet conscious," or as "a shock that gradually decreased." Practicing ejection drills on the ground, being prepared at all times, making a timely decision to eject, and assuming correct posture were identified as the most important factors for success. Descriptions of ejection as an event suggest intense emotional arousal could occur following ejection. This study provides first hand inputs into the psychological processes accompanying ejections. Such information could be very useful in understanding the critical factors that influence successful ejection.

  8. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions

    Directory of Open Access Journals (Sweden)

    Gunnar N. Schroeder

    2018-01-01

    Full Text Available The defective in organelle trafficking/intracellular multiplication (Dot/Icm Type IVb secretion system (T4SS is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal.

  9. Magnetic storm generation by large-scale complex structure Sheath/ICME

    Science.gov (United States)

    Grigorenko, E. E.; Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.; Riazantseva, M.; Borodkova, N. L.

    2017-12-01

    We study temporal profiles of interplanetary plasma and magnetic field parameters as well as magnetospheric indices. We use our catalog of large-scale solar wind phenomena for 1976-2000 interval (see the catalog for 1976-2016 in web-side ftp://ftp.iki.rssi.ru/pub/omni/ prepared on basis of OMNI database (Yermolaev et al., 2009)) and the double superposed epoch analysis method (Yermolaev et al., 2010). Our analysis showed (Yermolaev et al., 2015) that average profiles of Dst and Dst* indices decrease in Sheath interval (magnetic storm activity increases) and increase in ICME interval. This profile coincides with inverted distribution of storm numbers in both intervals (Yermolaev et al., 2017). This behavior is explained by following reasons. (1) IMF magnitude in Sheath is higher than in Ejecta and closed to value in MC. (2) Sheath has 1.5 higher efficiency of storm generation than ICME (Nikolaeva et al., 2015). The most part of so-called CME-induced storms are really Sheath-induced storms and this fact should be taken into account during Space Weather prediction. The work was in part supported by the Russian Science Foundation, grant 16-12-10062. References. 1. Nikolaeva N.S., Y. I. Yermolaev and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127 2. Yermolaev Yu. I., N. S. Nikolaeva, I. G. Lodkina and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Res., , 47(2), 81-94 3. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177-2186 4. Yermolaev Yu. I., I. G. Lodkina, N. S. Nikolaeva and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch

  10. Differential Effect of Medium on the Ratio of ICM/TE of Bovine Embryos in a Co-culture System

    Directory of Open Access Journals (Sweden)

    Mohsen Forouzanfar

    2010-01-01

    Full Text Available Background: This study was undertaken to investigate the efficiency of two differentembryo somatic cell co-culture conditions, tissue culture medium 199 (TCM199–vero cellsand Menezo B2 (B2-vero cells, for the in vitro developmental quantity and quality of bovineembryos.Materials and Methods: Bovine oocytes were allowed to mature and subsequently undergofertilization in vitro. Their presumptive zygotes were cultured in either TCM199 or B2 culturemedia in conjunction with vero cells for up to nine days. The culture media were refreshedevery two days and the proportion of embryos that cleaved and further developed to themorula and blastocyst (early, expand and hatched stages were recorded. Hatched blastocystsunderwent differential staining in order to determine the numbers of inner cell mass (ICMand tropho ectoderm (TE and total cell number (TCN.Results: Of the two groups, no significant difference was seen between the proportions ofthe presumptive zygotes cleaved, those which developed to 8-16 cells, morula and reacheddays 7or 8 blastocyst stage or hatched. However, the values for TCN and TE of the TCM199-vero embryos were significantly greater than those of B2-vero embryos. The values for ICM/TCN and ICM/TE were significantly greater in the B2-vero group versus the TCM199-verogroup.Conclusion: Both TCM199 and B2 culture media in conjunction with vero cells were ofthe same efficiency when used for in vitro development of bovine presumptive zygotes.However, TCM199 was superior in providing embryos with more embryo cell numbers,whereas B2 medium was superior in providing embryos with greater ICM/TE and ICM/TCN ratios.

  11. Origin of coronal mass ejection and magnetic cloud: Thermal or magnetic driven?

    Science.gov (United States)

    Zhang, Gong-Liang; Wang, Chi; He, Shuang-Hua

    1995-01-01

    A fundamental problem in Solar-Terrestrial Physics is the origin of the solar transient plasma output, which includes the coronal mass ejection and its interplanetary manifestation, e.g. the magnetic cloud. The traditional blast wave model resulted from solar thermal pressure impulse has faced with challenge during recent years. In the MHD numerical simulation study of CME, the authors find that the basic feature of the asymmetrical event on 18 August 1980 can be reproduced neither by a thermal pressure nor by a speed increment. Also, the thermal pressure model fails in simulating the interplanetary structure with low thermal pressure and strong magnetic field strength, representative of a typical magnetic cloud. Instead, the numerical simulation results are in favor of the magnetic field expansion as the likely mechanism for both the asymmetrical CME event and magnetic cloud.

  12. Long-Term Outcomes of Catheter Ablation of Electrical Storm in Nonischemic Dilated Cardiomyopathy Compared With Ischemic Cardiomyopathy.

    Science.gov (United States)

    Muser, Daniele; Liang, Jackson J; Pathak, Rajeev K; Magnani, Silvia; Castro, Simon A; Hayashi, Tatsuya; Garcia, Fermin C; Supple, Gregory E; Riley, Michael P; Lin, David; Dixit, Sanjay; Zado, Erica S; Frankel, David S; Callans, David J; Marchlinski, Francis E; Santangeli, Pasquale

    2017-07-01

    The goal of this study was to determine the long-term outcomes of catheter ablation (CA) of electrical storm in patients with nonischemic dilated cardiomyopathy (NIDCM) compared with patients with ischemic cardiomyopathy (ICM). CA of ventricular tachycardia (VT) electrical storm has been shown to improve VT-free survival in patients with ICM. Data on the outcomes of CA of electrical storm in patients with NIDCM are insufficient. The study included 267 consecutive patients with NIDCM (n = 71; ejection fraction 32 ± 14%) and ICM (n = 196; ejection fraction 28 ± 12%). Endo-epicardial CA was performed in 59 (22%) patients. CA was guided by activation and entrainment mapping for tolerated VT and pacemapping/targeting of abnormal substrate for unmappable VT. After a median follow-up of 45 (25th to 75th percentile: 9 to 71) months and 1 (25th to 75th percentile: 1 to 8) procedures, 76 (29%) patients died, 25 (9%) underwent heart transplantation, 87 (33%) experienced VT recurrence, and 13 (5%) had recurrence of electrical storm. Overall VT-free survival was 54% at 60 months (48% in NIDCM and 54% in ICM; p = 0.128). Patients with VT recurrence experienced a median of 2 (1 to 10) VT episodes in the 5 (1 to 14) months after the procedure. Death/transplantation-free survival was 62% at 60 months (53% in NIDCM and 64% in ICM; p = 0.067). Persistent inducibility of any VT with cycle length ≥250 ms at programmed stimulation at the end of the procedure was the only independent predictor of VT recurrence. Low ejection fraction, New York Heart Association functional class, and VT recurrence over follow-up independently predicted death/transplantation. CA of electrical storm was similarly effective in patients with NIDCM compared with patients with ICM, with elimination of electrical storm in 95% of cases and achievement of complete VT control at long-term follow-up in most patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc

  13. Control rod ejection analysis during a depressurization accident and the development of a rod-ejection-preventing device

    International Nuclear Information System (INIS)

    Mitake, S.; Itoh, K.; Fukushima, H.; Inoue, T.

    1982-01-01

    The control rods used for the experimental VHTR are suspended in the core by means of flexible steel cables and it is conceivable that an accidental rod ejection could occur due to a depressurization accident. The computer code AFLADE was developed in order to analyze the possibility of accidental rod ejection, and several studies were performed. The parametric study results showed that the adopted design condition for the VHTR core will not cause a rod ejection accident. In parallel with these accident analyses, a rod-ejection-preventing device was developed in preparation for a hypothetical accident, and its function was verified by the component tests

  14. The natural gas ducts and the ICMS; Os dutos de gas natural e o ICMS

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos; Gomes, Carlos Roberto de Miranda [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Recursos Humanos da ANP para o Setor Petroleo e Gas, PRH-36

    2005-07-01

    With the advent of the Constitutional Emendation no. 9/95 operated it the open of the industry of the oil and the natural gas for companies others that came to be contracted by the State. Ahead of the insertion of new players, the regulation of the sector was given for the Law (no. 9.478/97), as well for legal acts edited for the National Agency of the Oil - ANP. Meanwhile, the Oil norm little disciplined the industry of the natural gas that, for its peculiarities, imposes specific rules. In this context, the transport of the natural gas by means of ducts become prominent for the lack of debates on the correct form to classify them. The present work has for target to analyze the legal types instituted by the Law and for the ANP acts for the ducts, as form of if having a correct understanding of the matter. Thus, will reveal as each one of the adopted classifications can cause (or not) the incidence of the ICMS, or either, as the legal regimen of the gas-lines is correlated with the tax. (author)

  15. Water Quality Research Program: Development of Unstructured Grid Linkage Methodology and Software for CE-QUAL-ICM

    National Research Council Canada - National Science Library

    Chapman, Raymond

    1997-01-01

    This study was conducted for the purpose of developing a methodology and associated software for linking hydrodynamic output from the RMAlO finite element model to the CE-QUAL-ICM finite volume water quality model...

  16. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  17. The immunity of the ICMS (Circulation Tax) on interstate operations involving natural gas; Da imunidade do ICMS (Imposto sobre Circulacao de Mercadorias e Servicos) em operacoes interestaduais envolvendo gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Yvy, Maytta A.S.; Galvao, Katia C.P.; Mendonca, Fabiano A.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    The Federal Constitution of Brazil, in the article 155, para. 2nd, X, b, determines that there will not be Circulation Taxs (ICMS) over operations that destinates to other States petroleum, including lubricants, liquid and gaseous fuels of him derived. It establishes, therefore, hypothesis of tributary immunity. However, the interpretation of this rule in the juridical scenery is rounded by doubts. There are two possible interpretations: or the natural gas is included in this hypothesis of tributary immunity, considering it is a derived gaseous fuel of the petroleum or, in the other hand, it is not included in the hypothesis, since it is not admitted as a petroleum product. Using not juridical interpretative elements and using constitutional principles and interpretative rules, the conclusion is that the natural gas doesn't integrate the normative hypothesis, in view that the opposite comprehension would surpass the meaning of the norm in exam, falling in inconstitutionality. However, having in mind the convenience of enlarging the natural gas participation in the national energy head office, the possibility of granting tributary discharge through exemption of ICMS over operations between States involving natural gas is open. (author)

  18. Chemically triggered ejection of membrane tubules controlled by intermonolayer friction.

    Science.gov (United States)

    Fournier, J-B; Khalifat, N; Puff, N; Angelova, M I

    2009-01-09

    We report a chemically driven membrane shape instability that triggers the ejection of a tubule growing exponentially toward a chemical source. The instability is initiated by a dilation of the exposed monolayer, which is coupled to the membrane spontaneous curvature and slowed down by intermonolayer friction. Our experiments are performed by local delivery of a basic pH solution to a giant vesicle. Quantitative fits of the data give an intermonolayer friction coefficient b approximately 2x10;{9} J s/m;{4}. The exponential growth of the tubule may be explained by a Marangoni stress yielding a pulling force proportional to its length.

  19. Water-driven micromotors.

    Science.gov (United States)

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.

  20. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  1. ICMS Workshop on Differential Geometry and Continuum Mechanics

    CERN Document Server

    Grinfeld, Michael; Knops, R

    2015-01-01

    This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

  2. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    Science.gov (United States)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  3. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.

  4. Ejection experience in Serbian air force, 1990-2010

    Directory of Open Access Journals (Sweden)

    Pavlović Miroslav

    2014-01-01

    Full Text Available Background/Aim. Ejection injuries are the problem for air forces. The present risk for injuries is still too high, approximately 30-50%. This study was an effort to determine factors responsible for and contributing to injuries in the Serbian Air Force (SAF in the last two decades. Methods. All ejection cases in the SAF between 1990 and 2010 were analyzed. The collected data were: aircraft type, ejection seat generation, pilots ´ age and experience, causes of ejection, aeronautical parameters, the condition of aircraft control and types of injuries. For ease of comparison the U.S. Air Force Safety Regulation was used to define of major injuries: hospitalization for 5 days or more, loss of consciousness for over 5 min, bone fracture, joint dislocation, injury to any internal organ, any third-degree burn, or second-degree burn over 5% of the body surface area. Results. There were 52 ejections (51 pilots and 1 mechanic on 44 airplanes. The ejected persons were from 22 to 46 years, average 32 years. Major injuries were present in 25.49% cases. Of all the ejected pilots 9.61% had fractures of thoracic spine, 11.53% fractures of legs, 3.48% fractures of arms. Of all major injuries, fractures of thoracic spine were 38.46%. None of the pilots had experienced ejection previously. Conclusion. Our results suggest to obligatory take preventive measures: magnetic resonance imaging (MRI scan must be included in the standard pilot selection procedure and procedure after ejection. Physical conditioning of pilots has to be improved. Training on ejection trainer has to be accomplished, too.

  5. Ultrasound - Aided ejection in micro injection molding

    Science.gov (United States)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  6. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  7. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  8. On the mass ejected by supernova explosions

    International Nuclear Information System (INIS)

    Bohigas, J.

    1984-01-01

    A simple model is developed in order to calculate the mass ejected by superonovae. We find that the 185, 1006, 1572 and 1604 AD events, all of them classified as either probable or possible type I supernovae, ejected between 0.1 and 0.4 solar masses with an expansion velocity of roughly 10,000 km s -1 . This range of masses suggests that a collapsed object is at the center of the remnants produced by these supernovae if the precursor was a white dwarf whose mass was closed to the Chandrasekhar limit. For the Crab we obtain an ejected mass of 0.45 Msub(sun) and point out that this value is not in contradiction with a proposal in which the moderate helium stars are good candidates for producing this kind of supernovae. Finally we obtain an ejected mass of 3.1 Msub(sun) for Cas A, indicating that a type II event produced this remnant. This ejected mass is closed to what would be expected for a progenitor like an OBN star. (author)

  9. Anti-ejection system for control rod drives

    International Nuclear Information System (INIS)

    Matthews, J.C.

    1977-01-01

    A linearly movable latch mechanism is provided to move into engagement with a deformable collet whenever an undesired ejection of a leadscrew is initiated from a nuclear reactor mounted control rod drive. Such an undesired ejection would occur in the event of a rupture in a housing of the control rod drive. The collet is deformed by the linear movement of the latch mechanism to wedge itself against the leadscrew and prevent the ejection of the leadscrew from the housing. The latch mechanism is made to be controllably engageable with the leadscrew and when thus engaged to allow the leadscrew to move in a control direction while moving with the leadscrew to engage and deform the collet when the leadscrew moves in an ejection direction. 13 claims, 2 figures

  10. Advances in Integrated Computational Materials Engineering "ICME"

    Science.gov (United States)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  11. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  12. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  13. ICM for the Bay of Bengal: a review on best practices and lessons learned from Indonesia, Malaysia, Myanmar and Thailand

    OpenAIRE

    2010-01-01

    Country overviews of Integrated Coastal Management (ICM) for Indonesia, Malaysia, Myanmar and Thailand. Policies, scale and practices - what works and what does not work. Conclusions, limitations and suggestions

  14. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  15. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  16. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  17. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  18. Air pollution and heart failure: Relationship with the ejection fraction

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Abreu-Afonso, Javier; Rodríguez, Sergio; Juarez-Prera, Ruben A; Arroyo-Ucar, Eduardo; Gonzalez, Yenny; Abreu-Gonzalez, Pedro; Avanzas, Pablo

    2013-01-01

    AIM: To study whether the concentrations of particulate matter in ambient air are associated with hospital admission due to heart failure in patients with heart failure with preserved ejection fraction and reduced ejection fraction. METHODS: We studied 353 consecutive patients admitted into a tertiary care hospital with a diagnosis of heart failure. Patients with ejection fraction of ≥ 45% were classified as having heart failure with preserved ejection fraction and those with an ejection fraction of < 45% were classified as having heart failure with reduced ejection fraction. We determined the average concentrations of different sizes of particulate matter (< 10, < 2.5, and < 1 μm) and the concentrations of gaseous pollutants (carbon monoxide, sulphur dioxide, nitrogen dioxide and ozone) from 1 d up to 7 d prior to admission. RESULTS: The heart failure with preserved ejection fraction population was exposed to higher nitrogen dioxide concentrations compared to the heart failure with reduced ejection fraction population (12.95 ± 8.22 μg/m3 vs 4.50 ± 2.34 μg/m3, P < 0.0001). Multivariate analysis showed that nitrogen dioxide was a significant predictor of heart failure with preserved ejection fraction (odds ratio ranging from (1.403, 95%CI: 1.003-2.007, P = 0.04) to (1.669, 95%CI: 1.043-2.671, P = 0.03). CONCLUSION: This study demonstrates that short-term nitrogen dioxide exposure is independently associated with admission in the heart failure with preserved ejection fraction population. PMID:23538391

  19. Polarized DNA Ejection from the Herpesvirus Capsid

    Science.gov (United States)

    Newcomb, William W.; Cockrell, Shelley K.; Homa, Fred L.; Brown, Jay C.

    2009-01-01

    Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus (HSV-1) capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in dsDNA bacteriophage where the last end packaged is the first to be ejected. Release of HSV-1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be α4, a transcription factor required for expression of early genes. PMID:19631662

  20. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  1. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.

    2011-01-01

    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines...... not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data....

  2. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  3. Ultrasonographic ejection fraction of normal gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hun; Kim, Seung Yup; Park, Yaung Hee; Kang, Ik Won; Yoon, Jong Sup [Hangang Sacred Heart Hospital, Halym College, Chuncheon (Korea, Republic of)

    1984-06-15

    Real-time ultrasonography is a simple, accurate, noninvasive and potentially valuable means of studying gallbladder size and emptying. The authors calculated ultrasonographically the ejection fraction of 80 cases of normally functioning gallbladder on oral cholecystography, from June 1983 to April 1984, at the department of radiology, Hangang Sacred Heart Hospital. The results were obtained as follows; 1. Ultrasonographic Ejection Fraction at 30 minutes after the fatty meal was 73.1{+-}16.85. 2. There was no significant difference in age and sex, statistically.

  4. Signatures of collective electron dynamics in the angular distributions of electrons ejected during ultrashort laser pulse interactions with C+

    International Nuclear Information System (INIS)

    Lysaght, M A; Hutchinson, S; Van der Hart, H W

    2009-01-01

    We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C + driven by the repulsion of two equivalent p electrons. By studying the two-dimensional momentum distributions of the ejected electron as a function of the time-delay between an ultrashort pump pulse and an ionizing ultrashort probe pulse it is possible to track the collective dynamics inside the C + ion in the time domain.

  5. Do centrioles generate a polar ejection force?

    Science.gov (United States)

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  6. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  7. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  8. NEAR-SIMULTANEOUS OBSERVATIONS OF X-RAY PLASMA EJECTION, CORONAL MASS EJECTION, AND TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kim, Yeon-Han; Bong, Su-Chan; Park, Y.-D.; Cho, K.-S.; Moon, Y.-J.

    2009-01-01

    We report the first simultaneous observation of X-ray plasma ejection (XPE), coronal mass ejection (CME), and type II solar radio burst on 1999 October 26. First, an XPE was observed from 21:12 UT to 21:24 UT in the Yohkoh SXT field of view (1.1 to 1.4 R sun ). The XPE was accelerated with a speed range from 190 to 410 km s -1 and its average speed is about 290 km s -1 . Second, the associated CME was observed by the Mauna Loa Mk4 coronameter (1.1-2.8 R sun ) from 21:16 UT. The CME front was clearly identified at 21:26 UT and propagated with a deceleration of about -110 m s -2 . Its average speed is about 360 km s -1 . At the type II burst start time (21:25 UT), the height of the CME front is around 1.7 R sun and its speed is about 470 km s -1 . Third, a type II solar radio burst was observed from 21:25 UT to 21:43 UT by the Culgoora solar radio spectrograph. The burst shows three emission patches during this observing period and the emission heights of the burst are estimated to be about 1.3 R sun (21:25 UT), 1.4 R sun (21:30 UT), and 1.8 R sun (21:40 UT). By comparing these three phenomena, we find that: (1) kinematically, while the XPE shows acceleration, the associated CME front shows deceleration; (2) there is an obvious height difference (0.3 R sun ) between the CME front and the XPE front around 21:24 UT and the formation height of the type II burst is close to the trajectory extrapolated from the XPE front; (3) both speeds of the XPE and the CME are comparable with each other around the starting time of the type II burst. Considering the formation height and the speed of the type II burst, we suggest that its first emission is due to the coronal shock generated by the XPE and the other two emissions are driven by the CME flank interacting with the high-density streamer.

  9. Laser confocal microscope noise evaluation on injection compression moulded (ICM) transparent polymer Fresnel lenses

    DEFF Research Database (Denmark)

    Loaldi, D.; Calaon, Matteo; Quagliotti, Danilo

    , on an injection compression moulded (ICM) Fresnel lens, is defined. A set of two different objectives is considered, i.e. a standard series (SO), against a long working distance one (LWD); two different magnifications objectives, 50x and 100x and the use or not of a dark environment. The noise evaluation...... are measuring working distance, objective magnification and room lighting. The result confirms a strong difference of noise, using the considered objectives. The most interesting result is that the performance of SO 50x objective is better than LWD 100x....

  10. Right Ventricular Ejection Fraction using ECG-Gated First Pass Cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Hee; Lee, Hae Giu; Lee, Sung Yong; Park, Suk Min; Chung, Soo Kyo; Yim, Jeong Ik; Bahk, Yong Whee; Shinn, Kyung Sub; Kim, Young Gyun; Kwon, Soon Seog [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1993-03-15

    Radionuclide cardioangiography has been widely applied and has played major roles in moninvasive assessment of cardiac function. Three techniques, first-pass gated first and gated equilibrium methods have commonly been used to evaluate right ventricular ejection fraction which usually abnormal in the patients with cardiopulmonary disease. It has been known that the gated first pass method is most accurate method among the three techniques in assessment of fight ventricular ejection fraction. The radionuclide right ventricular ejection fraction values were determined in 13 normal subjects and in 15 patients with chronic obstructive pulmonary disease by the gated first pass method and compared with those of the first pass method because there has been no published data of fight ejection fraction by the gated first pass method were compared with the defects from the pulmonary function test performed in the patients with chronic obstructive pulmomary disease. The results were as follows; 1) The values of fight ventricular ejection fraction by the gated first pass method were 50.1 +- 6.1% in normal subjects and 38.5 +- 8.5 in the patients with chronic obstructive pulmonary disease. There was statistically significant difference between the right ventricular ejection fraction of each of the two groups (p<0.05) 2) The right ventricular ejection fraction by the gated first pass method was not linearly correlated ith FEV{sub 1}, VC. DLCO. and FVC as well as P{sub a}O2 and P{sub a}CO2 of the patients with chronic obstructive pulmonary disease. We concluded that right ventricular ejection fraction by the gated first pass method using radionuclide cardioangiography may be useful in clinical assessment of the right ventricular function.

  11. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    Science.gov (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  12. Non-Extensive Statistical Analysis of Magnetic Field and SEPs during the March 2012 ICME event, using a multi-spacecraft approach

    Science.gov (United States)

    Pavlos, George; Malandraki, Olga; Pavlos, Evgenios; Iliopoulos, Aggelos; Karakatsanis, Leonidas

    2017-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing non-equilibrium statistical mechanics. In this study, we present the highlights of Tsallis non-extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at solar wind phenomena and magnetosphere. In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of SEPs time series observed at the interplanetary space and magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For the magnetic field, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as "quiet", "shock" and "aftershock", while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the SEPs profile in time, and magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014, 2015, 2016; Karakatsanis et al. 2013). Tsallis q

  13. Mass ejection in failed supernovae: variation with stellar progenitor

    Science.gov (United States)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  14. Characteristics and long-term prognosis of patients with heart failure and mid-range ejection fraction compared with reduced and preserved ejection fraction

    DEFF Research Database (Denmark)

    Lauritsen, Josephine; Gustafsson, Finn; Abdulla, Jawdat

    2018-01-01

    AIMS: This study aimed to assess by a meta-analysis the clinical characteristics, all-cause and cardiovascular mortality, and hospitalization of patients with heart failure (HF) with mid-range ejection fraction (HFmrEF) compared with HF with reduced ejection fraction (HFrEF) and HF with preserved...

  15. A Incompatibilidade da Substituição Tributária do ICMS com a Opção pelo Simples Nacional

    Directory of Open Access Journals (Sweden)

    Fábio Pugliesi

    2012-07-01

    Full Text Available This article examines the compatibility of the provisions of the Constitution of the Federative Republic of Brazil concerning the replacement tax and progressive legal framework for simplified and unique collection which includes the tax on circulation ofmerchandises and services on the interstate transportation and communication - ICMS. Analyze the subject of scrutiny by the simplified scheme introduced by Complementary Law 123 of 14 December 2006, called Simple National, means of control, collection andmonitoring of National Simple. Exposes the historical of power to tax and the principle of non-cumulative ICMS. Exposes the replacementtax forms allowed, in particular the progressive tax replacement, and the Supreme Court ruling in the Federal Direct Action ofUnconstitutionality n. 1851-4. Finally, it considers that the exercise is of replacing incompatible with the Single National tax.Resumo: Este artigo estuda a compatibilidade das disposições da Constituição da República Federativa do Brasil, relativas à substituição tributária progressiva e ao regime jurídico de recolhimento simplificado e único em que se inclui o imposto sobre operações relacionadas à circulação de mercadorias e sobre prestações de serviços de transporte interestadual, intermunicipal e de comunicação (ICMS. Analisa-se a disciplina da apuração pelo regime simplificado instituído pela Lei Complementar n. 123, de 14 de dezembro de 2006, denominado Simples Nacional, os meios de controle da arrecadação e da fiscalização do Simples Nacional. Expõe o histórico, competência tributária, hipótese de incidência e o princípio da não cumulatividade do ICMS. Expõe as formas de substituição tributárias admitidas, em particular a substituição tributária progressiva, e o acórdão do Supremo Tribunal Federal na Ação Direta de Inconstitucionalidade n. 1.851-4. Por fim, considera que é incompatível o exercício da substituição tributária com

  16. Custo Tributário em Projetos de Investimento: o caso dos créditos de ICMSTax Cost of Investment Projects: the case of ICMS creditsEl Costo Tributario de los Proyectos de Inversión: el caso de los créditos del ICMS

    Directory of Open Access Journals (Sweden)

    CAMPANÁRIO, Milton de Abreu

    2011-03-01

    Full Text Available RESUMOO presente artigo trata do impacto da Lei Complementar 102/2000, que derrogou a Lei 89/96 – Lei Kandir, e passou a permitir a apropriação dos créditos de ICMS, em razão de investimento em bens destinados ao ativo permanente, na razão de 1/48 por mês. O artigo procura demonstrar como essa nova sistemática – que implicou na transformação do ICMS, enquanto imposto sobre o valor acrescido, do tipo consumo para o tipo renda – conduz a uma perda de aproximadamente 30% do valor dos créditos a serem recuperados e o impacto disso sobre os gastos com investimento e sobre os lucros de pequenas, médias e grandes empresas. Do ponto de vista metodológico, trata-se de um estudo descritivo, de natureza quantitativa, que procedeu em três etapas. Inicialmente, foi obtida estimativa de valor de receita líquida de vendas e de volume de investimentos, com base nos relatórios Painel de Competitividade elaborado pela Federação das Indústrias do Estado de São Paulo (Fiesp/Serasa. Com base nessas informações, foi possível obter estimativas dos fatores de geração de débitos e créditos de ICMS, com base no modelo Controle do Crédito do Ativo Permanente (CIAP. Por fim, foram calculados três indicadores: valor presente dos créditos a recuperar/valor dos créditos; valor presente dos créditos a recuperar/valor do investimento; valor presente dos créditos a recuperar/rentabilidade vendas. Conclui-se que a sistemática introduzida pela Lei Complementar 102/2000 implica grande custo de oportunidade para as empresas e que a legislação deveria ser revista, a partir dessa perspectiva, com o objetivo de garantir menores custos associados a projetos de investimento.ABSTRACTThis article discusses the impact on the profitability of firms under Complementary Law 102/2000 (which abrogated the Law 89/96 – Kandir Law allowing the appropriation of ICMS credits, due to investment in fixed assets goods, at a ratio of 1 / 48 per month. The paper

  17. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  18. Characterizing the original ejection velocity field of the Koronis family

    Science.gov (United States)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.

    2016-06-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of the ejection velocity that is perpendicular to the orbital plane (vW), may still be available, at least in part. In this work we estimate the magnitude of the original ejection velocity speeds of Koronis members using the observed distribution in proper eccentricity and inclination, and accounting for the spread caused by dynamical effects. Our results show that (i) the spread in the original ejection speeds is, to within a 15% error, inversely proportional to the fragment size, and (ii) the minimum ejection velocity is of the order of 50 m/s, with larger values possible depending on the orbital configuration at the break-up.

  19. Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989

    Science.gov (United States)

    Hundhausen, A. J.; Burkepile, J. T.; St. Cyr, O. C.

    1994-01-01

    The speeds of 936 features in 673 coronal mass ejections have been determined from trajectories observed with the Solar Maximum Mission (SMM) coronagraph in 1980 and 1984 to 1989. The distribution of observed speeds has a range (from 5th to 95th percentile) of 35 to 911 km/s; the average and median speeds are 349 and 285 km/s. The speed distributions of some selected classes of mass ejections are significantly different. For example, the speeds of 331 'outer loops' range from 80 to 1042 km/s; the average and median speeds for this class of ejections are 445 and 372 km/s. The speed distributions from each year of SMM observations show significant changes, with the annual average speeds varying from 157 (1984) to 458 km/s (1985). These variations are not simply related to the solar activity cycle; the annual averages from years near the sunspot maxima and minimum are not significantly different. The widths, latitudes, and speeds of mass ejections determined from the SMM observations are only weakly correlated. In particular, mass ejection speeds vary only slightly with the heliographic latitudes of the ejection. High-latitude ejections, which occur well poleward of the active latitudes, have speeds similar to active latitude ejections.

  20. POWER LEVEL EFFECT IN A PWR ROD EJECTION ACCIDENT

    International Nuclear Information System (INIS)

    Diamond, D.J.; Bromley, B.P.; Aronson, A.L.

    2002-01-01

    The purpose of this study is to determine the effect of the initial power level during a rod ejection accident (REA) on the ejected rod worth and the resulting energy deposition in the fuel. The model used is for the hot zero power (HZP) conditions at the end of a typical fuel cycle for the Three Mile Island Unit 1 pressurized water reactor. PARCS , a transient, three-dimensional, two-group neutron nodal diffusion code, coupled with its own thermal-hydraulics model, is used to perform both steady-state and transient simulations. The worth of an ejected control rod is affected by both power level, and the positions of control banks. As the power level is increased, the worth of a single central control rod tends to drop due to thermal-hydraulic feedback and control bank removal, both of which flatten the radial neutron flux and power distributions. Although the peak fuel pellet enthalpy rise during an REA will be greater for a given ejected rod worth at elevated initial power levels, it is more likely the HZP condition will cause a greater net energy deposition because an ejected rod will have the highest worth at HZP. Thus, the HZP condition can be considered the most conservative in a safety evaluation

  1. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study

    Science.gov (United States)

    Fujibayashi, Sho; Kiuchi, Kenta; Nishimura, Nobuya; Sekiguchi, Yuichiro; Shibata, Masaru

    2018-06-01

    We perform long-term general relativistic neutrino radiation hydrodynamics simulations (in axisymmetry) for a massive neutron star (MNS) surrounded by a torus, which is a canonical remnant formed after the binary neutron star merger. We take into account the effects of viscosity, which is likely to arise in the merger remnant due to magnetohydrodynamical turbulence. The viscous effect plays key roles for the mass ejection from the remnant in two phases of the evolution. In the first t ≲ 10 ms, a differential rotation state of the MNS is changed to a rigidly rotating state. A shock wave caused by the variation of its quasi-equilibrium state induces significant mass ejection of mass ∼(0.5–2.0) × {10}-2 {M}ȯ for the α-viscosity parameter of 0.01–0.04. For the longer-term evolution with ∼0.1–10 s, a significant fraction of the torus material is ejected. We find that the total mass of the viscosity-driven ejecta (≳ {10}-2 {M}ȯ ) could dominate over that of the dynamical ejecta (≲ {10}-2 {M}ȯ ). The electron fraction, Y e , of the ejecta is always high enough (Y e ≳ 0.25) that this post-merger ejecta is lanthanide-poor; hence, the opacity of the ejecta is likely to be ∼10–100 times lower than that of the dynamical ejecta. This indicates that the electromagnetic signal from the ejecta would be rapidly evolving, bright, and blue if it is observed from a small viewing angle (≲45°) for which the effect of the dynamical ejecta is minor.

  2. The influence of occupant anthropometry and seat position on ejection risk in a rollover.

    Science.gov (United States)

    Atkinson, Theresa; Fras, Andrew; Telehowski, Paul

    2010-08-01

    During rollover crashes, ejection increases an occupant's risk of severe to fatal injury as compared to risks for those retained in the vehicle. The current study examined whether occupant anthropometry might influence ejection risk. Factors such as restraint use/disuse, seating position, vehicle type, and roll direction were also considered in the analysis. The current study examined occupant ejections in 10 years of National Automotive Sampling System (NASS) single-event rollovers of passenger vehicles and light trucks. Statistical analysis of unweighted and weighted ejection data was carried out. No statistically significant differences in ejection rates were found based on occupant height, age, or body mass index. Drivers were ejected significantly more frequently than other occupants: 62 percent of unrestrained drivers were ejected vs. 51 percent unrestrained right front occupants. Second row unrestrained occupants were ejected at rates similar to right front-seated occupants. There were no significant differences in ejection rates for near- vs. far-side occupants. These data suggest that assessment of ejection prevention systems using either a 50th or 5th percentile adult anthropomorphic test dummy (ATD) might provide a reasonable measure of system function for a broad range of occupants. They also support the development of ejection mitigation technologies that extend beyond the first row to protect occupants in rear seat positions. Future studies should consider potential interaction effects (i.e., occupant size and vehicle dimensions) and the influence of occupant size on ejection risk in non-single-event rollovers.

  3. Correlation between auroral activity and rate of development of a storm in its main phase

    Directory of Open Access Journals (Sweden)

    Boroyev R.N.

    2016-12-01

    Full Text Available We investigated the relationship between the rate of storm development in its main phase (|ΔDst|/ΔT and the average value (ΣAE/ΔT of AE index for the main phase where |ΔDst| is the Dst-index variation, ΣAE is the total value of AE index for the main phase of magnetic storm, ΔT is the main phase duration. We considered storms initiated by corotating interaction region (CIR and interplanetary coronal mass ejection (ICME (magnetic cloud and ejecta. For CIR events, the value of ΣAE/ΔT is shown to correlate with the rate of storm development in its main phase in contrast to the storms initiated by the ICME. As found, there is a weak correlation between ΣAE/ΔT and the minimum value of Dst index for CIR and ICME events.

  4. Recurrent mass ejections observed in H-alpha and CIV

    International Nuclear Information System (INIS)

    Schmieder, B.; Simon, G.

    1984-01-01

    Time sequences of recurrent mass ejections have been observed during a coordinated SMY program (Sept. 1, 1980 - Sept. 23, 1980 - Oct. 2, 1980). Comparison of the temporal evolution of H-alpha and CIV brightnesses shows a weak phase lag between H-alpha and CIV maxima, in the case of homologous flares, with CIV brightness maxima preceding H-alpha maxima. The analysis of the variation of the ejection velocities is expected to lead to the determination of an energy balance. Such recurrent ejections could be due to periodic energy storage and periodic reorganization of magnetic field as envisaged to occur for flares, but at lower energy levels

  5. Impact of shocks on mortality in patients with ischemic or dilated cardiomyopathy and defibrillators implanted for primary prevention.

    Directory of Open Access Journals (Sweden)

    Florian Streitner

    Full Text Available BACKGROUND: Emerging interest is seen in the paradox of defibrillator shocks for ventricular tachyarrhythmia and increased mortality risk. Particularly in patients with dilated cardiomyopathy (DCM, the prognostic importance of shocks is unclear. The purpose of this study was to compare the outcome after shocks in patients with ischemic cardiomyopathy (ICM or DCM and defibrillators (ICD implanted for primary prevention. METHODS AND RESULTS: Data of 561 patients were analyzed (mean age 68.6±10.6 years, mean left ventricular ejection fraction 28.6±7.3%. During a median follow-up of 49.3 months, occurrence of device therapies and all-cause mortality were recorded. 74 out of 561 patients (13.2% experienced ≥1 appropriate and 51 out of 561 patients (9.1% ≥1 inappropriate shock. All-cause mortality was 24.2% (136 out of 561 subjects. Appropriate shock was associated with a trend to higher mortality in the overall patient population (HR 1.48, 95% CI 0.96-2.28, log rank p = 0.072. The effect was significant in ICM patients (HR 1.61, 95% CI 1.00-2.59, log rank p = 0.049 but not in DCM patients (HR 1.03, 95% CI 0.36-2.96, log rank p = 0.96. Appropriate shocks occurring before the median follow-up revealed a much stronger impact on mortality (HR for the overall patient population 2.12, 95% CI 1.24-3.63, p = 0.005. The effect was driven by ICM patients (HR 2.48, 95% CI 1.41-4.37, p = 0.001, as appropriate shocks again did not influence survival of DCM patients (HR 0.63, 95% CI 0.083-4.75, p = 0.65. Appropriate shocks occurring after the median follow-up and inappropriate shocks occurring at any time revealed no impact on survival in any of the groups (p = ns. CONCLUSION: Appropriate shocks are associated with reduced survival in patients with ICM but not in patients with DCM and ICDs implanted for primary prevention. Furthermore, the negative effect of appropriate shocks on survival in ICM patients is only evident within the

  6. Developing an effective adaptive monitoring network to support integrated coastal management in a multiuser nature reserve

    Directory of Open Access Journals (Sweden)

    Pim Vugteveen

    2015-03-01

    Full Text Available We elaborate the necessary conceptual and strategic elements for developing an effective adaptive monitoring network to support Integrated Coastal Management (ICM in a multiuser nature reserve in the Dutch Wadden Sea Region. We discuss quality criteria and enabling actions essential to accomplish and sustain monitoring excellence to support ICM. The Wadden Sea Long-Term Ecosystem Research project (WaLTER was initiated to develop an adaptive monitoring network and online data portal to better understand and support ICM in the Dutch Wadden Sea Region. Our comprehensive approach integrates ecological and socioeconomic data and links research-driven and policy-driven monitoring for system analysis using indicators of pressures, state, benefits, and responses. The approach and concepts we elaborated are transferable to other coastal regions to accomplish ICM in complex social-ecological systems in which scientists, multisectoral stakeholders, resource managers, and governmental representatives seek to balance long-term ecological, economic, and social objectives within natural limits.

  7. Performance of a fully automated program for measurement of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Douglass, K.H.; Tibbits, P.; Kasecamp, W.; Han, S.T.; Koller, D.; Links, J.M.; Wagner, H.H. Jr.

    1982-01-01

    A fully automated program developed by us for measurement of left ventricular ejection fraction from equilibrium gated blood studies was evaluated in 130 additional patients. Both of 6-min (130 studies) and 2-min (142 studies in 31 patients) gated blood pool studies were acquired and processed. The program successfully generated ejection fractions in 86% of the studies. These automatically generated ejection fractions were compared with ejection fractions derived from manually drawn regions the interest. When studies were acquired for 6-min with the patient at rest, the correlation between automated and manual ejection fractions was 0.92. When studies were acquired for 2-min, both at rest and during bicycle exercise, the correlation was 0.81. In 25 studies from patients who also underwent contrast ventriculography, the program successfully generated regions of interest in 22 (88%). The correlation between the ejection fraction determined by contrast ventriculography and the automatically generated radionuclide ejection fraction was 0.79. (orig.)

  8. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Randall, S.; Su, Y. [Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Str. 1, Garching D-85741 (Germany); Sheardown, A., E-mail: rkraft@cfa.harvard.edu [E. A. Milne Center for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom)

    2017-10-10

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  9. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Donguk; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Lim, Eun-Kyung; Cho, Kyung-Suk, E-mail: dusong@astro.snu.ac.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  10. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Science.gov (United States)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  11. Cobalt irradiation box ejection accident of ETRR-2

    International Nuclear Information System (INIS)

    El-Messiry, A.M.

    2000-01-01

    The new Egyptian test and research reactor number 2 ETRR-2, MTR type, is now under operational tests. It has a main central irradiation channel for the purpose of Co 60 isotope production with an intended rated capacity of 50000 Ci per year. The reactivity introduced in the reactor due to accidental ejection of the Co 60 irradiation box (CIB) should be discussed. This reactivity insertion accident (RIA) may be fast or slow with maximum reactivity worth 2.9428 $. The CIB may move with constant speed or variable acceleration according to its initial speed and the applied forces. This results in a linear, parabolic or sinusoidal motion, which in turn affects the reactivity insertion rate (RIR). The present work analyzes this type of perturbation during normal operating conditions: 22 MW full power and 1900 kg s -1 forced core cooling flow. The work serves as a part of the safety evaluation process applicable to similar MTR cores. The RIA code TRANSP20 is developed for this study. It simulates various types of RIR, fast or slow resulting from different CIB ejections. Scram signal due to power, period, inlet and outlet temperatures, or temperature difference is expected to activate the shutdown system. The work presents five case studies, two for fast ejection and three for slow. The transient behavior of the reactor during this is illustrated. The results show that the reactor can withstand slow ejection if the scram is available. However, for fast ejection the scram system does not prevent the clad temperature from exceeding safety limits. Recommendations to prevent or mitigate this accident are highlighted. (orig.)

  12. Beat-to-beat assessment of left ventricular ejection in atrial fibrillation

    International Nuclear Information System (INIS)

    Benjelloun, H.; Brochier, M.; Itti, R.; Philippe, L.; Lorgeron, J.M.

    1983-01-01

    Beat-to-beat left ventricular ejection was evaluated in a group of 20 patients with chronic atrial fibrillation using a computerized single probe detector. The reference group consisted of 10 patients with sinus rhythm. For each patient 30 successive cardiac cycles were analyzed and the relative variations of four parameters were assessed: R-R interval, diastolic and systolic time intervals, and ejection amplitude, corresponding to the left ventricular stroke volume. The mean variations were respectively 3.4%, 10.4%, 8.4%, and 11.8% in patients with sinus rhythm, and 21.9%, 37.9%, 10.6% and 30.5% in patients with artrial fibrillation. This demonstrates that changes in ejection are mainly related to the duration of the filling phase, with nearly constant systolic times. Correlations between R-R intervals and systolic ejection amplitudes were highly significant (P<0.001) in patients with atrial fibrillation in 85% of cases. This information complements the average ejection fraction obtained from multiple cycle superimposition. (orig.)

  13. Beat-to-beat assessment of left ventricular ejection in atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Benjelloun, H; Brochier, M; Itti, R; Philippe, L; Lorgeron, J M

    1983-05-01

    Beat-to-beat left ventricular ejection was evaluated in a group of 20 patients with chronic atrial fibrillation using a computerized single probe detector. The reference group consisted of 10 patients with sinus rhythm. For each patient 30 successive cardiac cycles were analyzed and the relative variations of four parameters were assessed: R-R interval, diastolic and systolic time intervals, and ejection amplitude, corresponding to the left ventricular stroke volume. The mean variations were respectively 3.4%, 10.4%, 8.4%, and 11.8% in patients with sinus rhythm, and 21.9%, 37.9%, 10.6% and 30.5% in patients with artrial fibrillation. This demonstrates that changes in ejection are mainly related to the duration of the filling phase, with nearly constant systolic times. Correlations between R-R intervals and systolic ejection amplitudes were highly significant (P<0.001) in patients with atrial fibrillation in 85% of cases. This information complements the average ejection fraction obtained from multiple cycle superimposition.

  14. Relationships between egg-recognition and egg-ejection in a grasp-ejector species.

    Directory of Open Access Journals (Sweden)

    Manuel Soler

    Full Text Available Brood parasitism frequently leads to a total loss of host fitness, which selects for the evolution of defensive traits in host species. Experimental studies have demonstrated that recognition and rejection of the parasite egg is the most common and efficient defence used by host species. Egg-recognition experiments have advanced our knowledge of the evolutionary and coevolutionary implications of egg recognition and rejection. However, our understanding of the proximate mechanisms underlying both processes remains poor. Egg rejection is a complex behavioural process consisting of three stages: egg recognition, the decision whether or not to reject the putative parasitic egg and the act of ejection itself. We have used the blackbird (Turdus merula as a model species to explore the relationship between egg recognition and the act of egg ejection. We have manipulated the two main characteristics of parasitic eggs affecting egg ejection in this grasp-ejector species: the degree of colour mimicry (mimetic and non-mimetic, which mainly affects the egg-recognition stage of the egg-rejection process and egg size (small, medium and large, which affects the decision to eject, while maintaining a control group of non-parasitized nests. The behaviour of the female when confronted with an experimental egg was filmed using a video camera. Our results show that egg touching is an indication of egg recognition and demonstrate that blackbirds recognized (i.e., touched non-mimetic experimental eggs significantly more than mimetic eggs. However, twenty per cent of the experimental eggs were touched but not subsequently ejected, which confirms that egg recognition does not necessarily mean egg ejection and that accepting parasitic eggs, at least sometimes, is the consequence of acceptance decisions. Regarding proximate mechanisms, our results show that the delay in egg ejection is not only due to recognition problems as usually suggested, given that experimental

  15. Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals

    NARCIS (Netherlands)

    Pohl, Ralph; Visser, C.W.; Römer, Gerardus Richardus, Bernardus, Engelina; Lohse, Detlef; Sun, Chao; Huis in 't Veld, Bert

    2015-01-01

    Laser-induced forward transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials, including pure metals. To understand the ejection mechanism and thereby improve deposition, here we present visualizations of ejection events at high-spatial (submicrometer) and

  16. Simulating AIA observations of a flux rope ejection

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2014-08-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope

  17. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms

    International Nuclear Information System (INIS)

    Gibbons, R.L.; Lee, K.L.; Cobb, F.; Jones, R.H.

    1981-01-01

    In this study we describe the ejection fraction response to upright exercise using first-pass radionuclide angiocardiography in a group of 60 patients with chest pain, normal coronary ateriograms and normal resting ventricular function. A wide range of resting function (heart rate and ejection fraction) and exercise function (heart rate, ejection fraction, peak work load and estimated peak oxygen uptake) were measured. The ejection fraction response to exercise demonstrated wide variation, ranging from a decrease of 23% to an increase of 24%. Six of 22 clinical and radionuclide angiocardiographic variables (resting ejection fraction, peak work load, age, sex, body surface area and the change in end-diastolic volume index with exercise) were significant univariate predictors of the ejection fraction response to exercise. Multivariable analysis identified resting ejection fraction, the change in end-diastolic volume index with exercise and either sex or peak work load as variables that provided significant independent predictive information. These observations indicate that the ejection fraction response to exercise is a complex response that is influenced by multiple physiologic variables. The wide variation in this population suggests that the ejection fraction response to exercise is not a reliable test for the diagnosis of coronary artery disease because of its low specificity

  18. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  19. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  20. Unmasking the mechanism of diffuse left ventricular wall motion abnormality in ischemic cardiomyopathy by resting-redistribution thallium-201 single photon computed tomography

    International Nuclear Information System (INIS)

    Namura, Hiroyuki; Yamabe, Hiroshi; Kakimoto, Tetsuya; Hashimoto, Yasunori; Yasaka, Yoshinori; Yoshida, Hiroaki; Itoh, Kazushi; Yokoyama, Mitsuhiro; Maeda, Kazumi.

    1992-01-01

    The study population comprised patients with ischemic cardiomyopathy (ICM) who had left ventricular wall motion (LVWM) abnormality in 5 or more segments (n=9), those with extensive myocardial infarction (EMI) having LVWM abnormality in 4 or less segments (n=12), and those with dilated left ventricle (DLV) having LVWM abnormality in all 7 segments (n=9). Defect scores (DS), obtained by initial and delayed Tl-201 myocardial single photon emission computed tomography at rest, were visually assessed to compare perfusion patterns in the three patient groups. The group of ICM patients had greater defect segments (DSeg) and % redistribution (Rd) index than the other two groups, although there was no difference in the number of angiographically proven infarct-related coronary vessels between EMI and ICM. In the group of ICM patients, there was inverse correlation not only between left ventricular ejection fraction and the sum of DS but also between left ventricular enddiastolic volume index and both the sum of DSeg and % Rd index. The group of DLV patients had small sum of DSeg and redistribution, compared with the other two groups. Although diffuse LVWM abnormality, as observed in the group of ICM patients, was considered attributable to potential decrease of coronary perfusion shown as defect on SPECT images, it did not always coincide with findings of coronary angiography. Both DSeg and redistribution phenomenon on SPECT images seemed to have the ability to evaluate the severity of ICM, as well as to differentiate ICM, EMI, and DLV. (N.K.)

  1. Ejection of a rear facing, golf cart passenger.

    Science.gov (United States)

    Schau, Kyle; Masory, Oren

    2013-10-01

    The following report details the findings of a series of experiments and simulations performed on a commercially available, shuttle style golf cart during several maneuvers involving rapid accelerations of the vehicle. It is determined that the current set of passive restraints on these types of golf carts are not adequate in preventing ejection of a rear facing passenger during rapid accelerations in the forward and lateral directions. Experimental data and simulations show that a hip restraint must be a minimum of 13 in. above the seat in order to secure a rear facing passenger during sharp turns, compared to the current restraint height of 5 in. Furthermore, it is determined that a restraint directly in front of the rear facing passenger is necessary to prevent ejection. In addressing these issues, golf cart manufacturers could greatly reduce the likelihood of injury due to ejection of a rear facing, golf cart passenger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hyperdynamic left ventricular ejection fraction in the intensive care unit.

    Science.gov (United States)

    Paonessa, Joseph R; Brennan, Thomas; Pimentel, Marco; Steinhaus, Daniel; Feng, Mengling; Celi, Leo Anthony

    2015-08-07

    Limited information exists on the etiology, prevalence, and significance of hyperdynamic left ventricular ejection fraction (HDLVEF) in the intensive care unit (ICU). Our aim in the present study was to compare characteristics and outcomes of patients with HDLVEF with those of patients with normal left ventricular ejection fraction in the ICU using a large, public, deidentified critical care database. We conducted a longitudinal, single-center, retrospective cohort study of adult patients who underwent echocardiography during a medical or surgical ICU admission at the Beth Israel Deaconess Medical Center using the Multiparameter Intelligent Monitoring in Intensive Care II database. The final cohort had 2867 patients, of whom 324 had HDLVEF, defined as an ejection fraction >70%. Patients with an ejection fraction <55% were excluded. Compared with critically ill patients with normal left ventricular ejection fraction, the finding of HDLVEF in critically ill patients was associated with female sex, increased age, and the diagnoses of hypertension and cancer. Patients with HDLVEF had increased 28-day mortality compared with those with normal ejection fraction in multivariate logistic regression analysis adjusted for age, sex, Sequential Organ Failure Assessment score, Elixhauser score for comorbidities, vasopressor use, and mechanical ventilation use (odds ratio 1.38, 95% confidence interval 1.039-1.842, p =0.02). The presence of HDLVEF portended increased 28-day mortality, and may be helpful as a gravity marker for prognosis in patients admitted to the ICU. Further research is warranted to gain a better understanding of how these patients respond to common interventions in the ICU and to determine if pharmacologic modulation of HDLVEF improves outcomes.

  3. 3-D rod ejection analysis using a conservative methodology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Ho; Park, Jin Woo; Park, Guen Tae; Um, Kil Sup; Ryu, Seok Hee; Lee, Jae Il; Choi, Tong Soo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    The point kinetics model which simplifies the core phenomena and physical specifications is used for the conventional rod ejection accident analysis. The point kinetics model is convenient to assume conservative core parameters but this simplification loses large amount of safety margin. The CHASER system couples the three-dimensional core neutron kinetics code ASTRA, the sub-channel analysis code THALES and the fuel performance analysis code FROST. The validation study for the CHASER system is addressed using the NEACRP three-dimensional PWR core transient benchmark problem. A series of conservative rod ejection analyses for the APR1400 type plant is performed for both hot full power (HFP) and hot zero power (HZP) conditions to determine the most limiting cases. The conservative rod ejection analysis methodology is designed to properly consider important phenomena and physical parameters.

  4. Evidence for direct geographic influences on linguistic sounds: the case of ejectives.

    Directory of Open Access Journals (Sweden)

    Caleb Everett

    Full Text Available We present evidence that the geographic context in which a language is spoken may directly impact its phonological form. We examined the geographic coordinates and elevations of 567 language locations represented in a worldwide phonetic database. Languages with phonemic ejective consonants were found to occur closer to inhabitable regions of high elevation, when contrasted to languages without this class of sounds. In addition, the mean and median elevations of the locations of languages with ejectives were found to be comparatively high. The patterns uncovered surface on all major world landmasses, and are not the result of the influence of particular language families. They reflect a significant and positive worldwide correlation between elevation and the likelihood that a language employs ejective phonemes. In addition to documenting this correlation in detail, we offer two plausible motivations for its existence. We suggest that ejective sounds might be facilitated at higher elevations due to the associated decrease in ambient air pressure, which reduces the physiological effort required for the compression of air in the pharyngeal cavity--a unique articulatory component of ejective sounds. In addition, we hypothesize that ejective sounds may help to mitigate rates of water vapor loss through exhaled air. These explications demonstrate how a reduction of ambient air density could promote the usage of ejective phonemes in a given language. Our results reveal the direct influence of a geographic factor on the basic sound inventories of human languages.

  5. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  6. Regional ejection fraction: a quantitative radionuclide index of regional left ventricular performance

    International Nuclear Information System (INIS)

    Maddox, D.E.; Wynne, J.; Uren, R.; Parker, J.A.; Idoine, J.; Siegel, L.C.; Neill, J.M.; Cohn, P.F.; Holman, B.L.

    1979-01-01

    Left ventricular regional ejection fractions were derived from background-corrected, time-activity curves in 43 patients assessed by both gated equilibrium radionuclide angiocardiography and left ventricular contrast angiography. From a single, modified left anterior oblique projection, the regional change in background corrected counts was determined in each of three anatomic regions. The normal range for regional radionuclide ejection fraction was determined in 10 patients with normal contrast ventriculograms and without obstructive coronary artery disease at coronary arteriography. Regional ejection fraction was compared with percent segmental axis shortening and extent of akinetic segments in corresponding regions of the contrast ventriculogram. Radionuclide and roentgenographic methods were in agreement as to the presence or absence of abnormal wall motion in 83 of 99 left ventricular regions (84%) in 33 patients evaluated prospectively. Comparison of regional ejection fraction demonstrated significant differences between regions with roentgenographically determined normokinesis hypokinesis, and akinesis. We conclude that the left ventricular regional ejection fraction provides a reliable quantitative assessment of regional left ventricular performance

  7. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi

    2013-09-19

    We demonstrate that laser pulse duration, which determines its impulsive peak power, is an effective parameter to control the number of optically trapped dielectric nanoparticles, their ejections along the directions perpendicular to polarization vector, and their migration distances from the trapping site. This ability to controllably confine and eject the nanoparticle is explained by pulse width-dependent optical forces exerted on nanoparticles in the trapping site and ratio between the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly of the optically confined nanoparticles, partial ejection of the assembly, and subsequent filling of the trapping site. The understanding of optical trapping and directional ejections by ultrashort laser pulses paves the way to optically controlled manipulation and sorting of nanoparticles. © 2013 American Chemical Society.

  8. Classification of the ejection mechanisms of charged macromolecules from liquid droplets.

    Science.gov (United States)

    Consta, Styliani; Malevanets, Anatoly

    2013-01-28

    The relation between the charge state of a macromolecule and its ejection mechanism from droplets is one of the important questions in electrospray ionization methods. In this article, effects of solvent-solute interaction on the manifestation of the charge induced instability in a droplet are examined. We studied the instabilities in a prototype system of a droplet comprised of charged poly(ethylene glycol) and methanol, acetonitrile, and water solvents. We observed instances of three, previously only conjectured, [S. Consta, J. Phys. Chem. B 114, 5263 (2010)] mechanisms of macroion ejection. The mechanism of ejection of charged macroion in methanol is reminiscent of "pearl" model in polymer physics. In acetonitrile droplets, the instability manifests through formation of solvent spines around the solvated macroion. In water, we find that the macroion is ejected from the droplet through contiguous extrusion of a part of the chain. The difference in the morphology of the instabilities is attributed to the interplay between forces arising from the macroion solvation energy and the surface energy of the droplet interface. For the contiguous extrusion of a charged macromolecule from a droplet, we demonstrate that the proposed mechanism leads to ejection of the macromolecule from droplets with sizes well below the Rayleigh limit. The ejected macromolecule may hold charge significantly higher than that suggested by prevailing theories. The simulations reveal new mechanisms of macroion evaporation that differ from conventional charge residue model and ion evaporation mechanisms.

  9. Magazine Influence on Cartridge Case Ejection Patterns with Glock Pistols.

    Science.gov (United States)

    Kerkhoff, Wim; Alberink, Ivo; Mattijssen, Erwin J A T

    2018-01-01

    In this study, the cartridge case ejection patterns of six different Glock model pistols (one specimen per model) were compared under three conditions: firing with a loaded magazine, an empty magazine, and without magazine. The distances, covered by the ejected cartridge cases given these three conditions, were compared for each of the six models. A significant difference was found between the groups of data for each of the tested specimens. This indicates that it is important that, to reconstruct a shooting scene incident based on the ejection patterns of a pistol, test shots are fired with the same pistol type and under the correct magazine condition. © 2017 American Academy of Forensic Sciences.

  10. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  11. A study on interaction of DNA molecules and carbon nanotubes for an effective ejection of the molecules

    International Nuclear Information System (INIS)

    Wu, N.; Wang, Q.

    2012-01-01

    The ejection of DNA molecules from carbon nanotubes is reported from interaction energy perspectives by molecular dynamics simulations. The critical ejection energy, which is to be applied to a DNA molecule for a successful ejection from a carbon nanotube, is investigated based on a study on the friction and binding energy between the DNA molecule and the tube. An effective ejection is realized by subjecting a kinetic energy on the DNA molecule that is larger than the solved critical ejection energy. In addition, the relationship between ejection energies and sizes of DNA molecules and carbon nanotubes is investigated. -- Highlights: ► Report the ejection of DNA molecules from CNTs from interaction energy perspectives. ► Develop a methodology for the critical energy of an effective ejection of a DNA molecule from a CNT. ► Present the relationship between critical ejection energies and sizes of DNA molecules and CNTs. ► Provide a general guidance on the ejection of encapsulated molecules from CNTs.

  12. Formation of Globular Clusters with Internal Abundance Spreads in r -Process Elements: Strong Evidence for Prolonged Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan)

    2017-07-20

    Several globular clusters (GCs) in the Galaxy are observed to show internal abundance spreads in r -process elements (e.g., Eu). We propose a new scenario that explains the origin of these GCs (e.g., M5 and M15). In this scenario, stars with no/little abundance variations first form from a massive molecular cloud (MC). After all of the remaining gas of the MC is expelled by numerous supernovae, gas ejected from asymptotic giant branch stars can be accumulated in the central region of the GC to form a high-density intracluster medium (ICM). Merging of neutron stars then occurs to eject r -process elements, which can be efficiently trapped in and subsequently mixed with the ICM. New stars formed from the ICM can have r -process abundances that are quite different from those of earlier generations of stars within the GC. This scenario can explain both (i) why r -process elements can be trapped within GCs and (ii) why GCs with internal abundance spreads in r -process elements do not show [Fe/H] spreads. Our model shows (i) that a large fraction of Eu-rich stars can be seen in Na-enhanced stellar populations of GCs, as observed in M15, and (ii) why most of the Galactic GCs do not exhibit such internal abundance spreads. Our model demonstrates that the observed internal spreads of r -process elements in GCs provide strong evidence for prolonged star formation (∼10{sup 8} yr).

  13. A repartição tributária dos recursos do ICMS nos municípios da Região Metropolitana de Curitiba

    Directory of Open Access Journals (Sweden)

    Maurélio Soares

    2011-04-01

    Full Text Available O conhecimento da geração e da distribuição da receita pública contribui para a transparência das contas públicas, para o planejamento dos orçamentos públicos e para o fornecimento de informações de melhor qualidade aos diversos usuários da contabilidade pública. A concepção e a importância da aplicação da receita pública dimensionam a capacidade governamental em fixar sua despesa e, no momento de sua arrecadação, torna-se instrumento condicionante de execução orçamentária da despesa. O Imposto sobre a Circulação de Mercadorias e Serviços (ICMS é uma das principais fontes de recursos, para compor o planejamento orçamentário dos estados e municípios, provenientes da produção e movimentação das riquezas econômicas. O presente estudo objetiva investigar a relação entre a arrecadação de ICMS oriunda do movimento econômico dos municípios da Região Metropolitana de Curitiba (RMC e as transferências governamentais da cota-parte do ICMS repassada pelo governo estadual aos municípios. Os resultados indicam que, apesar dos dilemas a respeito da distribuição do imposto, comprova-se a importância que o tributo tem na política fiscal e nos orçamentos públicos, especialmente naqueles municípios de menor porte, em que sua existência depende em boa parte dessa fonte de recurso.

  14. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches

    OpenAIRE

    Rodrigues, Paula; Venâncio, Armando; Lima, Nelson

    2011-01-01

    Section Flavi is one of the most significant Sections in the genus Aspergillus. Taxonomy of this section currently depends on multivariate approaches, entailing phenotypic and molecular traits. This work aimed to identify isolates from section Flavi by combining various classic phenotypic and genotypic methods as well as the novel approach based on spectral analysis by MALDI-TOF ICMS, and to evaluate the discriminatory power of the various approaches in species identification. Methods and ...

  15. Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989

    Science.gov (United States)

    Hundhausen, A. J.

    1993-01-01

    A statistical description of the sizes and locations of 1209 mass ejections observed with the SMM coronagraph/polarimeter in 1980 and 1984-1989 is presented. The average width of the coronal mass ejections detected with this instrument was close to 40 deg in angle for the entire period of SMM observations. No evidence was found for a significant change in mass ejection widths as reported by Howard et al. (1986). There is clear evidence for changes in the latitude distribution of mass ejections over this epoch. Mass ejections occurred over a much wider range of latitudes at the times of high solar activity (1980 and 1989) than at times of low activity (1985-1986).

  16. Forbush decreases on November 6-12, 2004 observed by the Muon Detector Network

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Jairo Francisco; Schuch, Nelson Jorge [Southern Regional Space Research Center, CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Silva, Marlos Rockenbach da; Lago, Alisson dal; Echer, Ezequiel; Vieira, Luis Eduardo Antunes; Gonzalez, Walter Demetrio [National Institute for Space Research, INPE-MCT, Sao Jose dos Campos, SP (Brazil); Munakata, Kazuoki, E-mail: savian@lacesm.ufsm.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: marlos@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: eecher@dge.inpe.br, E-mail: vieira-le@uol.com.br, E-mail: gonzalez@dge.inpe.br, E-mail: kmuna00@shinshu-u.ac.jp [Physics Department, Shinshu University, Matsumoto, (Japan)

    2007-07-01

    In this paper we study the relationship between interplanetary coronal mass ejections (ICMEs) and the muon count rate decreases detected of the muon detector network on November 6-12, 2004. The muon detector network is composed by the detectors installed at Nagoya (Japan), Hobart (Australia) and the prototype detector installed at the 'Observatorio Espacial do Sul - OES/CRSPE/INPE-MCT', located in Sao Martinho da Serra, RS, Brazil. With the muon count rate observed by the muon detector network, we will be able to observe, in the future, the direction in which a given ICME moves, and with that, we will be able to calculate their angle of incidence on the Earth. Also, with this muon network, we will be able to send alerts of up to 12 hours before the arrival of a shock or an ICME. The space weather forecast method using cosmic rays will be a very important tool because it provides a forecast with good antecedence. (author)

  17. Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics

    International Nuclear Information System (INIS)

    He, Yubao; Cao, Ruifeng; Huang, Hongyan; Qin, Jiang; Yu, Daren

    2017-01-01

    To avoid the inlet unstart at high equivalence ratio and increase the performance of scramjet with ram-mode, a flow control method of boundary-layer ejection is implemented based on the potential thermodynamic process in a turbo-pump supply system of fuel vapor within a cooling channel. The effect of ejection on overall scramjet performance is studied by taking the integration of measures including numerical simulation and stream thrust analysis. Results indicate that the critical backpressure is significantly increased as the ejection total pressure increased, thereby increasing the compression capacity and efficiency, and decreasing the irreversible losses of shock wave and viscous dissipation. For the ejection total pressure of P_t_,_e_j_e = 2.40–4.00 × 10"6 Pa, the critical backpressure ratio is quantitatively increased by 1.18–11.8% along with the utilization of ejection mass flow rate of about 88.0–100% overall mass flow rate of methane fuel gas, and simultaneously the total pressure ratio, kinetic efficiency is also increased by 7.32–13.1%, and 1.63–2.96%, respectively, while the dimensionless entropy increase is decreased by 14.5–26.8%. On this basis, the specific thrust, specific impulse, and total efficiency is increased by 2.84–4.69%, 2.80–4.68%, and 2.87–4.70%, respectively, which re-emphasizes that the boundary-layer ejection is an available fluid control method. - Highlights: • Pressure ratio affects cycle efficiency based on Brayton cycle analysis. • Ejection control concept is defined based on potential thermodynamic process. • Ejection increases compression capacity, efficiency and engine overall performance.

  18. EJECTION AND CAPTURE DYNAMICS IN RESTRICTED THREE-BODY ENCOUNTERS

    International Nuclear Information System (INIS)

    Kobayashi, Shiho; Hainick, Yanir; Sari, Re'em; Rossi, Elena M.

    2012-01-01

    We study the tidal disruption of binaries by a massive point mass (e.g., the black hole at the Galactic center), and we discuss how the ejection and capture preference between unequal-mass binary members depends on which orbit they approach the massive object. We show that the restricted three-body approximation provides a simple and clear description of the dynamics. The orbit of a binary with mass m around a massive object M should be almost parabolic with an eccentricity of |1 – e| ∼ 1/3 1/3 times the binary rotation velocity, it would be abruptly disrupted, and the energy change at the encounter can be evaluated in a simple disruption model. We evaluate the probability distributions for the ejection and capture of circular binary members and for the final energies. In principle, for any hyperbolic (elliptic) orbit, the heavier member has more chance to be ejected (captured), because it carries a larger fraction of the orbital energy. However, if the orbital energy is close to zero, the difference between the two members becomes small, and there is practically no ejection and capture preferences. The preference becomes significant when the orbital energy is comparable to the typical energy change at the encounter. We discuss its implications to hypervelocity stars and irregular satellites around giant planets.

  19. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.

    2013-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

  20. A three-dimensional pin-wise analysis for CEA ejection accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Guen-Tae; Park, Min-Ho; Park, Jin-Woo; Um, Kil-Sup; Choi, Tong-Soo [KEPCO NF, Daejeon (Korea, Republic of)

    2016-10-15

    The ejection of a control element assembly (CEA) with high reactivity worth causes the sudden insertion of reactivity into the core. Immediately after the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the doppler effect becomes important and turns the reactivity balance and power down to lower levels. The 3-D CEA ejection analysis methodology has been developed using the multi-dimensional code coupling system, CHASER, which couples three dimensional core neutron kinetics code ASTRA, subchannel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). This paper presents the pin-by-pin level analysis result with the 3-D CEA ejection analysis methodology using the CHASER. The pin-by-pin level analysis consists of DNBR, enthalpy and Pellet/Clad Mechanical Interaction (PCMI) analysis. All the evaluations are simulated for APR1400 plant loaded with PLUS7 fuel. In this paper, the pin-by-pin analysis using the multidimensional core transient code, CHASER, is presented with respect to enthalpy, DNBR and PCMI for APR1400 plant loaded with PLUS7 fuel. For the pin-by-pin enthalpy and DNBR analysis, the quarter core for HFP case or 15 - 20 assemblies around the most severe assembly for part powers or HZP cases are selected. And PCMI calculation is performed for all the rods in the whole core during a conservative time period. The pin-by-pin analysis results show that the regulatory guidelines of CEA ejection accident are satisfied.

  1. Comparison of rod-ejection transient calculations in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Knight, M.P.; Brohan, P.; Finnemann, H.; Huesken, J.

    1995-01-01

    This paper proposes a set of 3-dimensional benchmark rod ejection problems for a VVER reactor, based on the well-known NEACRP PWR rod-ejection problems defined by Siemens/KWU. Predictions for these benchmarks derived using three hexagonal-z nodal transient codes, the PANTHER code of Nuclear Electric, the HEXTIME code of Siemens/KWU, and the DYN3D code of FZ-Rossendorf are presented and compared

  2. Round Robin computer simulation of ejection probability in sputtering

    International Nuclear Information System (INIS)

    Sigmund, P.; Hautala, M.; Yamamura, Y.; Hosaka, S.; Ishitani, T.; Shulga, V.I.; Harrison, D.E. Jr.; Chakarov, I.R.; Karpuzov, D.S.; Kawatoh, E.; Shimizu, R.; Valkealahti, S.; Nieminen, R.M.; Betz, G.; Husinsky, W.; Shapiro, M.H.; Vicanek, M.; Urbassek, H.M.

    1989-01-01

    We have studied the ejection of a copper atom through a planar copper surface as a function of recoil velocity and depth of origin. Results were obtained from six molecular dynamics codes, four binary collision lattice simulation codes, and eight Monte Carlo codes. Most results were found with a Born-Mayer interaction potential between the atoms with Gibson 2 parameters and a planar surface barrier, but variations on this standard were allowed for, as well as differences in the adopted cutoff radius for the interaction potential, electronic stopping, and target temperature. Large differences were found between the predictions of the various codes, but the cause of these differences could be determined in most cases. A fairly clear picture emerges from all three types of codes for the depth range and the angular range for ejection at energies relevant to sputter ejection, although a quantitative discussion would have to include an analysis of replacement collision events which has been left out here. (orig.)

  3. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  4. The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbovic, M.; Temmer, M.

    2017-12-01

    Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.

  5. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  6. Septum magnet for ejection from the PS to the E-Hall

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Pulsed septum magnet for ejection from PS straight sections 61/62 to the East-Hall. This septum magnet, for ss 61, had only 1 turn, for minimum thickness. It was followed by another septum in ss 62, with 2 turns, as there the ejected beam was already farther away from the circulating beam. Both septa were water-cooled.

  7. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    Energy Technology Data Exchange (ETDEWEB)

    de Vernejoul, P; Fauchet, M; Rimbert, J -N; Gambini, D; Agnely, J [Hopital Necker-Enfants-Malades, 75 - Paris (France)

    1976-03-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference.

  8. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    International Nuclear Information System (INIS)

    Vernejoul, Pierre de; Fauchet, Michel; Rimbert, J.-N.; Gambini, Denis; Agnely, Jacqueline

    1976-01-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference [fr

  9. Rollover Car Crashes with Ejection: A Deadly Combination—An Analysis of 719 Patients

    Directory of Open Access Journals (Sweden)

    Rifat Latifi

    2014-01-01

    Full Text Available Rollover car crashes (ROCs are serious public safety concerns worldwide. Objective. To determine the incidence and outcomes of ROCs with or without ejection of occupants in the State of Qatar. Methods. A retrospective study of all patients involved in ROCs admitted to Level I trauma center in Qatar (2011-2012. Patients were divided into Group I (ROC with ejection and Group II (ROC without ejection. Results. A total of 719 patients were evaluated (237 in Group I and 482 in Group II. The mean age in Group I was lower than in Group II (24.3±10.3 versus 29±12.2; P=0.001. Group I had higher injury severity score and sustained significantly more head, chest, and abdominal injuries in comparison to Group II. The mortality rate was higher in Group I (25% versus 7%; P=0.001. Group I patients required higher ICU admission rate (P=0.001. Patients in Group I had a 5-fold increased risk for age-adjusted mortality (OR 5.43; 95% CI 3.11–9.49, P=0.001. Conclusion. ROCs with ejection are associated with higher rate of morbidity and mortality compared to ROCs without ejection. As an increased number of young Qatari males sustain ROCs with ejection, these findings highlight the need for research-based injury prevention initiatives in the country.

  10. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  11. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  12. Experimental and Computational Analysis of Water-Droplet Formation and Ejection Process Using Hollow Microneedle

    Science.gov (United States)

    Kato, Norihisa; Oka, Ryotaro; Sakai, Takahiro; Shibata, Takayuki; Kawashima, Takahiro; Nagai, Moeto; Mineta, Takashi; Makino, Eiji

    2011-06-01

    In this paper, we present the possibility of liquid delivery using fabricated hollow silicon dioxide microneedles of approximately 2 µm in diameter. As a fundamental study, the water-droplet formation and ejection process was examined via dynamic observations during water ejection tests and computational fluid dynamics (CFD) analysis. The experimental results indicated that fluid flow in a microneedle follows the Hagen-Poiseuille law, i.e., the flow rate is approximately directly proportional to the fourth power of the inner diameter. Moreover, the ejection pressure and maximum droplet curvature obtained using the proposed microfluid ejection model were in good agreement with the experimental results. The resulting ejection pressure is equal to the theoretical pressure difference of a spherical droplet, which is determined using the Young-Laplace equation. The maximum curvature of a droplet formed at the tip of a microneedle can be estimated on the basis of the contact angle theory expressed by the Young equation.

  13. An Evaluation of a New Format for Presenting Ejection Information in a NATOPS Manual.

    Science.gov (United States)

    1979-11-01

    Assessment-the subject’s awareness of ejection system limits and knowledge of the specific principles and relationships involved in the ejection decision...percti & le pilot ejecting cannern tintiong onfigursesan at~ 71 knete arrtaeei.l From" th front cockpit. c. Normal aircraft pitc For conditions shown it...40) Arlington, VA 22209 700 Robbins Avenue * 1 CDR P.R. Chatelier Philadelphia, PA 19111 Office of the Undersecretary of Defense for Research

  14. A implantação do princípio do destino na cobrança do ICMS e suas implicações dinâmicas sobre os Estados

    Directory of Open Access Journals (Sweden)

    Nelson Leitão Paes

    2009-09-01

    Full Text Available Neste artigo, utilizou-se um modelo de equilíbrio geral dinâmico para estimar os efeitos econômicos e sobre a arrecadação dos Estados da adoção do princípio do destino na tributação do ICMS, de longe o principal tributo brasileiro. Os resultados mostram impactos importantes sobre a arrecadação dos Estados, com ganhos de quase 40% no Piauí, e perda de mais de 13% no Espírito Santo, o maior prejudicado. De maneira geral, os Estados menos desenvolvidos são beneficiados pela nova sistemática, contribuindo para a redução das desigualdades na distribuição da arrecadação na federação, mas com pouco efeito sobre o produto e o consumo.In this paper, we used a dynamic general equilibrium model to estimate the effects of the adoption of destination principle at ICMS, the most important Brazilian tax, on the states public finance. The results had shown that Piauí could increase its revenue from ICMS by almost 40%, while Espírito Santo could suffer a loss by more than 13%. In general, less developed states will gain with the adoption of destination principle, contributing to reduce the inequality of tax revenues between states in Brazil, with little effect in output and consumption.

  15. The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations

    Science.gov (United States)

    Biffi, V.; Planelles, S.; Borgani, S.; Rasia, E.; Murante, G.; Fabjan, D.; Gaspari, M.

    2018-05-01

    The uniformity of the intracluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al., including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z = 0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundances, including a component of highly enriched gas, already present at z = 2. At z > 1, the gas in the present-day outskirts was distributed over tens of virial radii from the main cluster and had been already enriched within high-redshift haloes. At z = 2, about 40 {per cent} of the most Fe-rich gas at z = 0 was not residing in any halo more massive than 10^{11} h^{-1} M_{⊙} in the region and yet its average iron abundance was already 0.4, w.r.t. the solar value by Anders & Grevesse. This confirms that the in situ enrichment of the ICM in the outskirts of present-day clusters does not play a significant role, and its uniform metal abundance is rather the consequence of the accretion of both low-metallicity and pre-enriched (at z > 2) gas, from the diffuse component and through merging substructures. These findings do not depend on the mass of the cluster nor on its core properties.

  16. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    Science.gov (United States)

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  17. Ranolazine versus placebo in patients with ischemic cardiomyopathy and persistent chest pain or dyspnea despite optimal medical and revascularization therapy: randomized, double-blind crossover pilot study

    Directory of Open Access Journals (Sweden)

    Shammas NW

    2015-03-01

    Full Text Available Nicolas W Shammas,1 Gail A Shammas,1 Kathleen Keyes,2 Shawna Duske,1 Ryan Kelly,1 Michael Jerin3 1Midwest Cardiovascular Research Foundation, 2Cardiovascular Medicine, Private Corporation, 3St Ambrose University, Davenport, IA, USA Background: Patients with ischemic cardiomyopathy (ICM may continue to experience persistent chest pain and/or dyspnea despite pharmacologic therapy and revascularization. We hypothesized that ranolazine would reduce anginal symptoms or dyspnea in optimally treated ICM patients.Methods: In this randomized, double-blind, crossover-design pilot study, 28 patients with ICM (ejection fraction less or equal 40% were included after providing informed consent. A total of 24 patients completed both placebo and ranolazine treatments and were analyzed. All patients were on treatment with a beta blocker, an angiotensin-converting enzyme inhibitor (or angiotensin receptor blocker, and at least one additional antianginal drug. After randomization, patients received up to 1,000 mg ranolazine orally twice a day, as tolerated, versus placebo. The primary end point was change in angina as assessed by the Seattle Angina Questionnaire (SAQ, or in dyspnea as assessed by the Rose Dyspnea Scale (RDS. Change in the RDS and SAQ score from baseline was compared, for ranolazine and placebo, using the Wilcoxon signed rank test or paired t-test.Results: Patients had the following demographic and clinical variables: mean age of 71.5 years; male (82.1%; prior coronary bypass surgery (67.9%; prior coronary percutaneous intervention (85.7%; prior myocardial infarction (82.1%; diabetes (67.9%; and mean ejection fraction of 33.1%. No statistical difference was seen between baseline RDS score and that after placebo or ranolazine (n=20 (P≥0.05. There was however, an improvement in anginal frequency (8/10 patients (P=0.058, quality of life (8/10 patients (P=0.048, and mean score of all components of the SAQ questionnaire (n=10 (P=0.047 with ranolazine

  18. Neutrino diffusion and mass ejection in protoneutron stars

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. Jr.; Duarte, S. B.

    2010-01-01

    We discuss the mass ejection mechanism induced by diffusion of neutrino during the early stage of the protoneutron star cooling. A dynamical calculation is employed in order to determine the amount of matter ejected and the remnant compact object mass. An equation of state considering hadronic and quark phases for the stellar dense matter was used to solve the whole time evolution of the system during the cooling phase. The initial neutrino population was obtained by considering beta equilibrium in the dense stellar matter with confined neutrinos, in the very early period of the deleptonic stage of the nascent pulsar. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with neutrino diffusion through the dense stellar medium.

  19. The control system for the CERN proton synchrotron continuous transfer ejection

    International Nuclear Information System (INIS)

    Bloess, D.; Boucheron, J.; Flander, D.; Grier, D.; Krusche, A.; Ollenhauer, F.; Pearce, P.; Riege, H.; Schneider, G.C.

    1978-01-01

    This report describes the hardware and the software structure of a stand-alone control system for the continuous transfer ejection from the CERN Proton Synchrotron to the Super Proton Synchrotron. The process control system is built around a PDP 11/40 mini-computer interfaced to the ejection elements via CAMAC. It features automatic failure recovery and real-time process optimization. Performance, flexibility, and reliability of the system is evaluated. (Auth.)

  20. Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction

    NARCIS (Netherlands)

    Hoekstra, Tialda; Lesman-Leegte, Ivonne; van Veldhuisen, Dirk J.; Sanderman, Robbert; Jaarsma, Tiny

    Aims To compare quality of life (QoL) in heart failure (HF) patients with preserved ejection fraction (HF-PEF) and HF patients with reduced ejection fraction (HF-REF) in a well-defined HF population. Methods and results Patients with HF-PEF [left ventricular ejection fraction (LVEF) >= 40%] were

  1. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  2. Three-Dimensional Dynamic Topology Optimization with Frequency Constraints Using Composite Exponential Function and ICM Method

    Directory of Open Access Journals (Sweden)

    Hongling Ye

    2015-01-01

    Full Text Available The dynamic topology optimization of three-dimensional continuum structures subject to frequency constraints is investigated using Independent Continuous Mapping (ICM design variable fields. The composite exponential function (CEF is selected to be a filter function which recognizes the design variables and to implement the changing process of design variables from “discrete” to “continuous” and back to “discrete.” Explicit formulations of frequency constraints are given based on filter functions, first-order Taylor series expansion. And an improved optimal model is formulated using CEF and the explicit frequency constraints. Dual sequential quadratic programming (DSQP algorithm is used to solve the optimal model. The program is developed on the platform of MSC Patran & Nastran. Finally, numerical examples are given to demonstrate the validity and applicability of the proposed method.

  3. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    International Nuclear Information System (INIS)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M.; Nikolic, L.

    2017-01-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s −1 . Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  4. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M. [Institute of Physics, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Nikolic, L., E-mail: manuela.temmer@uni-graz.at [Canadian Hazards Information Service, Natural Resources Canada, 2617 Anderson Road, Ottawa, Ontario K1A 0Y3 (Canada)

    2017-02-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  5. Evaluation of geomagnetic storm effects on the GPS derived Total Electron Content (TEC)

    International Nuclear Information System (INIS)

    Purohit, P K; Atulkar, Roshni; Mansoori, Azad A; Khan, Parvaiz A; Bhawre, Purushottam; Tripathi, Sharad C; Khatarkar, Prakash; Bhardwaj, Shivangi; Aslam, A M; Waheed, Malik A; Gwal, A K

    2015-01-01

    The geomagnetic storm represents the most outstanding example of solar wind- magnetospheric interaction, which causes global disturbances in the geomagnetic field as well as triggers ionospheric disturbances. We study the behaviour of ionospheric Total Electron Content (TEC) during the geomagnetic storms. For this investigation we have selected 47 intense geomagnetic storms (Dst ≤ -100nT) that were observed during the solar cycle 23 i.e. during 1998- 2006. We then categorized these storms into four categories depending upon their solar sources like Magnetic Cloud (MC), Co-rotating Interaction Region (CIR), SH+ICME and SH+MC. We then studied the behaviour of ionospheric TEC at a mid latitude station Usuda (36.13N, 138.36E), Japan during these storm events produced by four different solar sources. During our study we found that the smooth variations in TEC are replaced by rapid fluctuations and the value of TEC is strongly enhanced during the time of these storms belonging to all the four categories. However, the greatest enhancements in TEC are produced during those geomagnetic storms which are either caused by Sheath driven Magnetic cloud (SH+MC) or Sheath driven ICME (SH+ICME). We also derived the correlation between the TEC enhancements produced during storms of each category with the minimum Dst. We found the strongest correlation exists for the SH+ICME category followed by SH+MC, MC and finally CIR. Since the most intense storms were either caused by SH+ICME or SH+MC while the least intense storms were caused by CIR, consequently the correlation was strongest with SH+ICME and SH+MC and least with CIR. (paper)

  6. Gravitational wave generated by mass ejection in protoneutron star neutrino burst

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. JR.; Duarte, S. B.

    2010-01-01

    In this work we discuss the mechanism of mass ejection in protoneutron stars induced by diffusion of neutrinos. A dynamical calculation is employed in order to determine the amount of matter ejected and the properties of the remnant compact object [1]. The equations of state of this supra-nuclear regime [2] is properly linked with others describing the different sub-nuclear regimes of density [3, 4, 5]. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with a schematic treatment of the neutrino transport through the dense stellar medium. We investigate the gravitational waves production accompanying the mass ejection induced by the neutrino burst. It is estimated the gravitational wave intensity and the detection of such wave by the existing detector or near future project for this purpose is discussed.

  7. Evidence of elevated X-ray absorption before and during major flare ejections in GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); Rodriguez, Jérôme [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU SAp, F-91191 Gif-sur-Yvette (France); Trushkin, Sergei A., E-mail: brian.punsly1@verizon.net, E-mail: brian.punsly@comdev-usa.com [Special Astrophysical Observatory RAS, Nizhnij Arkhyz, 369167 (Russian Federation)

    2014-03-10

    We present time-resolved X-ray spectroscopy of the microquasar GRS 1915+105 with the MAXI observatory in order to study the accretion state just before and during the ejections associated with its major flares. Radio monitoring with the RATAN-600 radio telescope from 4.8-11.2 GHz has revealed two large, steep-spectrum major flares in the first eight months of 2013. Since the RATAN has received one measurement per day, we cannot determine the jet-forming time without more information. Fortunately, this is possible since a distinct X-ray light curve signature that occurs preceding and during major ejections has been determined in an earlier study. The X-ray luminosity spikes to very high levels in the hours before ejection, then becomes variable (with a nearly equal X-ray luminosity when averaged over the duration of the ejection) during a brief 3-8 hr ejection process. By comparing this X-ray behavior with MAXI light curves, we can estimate the beginning and end of the ejection episode of the strong 2013 flares to within ∼3 hr. Using this estimate in conjunction with time-resolved spectroscopy from the data in the MAXI archives allows us to deduce that the X-ray absorbing hydrogen column density increases significantly in the hours preceding the ejections and remains elevated during the ejections responsible for the major flares. This finding is consistent with an outflowing wind or enhanced accretion at high latitudes.

  8. Two codes used in analysis of rod ejection accident for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhu Xinguan

    1987-12-01

    Two codes were developed to analyse rod ejection accident for Qinshan Nuclear Power Plant. One was based on point model with temperature reactivity feedback. In this code, the worth of ejected rod was obtained under'adiabatic' approximation. In the other code, the Nodal Green's Function Method was used to solve space-time dependent neutron diffusion equation. Using these codes, the transient core-power have been calculated for two rod ejection cases at beginning of core-life in Qinshan Nuclear Power Plant

  9. Left atrial ejection force predicts the outcome after catheter ablation for paroxysmal atrial fibrillation.

    Science.gov (United States)

    Kishima, Hideyuki; Mine, Takanao; Takahashi, Satoshi; Ashida, Kenki; Ishihara, Masaharu; Masuyama, Tohru

    2018-02-01

    Left atrium (LA) systolic dysfunction is observed in the early stages of atrial fibrillation (AF) prior to LA anatomical change. We investigated whether LA systolic dysfunction predicts recurrent AF after catheter ablation (CA) in patients with paroxysmal AF. We studied 106 patients who underwent CA for paroxysmal AF. LA systolic function was assessed with the LA emptying volume = Maximum LA volume (LAV max ) - Minimum LA volume (LAV min ), LA emptying fraction = [(LAV max - LAV min )/LAV max ] × 100, and LA ejection force calculated with Manning's method [LA ejection force = (0.5 × ρ × mitral valve area × A 2 )], where ρ is the blood density and A is the late-diastolic mitral inflow velocity. Recurrent AF was detected in 35/106 (33%) during 14.6 ± 9.1 months. Univariate analysis revealed reduced LA ejection force, decreased LA emptying fraction, larger LA diameter, and elevated brain natriuretic peptide as significant variables. On multivariate analysis, reduced LA ejection force and larger LA diameter were independently associated with recurrent AF. Moreover, patients with reduced LA ejection force and larger LA diameter had a higher risk of recurrent AF than preserved LA ejection force (log-rank P = 0.0004). Reduced LA ejection force and larger LA diameter were associated with poor outcome after CA for paroxysmal AF, and could be a new index to predict recurrent AF. © 2017 Wiley Periodicals, Inc.

  10. Pilot ejection, parachute, and helicopter crash injuries.

    Science.gov (United States)

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. 2014.

  11. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  12. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  13. Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Acampa, Wanda; Liuzzi, Raffaele; De Luca, Serena; Capasso, Enza; Luongo, Luca; Cuocolo, Alberto; Caprio, Maria Grazia; Nicolai, Emanuele; Petretta, Mario

    2010-01-01

    We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients. Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest 99m Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest. In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress. In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography. (orig.)

  14. Some elements of understanding about the cluster ejection accident in the EPR

    International Nuclear Information System (INIS)

    Vignon, Dominique

    2010-01-01

    The author answers to a publication made by an association (Sortir du Nucleaire) which is provided in appendix (some parts of this text are highlighted) and denounced risks associated with a cluster ejection accident in an EPR in relationship with steering modes which, according to this association, would be essentially related to an objective of economic profitability. The author first recalls some elements regarding the control and neutron stopping of pressurized water reactors. Then, after having outlined some specific aspects of the EPR design, he addresses the cluster ejection accident: safety approach and its application to this type of accident. He recalls the conclusions of studies of cluster ejection performed by EDF and AREVA, comments the consequences for the EPR power

  15. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    Science.gov (United States)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-07-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  16. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    Science.gov (United States)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  17. ISAAC: A REXUS Student Experiment to Demonstrate an Ejection System with Predefined Direction

    Science.gov (United States)

    Balmer, G.; Berquand, A.; Company-Vallet, E.; Granberg, V.; Grigore, V.; Ivchenko, N.; Kevorkov, R.; Lundkvist, E.; Olentsenko, G.; Pacheco-Labrador, J.; Tibert, G.; Yuan, Y.

    2015-09-01

    ISAAC Infrared Spectroscopy to Analyse the middle Atmosphere Composition — was a student experiment launched from SSC's Esrange Space Centre, Sweden, on 29th May 2014, on board the sounding rocket REXUS 15 in the frame of the REXUS/BEXUS programme. The main focus of the experiment was to implement an ejection system for two large Free Falling Units (FFUs) (240 mm x 80 mm) to be ejected from a spinning rocket into a predefined direction. The system design relied on a spring-based ejection system. Sun and angular rate sensors were used to control and time the ejection. The flight data includes telemetry from the Rocket Mounted Unit (RMU), received and saved during flight, as well as video footage from the GoPro camera mounted inside the RMU and recovered after the flight. The FFUs' direction, speed and spin frequency as well as the rocket spin frequency were determined by analyzing the video footage. The FFU-Rocket-Sun angles were 64.3° and 104.3°, within the required margins of 90°+45°. The FFU speeds were 3.98 mIs and 3.74 mIs, lower than the expected 5± 1 mIs. The FFUs' spin frequencies were 1 .38 Hz and 1 .60 Hz, approximately half the rocket's spin frequency. The rocket spin rate slightly changed from 3. 163 Hz before the ejection to 3.1 17 Hz after the ejection of the two FFUs. The angular rate, sun sensor data and temperature on the inside of the rocket module skin were also recorded. The experiment design and results of the data analysis are presented in this paper.

  18. Activity associated with the solar origin of coronal mass ejections

    Science.gov (United States)

    Webb, D. F.; Hundhausen, A. J.

    1987-01-01

    Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences, and the proportions of association of all types of activity were similar. A high percentage of association between SMM CMEs and X-ray long duration events is also found, in agreement with Skylab results. It is concluded that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.

  19. A new method of determining the ejected mass of novae

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, W.M.

    1994-12-31

    A new method of determining the ejected mass of novae based on simple, reasonable assumptions is presented. This method assumes that the remnant mass on the white dwarf is the same as that from the previous nova outburst. The hydrogen, helium, and metal abundances of the accreted material from the secondary must also be known or assumed. The white dwarf`s mass has a small effect because the amount of hydrogen consumed during the thermonuclear runaway only depends weakly upon this mass. If the composition of the ejecta and the time of the remnant shell burnout are determined from observations, then the ejected and remnant masses can be deduced. At present only a sharp decrease in the X-rays observed by ROSAT has been attributed to this remnant burnout and only for two novae: GQ Mus and V1974 Cyg. The ejected and remnant masses for these two novae are calculated. If other indicators of nova remnant burnout, such as a rapid decrease in high-ionization lines, can be identified, then this method could be applied to additional novae.

  20. Coronal mass ejections, interplanetary shocks in relation with forbush decreases associated with intense geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Patel, Nand Kumar; Prajapati, Mateswari

    2014-01-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  1. CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES

    International Nuclear Information System (INIS)

    Howard, T. A.; Pizzo, V. J.

    2016-01-01

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  2. CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Pizzo, V. J., E-mail: howard@boulder.swri.edu [NOAA Space Weather Prediction Center, Boulder, CO (United States)

    2016-06-20

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  3. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan (China); Jiang, C. W. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 5180055 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, H. S., E-mail: yanxl@ynao.ac.cn [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, Jiangsu (China)

    2017-08-10

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observatory, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.

  4. Droplet ejection and sliding on a flapping film

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-03-01

    Full Text Available Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz. Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films, compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2 were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input.

  5. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  6. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  7. Anti-ejection device, which can be released, for control rods of nuclear reactor

    International Nuclear Information System (INIS)

    Belz, G.

    1983-01-01

    The present invention proposes an anti-ejection device which allows to withdraw the control rod out of a PWR reactor core if the locking systems of the rod translation are streck. This device prohibits the control rod ejection as long as an effort lower than a predetermined value is not applied on the control rod. This limit value is determined with regard of the efforts which may be applied on the control rod in case of an external accidental source. Nevertheless, if the anti-ejection mechanism remains stuck, it is however possible to withdraw the control rod out of the core applying on its control rod drives an effort higher than the limit value [fr

  8. On the hypothesis of hyperimpact-induced ejection of asteroid-size bodies from Earth-type planets.

    Science.gov (United States)

    Drobyshevski, E. M.

    During the last two decades a number of facts have brought to life a seemingly fantastic idea of ejection of large rocky fragments from planets into space, like for example SNC meteorites or many-km-size fragments of Vesta. The theoretical description of impact processes of this ejection lags behind. Considerable efforts have been spent to show the possibility of ejection of bodies several meters in size from large impact craters on Mars. In general, the possibility of impact self-destruction of inner planets may drastically alter traditional models of the origin of the Solar System. However, non-destructive gasdynamic ejection of large fragments from planets requires a mechanism for fast conversion of shock-wave energy into heat. The extrapolation of data from laboratory impact experiments (≡10 kJ) and nuclear explosions (<1 Mt TNT) in order to describe hyperimpact processes with 105 - 106 Mt TNT energies can hardly be justified, that is why these calculations give relatively small gas production and, consequently, small velocities of fragment ejection from impact craters. It is predicted that at such energies some instabilities may lead to formation of new dissipation channels, that would increase the part of the overheated gas fraction in the hyperimpact ejection products. This would eliminate numerous contradictions in the impact history of planets, asteroids, meteorites etc.

  9. Dynamics of post-flare ejections and magnetic loop geometry

    International Nuclear Information System (INIS)

    Mein, P.; Mein, N.

    1982-01-01

    Flare-associated mass ejections have been observed at the solar limb on June 29, 1980 in the Hα line, with the Multichannel Subtractive Double Pass spectrograph of the Meudon solar tower. Radial velocities were measured as a function of time in a two dimensional field, and kinematics investigated in one selected fine structure. A simple model of locally dipole-type magnetic field increasing with time can be fitted to the data. It can be checked from extrapolation that the model is consistent with an ejection starting roughly from the same point at the same time. Height of the loops (approx. equal to 135,000 km) is consistent with other determinations. Magnetic field is found to be increasing locally by a factor 1.14 within 10 min. (orig.)

  10. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 {+-} 0.11 M{sub Sun} main-sequence B star at a distance of 50 {+-} 5 kpc. The difference between its age and its flight time from the Galactic center is 105 {+-} 18 (stat) {+-}30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10{sup 8} yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10{sup 7} yr. For comparison, we derive arrival times of 10{sup 7} yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10{sup 7} yr of its lifetime is ruled out at the 3{sigma} level. Together with the 10{sup 8} yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars {approx_equal}200 Myr ago, and the progenitors of the HVSs took {approx_equal}100 Myr to enter the black hole's loss cone.

  11. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Cohen, Judith G.

    2012-01-01

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 ± 0.11 M ☉ main-sequence B star at a distance of 50 ± 5 kpc. The difference between its age and its flight time from the Galactic center is 105 ± 18 (stat) ±30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10 8 yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10 7 yr. For comparison, we derive arrival times of 10 7 yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10 7 yr of its lifetime is ruled out at the 3σ level. Together with the 10 8 yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars ≅200 Myr ago, and the progenitors of the HVSs took ≅100 Myr to enter the black hole's loss cone.

  12. Extracting and analyzing ejection fraction values from electronic echocardiography reports in a large health maintenance organization.

    Science.gov (United States)

    Xie, Fagen; Zheng, Chengyi; Yuh-Jer Shen, Albert; Chen, Wansu

    2017-12-01

    The left ventricular ejection fraction value is an important prognostic indicator of cardiovascular outcomes including morbidity and mortality and is often used clinically to indicate severity of heart disease. However, it is usually reported in free-text echocardiography reports. We developed and validated a computerized algorithm to extract ejection fraction values from echocardiography reports and applied the algorithm to a large volume of unstructured echocardiography reports between 1995 and 2011 in a large health maintenance organization. A total of 621,856 echocardiography reports with a description of ejection fraction values or systolic functions were identified, of which 70 percent contained numeric ejection fraction values and the rest (30%) were text descriptions explicitly indicating the systolic left ventricular function. The 12.1 percent (16.0% for male and 8.4% for female) of these extracted ejection fraction values are <45 percent. Validation conducted based on a random sample of 200 reports yielded 95.0 percent sensitivity and 96.9 percent positive predictive value.

  13. Contradições da política ambiental por meio de incentivos financeiros: os casos do ICMS ecológico e da CFEM nos municípios do Quadrilátero Ferrífero (Minas Gerais, Brasil)

    OpenAIRE

    Euclydes, Ana Carolina Pinheiro

    2013-01-01

    A partir do levantamento dos valores recebidos pelos municípios situados na região do Quadrilátero Ferrífero, em Minas Gerais, em decorrência do ICMS Ecológico, repassado pelo Estado e da Compensação Financeira pela Exploração de Recursos Minerais (CFEM) recebida da União, este artigo relativiza o potencial do ICMS Ecológico para incentivar os municípios mineradores a criarem ou apoiarem unidades de conservação (UCs) em seus territórios. Nesta discussão, trazem-se à tona avaliações técnicas e...

  14. Heart failure with preserved ejection fraction in women : The dutch queen of hearts program

    NARCIS (Netherlands)

    den Ruijter, H.; Pasterkamp, G.; Rutten, F. H.; Lam, C. S P; Chi, C.; Tan, K. H.; van Zonneveld, A. J.; Spaanderman, M.; de Kleijn, D. P V

    2015-01-01

    Heart failure (HF) poses a heavy burden on patients, their families and society. The syndrome of HF comes in two types: with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). The latter is on the increase and predominantly present in women, especially the older ones. There

  15. Ejection fraction improvement and reverse remodeling achieved with Sacubitril/Valsartan in heart failure with reduced ejection fraction patients.

    Science.gov (United States)

    Almufleh, Aws; Marbach, Jeffrey; Chih, Sharon; Stadnick, Ellamae; Davies, Ross; Liu, Peter; Mielniczuk, Lisa

    2017-01-01

    Sacubitril/Valsartan has been shown to improve mortality and reduce hospitalizations in patients with heart failure with reduced ejection fraction (HFrEF). The effect of Sacubitril/Valsartan on ejection fraction (EF) and reverse remodeling parameters have not been previously described. We performed a single-center, retrospective, cohort study of HFrEF patients (n=48) who were treated with Sacubitril/Valsartan for a median duration of 3 months (Interquartile range 2-6 months). Clinical and echocardiographic parameters were reviewed at three time points (pre-baseline which was median of 18 months before starting Sacubitril/Valsartan, baseline before treatment started, and post-Sacubitril/Valsartan). Paired sample t-test and one-way repeated measures ANOVA were used for normally distributed data, while Wilcoxon Signed Rank test for non-normally distributed data. Sacubitril/Valsartan use was associated with an average 5% (±1.2) increase in EF, from a mean baseline of 25.33% to 30.14% (pSacubitril/Valsartan was found to improve EF and multiple measures of reverse remodeling beyond the effects of concomitant optimal medical therapy. Though these results are encouraging, our small sample, observational study requires confirmation in larger cohorts with longer follow-up periods.

  16. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets

    Science.gov (United States)

    Isaac, Dervla T; Isberg, Ralph

    2014-01-01

    Macrophages are the front line of immune defense against invading microbes. Microbes, however, have evolved numerous and diverse mechanisms to thwart these host immune defenses and thrive intracellularly. Legionella pneumophila, a Gram-negative pathogen of amoebal and mammalian phagocytes, is one such microbe. In humans, it causes a potentially fatal pneumonia referred to as Legionnaires' disease. Armed with the Icm/Dot type IV secretion system, which is required for virulence, and approximately 300 translocated proteins, Legionella is able to enter host cells, direct the biogenesis of its own vacuolar compartment, and establish a replicative niche, where it grows to high levels before lysing the host cell. Efforts to understand the pathogenesis of this bacterium have focused on characterizing the molecular activities of its many effectors. In this article, we highlight recent strides that have been made in understanding how Legionella effectors mediate host-pathogen interactions. PMID:24762308

  17. A study of stresses in powder compacted components during and after ejection

    DEFF Research Database (Denmark)

    Redanz, Pia

    2001-01-01

    A finite strain finite element method is used to examine the residual stresses in a cup-shaped powder compact. Two rate-independent strain hardening porous material models are used: the combined material model (Fleck, N.A., Kuhn, L.T., McMeeking, R.M., 1992a. J. Mech. Phys. Solids 40 (5), 1139......-1162) and a material model which includes the dependency of inter-particle cohesive strength (Fleck, N.A., 1995. J. Mech. Phys. Solids 43, 1409-1431). The residual stress state in the unloaded cup is highly dependent on the compaction process and less dependent on the ejection route. The maximum principal stress...... plotted during ejection shows that higher stresses are found during the ejection process than those found in the completely unloaded specimen. The degree of inter-particle cohesive strength has hardly any effect on the porosity distributions in the compacts but it has a strong influence on the stress...

  18. Differing prognostic value of pulse pressure in patients with heart failure with reduced or preserved ejection fraction

    DEFF Research Database (Denmark)

    Jackson, Colette E; Castagno, Davide; Maggioni, Aldo P

    2015-01-01

    ) and 5008 with HF-PEF (828 deaths). Pulse pressure was analysed in quintiles in a multivariable model adjusted for the previously reported Meta-Analysis Global Group in Chronic Heart Failure prognostic variables. Heart failure and reduced ejection fraction patients in the lowest pulse pressure quintile had...... in patients with HF-PEF [ejection fraction (EF) ≥ 50%] and HF-REF. METHODS AND RESULTS: Data from 22 HF studies were examined. Preserved left ventricular ejection fraction (LVEF) was defined as LVEF ≥ 50%. All-cause mortality at 3 years was evaluated in 27 046 patients: 22 038 with HF-REF (4980 deaths......AIMS: Low pulse pressure is a marker of adverse outcome in patients with heart failure (HF) and reduced ejection fraction (HF-REF) but the prognostic value of pulse pressure in patients with HF and preserved ejection fraction (HF-PEF) is unknown. We examined the prognostic value of pulse pressure...

  19. Enhancement of weld failure and tube ejection model in PENTAP program

    International Nuclear Information System (INIS)

    Jung, Jaehoon; An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The reactor vessel pressure, the debris mass, the debris temperature, and the component of material can have an effect on the penetration tube failure modes. Furthermore, these parameters are interrelated. There are some representative severe accident codes such as MELCOR, MAAP, and PENTAP program. MELCOR decides on a penetration tube failure by its failure temperature such as 1273K simply. MAAP considers all penetration failure modes and has the most advanced model for a penetration tube failure model. However, the validation work against the experimental data is very limited. PENTAP program which evaluates the possible penetration tube failure modes such as creep failure, weld failure, tube ejection, and a long term tube failure under given accident condition was developed by KAERI. The experiment for the tube ejection is being performed by KAERI. The temperature distribution and the ablation rate of both weld and lower vessel wall can be obtained through the experiment. This paper includes the updated calculation steps for the weld failure and the tube ejection modes of the PENTAP program to apply the experimental results. PENTAP program can evaluate the possible penetration tube failure modes. It still requires a large amount of efforts to increase the prediction of failure modes. Some calculation steps are necessary for applying the experimental and the numerical data in the PENTAP program. In this study, new calculation steps are added to PENTAP program to enhance the weld failure and tube ejection models using KAERI's experimental data which are the ablation rate and temperature distribution of weld and lower vessel wall

  20. The Prospect for Detecting Stellar Coronal Mass Ejections

    Science.gov (United States)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  1. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease

    International Nuclear Information System (INIS)

    Polak, J.F.; Holman, B.L.; Wynne, J.; Colucci, W.S.

    1983-01-01

    The predictive value of radionuclide ventriculography was studied in 34 patients with depressed left ventricular ejection fraction (less than 40%) and clinically evident congestive heart failure secondary to atherosclerotic coronary artery disease. In addition to left ventricular ejection fraction, right ventricular ejection fraction and extent of left ventricular paradox were obtained in an attempt to identify a subgroup at increased risk of mortality during the ensuing months. The 16 patients who were alive after a 2 year follow-up period had a higher right ventricular ejection fraction and less extensive left ventricular dyskinesia. When a right ventricular ejection fraction of less than 35% was used as a discriminant, mortality was significantly greater among the 21 patients with a depressed right ventricular ejection fraction (71 versus 23%), a finding confirmed by a life table analysis. It appears that the multiple factors contributing to the reduction in right ventricular ejection fraction make it a useful index not only for assessing biventricular function, but also for predicting patient outcome

  2. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015). Held in Colorado Springs, CO on May 31-June 4, 2015

    Science.gov (United States)

    2016-06-28

    Xin Sun - Proceedings 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION The Minerals Metals...on Integrated Computational Materials Engineering (ICME) was organized by The Minerals , Metals, and Materials Society (TMS) and held in Colorado...Springs, Colorado from May 31- June 4, 2015. ONR support in the an1otmt of$15,000 was provided to support the planning , execution, and dissemination of

  3. Sensitivity studies for 3-D rod ejection analyses on axial power shape

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.

  4. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.

    Science.gov (United States)

    Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  5. Popping the cork: mechanisms of phage genome ejection

    NARCIS (Netherlands)

    Molineux, I.J.; Panja, D.

    2013-01-01

    Sixty years after Hershey and Chase showed that nucleic acid is the major component of phage particles that is ejected into cells, we still do not fully understand how the process occurs. Advances in electron microscopy have revealed the structure of the condensed DNA confined in a phage capsid, and

  6. ACCELERATION DEVELOPMENT OF CORN ICM TECHNOLOGY INNOVATION AT SEVERAL AGROECOSYSTEM AGRICULTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M.P. Sirappa

    2014-02-01

    Full Text Available Technology innovation of corn integrated crop management (ICM is formed of concept with integrated a variety of technology component which synergy interdependent so disperse local problem, increasing eficiency input, take care of and increasingsoil fertility. Agriculture Agency of Research Development agitating for assemble new superior varieties which have a highest production, early ripening, resistent main pest and disease, tolerance of marginal domain, and yield quality which accord with consumer preference. A new superior variety which admissible for agroecosystem rain field are Lamuru, Srikandi Kuning-1, Srikandi Putih-1, Bima-1, dan Semar-10; For dry land wet climate are Bisma, Lamuru, Srikandi Kuning-1, Srikandi Putih-1, Bima-1 and Semar-10; For acid dry land wet climate are Sukmaraga; and for dry land and dry climate are Lamuru, Srikandi Kuning-1 and Srikandi Putih-1. For necessity silage, development directed towards varieties of Bisma, Lamuru, Bima-1, and Semar-10, whereas for food matter are Srikandi Kuning-1 and Srikandi Putih-1. Several strategy for accelerate of corn development, especially varieties which producting by Agriculture Agency of Research Development for farmer are trough survey or PRA, verification and evaluation technology production, field encountered, socialization of technology production, and management of seed measuring.

  7. The size distributions of fragments ejected at a given velocity from impact craters

    Science.gov (United States)

    O'Keefe, John D.; Ahrens, Thomas J.

    1987-01-01

    The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68 percent of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.

  8. Transitions between states of magnetotail–ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2015-04-01

    Full Text Available In a case study, we investigate transitions between fundamental magnetosphere–ionosphere (M-I coupling modes during storm-time conditions (SYM-H between −100 and −160 nT driven by an interplanetary coronal mass ejection (ICME. We combine observations from the near tail, at geostationary altitude (GOES-10, and electrojet activities across the auroral oval at postnoon-to-dusk and midnight. After an interval of strong westward electrojet (WEJ activity, a 3 h long state of attenuated/quenched WEJ activity was initiated by abrupt drops in the solar wind density and dynamic pressure. The attenuated substorm activity consisted of brief phases of magnetic field perturbation and electron flux decrease at GOES-10 near midnight and moderately strong conjugate events of WEJ enhancements at the southern boundary of the oval, as well as a series of very strong eastward electrojet (EEJ events at dusk, during a phase of enhanced ring current evolution, i.e., enhanced SYM-H deflection within −120 to −150 nT. Each of these M-I coupling events was preceded by poleward boundary intensifications and auroral streamers at higher oval latitudes. We identify this mode of attenuated substorm activity as being due to a magnetotail state characterized by bursty reconnection and bursty bulk flows/dipolarization fronts (multiple current wedgelets with associated injection dynamo in the near tail, in their braking phase. The latter process is associated with activations of the Bostrøm type II (meridional current system. A transition to the next state of M-I coupling, when a full substorm expansion took place, was triggered by an abrupt increase of the ICME dynamic pressure from 1 to 5 nPa. The brief field deflection events at GOES-10 were then replaced by a 20 min long interval of extreme field stretching (Bz approaching 5 nT and Bx ≈ 100 nT followed by a major dipolarization (Δ Bz ≈ 100 nT. In the ionosphere the latter stage appeared as a "full-size" stepwise

  9. Observations and Analyses of Heliospheric Faraday Rotation of a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques

    Science.gov (United States)

    Bisi, Mario Mark; Jensen, Elizabeth; Sobey, Charlotte; Fallows, Richard; Jackson, Bernard; Barnes, David; Giunta, Alessandra; Hick, Paul; Eftekhari, Tarraneh; Yu, Hsiu-Shan; Odstrcil, Dusan; Tokumaru, Munetoshi; Wood, Brian

    2017-04-01

    Geomagnetic storms of the highest intensity are general driven by coronal mass ejections (CMEs) impacting the Earth's space environment. Their intensity is driven by the speed, density, and, most-importantly, their magnetic-field orientation and magnitude of the incoming solar plasma. The most-significant magnetic-field factor is the North-South component (Bz in Geocentric Solar Magnetic - GSM - coordinates). At present, there are no reliable prediction methods available for this magnetic-field component ahead of the in-situ monitors around the Sun-Earth L1 point. Observations of Faraday rotation (FR) can be used to attempt to determine average magnetic-field orientations in the inner heliosphere. Such a technique has already been well demonstrated through the corona, ionosphere, and also the interstellar medium. Measurements of the polarisation of astronomical (or spacecraft in superior conjunction) radio sources (beacons/radio frequency carriers) through the inner corona of the Sun to obtain the FR have been demonstrated but mostly at relatively-high radio frequencies. Here we show some initial results of true heliospheric FR using the Low Frequency Array (LOFAR) below 200 MHz to investigate the passage of a coronal mass ejection (CME) across the line of sight. LOFAR is a next-generation low-frequency radio interferometer, and a pathfinder to the Square Kilometre Array (SKA) - LOW telescope. We demonstrate preliminary heliospheric FR results through the analysis of observations of pulsar J1022+1001, which commenced on 13 August 2014 at 13:00UT and spanned over 150 minutes in duration. We also show initial comparisons to the FR results via various modelling techniques and additional context information to understand the structure of the inner heliosphere being detected. This observation could indeed pave the way to an experiment which might be implemented for space-weather purposes that will eventually lead to a near-global method for determining the magnetic

  10. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  11. Impact of etiology on the outcomes in heart failure patients treated with cardiac resynchronization therapy: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yanmei Chen

    Full Text Available BACKGROUND: Cardiac resynchronization therapy (CRT has been extensively demonstrated to benefit heart failure patients, but the role of underlying heart failure etiology in the outcomes was not consistently proven. This meta-analysis aimed to determine whether efficacy and effectiveness of CRT is affected by underlying heart failure etiology. METHODS AND RESULTS: Searches of MEDLINE, EMBASE and Cochrane databases were conducted to identify RCTs and observational studies that reported clinical and functional outcomes of CRT in ischemic cardiomyopathy (ICM and non-ischemic cardiomyopathy (NICM patients. Efficacy of CRT was assessed in 7 randomized controlled trials (RCTs with 7072 patients and effectiveness of CRT was evaluated in 14 observational studies with 3463 patients In the pooled analysis of RCTs, we found that CRT decreased mortality or heart failure hospitalization by 29% in ICM patients (95% confidence interval [CI], 21% to 35%, and by 28% (95% CI, 18% to 37% in NICM patients. No significant difference was observed between the 2 etiology groups (P = 0.55. In the pooled analysis of observational studies, however, we found that ICM patients had a 54% greater risk for mortality or HF hospitalization than NICM patients (relative risk: 1.54; 95% CI: 1.30-1.83; P<0.001. Both RCTs and observational studies demonstrated that NICM patients had greater echocardiographic improvements in the left ventricular ejection fraction and end-systolic volume, as compared with ICM patients (both P<0.001. CONCLUSION: CRT might reduce mortality or heart failure hospitalization in both ICM and NICM patients similarly. The improvement of the left ventricular function and remodeling is greater in NICM patients.

  12. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  13. New Classification for Heart Failure with Mildly Reduced Ejection Fraction; Greater clarity or more confusion?

    Directory of Open Access Journals (Sweden)

    Sunil Nadar

    2017-03-01

    Full Text Available The latest European Society of Cardiology (ESC guidelines for the diagnosis and management of heart failure include a new patient group for those with heart failure with mildly reduced ejection fraction (HFmrEF. By defining this group of patients as a separate entity, the ESC hope to encourage more research focusing on patients with HFmrEF. Previously, patients with this condition were caught between two classifications—heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. Hopefully, the inclusion of new terminology will not increase confusion, but rather aid our understanding of heart failure, a complex clinical syndrome.

  14. Ejection fraction and outcomes in patients with atrial fibrillation and heart failure

    DEFF Research Database (Denmark)

    Banerjee, Amitava; Taillandier, Sophie; Olesen, Jonas Bjerring

    2012-01-01

    Heart failure (HF) increases the risk of stroke and thrombo-embolism (TE) in non-valvular atrial fibrillation (NVAF), and is incorporated in stroke risk stratification scores. We aimed to establish the role of ejection fraction (EF) in risk prediction in patients with NVAF and HF.......Heart failure (HF) increases the risk of stroke and thrombo-embolism (TE) in non-valvular atrial fibrillation (NVAF), and is incorporated in stroke risk stratification scores. We aimed to establish the role of ejection fraction (EF) in risk prediction in patients with NVAF and HF....

  15. Analysis of a control rod ejection transient in a mox-fuelled PWR

    International Nuclear Information System (INIS)

    Lenain, R.; Mathonniere, G.; Perrutel, J.P.; Schaeffer, H.; Stelletta, S.; Lam Hime, M.

    1988-09-01

    The decision to use mixed-oxide (MOX) fuel in PWR's involved re-investigation of a certain number of accidents and notably control rod ejection transients. It has thus been shown that this accident would be no more severe than in the case of all-uranium cores, since the positive effects on the ejected rod worth would counterbalance the negative effects on the delayed neutron fraction. A new approach to the kinetics aspect of the calculation method for this accident is also presented, involving a 3-D kinetic calculation with only a few axial meshes

  16. The relationship between the parameters (Heart rate, Ejection fraction and BMI) and the maximum enhancement time of ascending aorta

    International Nuclear Information System (INIS)

    Jang, Young Ill; June, Woon Kwan; Dong, Kyeong Rae

    2007-01-01

    In this study, Bolus Tracking method was used to investigate the parameters affecting the time when contrast media is reached at 100 HU (T 100 ) and studied the relationship between parameters and T 100 because the time which is reached at aorta through antecubital vein after injecting contrast media is different from person to person. Using 64 MDCT, Cadiac CT, the data were obtained from 100 patients (male: 50, female: 50, age distribution: 21⁓81, average age: 57.5) during July and September, 2007 by injecting the contrast media at 4 ml∙sec -1 through their antecubital vein except having difficulties in stopping their breath and having arrhythmia. Using Somatom Sensation Cardiac 64 Siemens, patients’ height and weight were measured to know their mean Heart rate and BMI. Ejection Fraction was measured using Argus Program at Wizard Workstation. Variances of each parameter were analyzed depending on T 100 ’s variation with multiple comparison and the correlation of Heart rate, Ejection Fraction and BMI were analyzed, as well. According to T 100 ’s variation caused by Heart rate, Ejection Fraction and BMI variations, the higher patients’ Heart Rate and Ejection Fraction were, the faster T 100 ’s variations caused by Heart Rate and Ejection Fraction were. The lower their Heart Rate and Ejection Fraction were, the slower T 100 ’s variations were, but T 100 ’s variations caused by BMI were not affected. In the correlation between T 100 and parameters, Heart Rate (p⁄0.01) and Ejection Fraction (p⁄0.05) were significant, but BMI was not significant (p¤0.05). In the Heart Rate, Ejection Fraction and BMI depending on Fast (17 sec and less), Medium (18⁓21 sec), Slow (22 sec and over) Heart Rate was significant at Fast and Slow and Ejection Fraction was significant Fast and Slow as well as Medium and Slow (p⁄0.05), but BMI was not statistically significant. Of the parameters (Heart Rate, Ejection Fraction and BMI) which would affect T 100 , Heart

  17. Plasma Observations During the Mars Atmospheric Plume Event of March-April 2012

    Science.gov (United States)

    Andrews, D. J.; Barabash, S.; Edberg, N. J. T.; Gurnett, D. A.; Hall, B. E. S.; Holmstrom, M.; Lester, M.; Morgan, D. D.; Opgenoorth, H. J.; Ramstad, R.; hide

    2016-01-01

    We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  18. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    Shoudong Gu

    2016-06-01

    Full Text Available To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 μm, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within ±3%.

  19. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors*

    Science.gov (United States)

    Aurass, Philipp; Gerlach, Thomas; Becher, Dörte; Voigt, Birgit; Karste, Susanne; Bernhardt, Jörg; Riedel, Katharina; Hecker, Michael; Flieger, Antje

    2016-01-01

    Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests

  20. Gated cardiac imaging: manual calculations and observations of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Hawkins, T.; Keavey, P.M.

    1984-01-01

    Using gamma camera imaging, the fixed region and moving region methods of calculating left ventricular ejection fraction were studied. Data were obtained from gated blood pool studies on 125 cardiac patients with myocardial infarcts of varying extent and location. Ejection fractions ranged from 10 to 76%. The left anterior oblique angulation for optimal visualisation of the ventricles showed considerable patient variation. The authors conclude that a fixed angulation cannot be recommended and that there is little to justify it. Where the septum is not seen distinctly during setting up, a larger rather than smaller angle is generally advised. (U.K.)

  1. Finite-element solutions of the AER-2 rod ejection benchmark by CRONOS

    International Nuclear Information System (INIS)

    Kolev, N.P.; Lenain, R.; Fedon-Magnaud, C.

    2001-01-01

    The finite-element option in CRONOS was used to analyse the AER-2 rod-ejection benchmark for WWER-440. The objective is to obtain spatially converged solutions by means of node subdivision and approximation refinement. This paper presents the first phase of analysis dealing with the initial and just-ejected states used for calculation of the initial reactivity. Fine-mesh and extrapolated to zero mesh size solutions were obtained and verified by comparison to MAG code solutions. These differences provide potential for large deviations in the transient results and deserve further attention in reactor safety analysis (Authors)

  2. Nest Sanitation as the Evolutionary Background for Egg Ejection Behaviour and the Role of Motivation for Object Removal

    OpenAIRE

    Pol??ek, Miroslav; Griggio, Matteo; Bart?kov?, Michaela; Hoi, Herbert

    2013-01-01

    Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i) motivation and its underlying function and, ii) which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection ...

  3. Evaluation of left ventricular ejection fraction by first pass radionuclide cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, T; Imai, Y; Kagawa, M; Hayashi, M; Kozuka, T [National Cardiovascular Center, Suita, Osaka (Japan)

    1980-02-01

    The left ventricular ejection fraction can be assessed by recording the passage of peripherally administered radioactive bolus through the heart which is first pass method. In this study, the accuracy and validity of first pass method were examined in the patients with cardiac catheterization. After sup(99m)Tc-HSA as a bolus was injected intravenouslly, the time-activity curve was recorded with a scintillation camera and online minicomputer system. The ejection fraction was calculated by the average of three cardiac cycles which corresponded to the left ventricular volume changes during each cardiac cycles. The results correlated well with those obtained by biplane cineangiography in the twenty patients without arrythmias (r = 0.89) and moreover, this technique was applied to the fifteen patients with atrial fibrillation such as mitral valvular diseases, congestive cardiomyopathy, Good correlation of the ejection fraction (r = 0.84) was obtained. The findings, however, demonstrated that the time-activity curve must be generated from the region of interest which fits the left ventricular blood pool precisely and must be corrected for the contribution arizing from noncardiac background structures (two matrix method). In conclusion, this noninvasive method appears particularly useful for serial evaluation of the patients with cardiac dysfunctions and would be available for the routine examination of ventricular functions.

  4. Nuclear cardiac ejection fraction and cardiac index in abdominal aortic surgery

    International Nuclear Information System (INIS)

    Fiser, W.P.; Thompson, B.W.; Thompson, A.R.; Eason, C.; Read, R.C.

    1983-01-01

    Since atherosclerotic heart disease results in more than half of the perioperative deaths that follow abdominal aortic surgery, a prospective protocol was designed for preoperative evaluation and intraoperative hemodynamic monitoring. Twenty men who were prepared to undergo elective operation for aortoiliac occlusive disease (12 patients) and abdominal aortic aneurysm (eight patients) were evaluated with a cardiac scan and right heart catheterization. The night prior to operation, each patient received volume loading with crystalloid based upon ventricular performance curves. At the time of the operation, all patients were anesthetized with narcotics and nitrous oxide, and hemodynamic parameters were recorded throughout the operation. Aortic crossclamping resulted in a marked depression in CI in all patients. CI remained depressed after unclamping in the majority of patients. There were two perioperative deaths, both from myocardial infarction or failure. Both patients had ejection fractions less than 30% and initial CIs less than 2 L/M2, while the survivors' mean ejection fraction was 63% +/- 1 and their mean CI was 3.2 L/M2 +/- 0.6. The authors conclude that preoperative evaluation of ejection fraction can select those patients at a high risk of cardiac death from abdominal aortic operation. These patients should receive intensive preoperative monitoring with enhancement of ventricular performance

  5. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.

    Science.gov (United States)

    Ahadi, Elias; Konermann, Lars

    2011-06-22

    The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.

  6. Ispitivanje piropatrona i raketnog motora pilotskog sedišta / Testing pyrocartridges and the rocket motor of the ejection seat

    Directory of Open Access Journals (Sweden)

    Milorad Savković

    2008-04-01

    Full Text Available Raketni motor pilotskog sedišta ima složen geometrijski oblik, tako da njegov potisak deluje pod određenim uglom u odnosu na ravan simetrije pilotskog sedišta. Radi određivanja intenziteta i napadne linije potiska izvršen je veći broj eksperimenata. Meren je potisak raketnog motora na višekomponentnom opitnom stolu. Letno ispitivanje pilotskog sedišta obavljeno je pomoću lutke koja simulira masu pilota. Takođe, analizirano je letno ispitivanje pilotskog sedišta u početnom periodu katapultiranja za vreme rada raketnog motora. Obrađeni su i rezultati merenja ubrzanja, koji su korišćeni za određivanje karakteristika leta pilotskog sedišta. U radu je prikazan teorijski model kretanja sedišta. / Due to a complex geometrical shape of the rocket motor of the ejection seat, the rocket motor thrust occurs under certain angle in relation to the plane of symmetry of the ejection seat. A number of tests were carried out in order to determine thrust intensity and angle of attack. The rocket motor thrust was measured on the multicomponent test stand. The ejection seat whit a dummy simulating a mass of a pilot was tested during ejection. The paper presents an analysis of the ejection seat flight in the initial phase of ejection, during the rocket motor running. The results of the acceleration read-outs were processed and then used for the determination of the characteristics of the ejection seat flight. A theoretical model of the ejection seat flight is given in the paper.

  7. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  8. Lubricant influence on the ejection and roughness of in-die electro sinter forged Ti-discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    2018-01-01

    Electro Sinter Forging (ESF) is a new sintering process based on Joule heating by high electrical current flowing through compacted metal powder under mechanical pressure. The whole process takes about three seconds and is based on a closed-die setup, where the sample is sintered inside a die....... A near-net shape component is therefore manufactured. One of the challenges associated with this process is the ejection of the sample after sintering. Due to powder compaction and axial loading during sintering, a radial pressure is generated at the die/sample interface. Consequently, the ejection can...... of commercially pure titanium powder. The force was measured while ejecting the samples by using a speed-controlled press. The surface roughness parameter Sa was measured by using a laser confocal microscope....

  9. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  11. Cross-stream ejection in the inter-wheel region of aircraft landing gears

    Science.gov (United States)

    McCarthy, Philip; Ekmekci, Alis

    2014-11-01

    The reduction of aircraft noise is an important challenge currently faced by aircraft manufacturers. During approach and landing, the landing gears contribute a significant proportion of the aircraft generated noise. It is therefore critical that the key noise sources be identified and understood in order for effective mitigation methods to be developed. For a simplified two-wheel nose landing gear, a strong cross stream flow ejection phenomena has been observed to occur in the inter-wheel region in presence of wheel wells. The location and orientation of these flow ejections causes highly unsteady, three dimensional flow between the wheels that may impinge on other landing gear components, thereby potentially acting as a significant noise generator. The effects of changing the inter-wheel geometry (inter-wheel spacing, the wheel well depth and main strut geometry) upon the cross-stream ejection behaviour has been experimentally investigated using both qualitative flow visualisation and quantitative PIV techniques. A summary of the key results will be presented for the three main geometrical parameters under examination and the application of these findings to real life landing gears will be discussed. Thanks to Messier-Bugatti-Dowty and NSERC for their support for this project.

  12. International Geographic Variation in Event Rates in Trials of Heart Failure With Preserved and Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Kristensen, Søren L; Køber, Lars; Jhund, Pardeep S

    2015-01-01

    BACKGROUND: International geographic differences in outcomes may exist for clinical trials of heart failure and reduced ejection fraction (HF-REF), but there are few data for those with preserved ejection fraction (HF-PEF). METHODS AND RESULTS: We analyzed outcomes by international geographic reg...

  13. Invasive hemodynamic characterization of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Borlaug, Barry A

    2014-01-01

    Recent hemodynamic studies have advanced our understanding of heart failure with preserved ejection fraction (HFpEF). Despite improved pathophysiologic insight, clinical trials have failed to identify an effective treatment for HFpEF. Invasive hemodynamic assessment can diagnose or exclude HFp...

  14. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

    International Nuclear Information System (INIS)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

    2006-01-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

  15. Spall strength and ejecta production of gold under explosively driven shock wave compression

    International Nuclear Information System (INIS)

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-01-01

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  16. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    Science.gov (United States)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  17. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    Science.gov (United States)

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  18. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    Science.gov (United States)

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of

  19. Ejection Performance of Coated Core Pins Intended for Application on High Pressure Die Casting Tools for Aluminium Alloys Processing

    Directory of Open Access Journals (Sweden)

    P. Terek

    2017-09-01

    Full Text Available In high pressure die casting (HPDC process of aluminium alloys cast alloy soldering severely damages tool surfaces. It hampers casting ejection, reduces the casting quality and decreases the overall production efficiency. Thin ceramic PVD (physical vapor deposition coatings applied on tool surfaces successfully reduce these effects. However, their performance is still not recognised for surfaces with various topographies. In this investigation, soldering tendency of Al-Si-Cu alloy toward EN X27CrMoV51 steel, plasma nitrided steel, CrN and TiAlN duplex PVD coatings is evaluated using ejection test. The coatings were prepared to a range of surface roughness and topographies. After the tests sample surfaces were analysed by different microscopy techniques and profilometry. It was found that the ejection performance is independent of the chemical composition of investigated materials. After the ejection, the cast alloy soldering layer was found on surfaces of all tested materials. This built-up layer formed by effects of mechanical soldering, without corrosion reactions. Coated samples displayed a pronounced dependence of ejection force on surface roughness and topography. By decreasing roughness, ejection force increased, which is a consequence of intensified adhesion effects. Presented findings are a novel information important for efficient application of PVD coatings intendent for protection of HPDC tools.

  20. Beat-to-beat evaluation of left ventricular ejection in cardiac arrhythmias

    International Nuclear Information System (INIS)

    Itti, R.; Philippe, L.; Lorgeron, J.M.

    1982-01-01

    Conventional multi-gated cardiac blood pool studies suffer from two kinds of superimpositions: the spatial overlapping of various heart chambers and the temporal superimposition of a large number of cardiac cycles. The first problem can be partially solved by first pass techniques or by emission tomography. For the second one, which is specially critical arrhythmias, the single probe device (''nuclear stethoscope'') represents an original solution. Patients with normal cardiac rythm and patients presenting various kinds of cardiac rythm alterations were examined using a commercial ''nuclear stethoscope''. Some characteristic results achieved in these cases, were presented. For blood pool labeling, 20 mCi of 99mTc albumin was injected. The single probe detector was then positioned over the left ventricular area. The beat-to-beat left ventricular activity curve was then recorded for several minutes on paper in the same time as the E.C.G. signal. In cases with irregular cardiac rythm, the multigated techniques yield an average value of left ventricular ejection. Due to the relatively constant duration of systole, the superimposition of cycles may be valid during contration: differences mainly appear during diastole. But, as it could be demonstrated using the ''nuclear stethoscope'', individual cycles can show a large variability of ejection and average ejection fraction is only a very partial aspect of the real cardiac function

  1. The Impact of the Ecological ICMS on Investments on Sanitation and Environmental Management: Analysis of Municipalities in the State of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Simone Assis Ferreira

    2015-08-01

    Full Text Available In a growing economic and industrial development scenario, public policy can be used to encourage environment-friendly behaviour. In this context, it is a part of the Ecological ICMS, which is the VAT percentage of transfer raised by the States in favour of their municipalities, according to criteria established by law. In this paper, we seek to assess the contribution of the Ecological VAT in the State of Rio de Janeiro for the environmental development in this State. Therefore, of the 92 municipalities, data of budget expenses were collected for 87 of them (5 were excluded from analysis due to lack of information for some periods in sanitation functions and environmental management from 2005 to 2012 and therefore the 4 years before and after the validity of the Ecological VAT (2009. From the collected data, the mean difference test was used (Wilcoxon. The hypothesis tested was that the institution of the Ecological VAT in the State of Rio de Janeiro generated an increase of municipal expenditures in sanitation functions and environmental management. The results indicated that the average spending on sanitation and environmental management of municipalities in the state of Rio de Janeiro before and after the ecological ICMS institution are, from a statistical point of view, different and that the this benefit has contributed to an increase of environmental investments there. Moreover, the average expense on environmental management showed the largest percentage increase in the periods before and after the start of the distribution of resources to the Ecological VAT, although spending on sanitation express a higher total sum.

  2. Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts

    International Nuclear Information System (INIS)

    Kahler, S.W.; Cliver, E.W.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.

    1985-01-01

    We compare fast (v> or =500 km s -1 ) coronal mass ejections (CME's) with reported metric type II bursts to study the properties of CME's associated with coronal shocks. We confirm an earlier report of fast frontside CME's with no associated metric type II bursts and calculate that 33 +- 15% of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. We use the equal visibility of solar frontside and backside CME's to deduce the observability of backside type II bursts. We calculate that 23 +- 7% of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 +- 4% of all type II bursts originate in backside flares. CME speed again is the most important factor in the observability of backside type II bursts

  3. Controlled tungsten melting and droplet ejection studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K; Lunt, T; Dux, R; Janzer, A; Müller, H W; Potzel, S; Pütterich, T; Yang, Z

    2011-01-01

    Tungsten rods of 1×1×3 mm 3 were exposed in single H-mode discharges at the outer divertor target plate of ASDEX Upgrade using the divertor manipulator system. Melting of the W rod at a pre-defined time was induced by moving the initially far away outer strike point close to the W-rod position. Visible light emissions of both the W pin and consecutively ejected W droplets were recorded by two fast cameras with crossed viewing cones. The time evolution of the local W source at the pin location was measured by spectroscopic observation of the WI line emission at 400.9 nm and compared to the subsequent increase of tungsten concentration in the confined plasma derived from tungsten vacuum UV line emission. Combining these measurements with the total amount of released tungsten due to the pin melt events and ejected droplets allowed us to derive an estimate of the screening factor for this type of tungsten source. The resulting values of the tungsten divertor retention in the range 10-20 agree with those found in previous studies using a W source of sublimated W(CO) 6 vapour at the same exposure location. Ejected droplets were found to be always accelerated in the general direction of the plasma flow, attributed to friction forces and to rocket forces. Furthermore, the vertically inclined target plates cause the droplets, which are repelled by the target plate surface potential due to their electric charge, to move upwards against gravity due to the centrifugal force component parallel to the target plate.

  4. Murine Models of Heart Failure With Preserved Ejection Fraction

    Directory of Open Access Journals (Sweden)

    Maria Valero-Muñoz, PhD

    2017-12-01

    Full Text Available Heart failure with preserved ejection fraction (HFpEF is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. Despite accounting for up to 50% of all clinical presentations of heart failure, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension, and renal dysfunction are highly associated with HFpEF, yet the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models used to study the HFpEF phenotype.

  5. Limits on the ions temperature anisotropy in turbulent intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy

    2016-05-15

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.

  6. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    Tomographic multi-gated blood pool scintigraphy (TMUGA) is a widely available method which permits simultaneous assessment of right and left ventricular ejection fractions. However, the widespread clinical use of this technique is impeded by the lack of segmentation methods dedicated to an automatic analysis of ventricular activities. In this study we evaluated how a watershed algorithm succeeds in providing semi-automatic segmentation of ventricular activities in order to measure right and left ejection fractions by TMUGA. The left ejection fractions of 30 patients were evaluated both with TMUGA and with planar multi-gated blood pool scintigraphy (PMUGA). Likewise, the right ejection fractions of 25 patients were evaluated with first-pass scintigraphy (FP) and with TMUGA. The watershed algorithm was applied to the reconstructed slices in order to group together the voxels whose activity came from one specific cardiac cavity. First, the results of the watershed algorithm were compared with manual drawing around left and right ventricles. Left ejection fractions evaluated by TMUGA with the watershed procedure were not significantly different (p=0.30) from manual outlines whereas a small but significant difference was found for right ejection fractions (p=0.004). Then right and left ejection fractions evaluated by TMUGA (with the semi-automatic segmentation procedure) were compared with the results obtained by FP or PMUGA. Left ventricular ejection fractions evaluated by TMUGA showed an excellent correlation with those evaluated by PMUGA (r=0.93; SEE=5.93%; slope=0.99; intercept = 4.17%). The measurements of these ejection fractions were significantly higher with TMUGA than with PMUGA (P<0.01). The interoperator variability for the measurement of left ejection fractions by TMUGA was 4.6%. Right ventricular ejection fractions evaluated by TMUGA showed a good correlation with those evaluated by FP (r = 0.81; SEE = 6.68%; slope = 1.00; intercept = 0.85%) and were not

  7. Test results on direct containment heating by high-pressure melt ejection into the Surtsey vessel: The TDS test series

    International Nuclear Information System (INIS)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.M.

    1994-08-01

    The Technology Development and Scoping (TDS) test series was conducted to test and develop instrumentation and procedures for performing steam-driven, high-pressure melt ejection (HPME) experiments at the Surtsey Test Facility to investigate direct containment heating (DCH). Seven experiments, designated TDS-1 through TDS-7, were performed in this test series. These experiments were conducted using similar initial conditions; the primary variable was the initial pressure in the Surtsey vessel. All experiments in this test series were performed with a steam driving gas pressure of ≅ 4 MPa, 80 kg of lumina/iron/chromium thermite melt simulant, an initial hole diameter of 4.8 cm (which ablated to a final hole diameter of ≅ 6 cm), and a 1/10th linear scale model of the Surry reactor cavity. The Surtsey vessel was purged with argon ( 2 ) to limit the recombination of hydrogen and oxygen, and gas grab samples were taken to measure the amount of hydrogen produced

  8. Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis.

    Science.gov (United States)

    Giraldo, Beatriz F; Rodriguez, Javier; Caminal, Pere; Bayes-Genis, Antonio; Voss, Andreas

    2015-01-01

    Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyopathy patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyopathies were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopathies, obtaining an accuracy of 85.7%.

  9. Evaluation of the rod ejection accident in Westinghouse Pressurized Water Reactors using spatial kinetics methods

    International Nuclear Information System (INIS)

    Risher, D.H. Jr.

    1975-01-01

    The consequences of a rod ejection accident are investigated in relation to the latest, high power density Westinghouse reactors. Limiting criteria are presented, based on experimental evidence, and if not exceeded these criteria will ensure that there will be no interference with core cooling capability, and radiation releases, if any, will be within the guidelines of 10CFR100. A basis is presented for the conservative selection of plant parameters to be used in the analysis, such that the analysis is applicable to a wide range of past, present, and future reactors. The calculational method employs a one-dimensional spatial kinetics computer code and a transient fuel heat transfer computer code to determine the hot spot fuel temperature versus time following a rod ejection. Using these computer codes, the most limiting hot channel factor (which does not cause the fuel damage limit criteria to be exceeded) has been determined as a function of the ejected rod worth. By this means, the limit criteria have been translated into ejected rod worths and hot channel factors which can be used effectively by the nuclear designer and safety analyst. The calculational method is shown to be conservative, compared to the results of a three-dimensional spatial kinetics analysis

  10. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  11. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  12. Achieving ICME with Multiscale Modeling: The Effects of Constituent Properties and Processing on the Performance of Laminated Polymer Matrix Composite Structures

    Science.gov (United States)

    Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario

  13. A survivability model for ejection of green compacts in powder metallurgy technology

    Directory of Open Access Journals (Sweden)

    Payman Ahi

    2012-01-01

    Full Text Available Reliability and quality assurance have become major considerations in the design and manufacture of today’s parts and products. Survivability of green compact using powder metallurgy technology is considered as one of the major quality attributes in manufacturing systems today. During powder metallurgy (PM production, the compaction conditions and behavior of the metal powder dictate the stress and density distribution in the green compact prior to sintering. These parameters greatly influence the mechanical properties and overall strength of the final component. In order to improve these properties, higher compaction pressures are usually employed, which make unloading and ejection of green compacts more challenging, especially for the powder-compacted parts with relatively complicated shapes. This study looked at a mathematical survivability model concerning green compact characteristics in PM technology and the stress-strength failure model in reliability engineering. This model depicts the relationship between mechanical loads (stress during ejection, experimentally determined green strength and survivability of green compact. The resulting survivability is the probability that a green compact survives during and after ejection. This survivability model can be used as an efficient tool for selecting the appropriate parameters for the process planning stage in PM technology. A case study is presented here in order to demonstrate the application of the proposed survivability model.

  14. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction

    DEFF Research Database (Denmark)

    Boesgaard, Søren

    2012-01-01

    A substantial proportion of patients with heart failure have preserved left ventricular ejection fraction (HF-PEF). Previous studies have reported mixed results whether survival is similar to those patients with heart failure and reduced EF (HF-REF).......A substantial proportion of patients with heart failure have preserved left ventricular ejection fraction (HF-PEF). Previous studies have reported mixed results whether survival is similar to those patients with heart failure and reduced EF (HF-REF)....

  15. Inter-observer variation in estimates by nuclear angiography of left ventricular ejection fraction and ejection rate

    International Nuclear Information System (INIS)

    Young, K.C.; Railton, R.

    1980-01-01

    The recent decline in the cost of computing has led to the introduction of data processing of gamma-camera images in many medical centres, allowing the development and widespread use of radionuclide techniques for assessing left ventricular performance. Methods such as ECG-gated blood-pool imaging have the advantage of being less invasive than contrast ventriculography and do not rely on geometrical assumptions about the shape of the ventricle. A study has been made of the inter-observer variation in estimates of ejection fraction and average and maximum systolic contraction rates using a micro-computer (VIP-450 Video Image Processor, Ohio-Nuclear Limited, Rugby) to analyse gated blood-pool images of the left ventricle. (author)

  16. Factors related to outcome in heart failure with a preserved (or normal) left ventricular ejection fraction.

    Science.gov (United States)

    Sanderson, John E

    2016-07-01

    Heart failure with a preserved ejection faction (HFpEF) is a growing and expensive cause of heart failure (HF) affecting particularly the elderly. It differs in substantial ways in addition to the normal left ventricular ejection fraction, from the more easily recognized form of heart failure with a reduced ejection fraction (HFrEF or 'systolic heart failure') and unlike HFrEF there have been little advances in treatment. In part, this relates to the complexity of the pathophysiology and identifying the correct targets. In HFpEF, there appears to be widespread stiffening of the vasculature and the myocardium affecting ventricular function (both systolic and diastolic), impeding ventricular suction, and thus early diastolic filling leading to breathlessness on exertion and later atrial failure and fibrillation. Left ventricular ejection fraction tends to gradually decline and some evolve into HFrEF. Most patients also have a mixture of several co-morbidities including hypertension, diabetes, obesity, poor renal function, lack of fitness, and often poor social conditions. Therefore, many factors may influence outcome in an individual patient. In this review, the epidemiology, possible causation, pathophysiology, the influence of co-morbidities and some of the many potential predictors of outcome will be considered.

  17. Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations

    International Nuclear Information System (INIS)

    Gosling, J.T.; Riley, P.; McComas, D.J.; Pizzo, V.J.

    1998-01-01

    Ulysses observations reveal that most coronal mass ejections (CMEs) observed in the solar wind far from the Sun at high heliographic latitudes have large radial widths and are still expanding as they pass the spacecraft. CME radial widths ranging between 0.5 and 2.5 AU have been observed at heliocentric distances between 1.4 and 4.6 AU and at latitudes greater than 22 degree. A CME may expand simply because it is ejected from the Sun with a leading edge speed that is greater than its trailing edge speed. Rarefaction waves produced by relative motion between a CME and the surrounding wind also can cause a CME to expand. Finally, a CME may expand because it is ejected into the wind with an internal pressure that is greater than that of the surrounding wind. In the latter case, which we have called 'overexpansion', the expansion tends to drive compressive waves into the surrounding solar wind; these waves commonly steepen into shocks at large distances from the Sun. The relative importance of these various expansion processes differs from event to event depending upon initial conditions within the CME and the surrounding wind. Using Ulysses observations and a simple one-dimensional, gasdynamic code, we have explored how initial conditions affect the radial evolution of solar wind disturbances associated with overexpanding CMEs. We find good qualitative agreement between the results of our simulations and Ulysses observations of such disturbances. copyright 1998 American Geophysical Union

  18. Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    Science.gov (United States)

    Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan

    2018-04-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.

  19. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    Science.gov (United States)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  20. Improved Rock Core Sample Break-off, Retention and Ejection System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort advances the design of an innovative core sampling and acquisition system with improved core break-off, retention and ejection features. The...

  1. Initiation and Propagation of Coronal Mass Ejections P. F. Chen

    Indian Academy of Sciences (India)

    Introduction. Coronal mass ejections (CMEs) have been observed for over 30 years. They keep being an intriguing research topic, not only because they are now realized to be the major driver for space weather disturbances, which are intimately connected to human activities, but also because they themselves are full of ...

  2. Improved Rock Core Sample Break-off, Retention and Ejection System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort advances the design of an innovative core sampling and acquisition system with improved core break-off, retention and ejection features. Phase 1...

  3. Identification of ultrasound-contrast-agent dilution systems for ejection fraction measurements

    NARCIS (Netherlands)

    Mischi, M.; Jansen, A.H.M.; Kalker, A.A.C.M.; Korsten, H.H.M.

    2005-01-01

    Left ventricular ejection fraction is an important cardiac-efficiency measure. Standard estimations are based on geometric analysis and modeling; they require time and experienced cardiologists. Alternative methods make use of indicator dilutions, but they are invasive due to the need for

  4. Analysis of Transportation Alternatives for Ejection Seat Training

    OpenAIRE

    Gambel, Ray; Lundy, David; Murphy, William; Southmost Consulting

    2011-01-01

    EMBA Project Report EXECUTIVE SUMMARY Student Military Aviators who complete primary flight training at Training Wing FOUR and select jets for their advanced training track will require Naval Aviation Survival Training Program (NASTP) Class 1 training until the T-6B replaces the T-34C as the primary flight training aircraft. This Class 1 training instructs students in ejection seat equipment and procedures for emergency egress of their new aircraft. Of the eight available Aviation Survi...

  5. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  6. The relationship between mitral regurgitation and ejection fraction as predictors for the prognosis of patients with heart failure

    DEFF Research Database (Denmark)

    Thune, Jens Jakob; Torp-Pedersen, Christian; Hassager, Christian

    2011-01-01

    To study whether there is interaction between mitral regurgitation (MR) and left ventricular ejection fraction (LVEF) in the mortality risk of heart failure (HF) patients.......To study whether there is interaction between mitral regurgitation (MR) and left ventricular ejection fraction (LVEF) in the mortality risk of heart failure (HF) patients....

  7. Simulation of 'pathologic' changes in ICG waveforms resulting from superposition of the 'preejection' and ejection waves induced by left ventricular contraction

    Science.gov (United States)

    Ermishkin, V. V.; Kolesnikov, V. A.; Lukoshkova, E. V.; Sonina, R. S.

    2013-04-01

    The impedance cardiography (ICG) is widely used for beat-to-beat noninvasive evaluation of the left ventricular stroke volume and contractility. It implies the correct determination of the ejection start and end points and the amplitudes of certain peaks in the differentiated impedance cardiogram. An accurate identification of ejection onset by ICG is often problematic, especially in the cardiologic patients, due to peculiar waveforms. Using a simple theoretical model, we tested the hypothesis that two major processes are responsible for the formation of impedance systolic wave: (1) the changes in the heart geometry and surrounding vessels produced by ventricular contraction, which occur during the isovolumic phase and precede ejection, and (2) expansion of aorta and adjacent arteries during the ejection phase. The former process initiates the preejection wave WpE and the latter triggers the ejection wave WEj. The model predicts a potential mechanism of generating the abnormal shapes of dZ/dt due to the presence of preejection waves and explains the related errors in ICG time and amplitude parameters. An appropriate decomposition method is a promising way to avoid the masking effects of these waves and a further step to correct determination of the onset of ejection and the corresponding peak amplitudes from 'pathologically shaped' ICG signals.

  8. Survivability rate among pilots in case of ejection

    Directory of Open Access Journals (Sweden)

    Alexandru GHEORGHIU

    2015-06-01

    Full Text Available The current paper presents a statistical analysis of a recent research made by the author [1], showing the factors causing the accidents that happened in Romanian Air Force from 1952 to 2014. Also the decision of ejection is analyzed. The study contains 225 events: 110 catastrophes and 115 accidents. 280 fighter pilots and 235 aircraft were involved in this analysis. The below information is a personal one and does not reflect an official position of the Ministry of National Defence.

  9. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  10. Nest sanitation as the evolutionary background for egg ejection behaviour and the role of motivation for object removal.

    Science.gov (United States)

    Poláček, Miroslav; Griggio, Matteo; Bartíková, Michaela; Hoi, Herbert

    2013-01-01

    Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i) motivation and its underlying function and, ii) which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection behaviour using artificial flat objects. We found a high interclutch variation in egg colouration and egg size in our tree sparrow (Passer montanus) population. Using colour and size we were in fact able to predict clutch affiliation for each egg. Our experiments further revealed the existence of direct anti-parasite behaviours and birds are able to recognise conspecific eggs, since only experimentally-deposited eggs have been removed. Moreover, experiments with different objects revealed that the motivation of tree sparrows to remove experimental objects from their nests was highest during egg laying for objects of varying size, most likely because of parasitism risk at this breeding stage. In contrary, motivation to remove white objects and objects with edges was higher during incubation stage as behavioural patterns connected to hatching started to emerge. The fact that rejection rate of our flat objects was higher than real egg ejection, suggests that egg ejection in tree sparrows and probably more general in small passerines, to be limited by elevated costs to eject eggs with their beaks. The presence of anti-parasite behaviour supports our suggestion that brood parasitism causes variation in egg features, as we have found that tree sparrows can recognise and reject conspecific eggs in their clutch. In conclusion, in tree sparrows it seems that nest sanitation plays a key role in the evolution of the removal of parasitic eggs.

  11. Nest sanitation as the evolutionary background for egg ejection behaviour and the role of motivation for object removal.

    Directory of Open Access Journals (Sweden)

    Miroslav Poláček

    Full Text Available Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i motivation and its underlying function and, ii which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection behaviour using artificial flat objects. We found a high interclutch variation in egg colouration and egg size in our tree sparrow (Passer montanus population. Using colour and size we were in fact able to predict clutch affiliation for each egg. Our experiments further revealed the existence of direct anti-parasite behaviours and birds are able to recognise conspecific eggs, since only experimentally-deposited eggs have been removed. Moreover, experiments with different objects revealed that the motivation of tree sparrows to remove experimental objects from their nests was highest during egg laying for objects of varying size, most likely because of parasitism risk at this breeding stage. In contrary, motivation to remove white objects and objects with edges was higher during incubation stage as behavioural patterns connected to hatching started to emerge. The fact that rejection rate of our flat objects was higher than real egg ejection, suggests that egg ejection in tree sparrows and probably more general in small passerines, to be limited by elevated costs to eject eggs with their beaks. The presence of anti-parasite behaviour supports our suggestion that brood parasitism causes variation in egg features, as we have found that tree sparrows can recognise and reject conspecific eggs in their clutch. In conclusion, in tree sparrows it seems that nest sanitation plays a key role in the evolution of the removal of parasitic eggs.

  12. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis

    Science.gov (United States)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2015-09-01

    Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.

  13. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  14. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    Science.gov (United States)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  15. Three Antagonistic Cyclic di-GMP-Catabolizing Enzymes Promote Differential Dot/Icm Effector Delivery and Intracellular Survival at the Early Steps of Legionella pneumophila Infection

    Science.gov (United States)

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia

    2014-01-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  16. Hydrocode modeling of the spallation process during hypervelocity impacts: Implications for the ejection of Martian meteorites

    Science.gov (United States)

    Kurosawa, Kosuke; Okamoto, Takaya; Genda, Hidenori

    2018-02-01

    Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid- and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in strongly shocked matter, were used to study the hydrodynamic-thermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity veject and peak pressure Ppeak was also derived. Our approach shows that "late-stage acceleration" in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., veject > 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when Ppeak = 30-50 GPa. Although the mass of such ejecta is limited to 0.1-1 wt% of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.

  17. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  18. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

    Science.gov (United States)

    Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.

    2017-12-01

    This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

  19. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  20. Clinical Utility of Exercise Training in Heart Failure with Reduced and Preserved Ejection Fraction

    Science.gov (United States)

    Asrar Ul Haq, Muhammad; Goh, Cheng Yee; Levinger, Itamar; Wong, Chiew; Hare, David L

    2015-01-01

    Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed. PMID:25698883

  1. Heart Failure: The Dilemma of the 40-50% Ejection Fraction Range

    Directory of Open Access Journals (Sweden)

    Michael Henein

    2017-01-01

    Full Text Available The common pathophysiology contributing to fluid retention and dyspnoea in heart failure is a non-compliant and stiff myocardium with raised left ventricular end-diastolic pressure. With the rapid development of newer imaging technologies, particularly echocardiography, our understanding of the syndrome of heart failure has significantly changed. The most important imaging sign in the early eighties was reduced ejection fraction (HFrEF, with low values being used as an explanation for the development of signs and symptoms. In the early 2000s, similar Doppler echocardiographic signs became frequently recognised in patients with heart failure symptoms and signs who proved to have a relatively maintained ejection fraction (EF of >40%, hence the description of the syndrome of “diastolic heart failure”. This was later rephrased as heart failure with normal ejection fraction (HFnEF and more recently as heart failure with preserved ejection fraction (HFpEF. Since then, HFpEF has attracted the interest of many cardiologists and scientists worldwide, searching for specific features and treatment options for the syndrome. As for the features, two important findings have now been established, the first showed that LV systolic function mainly at the subendocardial level was abnormal in HFpEF, particularly manifesting during stress/exercise when the increase in heart rate was not associated with a commensurate increase in stroke volume and a second observation of a significant impairment of left atrial function (i.e. myocardial strain and emptying fraction associated with increased left atrial pressures and the potential development of atrial arrhythmia in HFpEF. Such atrial abnormalities have been shown to be commonly associated with cavity enlargement and poor compliance. The latter observation has similarly been reported in patients with reduced EF. Despite the above similarities in cardiac physiology between HFpEF and HFrEF, treatments of the two

  2. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

  3. Evaluation of training nurses to perform semi-automated three-dimensional left ventricular ejection fraction using a customised workstation-based training protocol.

    Science.gov (United States)

    Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J

    2015-06-01

    We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography

  4. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi; Usman, Anwar; Masuhara, Hiroshi

    2013-01-01

    the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly

  5. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  6. Evidence for highly processed material ejected from Abell 30

    International Nuclear Information System (INIS)

    Hazard, C.; Terlvich, R.; Ferland, G.; Sargent, W.L.W.

    1980-01-01

    The discovery of compact knots of highly processed material apparently ejected from the central star of the emission nebula Abell 30 is reported here. Spectra obtained from the compact nebulosities surrounding the central star, which indicate a remarkable enhancement of helium relative to hydrogen, are discussed. Preliminary model calculations to investigate the properties of hydrogen deficient nebulae and to study the abundances of some heavy elements have been applied to the results. (UK)

  7. Experimental Investigation of the Dispersion of Liquids by Ejection Atomizers

    Science.gov (United States)

    Arkhipov, V. A.; Bondarchuk, S. S.; Evsevleev, M. Ya.; Zharova, I. K.; Zhukov, A. S.; Zmanovskii, S. V.; Kozlov, E. A.; Konovalenko, A. I.; Trofimov, V. F.

    2013-11-01

    This paper presents the results of an experimental investigation of the dispersivity of liquid droplets in the spray cone of ejection atomizers. The calculational droplet size distribution function was measured by the method of low angles of the probe laser radiation scattering indicatrix on a pneumohydraulic bench under cold blow conditions. The efficiency of the proposed circuit designs of atomizers has been analyzed.

  8. A filter system for steam-gas mixture ejections from under a nuclear reactor containment following a severe accident

    International Nuclear Information System (INIS)

    Dulepov, Ju. N.; Sharygin, L. M.; Tretjakov, S. Ja.; Shtin, A.P.; Glushko, V. V.; Babenko, E. A.; Kurakov, Ju. A.

    1997-01-01

    In this paper newly built NPPs obligatory incorporate a containment having a filter system for removing radioactive materials ejections under severe accidents including nuclear fuel melting is described. The system prevents a containment failure and provides ejected radioactive materials decontamination to permissible levels. The physical-chemical and chemical characteristics of Termoxid-58 sorbent (TiO 5 based sorbent) are presented

  9. Internal Energy Loss of the Electrons Ejected in Neutrinoless Double Beta Decay

    International Nuclear Information System (INIS)

    Drukarev, E. G.; Amusia, M. Ya.; Chernysheva, L. V.

    2017-01-01

    The excitations of the electron shell in neutrinoless double beta decay shifts the limiting energy available for ejected electrons. We present the general equations for this shift and make computations for the decays of two nuclei—germanium and xenon. (author)

  10. Assessment of cardiac performance with quantitative radionuclide angiocardiography: sequential left ventricular ejection fraction, normalized left ventricular ejection rate, and regional wall motion

    International Nuclear Information System (INIS)

    Marshall, R.C.; Berger, H.J.; Costin, J.C.; Freedman, G.S.; Wolberg, J.; Cohen, L.S.; Gotischalk, A.; Zaret, B.L.

    1977-01-01

    Sequential quantitative first pass radionuclide angiocardiograms (RA) were used to measure left ventricular ejection fraction (LVEF) and left ventricular ejection rate (LVER), and to assess regional wall motion (RWM) in the anterior (ANT) and left anterior oblique (LAO) positions. Studies were obtained with a computerized multicrystal scintillation camera suitable for acquiring high count-rate data. Background was determined in a new fashion by selecting frames temporally from the left ventricular region of interest time-activity curve. A ''representative'' cardiac cycle was formed by summing together counts over three to six cardiac cycles. From this background corrected, high count-rate ''representative''cardiac cycle, LVEF, LVER, and RWM were determined. In 22 patients with normal sinus rhythm in the absence of significant valvular regurgitation, RA LVEF correlated well with that measured by contrast angiography (r = 0.95). LVER correlated well with LVEF measured at contrast angiography (r = 0.90) and allowed complete separation of those with normal (LVER = 3.4 +- 0.17 sec -1 ) and abnormal (LVER = 1.22 +- 0.11 sec -1 ) (P < 0.001) left ventricular performance. This separation was independent of background. Isoproterenol infusion in five normal subjects caused LVER to increase by 81 +- 17% while LVEF increased by 10 +- 2.0%. RWM was correctly defined in 21/22 patients and 89% of left ventricular segments with abnormal wall motion

  11. Epidemiology of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Vasan, Ramachandran S

    2014-01-01

    Heart failure with preserved ejection fraction (HFPEF) is a common condition, and the prevalence is projected to increase further. Studies differ in the reported incidence and mortality associated with this condition, although there is agreement that between a third and one-half of all patients...... with heart failure have HFPEF. Although several consensus statements and guidelines have been published, some recent randomized clinical trials have reported low mortality, raising doubts about whether all patients diagnosed with HFPEF have HFPEF or whether the condition is heterogeneous in its cause...

  12. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos, E-mail: rkwon@gmu.edu [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-02-20

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° and 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.

  13. Unsteady Plasma Ejections from Hollow Accretion Columns of Galactic Neutron Stars as a Trigger for Gamma-Ray Bursts

    Science.gov (United States)

    Gvaramadze, V. V.

    1995-09-01

    We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.

  14. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  15. Clinical utility of semi-automated estimation of ejection fraction at the point-of-care

    DEFF Research Database (Denmark)

    Frederiksen, Christian Alcaraz; Juhl-Olsen, Peter; Hermansen, Johan Fridolf

    2015-01-01

    ultrasonography of the heart at the bedside performed by a novice examiner. Three assessments of ejection fraction were made: 1) Expert eyeballing by a single specialist in cardiology and expert in echocardiography; 2) Manual planimetry by an experienced examiner; 3) AutoEF by a novice examiner with limited...... experience in echocardiography. RESULTS: Expert eyeballing of ejection fraction was performed in 100% of cases. Manual planimetry was possible in 89% of cases and AutoEF was possible in 83% of cases. The correlation between expert eyeballing and AutoEF was r=0.82, p ... and for AutoEF it was r=0.82, p eyeballing and manual planimetry it was r=0.80, p

  16. A Slow Streamer Blowout at the Sun and Ulysses

    Science.gov (United States)

    Seuss, S. T.; Bemporad, A.; Poletto, G.

    2004-01-01

    On 10 June 2000 a streamer on the southeast limb slowly disappeared from LASCO/C2 over approximately 10 hours. A small CME was reported in C2. A substantial interplanetary CME (ICME) was later detected at Ulysses, which was at quadrature with the Sun and SOHO at the time. This detection illustrates the properties of an ICME for a known solar source and demonstrates that the identification can be done even beyond 3 AU. Slow streamer blowouts such as this have long been known but are little studied. We report on the SOHO observation of a coronal mass ejection (CME) on the solar limb and the subsequent in situ detection at Ulysses, which was near quadrature at the time, above the location of the CME. SOHO-Ulysses quadrature was 13 June, when Ulysses was 3.36 AU from the Sun and 58.2 degrees south of the equator off the east limb. The slow streamer blowout was on 10 June, when the SOHO-Sun-Ulysses angle was 87 degrees.

  17. Association between Hypotension, Low Ejection Fraction and Cognitive Performance in Cardiac Patients

    Directory of Open Access Journals (Sweden)

    Rebecca F. Gottesman

    2010-01-01

    Full Text Available Background and Purpose: Impaired cardiac function can adversely affect the brain via decreased perfusion. The purpose of this study was to determine if cardiac ejection fraction (EF is associated with cognitive performance, and whether this is modified by low blood pressure.

  18. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  19. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  20. Risk Related to Pre–Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction

    Science.gov (United States)

    Kristensen, Søren L.; Preiss, David; Jhund, Pardeep S.; Squire, Iain; Cardoso, José Silva; Merkely, Bela; Martinez, Felipe; Starling, Randall C.; Desai, Akshay S.; Lefkowitz, Martin P.; Rizkala, Adel R.; Rouleau, Jean L.; Shi, Victor C.; Solomon, Scott D.; Swedberg, Karl; Zile, Michael R.; Packer, Milton

    2016-01-01

    Background— The prevalence of pre–diabetes mellitus and its consequences in patients with heart failure and reduced ejection fraction are not known. We investigated these in the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial. Methods and Results— We examined clinical outcomes in 8399 patients with heart failure and reduced ejection fraction according to history of diabetes mellitus and glycemic status (baseline hemoglobin A1c [HbA1c]: 6.5%) and known diabetes mellitus compared with those with HbA1csacubitril/valsartan) compared with enalapril was consistent across the range of HbA1c in the trial. Conclusions— In patients with heart failure and reduced ejection fraction, dysglycemia is common and pre–diabetes mellitus is associated with a higher risk of adverse cardiovascular outcomes (compared with patients with no diabetes mellitus and HbA1c <6.0%). LCZ696 was beneficial compared with enalapril, irrespective of glycemic status. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT01035255. PMID:26754626

  1. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang

    2012-03-12

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  2. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang; Li, Erqiang; Zhang, F. H.; Sui, Yi; Spelt, Peter D M; Thoroddsen, Sigurdur T

    2012-01-01

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  3. ON THE VALIDITY OF THE 'HILL RADIUS CRITERION' FOR THE EJECTION OF PLANETS FROM STELLAR HABITABLE ZONES

    International Nuclear Information System (INIS)

    Cuntz, M.; Yeager, K. E.

    2009-01-01

    We challenge the customary assumption that the entering of an Earth-mass planet into the Hill radius (or multiples of the Hill radius) of a giant planet is a valid criterion for its ejection from the star-planet system. This assumption has widely been used in previous studies, especially those with an astrobiological focus. As intriguing examples, we explore the dynamics of the systems HD 20782 and HD 188015. Each system possesses a giant planet that remains in or crosses into the stellar habitable zone, thus effectively thwarting the possibility of habitable terrestrial planets. In the case of HD 188015, the orbit of the giant planet is almost circular, whereas in the case of HD 20782, it is extremely elliptical. Although it is found that Earth-mass planets are eventually ejected from the habitable zones of these systems, the 'Hill Radius Criterion' is identified as invalid for the prediction of when the ejection is actually occurring.

  4. Analysis of the NEACRP PWR rod ejection benchmark problems with DIF3D-K

    International Nuclear Information System (INIS)

    Kim, M.H.

    1994-01-01

    Analyses of the NEACRP PWR rod ejection transient benchmark problems with the DIF3D-K nodal kinetics code are presented. The DIF3D-K results are shown to be in generally good agreement with results obtained using other codes, in particular reference results previously generated with the PANTHER code. The sensitivity of the transient results to the DIF3D-K input parameters (such as time step size, radial and axial node sizes, and the mesh structure employed for fuel pin heat conduction calculation) are evaluated and discussed. In addition, the potential in reducing computational effort by application of the improved quasistatic scheme (IQS) to these rod ejection transients, which involve very significant flux shape changes and thermal-hydraulic feedback is evaluated

  5. High-Intensity Interval Training in Patients with Heart Failure with Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Ellingsen, Øyvind; Halle, Martin; Conraads, Viviane

    2017-01-01

    Background: Small studies have suggested that high-intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in patients with heart failure with reduced ejection fraction. The present multicenter trial...... compared 12 weeks of supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). Methods: Two hundred sixty-one patients with left ventricular ejection fraction ≤35% and New York Heart Association class II to III were randomly assigned to HIIT at 90% to 95% of maximal heart rate...... ventricular end-diastolic diameter from baseline to 12 weeks. Results: Groups did not differ in age (median, 60 years), sex (19% women), ischemic pathogenesis (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT (P=0.45); left...

  6. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  7. Measurement of ejected electrons from collisions of He+ ions with He, Ne, and Ar at the intermediate energies

    International Nuclear Information System (INIS)

    Tokoro, Nobuhiro; Oda, Nobuo

    1985-01-01

    The doubly differential cross sections for electron production, differential in angle and energy of the electrons, for 5-25 keV He + impact on helium, neon and argon have been measured in the electron energy range of 2-200 eV at the ejection angles from 30 0 to 150 0 with respect to the incident ion beam. The characteristic features of continnum parts of ejected electron spectra are described for each collision system. (author)

  8. Effects of projection and background correction method upon calculation of right ventricular ejection fraction using first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Caplin, J.L.; Flatman, W.D.; Dymond, D.S.

    1985-01-01

    There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)

  9. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  10. A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS

    International Nuclear Information System (INIS)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.

    2016-01-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  11. A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Chinchilla, T. [Catholic University of America, Washington, DC (United States); Linton, M. G. [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Hidalgo, M. A. [Dept. de Fisica, UAH, Alcala de Henares, Madrid (Spain); Vourlidas, A. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Savani, N. P.; Szabo, A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Farrugia, C.; Yu, W., E-mail: Teresa.Nieves@nasa.gov [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States)

    2016-05-20

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  12. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  13. The classification of ambiguity in polarimetric reconstruction of coronal mass ejection

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2014-01-01

    The Thomson scattering theory indicates that there exist explicit and implicit ambiguities in polarimetric analyses of coronal mass ejection (CME) observations. We suggest a classification for these ambiguities in CME reconstruction. Three samples, including double explicit, mixed, and double implicit ambiguity, are shown with the polarimetric analyses of STEREO CME observations. These samples demonstrate that this classification is helpful for improving polarimetric reconstruction.

  14. Measurement of left ventricular ejection fraction using gated 99mTc-sestamibi myocardial planar images: Comparison to contrast ventriculography

    International Nuclear Information System (INIS)

    Parker, D.A.; Lloret, R.L.; Barilla, F.; Douthat, L.; Gheorghiade, M.

    1991-01-01

    Using the new myocardial perfusion agent 99mTc-sestamibi and multigated acquisition on a nuclear medicine gamma camera, the left ventricular ejection fraction (LVEF) was derived in 13 patients with coronary artery disease (CAD). Cross-sectional activity profiles were used to measure the left ventricle from end-diastolic and end-systolic images. Several different geometric methods were then utilized to derive ejection fractions from the nuclear data. Comparison of the resultant ejection fractions to those obtained from contrast ventriculography showed significant correlation for all geometric methods (P less than 0.01, Sy X x = 6.2 to 9.6). The authors conclude that in patients with CAD one or more of these simple geometric methods can provide a useful estimate of the LVEF when performing 99mTc-sestamibi multigated myocardial perfusion imaging

  15. Real-Time Analysis of Global Waves Accompanying Coronal Mass Ejections

    Science.gov (United States)

    2016-06-30

    This allows the intensity variation of the pulse to be measured as a percentage increase in intensity relative to the background corona. To mitigate... intensity of the wave relative to the background chromosphere. Upon completion of the code, it was applied to a series of solar flares observed by both...wave-like features seen in H observations of the solar chromosphere. They are strongly associated with coronal mass ejections (CMEs) and can cover a

  16. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  17. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    Science.gov (United States)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  18. On the Collision Nature of Two Coronal Mass Ejections: A Review

    Science.gov (United States)

    Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang

    2017-08-01

    Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.

  19. Analytical and numerical study of MHD instabilities development in magnetized accretion-ejection structures

    International Nuclear Information System (INIS)

    Kersale, Evy

    2000-01-01

    The first part of this work proposes a new version of the mathematical formalism used to describe pressure-driven instabilities in magnetized accretion-ejection structures. Such processes, occurring in magnetically confined plasmas, pose very stringent limits to thermonuclear fusion devices but their influence in astrophysical objects has rarely been considered. In a framework which eliminates fast magnetosonic waves one develops a system of equations allowing us to follow both ballooning and interchange modes. An application of this result to a cylindrical jet being subject to solid rotation shows that the inner parts of such structures are destabilized by magnetic shear. Furthermore, while clarifying somewhat previous studies, one finds that jets confined by a dominant toroidal magnetic field are generically unstable with respect to interchange modes. Moreover, one has written a numerical code to solve the MHD partial differential equations. Starting with a basic algorithm, one has assessed the effects of the geometry, boundary conditions and artificial dissipation on numerical computation. The code has been tested by solving classical hydrodynamic and MHD Riemann problems. A new mechanism of ultra high energy cosmic ray production in gamma-ray bursts composes the last part of this work. In these objects, particles are accelerated up to energies of the order of 10 21 eV, by means of relativistic Alfven perturbations crossings. A stream instability involving a highly relativistic shell of plasma, the fireball, and baryons going through it produces such Alfven fronts. Then, Brillouin-like backscattering processes redistribute the available energy between the forward and backward Alfven waves and the magnetosonic ones. (author) [fr

  20. A extrafiscalidade no ICMS: seletividade, essencialidade, neutralidade e efeito indutor das normas tributárias à luz da Constituição Federal de 1988

    OpenAIRE

    Silva, Rafael Vega Possebon da

    2015-01-01

    A presente dissertação tem por escopo a análise, do ponto de vista jurídico, dos elementos extrafiscais relacionados ao ICMS, entendidos estes como os efeitos causados pela cobrança desse tributo, além da própria arrecadação ao erário. Para tanto, iniciamos com o estudo dos efeitos econômicos da tributação e dos sistemas sociais e históricos de justificação da imposição fiscal. A partir da compreensão de que o fenômeno tributário implica interdependência entre o sistema jurídico e social, ver...

  1. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi [National Astronomical Observatory of Japan, Tokyo, 181-8588 (Japan); Hudson, Hugh S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); White, Stephen M. [Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-5776 (United States); Bastian, Timothy S. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Iwai, Kazumasa, E-mail: masumi.shimojo@nao.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601 (Japan)

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  2. Exercise testing in asymptomatic or minimally symptomatic aortic regurgitation: relationship of left ventricular ejection fraction to left ventricular filling pressure during exercise

    International Nuclear Information System (INIS)

    Boucher, C.A.; Wilson, R.A.; Kanarek, D.J.; Hutter, A.M. Jr.; Okada, R.D.; Liberthson, R.R.; Strauss, H.W.; Pohost, G.M.

    1983-01-01

    Exercise radionuclide angiography is being used to evaluate left ventricular function in patients with aortic regurgitation. Ejection fraction is the most common variable analyzed. To better understand the rest and exercise ejection fraction in this setting, 20 patients with asymptomatic or minimally symptomatic severe aortic regurgitation were studied. All underwent simultaneous supine exercise radionuclide angiography and pulmonary gas exchange measurement and underwent rest and exercise measurement of pulmonary artery wedge pressure (PAWP) during cardiac catheterization. Eight patients had a peak exercise PAWP less than 15 mm Hg (group 1) and 12 had a peak exercise PAWP greater than or equal to 15 mm Hg (group 2). Group 1 patients were younger and more were in New York Heart Association class I. The two groups had similar cardiothoracic ratios, changes in ejection fractions with exercise, and rest and exercise regurgitant indexes. Using multiple regression analysis, the best correlate of the exercise PAWP was peak oxygen uptake (r . -0.78, p less than 0.01). No other measurement added significantly to the regression. When peak oxygen uptake was excluded, rest and exercise ejection fraction also correlated significantly (r . -0.62 and r . -0.60, respectively, p less than 0.01). Patients with asymptomatic or minimally symptomatic severe aortic regurgitation have a wide spectrum of cardiac performance in terms of the PAWP during exercise. The absolute rest and exercise ejection fraction and the level of exercise achieved are noninvasive variables that correlate with exercise PAWP in aortic regurgitation, but the change in ejection fraction with exercise by itself is not

  3. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  4. Scientific publications from Arab world in leading journals of Integrative and Complementary Medicine: a bibliometric analysis.

    Science.gov (United States)

    Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M

    2015-09-04

    Bibliometric analysis is increasingly employed as a useful tool to assess the quantity and quality of research performance. The specific goal of the current study was to evaluate the performance of research output originating from Arab world and published in international Integrative and Complementary Medicine (ICM) journals. Original scientific publications and reviews from the 22 Arab countries that were published in 22 international peer-reviewed ICM journals during all previous years up to December 31(st) 2013, were screened using the Web of Science databases. Five hundred and ninety-one documents were retrieved from 19 ICM journals. The h-index of the set of papers under study was 47. The highest h-index was 27 for Morocco, 21 for Jordan, followed by 19 for each Kingdom of Saudi Arabia (KSA), and Egypt, and the lowest h-index was 1 for each of Comoros, Qatar, and Syrian Arab Republic. No data related to ICM were published from Djibouti, and Mauritania. After adjusting for economy and population power, Somalia (89), Morocco (32.5), Egypt (31.1), Yemen (21.4), and Palestine (21.2) had the highest research productivity. The total number of citations was 9,466, with an average citation of 16 per document. The study identified 262 (44.3 %) documents with 39 countries in Arab-foreign country collaborations. Arab authors collaborated most with countries in Europe (24.2 %), followed by countries in the Asia-Pacific region (9.8 %). Scientific research output in the ICM field in the Arab world region is increasing. Most of publications from Arab world in ICM filed were driven by societal use of medicinal plants and herbs. Search for new therapies from available low cost medicinal plants in Arab world has motivated many researchers in academia and pharmaceutical industry. Further investigation is required to support these findings in a wider journal as well as to improve research output in the field of ICM from Arab world region by investing in more national and

  5. Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    OpenAIRE

    Rollett, T.; Moestl, C.; Temmer, M.; Frahm, R. A.; Davies, J. A.; Veronig, A. M.; Vrsnak, B.; Amerstorfer, U. V.; Farrugia, C. J.; Zic, T.; Zhang, T. L.

    2014-01-01

    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the...

  6. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    Directory of Open Access Journals (Sweden)

    Emanuele Cannella

    2017-07-01

    Full Text Available The continuous improvements in micro-forging technologies generally involve process, material, and tool design. The field assisted sintering technique (FAST is a process that makes possible the manufacture of near-net-shape components in a closed-die setup. However, the final part quality is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP sintering process and different combinations of process parameters, the designed tool system was compared to a similar tool system designed without a pre-stressing strategy. The comparison between the two tool systems was based on the ejection force and part fidelity. The ejection force was measured during the tests, while the part fidelity was documented using an optical microscope and computed tomography in order to obtain a multi-scale characterization. The results showed that the use of pre-stress reduced the porosity in the gear by 40% and improved the dimensional fidelity by more than 75% compared to gears produced without pre-stress.

  7. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    Science.gov (United States)

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-01-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0. PMID:1061146

  8. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    OpenAIRE

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ? 7 years) were compared to 25 healthy age- and gender-matched cont...

  9. Heart Failure with Preserved Ejection Fraction – Concept, Pathophysiology, Diagnosis and Challenges for Treatment

    Directory of Open Access Journals (Sweden)

    Lidija Veterovska Miljkovik

    2015-07-01

    Full Text Available Heart failure (HF with preserved left ventricular (LV ejection fraction (HFpEF occurs in 40 to 60% of the patients with HF, with a prognosis which is similar to HF with reduced ejection fraction (HFrEF. HFpEF pathophysiology is different from that of HFrEF, and has been characterized with diastolic dysfunction. Diastolic dysfunction has been defined with elevated left ventricular stiffness, prolonged iso-volumetric LV relaxation, slow LV filing and elevated LV end-diastolic pressure. Arterial hypertension occurs in majority cases with HFpEF worldwide. Patients are mostly older and obese. Diabetes mellitus and atrial fibrillation appear proportionally in a high frequency of patients with HFpEF. The HFpEF diagnosis is based on existence of symptoms and signs of heart failure, normal or approximately normal ejection and diagnosing of LV diastolic dysfunction by means of heart catheterization or Doppler echocardiography and/or elevated concentration of plasma natriuretic peptide. The present recommendations for HFpEF treatment include blood pressure control, heart chamber frequency control when atrial fibrillation exists, in some situations even coronary revascularization and an attempt for sinus rhythm reestablishment. Up to now, it is considered that no medication or a group of medications improve the survival of HFpEF patients. Due to these causes and the bad prognosis of the disorder, rigorous control is recommended of the previously mentioned precipitating factors for this disorder. This paper presents a universal review of the most important parameters which determine this disorder.

  10. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    Science.gov (United States)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  11. Desempenho operacional e ambiental de unidades de reciclagem e disposição final de resíduos sólidos domésticos financiadas pelo ICMS Ecológico de Minas Gerais Operational and environmental performance of sanitary landfills and recycling facilities supported by the Ecological ICMS in Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    José Francisco do Prado Filho

    2007-03-01

    Full Text Available Este estudo avalia sistemas de reciclagem e de disposição de resíduos sólidos domésticos que possuem incentivos fiscais definidos pela Lei Estadual nº 13.803/2000 de Minas Gerais. A pesquisa foi desenvolvida por análise de documentação de licenciamento ambiental de aterros sanitários e usinas de reciclagem e compostagem de resíduos financiados pela referida Lei e por visitas às unidades sanitárias, sendo usados os instrumentos metodológicos da agência ambiental do Estado de São Paulo (CETESB que avaliam as condições de instalação e operação desses tipos de empreendimentos. Do estudo, constatou-se que o incentivo de Minas Gerais, definido pela Lei do ICMS Ecológico, traz importantes benefícios ambientais aos municípios, embora ainda seja reduzido o número dos contemplados por esse fomento à gestão dos resíduos sólidos urbanos. Conclui-se, também, que algumas das unidades estudadas apresentam problemas de natureza ambiental e operacional.This paper reports a qualitative assessment made at the sanitary landfill, recycling centers and composting units sponsored by the State Law No 13.803/2000, Minas Gerais, Brazil. The analyses of all the documentation used for the environmental licensing process as well as field trips to sanitary landfills and domestic recycle/composting unities were performed. The IQC and IQR indexes from the São Paulo State Environmental Agency (CETESB were used as quality assessment tools. It is concluded that this State Law (Ecological ICMS Law has been promoting substantial environmental benefits to the local communities, despite it is still small the number of cities which have been attended by this regulation for solid waste management. On the other hand, it can be noticed that some operational and environmental issues remain to be addressed in the visited facilities.

  12. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  13. Impact of a systolic parameter, defined as the ratio of right brachial pre-ejection period to ejection time, on the relationship between brachial-ankle pulse wave velocity and left ventricular diastolic function.

    Science.gov (United States)

    Hsu, Po-Chao; Lin, Tsung-Hsien; Lee, Chee-Siong; Chu, Chun-Yuan; Su, Ho-Ming; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2011-04-01

    Arterial stiffness is correlated with left ventricular (LV) diastolic function as well as susceptibility to LV systolic function. Therefore, if LV systolic function is not known, the relationship between arterial stiffness and LV diastolic function is difficult to determine. A total of 260 patients were included in the study. The brachial-ankle pulse wave velocity (baPWV) and the ratio of right brachial pre-ejection period to ejection time (rbPEP/rbET) were measured using an ABI-form device. Patients were classified into four groups. Groups 1, 2, 3 and 4 were patients with rbPEP/rbET and baPWV below the median, rbPEP/rbET above but baPWV below the median, rbPET/rbET below but baPWV above the median, and rbPET/rbET and baPWV above the median, respectively. The LV ejection fractions in groups 1 and 3 were higher than those in groups 2 and 4 (Pwave velocity to Ea that were comparable to those in groups 3 and 4. In conclusion, rbPEP/rbET had an impact on the relationship between baPWV and LV diastolic function. In patients with high rbPEP/rbET but low baPWV, low baPWV may not indicate good LV diastolic function but implies that cardiac dysfunction may precede vascular dysfunction in such patients. When interpreting the relationship between baPWV and LV diastolic function, the rbPEP/rbET value obtained from the same examination should be considered.

  14. Exercise physiology in heart failure and preserved ejection fraction.

    Science.gov (United States)

    Haykowsky, Mark J; Kitzman, Dalane W

    2014-07-01

    Recent advances in the pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFPEF) suggest that noncardiac peripheral factors contribute to the reduced peak V(o2) (peak exercise oxygen uptake) and to its improvement after endurance exercise training. A greater understanding of the peripheral skeletal muscle vascular adaptations that occur with physical conditioning may allow for tailored exercise rehabilitation programs. The identification of specific mechanisms that improve whole body and peripheral skeletal muscle oxygen uptake could establish potential therapeutic targets for medical therapies and a means to follow therapeutic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Design of a spheromak compressor driven by high explosives

    International Nuclear Information System (INIS)

    Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marsh, S.P.; Marklin, G.J.; Mayo, R.M.; Wysocki, F.J.

    1990-01-01

    High energy density spheromaks can be used to accelerate a thin section of the flux conserver wall to high velocities. The energy density of a spheromak, formed by conventional helicity injection into a flux conserver, can be increased by reducing the flux conserver volume after the spheromak is formed. A method of accomplishing this is by imploding one wall of the flux conserver with high explosives. The authors have embarked on a program to demonstrate that a spheromak can be used as an energy transfer medium, and that a velocity gain over high-explosive driven plate velocities can be achieved. To do this, a plasma gun helicity source that will inject a spheromak with suitable initial energy density and lifetime is needed. Also, an implodable flux conserver that remains intact and clean during the implosion must be developed. The flux conserver problem is probably the more challenging one, because very little experimental work has been done in the past on explosively driven metal plates into a high vacuum, with sizes and travel distances appropriate for their application. There are two necessary practical requirements for an explosive compression of a flux conserver. The first is that the imploding wall does not rupture. The second is that gasses or other debri are not ejected which could penetrate and poison the spheromak plasma, and thus reduce the spheromak lifetime below what is necessary to carry out the spheromak compression and the subsequent acceleration of the flyer plate. The authors have designed and fabricated a plasma gun to be used for injecting the initial spheromak plasma into the collapsible flux conserver

  16. Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.; Jackman, Caitriona M.; Vogt, Marissa F.

    2011-01-01

    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets.

  17. CORONAL MASS EJECTIONS AS A MECHANISM FOR PRODUCING IR VARIABILITY IN DEBRIS DISKS

    International Nuclear Information System (INIS)

    Osten, Rachel; Livio, Mario; Lubow, Steve; Pringle, J. E.; Soderblom, David; Valenti, Jeff

    2013-01-01

    Motivated by recent observations of short-timescale variations in the infrared emission of circumstellar disks, we propose that coronal mass ejections can remove dust grains on timescales as short as a few days. Continuous monitoring of stellar activity, coupled with infrared observations, can place meaningful constraints on the proposed mechanism.

  18. Formation and Initiation of Erupting Flux Rope and Embedded Filament Driven by Photospheric Converging Motion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaozhou; Gan, Weiqun [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Xia, Chun; Keppens, Rony, E-mail: zhaoxz@pmo.ac.cn, E-mail: wqgan@pmo.ac.cn, E-mail: chun.xia@kuleuven.be, E-mail: rony.keppens@kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium)

    2017-06-01

    In this paper, we study how a flux rope (FR) is formed and evolves into the corresponding structure of a coronal mass ejection (CME) numerically driven by photospheric converging motion. A two-and-a-half-dimensional magnetohydrodynamics simulation is conducted in a chromosphere-transition-corona setup. The initial arcade-like linear force-free magnetic field is driven by an imposed slow motion converging toward the magnetic inversion line at the bottom boundary. The convergence brings opposite-polarity magnetic flux to the polarity inversion, giving rise to the formation of an FR by magnetic reconnection and eventually to the eruption of a CME. During the FR formation, an embedded prominence gets formed by the levitation of chromospheric material. We confirm that the converging flow is a potential mechanism for the formation of FRs and a possible triggering mechanism for CMEs. We investigate the thermal, dynamical, and magnetic properties of the FR and its embedded prominence by tracking their thermal evolution, analyzing their force balance, and measuring their kinematic quantities. The phase transition from the initiation phase to the acceleration phase of the kinematic evolution of the FR was observed in our simulation. The FR undergoes a series of quasi-static equilibrium states in the initiation phase; while in the acceleration phase the FR is driven by Lorentz force and the impulsive acceleration occurs. The underlying physical reason for the phase transition is the change of the reconnection mechanism from the Sweet–Parker to the unsteady bursty regime of reconnection in the evolving current sheet underneath the FR.

  19. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  20. Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes

    Science.gov (United States)

    Riley, P.; Richardson, I. G.

    2012-01-01

    In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and

  1. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  2. Usefulness of the troponin-ejection fraction product to differentiate stress cardiomyopathy from ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Nascimento, Francisco O; Yang, Solomon; Larrauri-Reyes, Maiteder; Pineda, Andres M; Cornielle, Vertilio; Santana, Orlando; Heimowitz, Todd B; Stone, Gregg W; Beohar, Nirat

    2014-02-01

    The presentation of stress cardiomyopathy (SC) with nonobstructive coronary artery disease mimics that of ST-segment elevation myocardial infarction (STEMI) due to coronary occlusion. No single parameter has been successful in differentiating the 2 entities. We thus sought to develop a noninvasive clinical tool to discriminate between these 2 conditions. We retrospectively reviewed 59 consecutive cases of SC at our institution from July 2005 through June 2011 and compared those with 60 consecutives cases of angiographically confirmed STEMI treated with primary percutaneous coronary intervention in the same period. All patients underwent acute echocardiography, and the peak troponin I level was determined. The troponin-ejection fraction product (TEFP) was derived by multiplying the peak troponin I level and the echocardiographically derived left ventricular ejection fraction. Comparing the SC and STEMI groups, the mean left ventricular ejection fraction at the time of presentation was 30 ± 9% versus 44 ± 11%, respectively (p statistic 0.91 ± 0.02, p <0.001). In conclusion, for patients not undergoing emergent angiography, the TEFP may be used with high accuracy to differentiate SC with nonobstructive coronary artery disease from true STEMI due to coronary occlusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  4. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  5. A New Spin to Exoplanet Habitability Criteria

    Science.gov (United States)

    Georgoulis, M. K.; Patsourakos, S.

    2017-12-01

    We describe a physically- and statistically-based method to infer the near-Sun magnetic field of coronal mass ejections (CMEs) and then extrapolate it to the inner heliosphere and beyond. Besides a ballpark agreement with in-situ observations of interplanetary CMEs (ICMEs) at L1, we use our estimates to show that Earth does not seem to be at risk of an extinction-level atmospheric erosion or stripping by the magnetic pressure of extreme solar eruptions, even way above a Carrington-type event. This does not seem to be the case with exoplanets, however, at least those orbiting in the classically defined habitability zones of magnetically active dwarf stars at orbital radii of a small fraction of 1 AU. We show that the combination of stellar ICMEs and the tidally locking zone of mother stars, that quite likely does not allow these exoplanets to attain Earth-like magnetic fields to shield themselves, probably render the existence of a proper atmosphere in them untenable. We propose, therefore, a critical revision of habitability criteria in these cases that would limit the number of target exoplanets considered as potential biosphere hosts.

  6. Left atrial function in heart failure with impaired and preserved ejection fraction.

    Science.gov (United States)

    Fang, Fang; Lee, Alex Pui-Wai; Yu, Cheuk-Man

    2014-09-01

    Left atrial structural and functional changes in heart failure are relatively ignored parts of cardiac assessment. This review illustrates the pathophysiological and functional changes in left atrium in heart failure as well as their prognostic value. Heart failure can be divided into those with systolic dysfunction and heart failure with preserved ejection fraction (HFPEF). Left atrial enlargement and dysfunction commonly occur in systolic heart failure, in particular, in idiopathic dilated cardiomyopathy. Atrial enlargement and dysfunction also carry important prognostic value in systolic heart failure, independently of known parameters such as left ventricular ejection fraction. In HFPEF, there is evidence of left atrial enlargement, impaired atrial compliance, and reduction of atrial pump function. This occurs not only at rest but also during exercise, indicating significant impairment of atrial contractile reserve. Furthermore, atrial dyssynchrony is common in HFPEF. These factors further contribute to the development of new onset or progression of atrial arrhythmias, in particular, atrial fibrillation. Left atrial function is an integral part of cardiac function and its structural and functional changes in heart failure are common. As changes of left atrial structure and function have different clinical implications in systolic heart failure and HFPEF, routine assessment is warranted.

  7. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Value of Age, Creatinine, and Ejection Fraction (ACEF Score) in Assessing Risk in Patients Undergoing Percutaneous Coronary Interventions in the 'All-Comers' LEADERS Trial

    NARCIS (Netherlands)

    Wykrzykowska, Joanna J.; Garg, Scot; Onuma, Yoshinobu; de Vries, Ton; Goedhart, Dick; Morel, Marie-Angele; van Es, Gerrit-Anne; Buszman, Pawel; Linke, Axel; Ischinger, Thomas; Klauss, Volker; Corti, Roberto; Eberli, Franz; Wijns, William; Morice, Marie-Claude; Di Mario, Carlo; van Geuns, Robert Jan; Juni, Peter; Windecker, Stephan; Serruys, Patrick W.

    2011-01-01

    Background-The age, creatinine, and ejection fraction (ACEF) score (age/left ventricular ejection fraction+1 if creatinine >2.0 mg/dL) has been established as an effective predictor of clinical outcomes in patients undergoing elective coronary artery bypass surgery; however, its utility in

  9. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  10. Formation of hot intergalactic gas by gas ejection from a galaxy in an early explosive era

    International Nuclear Information System (INIS)

    Ikeuchi, Satoru

    1977-01-01

    Chemical evolution of a galaxy in an early explosive era is studied by means of one zone model. Calculating the thermal properties of interstellar gas and the overlapping factor of expanding supernova-remnant shells, the gas escape conditions from a galaxy are examined. From these, it is shown that the total mass of ejected gas from a galaxy amounts to 10 -- 40% of the initial mass of a galaxy. The ejected gas extends to the intergalactic space and the whole universe. The mass, the heavy-element abundance and other physical properties of thus formed intergalactic gas are investigated for various parameters of galactic evolution. Some other effects of gas release on the evolution of a galaxy and the evolution of the universe are discussed. (auth.)

  11. Evolution of Proton and Alpha Particle Velocities through the Solar Cycle

    Science.gov (United States)

    Ďurovcová, T.; Šafránková, J.; Němeček, Z.; Richardson, J. D.

    2017-12-01

    Relative properties of solar wind protons and α particles are often used as indicators of a source region on the solar surface, and analysis of their evolution along the solar wind path tests our understanding of physics of multicomponent magnetized plasma. The paper deals with the comprehensive analysis of the difference between proton and α particle bulk velocities at 1 au with a special emphasis on interplanetary coronal mass ejections (ICMEs). A comparison of about 20 years of Wind observations at 1 au with Helios measurements closer to the Sun (0.3-0.7 au) generally confirms the present knowledge that (1) the differential speed between both species increases with the proton speed; (2) the differential speed is lower than the local Alfvén speed; (3) α particles are faster than protons near the Sun, and this difference decreases with the increasing distance. However, we found a much larger portion of observations with protons faster than α particles in Wind than in Helios data and attributed this effect to a preferential acceleration of the protons in the solar wind. A distinct population characterized by a very small differential velocity and nearly equal proton and α particle temperatures that is frequently observed around the maximum of solar activity was attributed to ICMEs. Since this population does not exhibit any evolution with increasing collisional age, we suggest that, by contrast to the solar wind from other sources, ICMEs are born in an equilibrium state and gradually lose this equilibrium due to interactions with the ambient solar wind.

  12. Comparison of equilibrium radionuclide and contrast angiographic measurements of left ventricular peak ejection and filling rates and their time intervals

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, D.D.; Dickie, S.; Newman, H.; Myers, M.J.; Lavender, J.P.; McKenna, W.J. (Royal Postgraduate Medical School, London (UK))

    1984-10-01

    A comparison has been made of the equilibrium radionuclide and contrast angiographic estimates of normalized peak rates of ejection (PER) and filling (PFR) and their time intervals in twenty-one patients with cardiac disorders. Contrast angiographic and radionuclide measurements of left ventricular ejection fraction (LVEF), PER and PFR correlated well but time intervals correlated poorly. Mean values for radionuclide LVEF, PER and PFR were significantly lower and radionuclide time intervals were significantly longer compared to contrast angiography measurements.

  13. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/`Oumuamua

    Science.gov (United States)

    Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno

    2018-06-01

    In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.

  14. Prospective Out-of-ecliptic White-light Imaging of Coronal Mass Ejections Traveling through the Corona and Heliosphere

    Science.gov (United States)

    Xiong, Ming; Davies, Jackie A.; Harrison, Richard A.; Zhou, Yufen; Feng, Xueshang; Xia, Lidong; Li, Bo; Liu, Ying D.; Hayashi, Keiji; Li, Huichao; Yang, Liping

    2018-01-01

    The in-flight performance of the Coriolis/SMEI and STEREO/HI instruments substantiates the high-technology readiness level of white-light (WL) imaging of coronal mass ejections (CMEs) in the inner heliosphere. The WL intensity of a propagating CME is jointly determined by its evolving mass distribution and the fixed Thomson-scattering geometry. From their in-ecliptic viewpoints, SMEI and HI, the only heliospheric imagers that have been flown to date, integrate the longitudinal dimension of CMEs. In this paper, using forward magnetohydrodynamic modeling, we synthesize the WL radiance pattern of a typical halo CME viewed from an out-of-ecliptic (OOE) vantage point. The major anatomical elements of the CME identified in WL imagery are a leading sheath and a trailing ejecta; the ejecta-driven sheath is the brightest feature of the CME. The sheath, a three-dimensional (3D) dome-like density structure, occupies a wide angular extent ahead of the ejecta itself. The 2D radiance pattern of the sheath depends critically on viewpoint. For a CME modeled under solar minimum conditions, the WL radiance pattern of the sheath is generally a quasi-straight band when viewed from an in-ecliptic viewpoint and a semicircular arc from an OOE viewpoint. The dependence of the radiance pattern of the ejecta-driven sheath on viewpoint is attributed to the bimodal nature of the 3D background solar wind flow. Our forward-modeling results suggest that OOE imaging in WL radiance can enable (1) a near-ecliptic CME to be continuously tracked from its coronal initiation, (2) the longitudinal span of the CME to be readily charted, and (3) the transporting speed of the CME to be reliably determined. Additional WL polarization measurements can significantly limit the ambiguity of localizing CMEs. We assert that a panoramic OOE view in WL would be highly beneficial in revealing CME morphology and kinematics in the hitherto-unresolved longitudinal dimension and hence for monitoring the propagation and

  15. Homicide by Sch from a syringe-like dart ejected by a compound crossbow.

    Science.gov (United States)

    Guo, Wei; Luo, Guochang; Wang, Hao; Meng, Xiangzhi

    2015-02-01

    The compound crossbow can be used to eject syringe-like dart loaded with poisonous solution. Succinylcholine (Sch) is a short-acting neuromuscular blocker medically used to achieve complete relaxation of muscle for a good intubation condition. Without the help of an artificial respirator, intramuscular injection of a large dose of Sch can paralyze the respiratory muscle and result in the receiver's death. In this paper, we present the homicide case of a young male killed by Sch from a syringe-like dart ejected by a compound crossbow. The subcutaneous and muscular hemorrhages observed around the entry were more severe than that caused by a medical injection. Additionally, other autopsy results showed the external appearance of a pinhole, general asphyxia signs and pathological findings which were not characteristic. The discovery of a syringe-like dart at the scene is the critical clue and reason for analyzing for Sch, which is commonly used to load syringe-like dart to paralyze and steal dog in the countryside of China. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  16. Structural and Functional Phenotyping of the Failing Heart: Is the Left Ventricular Ejection Fraction Obsolete?

    Science.gov (United States)

    Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L

    2017-11-01

    Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    OpenAIRE

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-01-01

    We present light curves of three classical novae (KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete sky-map coverage with precision visible-light photometry at 102-minute cadence. The light curves derived from these sky maps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the nova eruption n...

  18. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    Energy Technology Data Exchange (ETDEWEB)

    Margutti, Raffaella [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Kamble, A.; Milisavljevic, D.; Drout, M.; Chakraborti, S.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zapartas, E.; De Mink, S. E. [Anton Pannenkoek Institute for Astronomy, University of Amsterdam, 1090 GE Amsterdam (Netherlands); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Risaliti, G. [INAF-Arcetri Astrophysical Observatory, Largo E. Fermi 5, I-50125 Firenze (Italy); Zauderer, B. A. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bietenholz, M. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Cantiello, M. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fong, W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grefenstette, B. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Guidorzi, C. [University of Ferrara, Department of Physics and Earth Sciences, via Saragat 1, I-44122 Ferrara (Italy); and others

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  19. Benefits and Harms of Sacubitril in Adults With Heart Failure and Reduced Left Ventricular Ejection Fraction.

    Science.gov (United States)

    Aronow, Wilbert S; Shamliyan, Tatyana A

    2017-10-01

    The quality of evidence regarding patient-centered outcomes in adults with heart failure (HF) after sacubitril combined with valsartan has not been systematically appraised. We searched 4 databases in February 2017 and graded the quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation working group approach. We reviewed 1 meta-analysis and multiple publications of 2 randomized controlled trials (RCT) and 1 unpublished RCT. In adults with HF and reduced ejection fraction, low-quality evidence from 1 RCT of 8,432 patients suggests that sacubitril combined with valsartan reduces all-cause (number needed to treat [NNT] to prevent 1 event [NNTp] = 35) and cardiovascular mortality (NNTp = 32), hospitalization (NNTp = 11), emergency visits (NNTp = 69), and serious adverse effects, leading to treatment discontinuation (NNTp = 63) and improves quality of life when compared with enalapril. In adults with HF and preserved ejection fraction, very low-quality evidence from 1 RCT of 301 patients suggests that there are no differences in mortality, morbidity, or adverse effects between sacubitril combined with valsartan and valsartan alone. In conclusion, in adults with HF and reduced ejection fraction, to reduce cardiovascular mortality and hospitalizations and improve quality of life, clinicians may recommend sacubitril combined with valsartan over angiotensin-converting enzyme inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Clinical and Echocardiographic Characteristics and Cardiovascular Outcomes According to Diabetes Status in Patients With Heart Failure and Preserved Ejection Fraction

    DEFF Research Database (Denmark)

    Kristensen, Søren L; Mogensen, Ulrik M; Jhund, Pardeep S

    2017-01-01

    in Heart Failure With Preserved Ejection Fraction) according to history of diabetes mellitus. Cox regression models were used to estimate hazard ratios for cardiovascular outcomes adjusted for known predictors, including age, sex, natriuretic peptides, and comorbidity. Echocardiographic data were available...... versus 29 kg/m2), worse Minnesota Living With Heart Failure score (48 versus 40), higher median N-terminal pro-B-type natriuretic peptide concentration (403 versus 320 pg/mL; all Pdifference in left ventricular ejection fraction. Patients with diabetes...

  1. The great escape - II. Exoplanet ejection from dying multiple-star systems

    Science.gov (United States)

    Veras, Dimitri; Tout, Christopher A.

    2012-05-01

    Extrasolar planets and belts of debris orbiting post-main-sequence single stars may become unbound as the evolving star loses mass. In multiple-star systems, the presence or co-evolution of the additional stars can significantly complicate the prospects for orbital excitation and escape. Here, we investigate the dynamical consequences of multi-phasic, non-linear mass loss and establish a criterion for a system of any stellar multiplicity to retain a planet whose orbit surrounds all of the parent stars. For single stars which become white dwarfs, this criterion can be combined with the Chandrasekhar Limit to establish the maximum allowable mass-loss rate for planet retention. We then apply the criterion to circumbinary planets in evolving binary systems over the entire stellar mass phase space. Through about 105 stellar evolutionary track realizations, we characterize planetary ejection prospects as a function of binary separation, stellar mass and metallicity. This investigation reveals that planets residing at just a few tens of au from a central concentration of stars are susceptible to escape in a wide variety of multiple systems. Further, planets are significantly more susceptible to ejection from multiple-star systems than from single-star systems for a given system mass. For system masses greater than about 2 M⊙, multiple-star systems represent the greater source of free-floating planets.

  2. Effect of exercise on circulating atrial natriuretic peptide and left ventricular ejection fraction in healthy persons and patients with coronary artery disease

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Ichikawa, Shuichi; Sakamaki, Tetsuo; Suzuki, Tadashi; Iizuka, Toshio; Yagi, Atsuko; Kurashina, Toshiaki; Kumakura, Hisao; Murata, Kazuhiko

    1988-01-01

    Radionuclide angiographic measurements of left ventricular ejection fraction were performed at rest and during exercise in 10 normal persons and 11 patients with coronary artery disease. Exercise was continued on a supine bicycle exercise table up to a symptom-limited maximum. Plasma levels of atrial natriuretic peptide (ANP) were also determined at rest and during exercise. Ejection fraction in the normal volunteers was 59±3% (mean±SEM) at rest and increased significantly (p<0.01) to 69±3% during exercise. Ejection fraction in the patients was 47±5% at rest and did not change significantly during exercise (51±7%). Plasma ANP in the normals rose significantly (p<0.01) from 62±16 pg/ml at rest to 454±94 pg/ml during exercise. Plasma ANP in the patients also rose significantly (p<0.01) from 231±102 pg/ml to 794±170 pg/ml. The response of plasma ANP to exercise was enhanced significantly (p<0.05) in the patients as compared with the normals in relation to ejection fraction by analysis of covariance. In both the normals and the patients, plasma ANP was inversely and significantly correlated with ejection fraction during exercise (r=0.46, p<0.05, n=21), however, not at rest. Because it has been reported that plasma ANP is correlated positively with pulmonary artery wedge pressure, the estimation of plasma ANP during an exercise stress test might be used for the evaluation of cardiac reserve in coronary artery disease. (author)

  3. Biomarker Profiles of Acute Heart Failure Patients With a Mid-Range Ejection Fraction.

    Science.gov (United States)

    Tromp, Jasper; Khan, Mohsin A F; Mentz, Robert J; O'Connor, Christopher M; Metra, Marco; Dittrich, Howard C; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G F; Givertz, Michael M; Bloomfield, Daniel M; Van Veldhuisen, Dirk J; Hillege, Hans L; Voors, Adriaan A; van der Meer, Peter

    2017-07-01

    In this study, the authors used biomarker profiles to characterize differences between patients with acute heart failure with a midrange ejection fraction (HFmrEF) and compare them with patients with a reduced (heart failure with a reduced ejection fraction [HFrEF]) and preserved (heart failure with a preserved ejection fraction [HFpEF]) ejection fraction. Limited data are available on biomarker profiles in acute HFmrEF. A panel of 37 biomarkers from different pathophysiological domains (e.g., myocardial stretch, inflammation, angiogenesis, oxidative stress, hematopoiesis) were measured at admission and after 24 h in 843 acute heart failure patients from the PROTECT trial. HFpEF was defined as left ventricular ejection fraction (LVEF) of ≥50% (n = 108), HFrEF as LVEF of <40% (n = 607), and HFmrEF as LVEF of 40% to 49% (n = 128). Hemoglobin and brain natriuretic peptide levels (300 pg/ml [HFpEF]; 397 pg/ml [HFmrEF]; 521 pg/ml [HFrEF]; p trend  <0.001) showed an upward trend with decreasing LVEF. Network analysis showed that in HFrEF interactions between biomarkers were mostly related to cardiac stretch, whereas in HFpEF, biomarker interactions were mostly related to inflammation. In HFmrEF, biomarker interactions were both related to inflammation and cardiac stretch. In HFpEF and HFmrEF (but not in HFrEF), remodeling markers at admission and changes in levels of inflammatory markers across the first 24 h were predictive for all-cause mortality and rehospitalization at 60 days (p interaction  <0.05). Biomarker profiles in patients with acute HFrEF were mainly related to cardiac stretch and in HFpEF related to inflammation. Patients with HFmrEF showed an intermediate biomarker profile with biomarker interactions between both cardiac stretch and inflammation markers. (PROTECT-1: A Study of the Selective A1 Adenosine Receptor Antagonist KW-3902 for Patients Hospitalized With Acute HF and Volume Overload to Assess Treatment Effect on Congestion and Renal

  4. Computer simulations of material ejection during C{sub 60} and Ar{sub m} bombardment of octane and β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Palka, G.; Kanski, M.; Maciazek, D. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Garrison, B.J. [Department of Chemistry, 104 Chemistry Building, Penn State University, University Park, PA 16802 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)

    2015-06-01

    Molecular dynamics (MD) computer simulations are used to investigate material ejection and fragment formation during keV C{sub 60} and Ar{sub m} (m = 60, 101, 205, 366, 872 and 2953) bombardment of organic solids composed from octane and β-carotene molecules at 0° and 45° impact angle. Both systems are found to sputter efficiently. For the octane system, material removal occurs predominantly by ejection of intact molecules, while fragment emission is a significant ejection channel for β-carotene. A difference in the molecular dimensions is proposed to explain this observation. It has been shown that the dependence of the sputtering yield Y on the primary kinetic energy E and the cluster size n can be expressed in a simplified form if represented in reduced units. A linear and nonlinear dependence of the Y/n on the E/n are identified and the position of the transition point from the linear to nonlinear regions depends on the size of the cluster projectile. The impact angle has a minor influence on the shape of the simplified representation.

  5. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    Directory of Open Access Journals (Sweden)

    I. M. Robinson

    2005-07-01

    Full Text Available We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003 and Li et al. (2003 which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons.

    Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections – Space plasma physics (Transport processes

  6. Left ventricular filling rate change as an earlier indicator than ejection fraction of chemotherapeutic cardiotoxicity in cancer paptents' nuclear medicine MUGA scans

    International Nuclear Information System (INIS)

    Miko, T.G.

    2004-01-01

    According to Wang Siegel has long suggested that an earlier indicator of damage to the hearts of cancer patients undergoing potentially cardiotoxic chemotherapy could be change in the left ventricular filling rate (LVFT) rather than dependence on the left ventricular ejection fraction (LVEF) as a measure for when to discontinue chemotherapy. Currently ejection fraction obtained by performing the nuclear medicine MUGA scan is the gold standard for determining further treatment of patients with these cardiotoxic agents. We are seeking to see if changes in filling rate (LVFR) are an earlier indicator of cardiotoxicity by performing a retrospective analysis of MUGA scans performed at our facility pre- and post-chemotherapy and performing a statistical analysis of changes in ejection fraction us filling rate in patients known to have cardiotoxic changes due to chemotherapy. (authors)

  7. PINEX-2: pinhole-TV imaging of fuel ejection from an internally vented capsule

    International Nuclear Information System (INIS)

    Berzins, G.J.; Lumpkin, A.H.

    1979-01-01

    The LASL pinhole-intensified TV system was used at the TREAT reactor to image an internally vented, fuel-ejection capsule designed and built by HEDL. Several improvements in the imaging system over PINEX-1 were incorporated. A sequence of 16-ms TV frames shows axial expansion, expulsion of fuel from the pin, and retention of clad integrity during the time of coverage

  8. Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Experimental observations

    International Nuclear Information System (INIS)

    Sellinger, Aaron T; Leveugle, Elodie; Gogick, Kristy; Peman, Guillaume; Zhigilei, Leonid V; Fitz-Gerald, James M

    2007-01-01

    The morphology of polymer films deposited with the matrix-assisted pulsed laser evaporation (MAPLE) technique is explored for various target compositions and laser fluences. Composite targets of 1 to 5 wt.% poly(methyl methacrylate), PMMA, dissolved in a volatile matrix material, toluene, were ablated using an excimer laser at fluences ranging from 0.045 J/cm 2 to 0.75 J/cm 2 . Films were deposited on Si substrates at room temperature in a dynamic 100 mTorr Ar atmosphere. Scanning electron microscopy (SEM) imaging revealed that the morphology of the deposited films varied significantly with both laser fluence and PMMA concentration. The morphologies of large deposited particles were similar to that of deflated ''balloons''. It is speculated that during ablation of the frozen target, clusters comprised of both polymer and solvent ranging from 100 nm to 10 μm in size are ejected and deposited onto the substrate. The solvent begins to evaporate from the clusters during flight from the target, but does not completely evaporate until deposited on the room temperature substrate. The dynamics of the toluene evaporation may lead to the formation of the deflated structures. This explanation is supported by the observation of stable polymer-matrix droplets ejected in molecular dynamics simulations of MAPLE

  9. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  10. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  11. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    Science.gov (United States)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  12. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF)

    DEFF Research Database (Denmark)

    Hasenfuß, Gerd; Hayward, Chris; Burkhoff, Dan

    2016-01-01

    BACKGROUND: Heart failure with preserved ejection fraction (HFPEF) is a common, globally recognised, form of heart failure for which no treatment has yet been shown to improve symptoms or prognosis. The pathophysiology of HFPEF is complex but characterised by increased left atrial pressure, espec...

  13. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Department of Space Science/CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Dasgupta, B.; Khare, A.; Webb, G. M., E-mail: qh0001@uah.edu, E-mail: qiu@physics.montana.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ≳ 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  14. Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lei; Feng, Li; Liu, Siming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, Bernd [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Zhao, Xinhua, E-mail: lfeng@pmo.ac.cn, E-mail: inhester@mps.mpg.de [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-02-01

    We present a detailed study of an Earth-directed coronal mass ejection (full-halo CME) event that happened on 2011 February 15, making use of white-light observations by three coronagraphs and radio observations by Wind /WAVES. We applied three different methods to reconstruct the propagation direction and traveling distance of the CME and its driven shock. We measured the kinematics of the CME leading edge from white-light images observed by Solar Terrestrial Relations Observatory ( STEREO ) A and B , tracked the CME-driven shock using the frequency drift observed by Wind /WAVES together with an interplanetary density model, and obtained the equivalent scattering centers of the CME by the polarization ratio (PR) method. For the first time, we applied the PR method to different features distinguished from LASCO/C2 polarimetric observations and calculated their projections onto white-light images observed by STEREO-A and STEREO-B . By combining the graduated cylindrical shell (GCS) forward modeling with the PR method, we proposed a new GCS-PR method to derive 3D parameters of a CME observed from a single perspective at Earth. Comparisons between different methods show a good degree of consistence in the derived 3D results.

  15. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    Science.gov (United States)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  16. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  17. Coincident detection of electrons ejected at large angles and target recoil ions produced in multiply ionizing collisions for the 1-MeV/u Oq++Ar collision system

    International Nuclear Information System (INIS)

    Gaither III, C.C.; Breinig, M.; Berryman, J.W.; Hasson, B.F.; Richards, J.D.; Price, K.

    1993-01-01

    The angular distributions of energetic electrons ejected at angles between 45 degree and 135 degree with respect to the incident-beam direction have been measured in coincidence with the charge states of the target recoil ions produced in multiply ionizing collisions for the 1-MeV/u O q+ (q=4,7)+Ar collision systems. These measurements have been made for ∼179-, ∼345-, and ∼505-eV electrons. Additionally, the energy distributions of electrons ejected into specific angular regions have been measured. Ar LMM satellite Auger electrons appear as a peak in the energy spectrum of electrons ejected at all large angles. The center of this peak is found at an electron energy of ∼179 eV. Electrons with ∼179 eV energy, ejected at large angles, are preferentially produced in coincidence with recoil ions of charge state 4+. Electrons with ∼345 eV energy and ∼505 eV energy ejected at large angles are preferentially produced in coincidence with recoil ions of charge state 3+. The angular distributions for these electrons are strongly peaked in the forward direction; essentially no electrons are observed at angles larger than 90 degree. These results are consistent with the dominant production mechanism for energetic electrons ejected at large angles being a binary-encounter process. Differential cross sections have been calculated from these angular distributions. They are on the order of 10 -21 cm 2 /(eV sr)

  18. Equilibrium radionuclide assessment of left ventricular ejection and filling. Comparison of list mode-and multigated frame-mode measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, D.D.; McKenna, W.J.; Dickie, S.; Oakley, C.M.; Myers, M.J.; Lavender, J.P. (Royal Postgraduate Medical School, London (UK))

    1983-10-01

    The relationship as studied between radionuclide indices of left ventricular systolic and diastolic function acquired in conventional multigated frame-mode compared to list-mode in patients with sinus rhythm. The study showed that frame-mode and list-mode measurements of ejection and filling indices are not significantly different in these patients but that backward reformatting of data acquired in list-mode is necessary to measure the atrial contribution to LV stroke counts. It was concluded that valid measurements of left ventricular systolic ejection and diastolic filling can be made in patients in sinus rhythm using frame-mode acquisition with the exception of measurements of the contribution from atrial systole to stroke volume.

  19. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis

    Science.gov (United States)

    Abshire, Camille F.; Roy, Craig R.

    2016-01-01

    Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L

  20. The 2011 Outburst of Recurrent Nova T Pyx: X-Ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Science.gov (United States)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam; hide

    2014-01-01

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.

  1. Development of an Inflatable Head/Neck Restraint System for Ejection Seats

    Science.gov (United States)

    1977-02-28

    crewman’s head . It has been observed that low pressures, about 2 psi (1.38 nt/cm2 ) to 4 psi (2.76 nt/cm2 ), create some "spring back" or trampoline ...neck ring Neck injury Head rotation 210 ABSTRACT (Continue on rev’erse side If necessary end identify by block number) 4A ringý-shaped inflatable head ...injuries due to violent forward head rotation at the time of ejection thrust and parachute opening shock. Inflation of the neck ring will,’ be conducted by a

  2. A SHORT-DURATION EVENT AS THE CAUSE OF DUST EJECTION FROM MAIN-BELT COMET P/2012 F5 (GIBBS)

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, F. [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Licandro, J.; Cabrera-Lavers, A., E-mail: fernando@iaa.es [Instituto de Astrofisica de Canarias, c/Via Lactea s/n, E-38200 La Laguna, Tenerife (Spain)

    2012-12-10

    We present observations and an interpretative model of the dust environment of the Main-Belt Comet P/2010 F5 (Gibbs). The narrow dust trails observed can be interpreted unequivocally as an impulsive event that took place around 2011 July 1 with an uncertainty of {+-}10 days, and a duration of less than a day, possibly of the order of a few hours. The best Monte Carlo dust model fits to the observed trail brightness imply ejection velocities in the range 8-10 cm s{sup -1} for particle sizes between 30 cm and 130 {mu}m. This weak dependence of velocity on size contrasts with that expected from ice sublimation and agrees with that found recently for (596) Scheila, a likely impacted asteroid. The particles seen in the trail are found to follow a power-law size distribution of index Almost-Equal-To -3.7. Assuming that the slowest particles were ejected at the escape velocity of the nucleus, its size is constrained to about 200-300 m in diameter. The total ejected dust mass is {approx}> 5 Multiplication-Sign 10{sup 8} kg, which represents approximately 4%-20% of the nucleus mass.

  3. Angular distribution of electrons ejected by charged particles. IV. Combined classical and quantum-mechanical treatment

    NARCIS (Netherlands)

    Boesten, L.G.J.; Bonsen, T.F.M.

    1975-01-01

    Angular distributions of electrons ejected from helium by 100 and 300 keV protons have been calculated by a method which is a comination of the classical three-body collision theory and the quantum-mechanical Born approximation. The results of this theory have been compared with the corresponding

  4. Hierarchically-driven Approach for Quantifying Materials Uncertainty in Creep Deformation and Failure of Aerospace Materials

    Science.gov (United States)

    2016-07-01

    Charles) Feng, University of Science and Technology Beijing (USTB), China Scope: A number of critical applications in industry demand the use of...there are still a number of challenges that must be addressed before ICME reaches its full potential. Nevertheless, success stories in the automotive and...Significance and Relevance to USAF Single crystal nickel turbine blades are being utilized in turbine jet engines throughout industry because of their

  5. Right heart ejection fraction, ventricular volumes, and left to right cardiac shunt measurements with a conventional Anger camera in congenital heart disease

    International Nuclear Information System (INIS)

    Cook, S.A.; Go, R.T.; MacIntyre, W.J.; Moodie, D.S.; Houser, T.S.; Ceimo, J.; Underwood, D.; Yiannikas, J.

    1982-01-01

    The object of this investigation was to demonstrate that a conventional Anger camera can be used for measurement of right heart ejection fraction, ventricular volumes and left to right shunts in routine clinical determinations. The automatic selection of chamber and lung regions, the recirculation subtraction of recirculation, and the filtering of the right heart ejection fraction dilution curves are all done entirely without operator intervention. Thus, this entire evaluation has been incorporated into the routine procedures of patient care

  6. Effect of calf stimulation on milk ejection in reindeer (Rangifer tarandus

    Directory of Open Access Journals (Sweden)

    Hallvard Gjøstein

    2004-04-01

    Full Text Available The objective of this study was to establish methods for stimulating the milk ejection in reindeer kept for milking purpose. Calves were used to stimulate milk does’ let down. In experiment 1, five does were allowed olfactory, acoustic and visual contact with their calves during milking, whereas four does were milked in isolation. The treatment of the groups was alternated every day during the eight days experiment. Olfactory, acoustic and visual contact with the calf did not influence the doe’s milk yield. The milk yield varied significantly between individual females within treatment (P < 0.01. In experiment 2, the calves were allowed to suckle their mother for a short period (two seconds prior to milking being initiated. The same alternate design as in experiment 1 with groups consisting of three and two animals respectively was used, and the experiment lasted four days. The pre-suckling stimulation significantly increased the milk ejection measured as milk yield (P < 0.05, and the residual milk after the treatment was negectible. Moreover, the milk ejection varied between individual females within treatment (P < 0.05. We conclude that it is possible to achieve a complete milk removal by machine milking after the does have been pre-stimulated by suckling of calves. Olfactory, acoustic and visual contact with calves during milking failed to influence the milk ejection in this study. However, the results have to be interpreted with caution due to limited sample size.Abstract in Norwegian / Sammendrag: Formålet med dette forsøket var å prøve ut ulike metoder for å stimulere nedgivninga av melk hos rein. Kalvene ble tatt i bruk for å stimulere nedgivninga. I forsøk 1 hadde simla lyd-, lukt og synskontakt med kalven mens melkingen pågikk. Vi benyttet et ”switch back design” der fem simler hadde kontakt med kalven under melkingen og fire ble melket uten kontakt. Behandlingen ble byttet om annenhver dag i de åtte dagene fors

  7. Ion ejection from a permanent-magnet mini-helicon thruster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles 90095-1594 (United States)

    2014-09-15

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.

  8. An ice-cream cone model for coronal mass ejections

    Science.gov (United States)

    Xue, X. H.; Wang, C. B.; Dou, X. K.

    2005-08-01

    In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.

  9. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches.

    Science.gov (United States)

    Rodrigues, P; Santos, C; Venâncio, A; Lima, N

    2011-10-01

    Section Flavi is one of the most significant sections in the genus Aspergillus. Taxonomy of this section currently depends on multivariate approaches, entailing phenotypic and molecular traits. This work aimed to identify isolates from section Flavi by combining various classic phenotypic and genotypic methods as well as the novel approach based on spectral analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF ICMS) and to evaluate the discriminatory power of the various approaches in species identification.   Aspergillus section Flavi isolates obtained from Portuguese almonds were characterized in terms of macro- and micromorphology, mycotoxin pattern, calmodulin gene sequence and MALDI-TOF protein fingerprint spectra. For each approach, dendrograms were created and results were compared. All data sets divided the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus and Aspergillus tamarii. In the A. flavus clade, molecular and spectral analyses were not able to resolve between aflatoxigenic and nonaflatoxigenic isolates. In the A. parasiticus cluster, two well-resolved clades corresponded to unidentified taxa, corresponding to those isolates with mycotoxin profile different from that expected for A. parasiticus. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. Rapid estimation of left ventricular ejection fraction in acute myocardial infarction by echocardiographic wall motion analysis

    DEFF Research Database (Denmark)

    Berning, J; Rokkedal Nielsen, J; Launbjerg, J

    1992-01-01

    Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide...

  11. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations

    International Nuclear Information System (INIS)

    Howard, T. A.; DeForest, C. E.

    2014-01-01

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which time the segment that first disconnected was around 40 R ☉ away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.

  12. Is cardiac resynchronization therapy an option in heart failure patients with preserved ejection fraction? Justification for the ongoing KaRen project.

    Science.gov (United States)

    Donal, Erwan; Lund, Lars; Linde, Cecilia; Daubert, Jean-Claude

    2010-01-01

    The relevance of electrical and mechanical dyssynchrony has been demonstrated in heart failure with reduced ejection fraction. Preserved ejection fraction is present in as many as 50% of patients with chronic heart failure. Recent small studies suggest that both electrical and mechanical left ventricular dyssynchrony are sometimes present in patients with heart failure and preserved ejection fraction (HFPEF). These data remain controversial and a robust validation of this hypothesis has to be achieved. In the present paper, we review in detail the concepts and try to justify the ongoing KaRen registry. This is a prospective, multicentre, international, observational study to characterize the prevalence of electrical or mechanical dyssynchrony in HFPEF and the resultant effect on prognosis. Patients are enrolled currently at the time of an acute congestive episode. The diagnosis of HFPEF is made according to clinical data, natriuretic peptides and echocardiography for the measurement of ejection fraction. Once stabilized, patients return for a hospital check-up. They undergo clinical and biological evaluation, electrocardiography and Doppler echocardiography. Thereafter, patients are followed every six months, for at least 18 months for mortality, and heart failure-related and non-cardiovascular hospitalizations. KaRen aims to characterize electrical and mechanical dyssynchrony and to assess its prognostic impact in HFPEF. The results may improve our understanding of HFPEF and generate answers to the question of whether or not dyssynchrony could be a target for cardiac resynchronization therapy in HFPEF. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  13. Abnormal responses of ejection fraction to exercise, in healthy subjects, caused by region-of-interest selection

    International Nuclear Information System (INIS)

    Sorenson, S.G.; Caldwell, J.; Ritchie, J.; Hamilton, G.

    1981-01-01

    We performed serial exercise equilibrium radionuclide angiography in eight normal subjects with each subject executing three tests: control, after nitroglycerin, and after propranolol. The left-ventricular ejection fraction (EF) was calculated by two methods: (a) fixed region-of-interest (FROI) using a single end-diastolic ROI, and (b) variable region-of-interest (VROI) where an end-diastolic and end-systolic region of interest were used. Abnormal maximal EF responses occurred in five of eight subjects during control using FROI but in zero of eight employing VROI (p < 0.05). After nitroglycerin, three of eight subjects had abnormal responses by FROI, but zero of eight were abnormal by VROI (p < 0.05). After propranolol, blunted EF responses occurred in three of seven by both methods. Falsely abnormal EF responses to exercise RNA may occur due to the method of region-of-interest selection in normal subjects with normal or high ejection fractions

  14. Determination of left and right ventricular ejection and filling by fast cine MR imaging in the breath-hold technique in healthy subjects

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bachmann, G.F.; Geuer, M.; Puzik, M.; Rau, W.S.; Pabst, W.

    1999-01-01

    Purpose: Evaluation and comparison of localized and global left and right ventricular ejection and filling with fast cine MR imaging in the breath-hold technique. Materials and Methods: 10 healthy volunteers were examined with a 1.5 Tesla unit and phased-array-coil using a segmented FLASH-2D sequence in breath-hold technique. Peak ejection and peak filling rates [PER, PFR enddiastolic volume (EDV)/s], time to PER and PFR [TPER, TPFR ms] and time of endsystole [TSYS in % RR-intervall] of all slices (complete-slice-evaluation) were evaluated and compared to three left ventricular and one right ventricular slices (reduced three-slice-evaluation). Results: There were significant regional left ventricular differences of PER (p=0.002) and PFR (p=0.007), but not of TPER and TPFR. Ejection and filling indices of the left ventricular middle slice were closest to the overall evaluation of all sections. In the left-/right-side comparison the right ventricular PFR was higher than the left ventricular (5.1 and 4.2 EDV/s) and the right ventricular TPFR was earlier than the left (92.2 and 123.5 ms). Conclusions: With fast cine techniques, regional and global left and right ventricular ejection and filling indices can be evaluated in addition to the global heart volume indices. The three-slice-evaluation represents a comprehensive, clear and time-saving method for daily routine. (orig.) [de

  15. In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device.

    Science.gov (United States)

    Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz

    2018-01-01

    The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.

  16. Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes

    International Nuclear Information System (INIS)

    Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William

    2002-01-01

    Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)

  17. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin–Helmholtz Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Zhang, Qing-Min [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Murphy, Nicholas A., E-mail: leini@ynao.ac.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-05-20

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . The islands have maximum temperatures of 8 MK, lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s{sup −1}. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin–Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin–Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.

  18. Impact of Ejection Fraction on the Clinical Response to Cardiac Resynchronization Therapy in Mild Heart Failure

    DEFF Research Database (Denmark)

    Linde, Cecilia; Daubert, Claude; Abraham, William T

    2013-01-01

    Current guidelines recommend cardiac resynchronization therapy (CRT) in mild heart failure (HF) patients with QRS prolongation and ejection fraction (EF) ≤30%. To assess the effect of CRT in less severe systolic dysfunction, outcomes in the REsynchronization reVErses Remodeling in Systolic left v...

  19. B-Type Natriuretic Peptide and Prognosis in Heart Failure Patients With Preserved and Reduced Ejection Fraction

    NARCIS (Netherlands)

    van Veldhuisen, Dirk J.; Linssen, Gerard C. M.; Jaarsma, Tiny; van Gilst, Wiek H.; Hoes, Arno W.; Tijssen, Jan G. P.; Paulus, Walter J.; Voors, Adriaan A.; Hillege, Hans L.

    2013-01-01

    Objectives This study sought to determine the prognostic value of B-type natriuretic peptide (BNP) in patients with heart failure with preserved ejection fraction (HFPEF), in comparison to data in HF patients with reduced left ventricular (LV) EF ( Background Management of patients with HFPEF is

  20. TRANSIENT GALACTIC COSMIC-RAY MODULATION DURING SOLAR CYCLE 24: A COMPARATIVE STUDY OF TWO PROMINENT FORBUSH DECREASE EVENTS

    International Nuclear Information System (INIS)

    Zhao, L.-L.; Zhang, H.

    2016-01-01

    Forbush decrease (FD) events are of great interest for transient galactic cosmic-ray (GCR) modulation study. In this study, we perform comparative analysis of two prominent Forbush events during cycle 24, occurring on 2012 March 8 (Event 1) and 2015 June 22 (Event 2), utilizing the measurements from the worldwide neutron monitor (NM) network. Despite their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Event 2 over the studied energy range. Additionally, while the evolutions of the energy spectra during the two FD events exhibit similar variation patterns, the spectrum of Event 2 is significantly harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated interplanetary coronal mass ejection (ICME) disturbance with large radial extent, probably formed by the merging of multiple shocks and transient flows, and which delivered a glancing blow to Earth. Conversely, Event 2 is accompanied by a relatively simple halo ICME with small radial extent that hit Earth more head-on.

  1. TRANSIENT GALACTIC COSMIC-RAY MODULATION DURING SOLAR CYCLE 24: A COMPARATIVE STUDY OF TWO PROMINENT FORBUSH DECREASE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.-L.; Zhang, H., E-mail: zhaolingling@ucas.edu.cn [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-08-10

    Forbush decrease (FD) events are of great interest for transient galactic cosmic-ray (GCR) modulation study. In this study, we perform comparative analysis of two prominent Forbush events during cycle 24, occurring on 2012 March 8 (Event 1) and 2015 June 22 (Event 2), utilizing the measurements from the worldwide neutron monitor (NM) network. Despite their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Event 2 over the studied energy range. Additionally, while the evolutions of the energy spectra during the two FD events exhibit similar variation patterns, the spectrum of Event 2 is significantly harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated interplanetary coronal mass ejection (ICME) disturbance with large radial extent, probably formed by the merging of multiple shocks and transient flows, and which delivered a glancing blow to Earth. Conversely, Event 2 is accompanied by a relatively simple halo ICME with small radial extent that hit Earth more head-on.

  2. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  3. ECG-gated blood pool tomography in the determination of left ventricular volume, ejection fraction, and wall motion

    International Nuclear Information System (INIS)

    Underwood, S.R.; Ell, P.J.; Jarritt, P.H.; Emanuel, R.W.; Swanton, R.H.

    1984-01-01

    ECG-gated blood pool tomography promises to provide a ''gold standard'' for noninvasive measurement of left ventricular volume, ejection fraction, and wall motion. This study compares these measurements with those from planar radionuclide imaging and contrast ventriculography. End diastolic and end systolic blood pool images were acquired tomographically using an IGE400A rotating gamma camera and Star computer, and slices were reconstructed orthogonal to the long axis of the heart. Left ventricular volume was determined by summing the areas of the slices, and wall motion was determined by comparison of end diastolic and end systolic contours. In phantom experiments this provided an accurate measurement of volume (r=0.98). In 32 subjects who were either normal or who had coronary artery disease left ventricular volume (r=0.83) and ejection fraction (r=0.89) correlated well with those using a counts based planar technique. In 16 of 18 subjects who underwent right anterior oblique X-ray contrast ventriculography, tomographic wall motion agreed for anterior, apical, and inferior walls, but abnormal septal motion which was not apparent by contrast ventriculography, was seen in 12 subjects tomographically. All 12 had disease of the left anterior descending coronary artery and might have been expected to have abnormal septal motion. ECG-gated blood pool tomography can thus determine left ventricular volume and ejection fraction accurately, and provides a global description of wall motion in a way that is not possible from any single planar image

  4. Ergospirometry and Echocardiography in Early Stage of Heart Failure with Preserved Ejection Fraction and in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Eduardo Lima Garcia

    2015-01-01

    Full Text Available Abstract Background: Heart failure with preserved ejection fraction is a syndrome characterized by changes in diastolic function; it is more prevalent among the elderly, women, and individuals with systemic hypertension (SH and diabetes mellitus. However, in its early stages, there are no signs of congestion and it is identified in tests by adverse remodeling, decreased exercise capacity and diastolic dysfunction. Objective: To compare doppler, echocardiographic (Echo, and cardiopulmonary exercise test (CPET variables - ergospirometry variables - between two population samples: one of individuals in the early stage of this syndrome, and the other of healthy individuals. Methods: Twenty eight outpatients diagnosed with heart failure according to Framingham’s criteria, ejection fraction > 50% and diastolic dysfunction according to the european society of cardiology (ESC, and 24 healthy individuals underwent Echo and CPET. Results: The group of patients showed indexed atrial volume and left ventricular mass as well as E/E’ and ILAV/A´ ratios significantly higher, in addition to a significant reduction in peak oxygen consumption and increased VE/VCO2 slope, even having similar left ventricular sizes in comparison to those of the sample of healthy individuals. Conclusion: There are significant differences between the structural and functional variables analyzed by Echo and CPET when comparing two population samples: one of patients in the early stage of heart failure with ejection fraction greater than or equal to 50% and another of healthy individuals.

  5. Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, S.-L.

    2006-01-01

    This paper uses molecular dynamics simulation based on the Lennard-Jones potential to study the effects that temperature and velocity have on, the nanojet droplet ejection process, when the droplet is ejected at an angle onto a moving plate's surface. According to the analysis, it was found that the width of the spreading droplet increased as the temperature and the time were increased. Also found was an energy wave phenomenon. The contact angle of the droplet deposited on the plate decreased as the temperature was increased. Furthermore, the layer phenomena became apparent when the atoms were deposited on a moving plate. Thinner film layers were obtained as the velocity of the moving plate was increased. The contact angle on the left side of the droplet was larger than that on the right side when the plate was moving from right to left

  6. Closer clutch inspection—quicker egg ejection: timing of host responses toward parasitic eggs

    Czech Academy of Sciences Publication Activity Database

    Požgayová, Milica; Procházka, Petr; Polačiková, Lenka; Honza, Marcel

    2011-01-01

    Roč. 22, č. 1 (2011), s. 46-51 ISSN 1045-2249 R&D Projects: GA AV ČR IAA600930605; GA AV ČR IAA600930903; GA ČR(CZ) GD524/05/H536; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : Acrocephalus arundinaceus * brood parasitism * egg discrimination * egg ejection time * great reed warbler * nest inspection Subject RIV: EG - Zoology Impact factor: 3.083, year: 2011

  7. Wave Driven Fluid-Sediment Interactions over Rippled Beds

    Science.gov (United States)

    Foster, Diane; Nichols, Claire

    2008-11-01

    Empirical investigations relating vortex shedding over rippled beds to oscillatory flows date back to Darwin in 1883. Observations of the shedding induced by oscillating forcing over fixed beds have shown vortical structures to reach maximum strength at 90 degrees when the horizontal velocity is largest. The objective of this effort is to examine the vortex generation and ejection over movable rippled beds in a full-scale, free surface wave environment. Observations of the two-dimensional time-varying velocity field over a movable sediment bed were obtained with a submersible Particle Image Velocimetry (PIV) system in two wave flumes. One wave flume was full scale and had a natural sand bed and the other flume had an artificial sediment bed with a specific gravity of 1.6. Full scale observations over an irregularly rippled bed show that the vortices generated during offshore directed flow over the steeper bed form slope were regularly ejected into the water column and were consistent with conceptual models of the oscillatory flow over a backward facing step. The results also show that vortices remain coherent during ejection when the background flow stalls (i.e. both the velocity and acceleration temporarily approach zero). These results offer new insight into fluid sediment interaction over rippled beds.

  8. Bounding analysis of containment of high pressure melt ejection in advanced light water reactors

    International Nuclear Information System (INIS)

    Additon, S.L.; Fontana, M.H.; Carter, J.C.

    1990-01-01

    This paper reports on the loadings on containment due to direct containment heating (DCH) as a result of high pressure melt ejection (HPME) in advanced light water reactors (ALWR) which were estimated using conservative, bounding analyses. The purpose of the analyses was to scope the magnitude of the possible loadings and to indicate the performance needed from potential mitigation methods, such as a cavity configuration that limits energy transfer to the upper containment volume. Analyses were performed for three cases which examined the effect of availability of high pressure reactor coolant system water at the time of reactor vessel melt through and the effect of preflooding of the reactor cavity. The amount of core ejected from the vessel was varied from 100% to 0% for all cases. Results indicate that all amounts of core debris dispersal could be accommodated by the containment for the case where the reactor cavity was preflooded. For the worst case, all the energy from in-vessel hydrogen generation and combustion plus that from 45% of the entire molten core would be required to equilibrate with the containment upper volume in order to reach containment failure pressure

  9. Calculation of cardiac pressures using left ventricular ejection fraction (LVEF) derived from radionuclide angiography

    International Nuclear Information System (INIS)

    Hommer, E.

    1981-01-01

    An attempt has been made to develop formulas to determine cardiac pressures in an undisturbed flow in patients without valvular or shunt diseases. These are based entirely on the results of left ventricular ejection fraction rates, permitting pressure analysis of several compartments at the same tine. According to BORER et al. they also enable determination of left ventricular 'Functional Reserve' after bycycle exercise as well as left ventricular 'Relaxation Reserve'. They support the views of NYHA in determining the grades of cardiac insufficiency proving the system- and low-pressure participation. A single formula for pulmonary flow can determine the pulmonary arterial pressure. The left ventricular enddiastolic pressure can also be exclusively calculated by values of left ventricular functions, thus both formulas may be used in disorders of the mitral valves. The possibility to calculate pressures of all the compartments of the heart from left ventricular ejection rate shows, that in undisturbed flow global heart function depends on left ventricular function. Therefore the mutual dependence of these formulas presents an intercompartimental pressure regulation of the heart through pulmonary flow and pulmonary vascular pressure, which leaves an aspect of autonomous cardiac regulation open to discussion. (orig.) [de

  10. Systems and Methods for Ejection of Ions from an Ion Trap

    Science.gov (United States)

    Cooks, Robert Graham (Inventor); Snyder, Dalton (Inventor)

    2018-01-01

    The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.

  11. System modeling and identification in indicator dilution method for assessment of ejection fraction and pulmonary blood volume

    NARCIS (Netherlands)

    Bharath, H.N.; Prabhu, K.M.M.; Korsten, H.H.M.; Mischi, M.

    2012-01-01

    Clinically relevant cardiovascular parameters, such as pulmonary blood volume (PBV) and ejection fraction (EF), can be assessed through indicator dilution techniques. Among these techniques, which are typically invasive due to the need for central catheterization, contrast ultrasonography provides a

  12. Propagation and Interaction Properties of Successive Coronal Mass Ejections in Relation to a Complex Type II Radio Burst

    Science.gov (United States)

    Liu, Y. D.; Zhao, X.; Zhu, B.

    2017-12-01

    We examine the propagation and interaction properties of three successive coronal mass ejections (CMEs) from 2001 November 21-22, with a focus on their connection with the behaviors of the associated long-duration complex type II radio burst. In combination with coronagraph and multi-point in situ observations, the long-duration type II burst provides key features that help resolve the propagation and interaction complexities of the three CMEs. The two CMEs from November 22 interacted first and then overtook the November 21 CME at a distance of about 0.85 AU from the Sun. The time scale that the shock originally driven by the last CME spent inside the preceding two CMEs is estimated to be about 14 and 6 hr, respectively. We present a simple analytical model without any free parameters to characterize the whole Sun-to-Earth propagation of the shock, which shows a remarkable consistency with all the available data and MHD simulations even out to the distance of Ulysses (2.34 AU). The coordination of in situ measurements at the Earth and Ulysses, which were separated by 73o in latitude, gives important clues for the understanding of shock structure and the interpretation of in situ signatures. The results also indicate means to increase geo-effectiveness with three CMEs, similar to the the ``perfect storm" scenario proposed by te{liu14a} although the current case is not ``super" in the same sense as the 2012 July 23 event.

  13. Mid-range Ejection Fraction Does Not Permit Risk Stratification Among Patients Hospitalized for Heart Failure.

    Science.gov (United States)

    Gómez-Otero, Inés; Ferrero-Gregori, Andreu; Varela Román, Alfonso; Seijas Amigo, José; Pascual-Figal, Domingo A; Delgado Jiménez, Juan; Álvarez-García, Jesús; Fernández-Avilés, Francisco; Worner Diz, Fernando; Alonso-Pulpón, Luis; Cinca, Juan; Gónzalez-Juanatey, José Ramón

    2017-05-01

    European Society of Cardiology heart failure guidelines include a new patient category with mid-range (40%-49%) left ventricular ejection fraction (HFmrEF). HFmrEF patient characteristics and prognosis are poorly defined. The aim of this study was to analyze the HFmrEF category in a cohort of hospitalized heart failure patients (REDINSCOR II Registry). A prospective observational study was conducted with 1420 patients classified according to ejection fraction as follows: HFrEF, < 40%; HFmrEF, 40%-49%; and HFpEF, ≥ 50%. Baseline patient characteristics were examined, and outcome measures were mortality and readmission for heart failure at 1-, 6-, and 12-month follow-up. Propensity score matching was used to compare the HFmrEF group with the other ejection fraction groups. Among the study participants, 583 (41%) had HFrEF, 227 (16%) HFmrEF, and 610 (43%) HFpEF. HFmrEF patients had a clinical profile similar to that of HFpEF patients in terms of age, blood pressure, and atrial fibrillation prevalence, but shared with HFrEF patients a higher proportion of male participants and ischemic etiology, and use of class I drugs targeting HFrEF. All other features were intermediate, and comorbidities were similar among the 3 groups. There were no significant differences in all-cause mortality, cause of death, or heart failure readmission. The similar outcomes were confirmed in the propensity score matched cohorts. The HFmrEF patient group has characteristics between the HFrEF and HFpEF groups, with more similarities to the HFpEF group. No between-group differences were observed in total mortality, cause of death, or heart failure readmission. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  15. EIT Observations of Coronal Mass Ejections

    Science.gov (United States)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  16. Efficacy and safety of sacubitril/valsartan (LCZ696) in Japanese patients with chronic heart failure and reduced ejection fraction: Rationale for and design of the randomized, double-blind PARALLEL-HF study.

    Science.gov (United States)

    Tsutsui, Hiroyuki; Momomura, Shinichi; Saito, Yoshihiko; Ito, Hiroshi; Yamamoto, Kazuhiro; Ohishi, Tomomi; Okino, Naoko; Guo, Weinong

    2017-09-01

    The prognosis of heart failure patients with reduced ejection fraction (HFrEF) in Japan remains poor, although there is growing evidence for increasing use of evidence-based pharmacotherapies in Japanese real-world HF registries. Sacubitril/valsartan (LCZ696) is a first-in-class angiotensin receptor neprilysin inhibitor shown to reduce mortality and morbidity in the recently completed largest outcome trial in patients with HFrEF (PARADIGM-HF trial). The prospectively designed phase III PARALLEL-HF (Prospective comparison of ARNI with ACE inhibitor to determine the noveL beneficiaL trEatment vaLue in Japanese Heart Failure patients) study aims to assess the clinical efficacy and safety of LCZ696 in Japanese HFrEF patients, and show similar improvements in clinical outcomes as the PARADIGM-HF study enabling the registration of LCZ696 in Japan. This is a multicenter, randomized, double-blind, parallel-group, active controlled study of 220 Japanese HFrEF patients. Eligibility criteria include a diagnosis of chronic HF (New York Heart Association Class II-IV) and reduced ejection fraction (left ventricular ejection fraction ≤35%) and increased plasma concentrations of natriuretic peptides [N-terminal pro B-type natriuretic peptide (NT-proBNP) ≥600pg/mL, or NT-proBNP ≥400pg/mL for those who had a hospitalization for HF within the last 12 months] at the screening visit. The study consists of three phases: (i) screening, (ii) single-blind active LCZ696 run-in, and (iii) double-blind randomized treatment. Patients tolerating LCZ696 50mg bid during the treatment run-in are randomized (1:1) to receive LCZ696 100mg bid or enalapril 5mg bid for 4 weeks followed by up-titration to target doses of LCZ696 200mg bid or enalapril 10mg bid in a double-blind manner. The primary outcome is the composite of cardiovascular death or HF hospitalization and the study is an event-driven trial. The design of the PARALLEL-HF study is aligned with the PARADIGM-HF study and aims to assess

  17. The effects of stress on left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kiess, M.C.; Dimsdale, J.E.; Moore, R.H.; Liu, P.; Newell, J.; Barlai-Kovach, M.; Boucher, C.A.; Strauss, H.W.; Massachusetts General Hospital, Boston; Massachusetts General Hospital, Boston

    1988-01-01

    The left ventricular ejection fraction (EF) was studied in 17 healthy volunteers with a new ambulatory left ventricular function monitor. Heart rate, EF, and blood pressure measurements were made during rest, a psychiatric stress interview, cold exposure, exercise, and eating. An increase in EF was seen during emotional stress (from 0.45±0.09 to 0.51±0.13, P<0.001). This increase was comparable to that observed during exercise (0.52±0.14) and eating (0.52±0.10, P<0.001). In contrast, cold exposure caused a decrease in EF (0.43±0.13, P<0.05). These observations demonstrate the powerful hemodynamic consequences of common behaviors as well as the utility and feasability of studying such behavioral factors in ambulatory subjects. (orig.)

  18. Fast, controlled stepping drive for D2 filament ejection

    International Nuclear Information System (INIS)

    Amenda, W.; Lang, R.S.

    1985-01-01

    Centrifugal pellet injectors are required to refuel plasma machines. The pellet feed into the centrifuge should, if possible, be direct to keep the exit angle divergence small. The D 2 filaments used are first stored in a cryostat and then rapidly transported to the intake region of the centrifuge. An intermittent drive for fast, controlled ejection of D 2 filaments is described here. Mean filament speed of up to 0.6 m/s per step (1.2 mm) are achieved for the centrifugal pellet injector which refuels the ASDEX tokamak at Garching. The timing of the (81) step shifts can be synchronized with the rotor motion. The drive allows rates of up to 50 pellets per second. The drive method also seems to be suitable for direct feeding of other known centrifugal pellet injectors

  19. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  20. Measurement of right and left ventricular ejection fraction in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Brynjolf, I.; Qvist, J.; Mygind, T.; Jordening, H.; Dorph, S.; Munck, O.

    1983-08-01

    Three techniques for measurement of right (RVEF) and two techniques for left (LVEF) ventricular ejection fraction were evaluated in five dogs. RVEF was measured with a first-pass radionuclide technique using erythrocytes labelled in vitro with Technetium-99m methylene disphosphonate (MDP) and compared with RVEF measured with a thermodilution technique. Thermodilution-determined RVEF was compared with RVEF values measured with cine angiocardiography. LVEF was measured with a radionuclide ECG-gated equilibrium technique and compared with cine angiocardiography. Measurements were performed before and during a continuous infusion of dopamine. There was an excellent correlation between RVEF measured with the first-pass and the thermodilution technique. LVEF measured with the ECG-gated equilibrium technique correlated well with cine angiocardiography.