Quantum molecular master equations
Brechet, Sylvain D.; Reuse, Francois A.; Maschke, Klaus; Ansermet, Jean-Philippe
2016-10-01
We present the quantum master equations for midsize molecules in the presence of an external magnetic field. The Hamiltonian describing the dynamics of a molecule accounts for the molecular deformation and orientation properties, as well as for the electronic properties. In order to establish the master equations governing the relaxation of free-standing molecules, we have to split the molecule into two weakly interacting parts, a bath and a bathed system. The adequate choice of these systems depends on the specific physical system under consideration. Here we consider a first system consisting of the molecular deformation and orientation properties and the electronic spin properties and a second system composed of the remaining electronic spatial properties. If the characteristic time scale associated with the second system is small with respect to that of the first, the second may be considered as a bath for the first. Assuming that both systems are weakly coupled and initially weakly correlated, we obtain the corresponding master equations. They describe notably the relaxation of magnetic properties of midsize molecules, where the change of the statistical properties of the electronic orbitals is expected to be slow with respect to the evolution time scale of the bathed system.
Dyre, Jeppe
1995-01-01
energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk modelthe energy master equation...... (EME)is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...
Markovian Master Equations: A Critical Study
Rivas, Ángel; Huelga, Susana F; Plenio, Martin B
2010-01-01
We derive Markovian master equations of single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding Markovian master equations with exact numerical simulations of the evolution of the global system, we precisely delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced dynamics. The proposed method is sufficiently general to suggest that the conclusions made here are widely applicable to a large class of settings involving interacting chains subject to a weak interaction with an environment.
Markovian master equations: a critical study
Rivas, Angel; Huelga, Susana F; B Plenio, Martin [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); K Plato, A Douglas, E-mail: angel.rivas@uni-ulm.d [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom)
2010-11-15
We derive Markovian master equations for single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding master equations with numerical simulations of the global system's evolution, we delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced Markovian dynamics. The results of these illustrative examples serve to clarify the general properties of other open quantum system scenarios subject to treatment within a Markovian approximation.
Novel dissipative properties of the master equation
Hong, Liu; Jia, Chen; Zhu, Yi; Yong, Wen-An
2016-10-01
Recent studies have shown that the entropy production rate for the master equation consists of two non-negative terms: the adiabatic and non-adiabatic parts, where the non-adiabatic part is also known as the free energy dissipation rate. In this paper, we present some nonzero lower bounds for the free energy, the entropy production rate, and its adiabatic and non-adiabatic parts. These nonzero lower bounds not only reveal some novel dissipative properties for nonequilibrium dynamics which are much stronger than the second law of thermodynamics, but also impose some new constraints on thermodynamic constitutive relations. Moreover, we also give a mathematical application of the nonzero lower bounds by studying the long-time behavior of the master equation. Extensions to the Tsallis statistics are also discussed, including the nonzero lower bounds for the Tsallis-type free energy and its dissipation rate.
Master-equation approach to stochastic neurodynamics
Ohira, Toru; Cowan, Jack D.
1993-09-01
A master-equation approach to the stochastic neurodynamics proposed by Cowan [in Advances in Neural Information Processing Systems 3, edited by R. P. Lippman, J. E. Moody, and D. S. Touretzky (Morgan Kaufmann, San Mateo, 1991), p. 62] is investigated in this paper. We deal with a model neural network that is composed of two-state neurons obeying elementary stochastic transition rates. We show that such an approach yields concise expressions for multipoint moments and an equation of motion. We apply the formalism to a (1+1)-dimensional system. Exact and approximate expressions for various statistical parameters are obtained and compared with Monte Carlo simulations.
Solve the Master Equation in Python
Fan, Wei; Chen, Bing; Ye, Qianqian
2011-01-01
A brief introduction to the Python computing environment is given. By solving the master equation encountered in quantum transport, we give an example of how to solve the ODE problems in Python. The ODE solvers used are the ZVODE routine in Scipy and the bsimp solver in GSL. For the former, the equation can be in its complex-valued form, while for the latter, it has to be rewritten to a real-valued form. The focus is on the detailed workflow of the implementation process, rather than on the syntax of the python language, with the hope to help readers simulate their own models in Python.
Quantifying uncertainty in the chemical master equation
Bayati, Basil S.
2017-06-01
We describe a novel approach to quantifying the uncertainty inherent in the chemical kinetic master equation with stochastic coefficients. A stochastic collocation method is coupled to an analytical expansion of the master equation to analyze the effects of both extrinsic and intrinsic noise. The method consists of an analytical moment-closure method resulting in a large set of differential equations with stochastic coefficients that are in turn solved via a Smolyak sparse grid collocation method. We discuss the error of the method relative to the dimension of the model and clarify which methods are most suitable for the problem. We apply the method to two typical problems arising in chemical kinetics with time-independent extrinsic noise. Additionally, we show agreement with classical Monte Carlo simulations and calculate the variance over time as the sum of two expectations. The method presented here has better convergence properties for low to moderate dimensions than standard Monte Carlo methods and is therefore a superior alternative in this regime.
Markovian quantum master equation beyond adiabatic regime
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Exact Closed Master Equation for Gaussian Non-Markovian Dynamics.
Ferialdi, L
2016-03-25
Non-Markovian master equations describe general open quantum systems when no approximation is made. We provide the exact closed master equation for the class of Gaussian, completely positive, trace preserving, non-Markovian dynamics. This very general result allows us to investigate a vast variety of physical systems. We show that the master equation for non-Markovian quantum Brownian motion is a particular case of our general result. Furthermore, we derive the master equation unraveled by a non-Markovian, dissipative stochastic Schrödinger equation, paving the way for the analysis of dissipative non-Markovian collapse models.
Epidemics in networks: A master equation approach
Cotacallapa, M
2016-01-01
A problem closely related to epidemiology, where a subgraph of 'infected' links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.
Tunneling through molecules and quantum dots: master-equation approaches
Timm, Carsten
2008-01-01
An important class of approaches to the description of electronic transport through molecules and quantum dots is based on the master equation. We discuss various formalisms for deriving a master equation and their interrelations. It is shown that the master equations derived by Wangsness, Bloch, and Redfield and by Koenig et al. are equivalent. The roles of the large-reservoir and Markov approximations are clarified. The Markov approximation is traced back to nonzero bias voltage and tempera...
Staying positive: going beyond Lindblad with perturbative master equations
Whitney, Robert S [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France)
2008-05-02
The perturbative master equation (Bloch-Redfield) is used extensively to study dissipative quantum mechanics-particularly for qubits-despite the 25-year-old criticism that it violates positivity (generating negative probabilities). We take an arbitrary system coupled to an environment containing many degrees-of-freedom and cast its perturbative master equation (derived from a perturbative treatment of Nakajima-Zwanzig or Schoeller-Schoen equations) in the form of a Lindblad master equation. We find that the equation's parameters are time dependent. This time dependence is rarely accounted for and invalidates Lindblad's dynamical semigroup analysis. We analyse one such Bloch-Redfield master equation (for a two-level system coupled to an environment with a short but non-vanishing memory time), which apparently violates positivity. We analytically show that, once the time dependence of the parameters is accounted for, positivity is preserved.
Master equations and the theory of stochastic path integrals
Weber, Markus F
2016-01-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. We discuss analytical and numerical methods for the solution of master equations, keeping our focus on methods that are applicable even when stochastic fluctuations are strong. The reviewed methods include the generating function technique and the Poisson representation, as well as novel ways of mapping the forward and backward master equations onto linear partial differential equations (PDEs). Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE obeyed by the generating function. After outlining these methods, we solve the derived PDEs in terms of two path integrals. The path integrals provide distinct exact representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Furthermore, we review a method for the approxima...
General-dyne unravelling of a thermal master equation
Genoni, M. G.; Mancini, S.; Serafini, A.
2014-07-01
We analyze the unravelling of the quantum optical master equation at finite temperature due to direct, continuous, general-dyne detection of the environment. We first express the general-dyne Positive Operator Valued Measure (POVM) in terms of the eigenstates of a non-Hermitian operator associated to the general-dyne measurement. Then we derive the stochastic master equation obtained by considering the interaction between the system and a reservoir at thermal equilibrium, which is measured according to the POVM previously determined. Finally, we present a feasible measurement scheme, which reproduces general-dyne detection for any value of the parameter characterizing the stochastic master equation.
Catchment residence and travel time distributions: The master equation
Gianluca Botter; Enrico Bertuzzo; Andrea Rinaldo
2011-01-01
Travel/residence time pdf's are related objects with different physical meaning A Master Equation for the residence time pdf is derived and solved analytically We develop a mathematical framework...
Counting master integrals. Integration by parts vs. functional equations
Kniehl, Bernd A.; Tarasov, Oleg V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2016-01-15
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
The Approach to Equilibrium: Detailed Balance and the Master Equation
Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.
2011-01-01
The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…
Master Equation Analysis of Thermal and Nonthermal Microwave Effects.
Ma, Jianyi
2016-10-11
Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.
The Pentabox Master Integrals with the Simplified Differential Equations approach
Papadopoulos, Costas G; Wever, Christopher
2015-01-01
We present the calculation of massless two-loop Master Integrals relevant to five-point amplitudes with one off-shell external leg and derive the complete set of planar Master Integrals with five on-mass-shell legs, that contribute to many $2\\to 3$ amplitudes of interest at the LHC, as for instance three jet production, $\\gamma, V, H +2$ jets etc., based on the Simplified Differential Equations approach.
Gauge Poisson representations for birth/death master equations
Drummond, P D
2002-01-01
Poisson representation techniques provide a powerful method for mapping master equations for birth/death processes - found in many fields of physics, chemistry and biology - into more tractable stochastic differential equations. However, the usual expansion is not exact in the presence of boundary terms, which commonly occur when the differential equations are nonlinear. In this paper, a stochastic gauge technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate equation with stochastic terms. These methods provide novel techniques for calculating and understanding the effects of number correlations in systems that have a master equation description. As examples, correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared with numerical simulations, demonstrating that stochastic gauge techniques can give exact results...
Maxwell boundary conditions impose non-Lindblad master equation
Bamba, Motoaki
2016-01-01
From the Hamiltonian connecting the inside and outside of an Fabry-Perot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to that Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultra-strong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical elec...
Chemical master equation closure for computer-aided synthetic biology.
Smadbeck, Patrick; Kaznessis, Yiannis N
2015-01-01
With inexpensive DNA synthesis technologies, we can now construct biological systems by quickly piecing together DNA sequences. Synthetic biology is the promising discipline that focuses on the construction of these new biological systems. Synthetic biology is an engineering discipline, and as such, it can benefit from mathematical modeling. This chapter focuses on mathematical models of biological systems. These models take the form of chemical reaction networks. The importance of stochasticity is discussed and methods to simulate stochastic reaction networks are reviewed. A closure scheme solution is also presented for the master equation of chemical reaction networks. The master equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks for over 70 years. With the first complete solution of chemical master equations, a wide range of experimental observations of biomolecular interactions may be mathematically conceptualized. We anticipate that models based on the closure scheme described herein may assist in rationally designing synthetic biological systems.
Master equation approach to reversible and conservative discrete systems.
Urbina, Felipe; Rica, Sergio
2016-12-01
A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38, 427 (1988)0556-279110.1103/PhysRevA.38.427], a coarse-graining approach is applied to the time series of the total magnetization, leading to a master equation that governs the macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes. In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is validated and some explicit examples are discussed.
Maxwell boundary conditions imply non-Lindblad master equation
Bamba, Motoaki; Imoto, Nobuyuki
2016-09-01
From the Hamiltonian connecting the inside and outside of a Fabry-Pérot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to the connecting Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in the framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultrastrong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical electrodynamics.
An algebraic solution of Lindblad-type master equations
Klimov, A B; Romero, J L [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410, Guadalajara, Jal. (Mexico)
2003-06-01
We propose an algebraic solution for a wide class of Lindblad-type master equations. Examples of dissipation in free field evolution, field evolution in the Kerr medium, two-photon field dissipation, atomic dissipation and two-mode field dissipation are given.
Master equation approach to reversible and conservative discrete systems
Urbina, Felipe; Rica, Sergio
2016-12-01
A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38, 427 (1988), 10.1103/PhysRevA.38.427], a coarse-graining approach is applied to the time series of the total magnetization, leading to a master equation that governs the macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes. In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is validated and some explicit examples are discussed.
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Extended master equation models for molecular communication networks
Chou, Chun Tung
2012-01-01
We consider molecular communication networks consisting of transmitters and receivers distributed in a fluidic medium. In such networks, a transmitter sends one or more signalling molecules, which are diffused over the medium, to the receiver to realise the communication. In order to be able to engineer synthetic molecular communication networks, mathematical models for these networks are required. This paper proposes a new stochastic model for molecular communication networks called reaction-diffusion master equation with exogenous input (RDMEX). The key idea behind RDMEX is to model the transmitters as time sequences specify the emission patterns of signalling molecules, while diffusion in the medium and chemical reactions at the receivers are modelled as Markov processes using master equation. An advantage of RDMEX is that it can readily be used to model molecular communication networks with multiple transmitters and receivers. For the case where the reaction kinetics at the receivers is linear, we show ho...
Correlation Function and Generalized Master Equation of Arbitrary Age
2007-11-02
Correlation function and generalized master equation of arbitrary age Paolo Allegrini,1 Gerardo Aquino,2,* Paolo Grigolini,2,3,4 Luigi Palatella,5...P.O. Box 311427, Denton, Texas 76203-1427, USA 3Dipartimento di Fisica dell’Università di Pisa and INFM, Via Buonarroti 2, 56127 Pisa, Italy 4Istituto...dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy 5Dipartimento di Fisica and Istituto dei Sistemi
Properties of quantum Markovian master equations. [Semigroup law, detailed balance
Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.
1976-11-01
An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed.
Excess entropy production in quantum system: Quantum master equation approach
Nakajima, Satoshi; Tokura, Yasuhiro
2016-01-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess...
Three faces of the second law. I. Master equation formulation.
Esposito, Massimiliano; Van den Broeck, Christian
2010-07-01
We propose a formulation of stochastic thermodynamics for systems subjected to nonequilibrium constraints (i.e. broken detailed balance at steady state) and furthermore driven by external time-dependent forces. A splitting of the second law occurs in this description leading to three second-law-like relations. The general results are illustrated on specific solvable models. The present paper uses a master equation based approach.
Reaction rates for a generalized reaction-diffusion master equation.
Hellander, Stefan; Petzold, Linda
2016-01-01
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.
Reaction rates for a generalized reaction-diffusion master equation
Hellander, Stefan; Petzold, Linda
2016-01-01
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.
Temperature characteristics of quantum dot devices: Rate vs. Master Equation Models
Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg;
2001-01-01
The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures.......The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures....
On the Thermal Symmetry of Markovian Master Equation
Tay, B A
2007-01-01
The quantum Markovian master equation of the reduced dynamics of a harmonic oscillator coupled to a thermal reservoir is shown to possess a thermal symmetry. This symmetry is a Bogoliubov transformation that can be represented by a hyperbolic rotation acting in the Liouville space of the reduced dynamics. The Liouville space is obtained as an extension from the Hilbert space by introducing tilde variables as carried out in thermofield dynamics formalism. The angle of rotation depends on the temperature of the reservoir, or the value of Planck's constant. The symmetry connects the thermal states of the system between any temperature, including absolute zero that contains a purely quantum effect. The Caldeira-Leggett equation and the classical Fokker-Planck equation also possess a thermal symmetry. We discuss how the thermal symmetry affects the change in the shape of a Gaussian wave packet. We also construct temperature dependent density states of a harmonic oscillator, which contain thermal ground states as w...
Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models
Ferialdi, L.
2017-02-01
We provide the exact non-Markovian master equation for a two-level system interacting with a thermal bosonic bath, and we write the solution of such a master equation in terms of the Bloch vector. We show that previous approximated results are particular limits of our exact master equation. We generalize these results to more complex systems involving an arbitrary number of two-level systems coupled to different thermal baths, providing the exact master equations also for these systems. As an example of this general case we derive the master equation for the Jaynes-Cummings model.
Sufficient conditions for a memory-kernel master equation
Chruściński, Dariusz; Kossakowski, Andrzej
2016-08-01
We derive sufficient conditions for the memory-kernel governing nonlocal master equation which guarantee a legitimate (completely positive and trace-preserving) dynamical map. It turns out that these conditions provide natural parametrizations of the dynamical map being a generalization of the Markovian semigroup. This parametrization is defined by the so-called legitimate pair—monotonic quantum operation and completely positive map—and it is shown that such a class of maps covers almost all known examples from the Markovian semigroup, the semi-Markov evolution, up to collision models and their generalization.
Application of Perturbation Theory to a Master Equation
B. M. Villegas-Martínez
2016-01-01
Full Text Available We develop a matrix perturbation method for the Lindblad master equation. The first- and second-order corrections are obtained and the method is generalized for higher orders. The perturbation method developed is applied to the problem of a lossy cavity filled with a Kerr medium; the second-order corrections are estimated and compared with the known exact analytic solution. The comparison is done by calculating the Q-function, the average number of photons, and the distance between density matrices.
Generalized master equation for modular exciton density transfer
Jang, Seogjoo; Fleming, Graham; Whaley, K Birgitta
2013-01-01
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations at small length scales into dynamics over large length scales, without assumptions of time scale separation or specific forms of intra-module quantum dynamics. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over many coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons.
Coarse graining of master equations with fast and slow states
Pigolotti, Simone; Vulpiani, Angelo
2008-01-01
We propose a general method for simplifying master equations by eliminating from the description rapidly evolving states. The physical recipe we impose is the suppression of these states and a renormalization of the rates of all the surviving states. In some cases, this decimation procedure can...... be analytically carried out and is consistent with other analytical approaches, such as in the problem of the random walk in a double well potential. We discuss the application of our method to nontrivial examples: diffusion in a lattice with defects and a model of an enzymatic reaction outside the steady state...
A Master Equation for Multi-Dimensional Non-Linear Field Theories
Park, Q H
1992-01-01
A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.
Diffusive Limits of the Master Equation in Inhomogeneous Media
Sattin, F; Salasnich, L
2015-01-01
In inhomogeneous environments several expressions for the flux of a diffusing quantity may apply--from Fick-Fourier's to Fokker-Planck's--depending upon the system studied. The integro-differential Master Equation (ME) provides a fairly generic framework for describing the dynamics of arbitrary systems driven by stochastic rules. Diffusive dynamics does arise as long-wavelength limit of the ME. However, while it is straightforward to obtain a diffusion equation with Fokker-Planck flux, its Fick-Fourier counterpart has never been worked out from the ME. In this work we show under which hypothesis the Fick's flux can actually be recovered from the ME. Analytical considerations are supported by explicit computer models.
Quantum Master Equation for QED in Exact Renormalization Group
Igarashi, Yuji; Sonoda, Hidenori
2007-01-01
Recently, one of us (H.S.) gave an explicit form of the Ward-Takahashi identity for the Wilson action of QED. We first rederive the identity using a functional method. The identity makes it possible to realize the gauge symmetry even in the presence of a momentum cutoff. In the cutoff dependent realization, the abelian nature of the gauge symmetry is lost, breaking the nilpotency of the BRS transformation. Using the Batalin-Vilkovisky formalism, we extend the Wilson action by including the antifield contributions. Then, the Ward-Takahashi identity for the Wilson action is lifted to a quantum master equation, and the modified BRS transformation regains nilpotency. We also obtain a flow equation for the extended Wilson action.
Extended master equation models for molecular communication networks.
Chou, Chun Tung
2013-06-01
We consider molecular communication networks consisting of transmitters and receivers distributed in a fluidic medium. In such networks, a transmitter sends one or more signaling molecules, which are diffused over the medium, to the receiver to realize the communication. In order to be able to engineer synthetic molecular communication networks, mathematical models for these networks are required. This paper proposes a new stochastic model for molecular communication networks called reaction-diffusion master equation with exogenous input (RDMEX). The key idea behind RDMEX is to model the transmitters as time series of signaling molecule counts, while diffusion in the medium and chemical reactions at the receivers are modeled as Markov processes using master equation. An advantage of RDMEX is that it can readily be used to model molecular communication networks with multiple transmitters and receivers. For the case where the reaction kinetics at the receivers is linear, we show how RDMEX can be used to determine the mean and covariance of the receiver output signals, and derive closed-form expressions for the mean receiver output signal of the RDMEX model. These closed-form expressions reveal that the output signal of a receiver can be affected by the presence of other receivers. Numerical examples are provided to demonstrate the properties of the model.
FAN Hong-Yi; LI Chao
2004-01-01
We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation (Hong-Yi Fan and Jun-Hua Chen, J. Phys. A35 (2002) 6873) to two-mode case. In this approach the two-photon master equations can be directly and conveniently converted into c-number partial differential equations. As an example, we solve the typical master equation for two-photon process in some limiting cases.
Generalized master equations for non-Poisson dynamics on networks
Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Delay chemical master equation: direct and closed-form solutions
Leier, Andre; Marquez-Lago, Tatiana T.
2015-01-01
The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived. PMID:26345616
Master Equation Approach to Molecular Motor's Directed Motion
FENG Juan; ZHUO Yi-Zhong
2005-01-01
@@ The master equation approach based on the periodic one-dimensional three-state hopping model is developed to study the molecular motor's directed motion. An explicit solution Px ( t ) is obtained for the probability distribution as a function of the time for any initial distribution Px(0) with all the transients included. We introduce dj to represent the sub-step lengths, which can reflect how the external load affects the individual rate via load distribution factors θ+j and θ-j. A wide variety of molecular motor behaviour under external load f can readily be obtained by the unequal-distance transition model with load-dependent transition rates. By comparison with the experiments, namely of the drift velocity v and the randomness parameter r versus adenosine triphosphate concentration and external load f, it is shown that the model presented here can rather satisfactorily explain the available data.
Master equation approach of classical noise in intersubband detectors
Delga, A.; Carras, M.; Trinité, V.; Guériaux, V.; Doyennette, L.; Nedelcu, A.; Schneider, H.; Berger, V.
2012-06-01
Electronic transport in intersubband detectors is investigated theoretically and experimentally. Within the framework of inter-Wannier-Stark levels electron scattering, consistent dark current and low-frequency noise expressions are obtained through the resolution of the two first moments of a master equation for classical particles. In particular, the formulation of noise bridges over the vision of uncorrelated Johnson and shot contributions. Theoretical predictions are compared to measurements for five quantum well detectors, either photovoltaic or photoconductive, whose detection wavelength span from 8μm to 17μm. Quantitative agreement with experiment is found for a broad range of biases and temperatures. Correlation effects are discussed and proven to either reduce or enhance the noise.
Generalized Master Equations Leading to Completely Positive Dynamics
Vacchini, Bassano
2016-12-01
We provide a general construction of quantum generalized master equations with a memory kernel leading to well-defined, that is, completely positive and trace-preserving, time evolutions. The approach builds on an operator generalization of memory kernels appearing in the description of non-Markovian classical processes and puts into evidence the nonuniqueness of the relationship arising due to the typical quantum issue of operator ordering. The approach provides a physical interpretation of the structure of the kernels, and its connection with the classical viewpoint allows for a trajectory description of the dynamics. Previous apparently unrelated results are now connected in a unified framework, which further allows us to phenomenologically construct a large class of non-Markovian evolutions taking as the starting point collections of time-dependent maps and instantaneous transformations describing the microscopic interaction dynamics.
Symmetry of bilinear master equations for a quantum oscillator
Tay, B. A.
2017-02-01
We study the most general continuous transformation on the generators of bilinear master equations of a quantum oscillator. We find that transformation operators that preserve the hermiticity of density operators and conserve the probability of reduced dynamics should be adjoint-symmetric, and they are not limited to the pure product of unitary operators in the bra and ket space but could be a mixture of them. We need to include the more general transformation operators to explore the full symmetry of generic reduced dynamics. We discuss how the operators are related to those considered in previous works, and illustrate how they leave the reduced dynamics form invariant, or map one into the other. The positive semidefinite requirement on the density operator can be imposed to give a valid range of transformation parameters.
Master equation approach to DNA breathing in heteropolymer DNA
Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A
2007-01-01
After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...
Master equation approach to DNA breathing in heteropolymer DNA
Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A
2007-01-01
After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...
Bistability in the Chemical Master Equation for Dual Phosphorylation Cycles
Bazzani, A; Giampieri, E; Remondini, D; Cooper, L N
2011-01-01
Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates, are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed to elucidate the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional Chemical Master Equation for a well known model of a two step phospho/dephosphorylation cycle using the quasi steady state approximation of the enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the ...
Reaction-diffusion master equation in the microscopic limit
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2012-04-01
Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski framework and the on-lattice reaction-diffusion master equation (RDME) framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very fine. Here we give a general and simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel size for which no local RDME can agree with the Smoluchowski model and lets us quantify this limit in two and three dimensions. In this light we review and discuss recent work in which the RDME has been modified in different ways in order to better agree with the microscale model for very small voxel sizes.
On the Reaction Diffusion Master Equation in the Microscopic Limit
Hellander, Stefan; Petzold, Linda
2011-01-01
Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski framework and the on-lattice Reaction-Diffusion Master Equation (RDME) framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very fine. In this paper we give a new, general and simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel size for which no local RDME can agree with the Smoluchowski model.
Solution to the Master Equation of a Free Damped Harmonic Oscillator with Linear Driving
杨洁; 逯怀新; 赵博; 赵梅生; 张永德
2003-01-01
We use the Lie algebra representation theory for superoperators to solve the master equation for a harmonic oscillator with a linear driving term in a squeezed thermal reservoir. By using the quantum displacement transformation and squeeze transformation, we show that the master equation has an su(1, 1) Lie algebra structure,with which we obtain the explicit solution to the master equation. A simple but typical example is given to illustrate our method.
Master equation solutions in the linear regime of characteristic formulation of general relativity
M., C E Cedeño
2015-01-01
From the field equations in the linear regime of the characteristic formulation of general relativity, Bishop, for a Schwarzschild's background, and M\\"adler, for a Minkowski's background, were able to show that it is possible to derive a fourth order ordinary differential equation, called master equation, for the $J$ metric variable of the Bondi-Sachs metric. Once $\\beta$, another Bondi-Sachs potential, is obtained from the field equations, and $J$ is obtained from the master equation, the other metric variables are solved integrating directly the rest of the field equations. In the past, the master equation was solved for the first multipolar terms, for both the Minkowski's and Schwarzschild's backgrounds. Also, M\\"adler recently reported a generalisation of the exact solutions to the linearised field equations when a Minkowski's background is considered, expressing the master equation family of solutions for the vacuum in terms of Bessel's functions of the first and the second kind. Here, we report new sol...
Symmetric and antisymmetric forms of the Pauli master equation
Klimenko, A. Y.
2016-07-01
When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter — this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future.
侯邦品; 王顺金; 余万伦
2003-01-01
By using the algebraic structure in the operator dual space in the master equation for the driven dissipative harmonic oscillator, we have rewritten the master equation as a Schrodinger-like equation. Then we have used three gauge transformations and obtained an exact solution to the master equation in the particle number representation.
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.
Li, Haifeng; Shao, Jiushu; Wang, Shikuan
2011-11-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
Horowitz, Jordan M.
2015-01-01
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically-reacting species is built on the stochastic trajectories of reaction events obtained from the Chemical Master Equation. However, when the molecular populations are large, the discrete Chemical Master Equation can be approximated with a continuous diffusion process, like the Chemical Langevin Equation or Low Noise Approximation. In this paper, we investigate to what extent these diffusion approximations inherit the s...
Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu [Department of Physics, University of Massachusetts at Boston, Boston, Massachusetts 02125 (United States)
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Closed description of arbitrariness in resolving quantum master equation
Igor A. Batalin
2016-07-01
Full Text Available In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A
2016-01-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A., E-mail: batalin@lpi.ru [P.N. Lebedev Physical Institute, Leninsky Prospect 53, 119 991 Moscow (Russian Federation); Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk (Russian Federation)
2016-07-10
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.
Exact Solution of the Curved Dirac Equation in Polar Coordinates: Master Function Approach
H. Panahi
2015-01-01
Full Text Available We show that the (2+1 curved Dirac equation in polar coordinates can be transformed into Schrodinger-like differential equation for upper spinor component. We compare this equation with the Schrodinger equation derived from shape invariance property of second order differential equations of mathematical physics. This formalism enables us to determine the electrostatic potential and relativistic energy in terms of master function and corresponding weight function. We also obtain the spinor wave function in terms of orthogonal polynomials.
Fourth-order master equation for a charged harmonic oscillator coupled to an electromagnetic field
Kurt, Arzu; Eryigit, Resul
Using Krylov averaging method, we have derived a fourth-order master equation for a charged harmonic oscillator weakly coupled to an electromagnetic field. Interaction is assumed to be of velocity coupling type which also takes into account the diagmagnetic term. Exact analytical expressions have been obtained for the second, the third and the fourth-order corrections to the diffusion and the drift terms of the master equation. We examined the validity range of the second order master equation in terms of the coupling constant and the bath cutoff frequency and found that for the most values of those parameters, the contribution from the third and the fourth order terms have opposite signs and cancel each other. Inclusion of the third and the fourth-order terms is found to not change the structure of the master equation. Bolu, Turkey.
Modelling with the master equation solution methods and applications in social and natural sciences
Haag, Günter
2017-01-01
This book presents the theory and practical applications of the Master equation approach, which provides a powerful general framework for model building in a variety of disciplines. The aim of the book is to not only highlight different mathematical solution methods, but also reveal their potential by means of practical examples. Part I of the book, which can be used as a toolbox, introduces selected statistical fundamentals and solution methods for the Master equation. In Part II and Part III, the Master equation approach is applied to important applications in the natural and social sciences. The case studies presented mainly hail from the social sciences, including urban and regional dynamics, population dynamics, dynamic decision theory, opinion formation and traffic dynamics; however, some applications from physics and chemistry are treated as well, underlining the interdisciplinary modelling potential of the Master equation approach. Drawing upon the author’s extensive teaching and research experience...
Numerical integration of the master equation in some models of stochastic epidemiology.
Garrett Jenkinson
Full Text Available The processes by which disease spreads in a population of individuals are inherently stochastic. The master equation has proven to be a useful tool for modeling such processes. Unfortunately, solving the master equation analytically is possible only in limited cases (e.g., when the model is linear, and thus numerical procedures or approximation methods must be employed. Available approximation methods, such as the system size expansion method of van Kampen, may fail to provide reliable solutions, whereas current numerical approaches can induce appreciable computational cost. In this paper, we propose a new numerical technique for solving the master equation. Our method is based on a more informative stochastic process than the population process commonly used in the literature. By exploiting the structure of the master equation governing this process, we develop a novel technique for calculating the exact solution of the master equation--up to a desired precision--in certain models of stochastic epidemiology. We demonstrate the potential of our method by solving the master equation associated with the stochastic SIR epidemic model. MATLAB software that implements the methods discussed in this paper is freely available as Supporting Information S1.
Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator
Li, Haifeng; Wang, Shikuan
2011-01-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled and the master equation naturally comes out. Such an equation possesses the Lindblad form in which time dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation...
Dynamics of open quantum spin systems : An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-01-01
Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtainin
Master equation for a chemical wave front with perturbation of local equilibrium
Dziekan, P.; Lemarchand, A.; Nowakowski, B.
2011-08-01
In order to develop a stochastic description of gaseous reaction-diffusion systems, which includes a reaction-induced departure from local equilibrium, we derive a modified expression of the master equation from analytical calculations based on the Boltzmann equation. We apply the method to a chemical wave front of Fisher-Kolmogorov-Petrovsky-Piskunov type, whose propagation speed is known to be sensitive to small perturbations. The results of the modified master equation are compared successfully with microscopic simulations of the particle dynamics using the direct simulation Monte Carlo method. The modified master equation constitutes an efficient tool at the mesoscopic scale, which incorporates the nonequilibrium effect without need of determining the particle velocity distribution function.
Chou, C H; Yu, T; Chou, Chung-Hsien; Yu, Ting
2007-01-01
In this paper we derive an exact master equation for two coupled quantum harmonic oscillators interacting via bilinear coupling with a common environment made up of many harmonic oscillators at arbitrary temperature for a general spectral density function. We first show a simple derivation based on the observation that the two harmonic oscillator model can be effectively mapped into that of a single harmonic oscillator in a general environment plus a free harmonic oscillator. Since the exact one harmonic oscillator master equation is known [Hu, Paz and Zhang, Phys. Rev. D \\textbf{45}, 2843 (1992)], the exact master equation with all its coefficients for this two harmonic oscillator model can be easily deduced from the known results of the single harmonic oscillator case. In the second part we give an influence functional treatment of this model and provide explicit expressions for the evolution operator of the reduced density matrix which are useful for the study of decoherence and disentanglement issues. We ...
An extended master-equation approach applied to aggregation in freeway traffic
Li Jun-Wei; Lin Bo-Liang; Huang Yong-Chang
2008-01-01
We restudy the master-equation approach applied to aggregation in a one-dimensional freeway,where the decay transition probabilities for the jump processes are reconstructed based on a car-following model. According to the reconstructed transition probabilities,the clustering behaviours and the stochastic properties of the master equation in a one-lane freeway traffic model are investigated in detail.The numerical results show that the size of the clusters initially below the critical size of the unstable cluster and initially above that of the unstable cluster all enter the same stable state,which also accords with the nucleation theory and is known from the result in earlier work.Moreover,we have obtained more reasonable parameters of the master equation based on some results of cellular automata models.
Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics.
Ding, Jin-Jin; Wang, Yao; Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-01-14
We revisit Caldeira-Leggett's quantum master equation representing mixed quantum-classical theory, but with limited applications. Proposed is a Fokker-Planck quantum master equation theory, with a generic bi-exponential correlation function description on semiclassical Brownian oscillators' environments. The new theory has caustic terms that bridge between the quantum description on primary systems and the semiclassical or quasi-classical description on environments. Various parametrization schemes, both analytical and numerical, for the generic bi-exponential environment bath correlation functions are proposed and scrutinized. The Fokker-Planck quantum master equation theory is of the same numerical cost as the original Caldeira-Leggett's approach but acquires a significantly broadened validity and accuracy range, as illustrated against the exact dynamics on model systems in quantum Brownian oscillators' environments, at moderately low temperatures.
Modified Bloch-Redfield Master Equation for Incoherent Excitation of Multilevel Quantum Systems
Tscherbul, Timur V
2014-01-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The modified Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis, and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a fi...
Master Equation Approach to Current-Voltage Characteristics of Solar Cells
Oh, Sangchul; Zhang, Yiteng; Alharbi, Fahhad; Kais, Sabre
2015-03-01
The current-voltage characteristics of solar cells is obtained using quantum master equations for electrons, holes, and excitons, in which generation, recombination, and transport processes are taken into account. As a first example, we simulate a photocell with a molecular aggregate donor to investigate whether a delocalized quantum state could enhance the efficiency. As a second example, we calculate the current-voltage characteristics of conventional p-n junction solar cells and perovskite solar cells using the master equation. The connection between the drift-diffusion model and the master equation method is established. The short-circuit current and the open-circuit voltage are calculated numerically as a function of the intensity of the sunlight and material properties such as energy gaps, diffusion constants, etc.
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Delande, Dominique; Buchleitner, Andreas
2010-01-01
We describe the transition of $N$ weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and non-condensate thermalization, we derive a master equation for the condensate subsystem in the presence of the non-condensate environment under the inclusion of all two body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of $N$ non-interacting atoms.
Zhou, Yanjun; Yin, Cangtao
2016-12-01
The Fokker-Planck equation (FPE) of the unimolecular reaction with Tsallis distribution is established by means of approximation to the master equation. The memory effect, taken into transition probability, is relevant and important for lots of anomalous phenomena. The Taylor expansion for large volume is applied to derive the power-law FPE. The steady-state solution of FPE and microscopic dynamics Ito-Langevin equation of concentration variables are therefore obtained and discussed. Two unimolecular reactions are taken as examples and the concentration distributions with different power-law parameters are analyzed, which may imply strong memory effect of hopping process.
Quantum Master Equation and Filter for Systems Driven by Fields in a Single Photon State
Gough, J E; Nurdin, H I
2011-01-01
The aim of this paper is to determine quantum master and filter equations for systems coupled to continuous-mode single photon fields. The system and field are described using a quantum stochastic unitary model, where the continuous-mode single photon state for the field is determined by a wavepacket pulse shape. The master equation is derived from this model and is given in terms of a system of coupled equations. The output field carries information about the system from the scattered photon, and is continuously monitored. The quantum filter is determined with the aid of an embedding of the system into a larger system, and is given by a system of coupled stochastic differential equations. An example is provided to illustrate the main results.
Fuchsia and master integrals for splitting functions from differential equations in QCD
Gituliar, O
2016-01-01
We report on the recent progress in reducing differential equations for Feynman master integrals to canonical form with the help of a method proposed by Roman Lee. For the first time, we present Fuchsia --- our open-source implementation of the Lee algorithm written in Python using mathematical routines of a free computer algebra system SageMath. We demonstrate Fuchsia by reducing differential equations for NLO contributions to splitting functions in QCD, which contain both loops and legs integrals.
Quantum transport in 1d systems via a master equation approach: numerics and an exact solution
Znidaric, Marko
2010-01-01
We discuss recent findings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time dependent density matrix renormalization method can be used successfully to find a stationary solution of Lindblad master equation. Furthermore, for a specific model an exact solution is presented.
Critical Dynamics : The Expansion of the Master Equation Including a Critical Point
Dekker, H.
1980-01-01
In this thesis it is shown how to solve the master equation for a Markov process including a critical point by means of successive approximations in terms of a small parameter. A critical point occurs if, by adjusting an externally controlled quantity, the system shows a transition from normal monos
Chou, Chung-Hsien; Yu, Ting; Hu, B L
2008-01-01
In this paper we derive an exact master equation for two coupled quantum harmonic oscillators interacting via bilinear coupling with a common environment at arbitrary temperature made up of many harmonic oscillators with a general spectral density function. We first show a simple derivation based on the observation that the two harmonic oscillator model can be effectively mapped into that of a single harmonic oscillator in a general environment plus a free harmonic oscillator. Since the exact one harmonic oscillator master equation is available [B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992)], the exact master equation with all its coefficients for this two harmonic oscillator model can be easily deduced from the known results of the single harmonic oscillator case. In the second part we give an influence functional treatment of this model and provide explicit expressions for the evolutionary operator of the reduced density matrix which are useful for the study of decoherence and disentanglement issues. We show three applications of this master equation: on the decoherence and disentanglement of two harmonic oscillators due to their interaction with a common environment under Markovian approximation, and a derivation of the uncertainty principle at finite temperature for a composite object, modeled by two interacting harmonic oscillators. The exact master equation for two, and its generalization to N, harmonic oscillators interacting with a general environment are expected to be useful for the analysis of quantum coherence, entanglement, fluctuations, and dissipation of mesoscopic objects toward the construction of a theoretical framework for macroscopic quantum phenomena.
Roura, Albert [Los Alamos National Laboratory; Fleming, C H [UNIV OF MARYLAND; Hu, B L [UNIV OF MARYLAND
2008-01-01
We revisit the model of a system made up of a Brownian quantum oscillator linearly coupled to an environment made up of many quantum oscillators at finite temperature. We show that the HPZ master equation for the reduced density matrix derived earlier [B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)] has incorrectly specified coefficients for the case of nonlocal dissipation. We rederive the QBM master equation, correctly specifying all coefficients, and determine the position uncertainty to be free of excessive cutoff sensitivity. Our coefficients and solutions are reduced entirely to contour integration for analytic spectra at arbitrary temperature, coupling strength, and cut-off. As an illustration we calculate the master equation coefficients and solve the master equation for ohmic coupling (with finite cutoff) and example supra-ohmic and sub-ohmic spectral densities. We determine the effect of an external force on the quantum oscillator and also show that our representation of the master equation and solutions naturally extends to a system of multiple oscillators bilinearly coupled to themselves and the bath in arbitrary fashion. This produces a formula for investigating the standard quantum limit which is central to addressing many theoretical issues in macroscopic quantum phenomena and experimental concerns related to low temperature precision measurements. We find that in a dissipative environment, all initial states settle down to a Gaussian density matrix whose covariance is determined by the thermal reservoir and whose mean is determined by the external force. We specify the thermal covariance for the spectral densities we explore.
On the non-linearity of the master equation describing spin-selective radical-ion-pair reactions
Kominis, I. K.
2010-01-01
We elaborate on the physical meaning of the non-linear master equation that was recently derived to account for spin-selective radical-ion-pair reactions. Based on quite general arguments, we show that such a non-linear master equation is indeed to be expected.
Operator Approach to the Master Equation for the One-Step Process
Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.
2016-02-01
Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.
On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system
Stantcheva, T; Herbst, E
2002-01-01
We have used the master equation approach to study a moderately complex network of diffusive reactions occurring on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those obtained with standard rate equations.
Approximate-master-equation approach for the Kinouchi-Copelli neural model on networks
Wang, Chong-Yang; Wu, Zhi-Xi; Chen, Michael Z. Q.
2017-01-01
In this work, we use the approximate-master-equation approach to study the dynamics of the Kinouchi-Copelli neural model on various networks. By categorizing each neuron in terms of its state and also the states of its neighbors, we are able to uncover how the coupled system evolves with respective to time by directly solving a set of ordinary differential equations. In particular, we can easily calculate the statistical properties of the time evolution of the network instantaneous response, the network response curve, the dynamic range, and the critical point in the framework of the approximate-master-equation approach. The possible usage of the proposed theoretical approach to other spreading phenomena is briefly discussed.
A Master Equation for Gravitational Decoherence: Probing the Textures of Spacetime
Anastopoulos, C
2013-01-01
We give a first principles derivation of a master equation for the evolution of a quantum matter field in a linearly perturbed Minkowski spacetime, based solely on quantum field theory and general relativity. We make no additional assumptions nor introduce extra ingredients, as is often done in alternative quantum theories. When the quantum matter field is projected to a one-particle state, the master equation for a non-relativistic quantum particle in a weak gravitational field predicts decoherence in the momentum basis, in contrast to most existing theories of gravitational decoherence. We point out the gauge nature of time and space reparameterizations in matter-gravity couplings, and warn that `intrinsic' decoherence or alternative quantum theories invoking stochastic dynamics arising from temporal or spatial fluctuations violate this fundamental symmetry of classical general relativity. Interestingly we find that the decoherence rate depends on extra parameters other than the Planck scale, an important f...
Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Effects of system-bath coupling on Photosynthetic heat engine: A polaron master equation approach
Qin, M; Zhao, X L; Yi, X X
2016-01-01
In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect charge transfer processes in Photosystem II reaction center (PSII RC) inspired quantum heat engine (QHE) model in a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in details. The results show a variety of dynamical behaviours. We interpret these results in terms of noise-assisted transport effect and dynamical localization which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization...
Kurt, Arzu; Eryigit, Resul, E-mail: resul@ibu.edu.tr
2015-12-18
The master equation for a charged harmonic oscillator coupled to an electromagnetic reservoir is investigated up to fourth order in the interaction strength by using Krylov averaging method. The interaction is in the velocity-coupling form and includes a diamagnetic term. Exact analytical expressions for the second-, the third-, and the fourth-order contributions to mass renormalization, decay constant, normal and anomalous diffusion coefficients are obtained for the blackbody type environment. It is found that, generally, the third- and the fourth-order contributions have opposite signs when their magnitudes are comparable to that of the second-order one. - Highlights: • Exact analytical expressions for up to the fourth-order master equation are obtained. • High and low temperature limits of anomalous diffusion coefficients are elucidated. • Convergence range of the oscillator and the bath parameters discussed.
Jin, Jinshuang, E-mail: jsjin@hznu.edu.cn [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); Li, Jun [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); College of Physics and Electronic Engineering, Dezhou University, Dezhou 253023 (China); Liu, Yu [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Yan, YiJing, E-mail: yyan@ust.hk [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Multi-qubit joint measurements in circuit QED: stochastic master equation analysis
Criger, Ben; Ciani, Alessandro [RWTH, JARA Institut fuer Quanteninformation, Aachen (Germany); DiVincenzo, David P. [RWTH, JARA Institut fuer Quanteninformation, Aachen (Germany); Forschungszentrum Juelich, Juelich (Germany)
2016-12-15
We derive a family of stochastic master equations describing homodyne measurement of multi-qubit diagonal observables in circuit quantum electrodynamics. In the regime where qubit decay can be neglected, our approach replaces the polaron-like transformation of previous work, which required a lengthy calculation for the physically interesting case of three qubits and two resonator modes. The technique introduced here makes this calculation straightforward and manifestly correct. Using this technique, we are able to show that registers larger than one qubit evolve under a non-Markovian master equation. We perform numerical simulations of the three-qubit, two-mode case from previous work, obtaining an average post-measurement state fidelity of ∝94%, limited by measurement-induced decoherence and dephasing. (orig.)
A Master Equation Approach to Modeling Short-term Behaviors of the Stock Market
Zhao, Conan; Yang, Xiaoxiang; Mazilu, Irina
2015-03-01
Short term fluctuations in stock prices are highly random, due to the multitude of external factors acting on the price determination process. While long-term economic factors such as inflation and revenue growth rate affect short-term price fluctuation, it is difficult to obtain the complete set of information and uncertainties associated with a given period of time. Instead, we propose a simpler short-term model based on only prior price averages and extrema. In this paper, we take a master equation under the random walk hypothesis and fit parameters based on AAPL stock price data over the past ten years. We report results for small system sizes and for the short term average price. These results may lead to a general closed-form solution to this particular master equation.
Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.
2016-11-01
Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.
Lane, Thomas J.; Pande, Vijay S.
2012-12-01
Motivated by the observed time scales in protein systems said to fold "downhill," we have studied the finite, linear master equation, with uniform rates forward and backward as a model of the downhill process. By solving for the system eigenvalues, we prove the claim that in situations where there is no free energy barrier a transition between single- and multi-exponential kinetics occurs at sufficient bias (towards the native state). Consequences for protein folding, especially the downhill folding scenario, are briefly discussed.
Tscherbul, Timur V; Brumer, Paul
2015-03-14
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The partial secular Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a first application, we consider the dynamics of excited state coherences arising under incoherent light excitation from a single ground state and observe population-to-coherence transfer and the formation of non-equilibrium quasisteady states in the regime of small excited state splitting. Analytical expressions derived earlier for the V-type system [T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014)] are found to provide a nearly quantitative description of multilevel excited-state populations and coherences in both the small- and large-molecule limits.
Martínez-Morales, José L.
The master equations in the Euclidean Schwarzschild-Tangherlini space-time of a small static perturbation are studied. For each harmonic mode on the sphere there are two solutions that behave differently at infinity. One solution goes like the power 2-l-n of the radial variable, the other solution goes like the power l. These solutions occur in power series. The second main statement of the paper is that any eigentensor of the Lichnerowicz operator in a Euclidean Schwarzschild space-time with an eigenvalue different from zero is essentially singular at infinity. Possible applications of the stability of instantons are discussed. We present the analysis of a small static perturbation of the Euclidean Schwarzschild-Tangherlini metric tensor. The higher order perturbations will appear later. We determine independently the static perturbations of the Schwarzschild quantum black hole in dimension 1+n≥4, where the system of equations is reduced to master equations — ordinary differential equations. The solutions are hypergeometric functions which in some cases can be reduced to polynomials. In the same Schwarzschild background, we analyze static perturbations of the scalar mode and show that there does not exist any static perturbation that is regular everywhere outside the event horizon and is well-behaved at the spatial infinity. This confirms the uniqueness of the spherically symmetric static empty quantum black hole, within the perturbation framework. Our strategy for treating the stability problem is also applicable to other symmetric quantum black holes with a nonzero cosmological constant.
Vaccaro, S R
2016-01-01
The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m(t) and the inactivation variable h(t), which are dependent on the transitions of S4 sensors in each of the ion channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m(t) and h(t) may be derived from the solution to a master equation which describes the coupling between two activation sensors regulating the Na+ channel conductance and a two stage inactivation process. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined Hodgkin-Huxley expressions, and exhibit saturation for both depolarized and hyperpolarized clamp potentials.
Iles-Smith, Jake; Lambert, Neill; Nazir, Ahsan
2015-01-01
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed in [J. Iles-Smith, N. Lambert, and A. Nazir, Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no ...
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Proton-pumping mechanism of cytochrome c oxidase: A kinetic master-equation approach
Kim, Young C.; Hummer, Gerhard
2011-01-01
Cytochrome c oxidase (CcO) is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, CcO translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in CcO. Basic principles of the CcO proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the ative-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for CcO provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. PMID:21946020
Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach.
Kim, Young C; Hummer, Gerhard
2012-04-01
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .
Computational study of p53 regulation via the chemical master equation
Vo, Huy D.; Sidje, Roger B.
2016-06-01
A stochastic model of cellular p53 regulation was established in Leenders, and Tuszynski (2013 Front. Oncol. 3 1-16) to study the interactions of p53 with MDM2 proteins, where the stochastic analysis was done using a Monte Carlo approach. We revisit that model here using an alternative scheme, which is to directly solve the chemical master equation (CME) by an adaptive Krylov-based finite state projection method that combines the stochastic simulation algorithm with other computational strategies, namely Krylov approximation techniques to the matrix exponential, divide and conquer, and aggregation. We report numerical results that demonstrate the extend of tackling the CME with this combination of tools.
Kurt, Arzu; Eryigit, Resul
2015-12-01
The master equation for a charged harmonic oscillator coupled to an electromagnetic reservoir is investigated up to fourth order in the interaction strength by using Krylov averaging method. The interaction is in the velocity-coupling form and includes a diamagnetic term. Exact analytical expressions for the second-, the third-, and the fourth-order contributions to mass renormalization, decay constant, normal and anomalous diffusion coefficients are obtained for the blackbody type environment. It is found that, generally, the third- and the fourth-order contributions have opposite signs when their magnitudes are comparable to that of the second-order one.
Lane, Thomas
2012-01-01
Motivated by claims about the nature of the observed timescales in protein systems said to fold downhill, we have studied the finite, linear master equation which is a model of the downhill process. By solving for the system eigenvalues, we prove the often stated claim that in situations where there is no free energy barrier, a transition between single and multi-exponential kinetics occurs at sufficient bias (towards the native state). Consequences for protein folding, especially the downhill folding scenario, are briefly discussed.
Gianni Pagnini
2012-01-01
inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdélyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.
Master equation with quantized atomic motion including dipole-dipole interactions
Damanet, François; Braun, Daniel; Martin, John
2016-05-01
We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Vaccaro, S. R.
2016-11-01
The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m (t ) and the inactivation variable h (t ) , which are dependent on the transitions of S4 sensors of each of the Na+ channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m (t ) and h (t ) may be derived from the solution to a master equation that describes the coupling between two or three activation sensors regulating the Na+ channel conductance and a two-stage inactivation process. If the inactivation rate from the closed or open states increases as the S4 sensors activate, a more general form of the Hodgkin-Huxley expression for the open-state probability may be derived where m (t ) is dependent on both activation and inactivation processes. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined expressions and exhibit saturation for both depolarized and hyperpolarized clamp potentials.
Vaccaro, S R
2016-11-01
The Na^{+} current in nerve and muscle membranes may be described in terms of the activation variable m(t) and the inactivation variable h(t), which are dependent on the transitions of S4 sensors of each of the Na^{+} channel domains DI to DIV. The time-dependence of the Na^{+} current and the rate equations satisfied by m(t) and h(t) may be derived from the solution to a master equation that describes the coupling between two or three activation sensors regulating the Na^{+} channel conductance and a two-stage inactivation process. If the inactivation rate from the closed or open states increases as the S4 sensors activate, a more general form of the Hodgkin-Huxley expression for the open-state probability may be derived where m(t) is dependent on both activation and inactivation processes. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined expressions and exhibit saturation for both depolarized and hyperpolarized clamp potentials.
Iles-Smith, Jake, E-mail: Jakeilessmith@gmail.com [Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG (United Kingdom); Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby (Denmark); Dijkstra, Arend G. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Lambert, Neill [CEMS, RIKEN, Saitama 351-0198 (Japan); Nazir, Ahsan, E-mail: ahsan.nazir@manchester.ac.uk [Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2016-01-28
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.
Kuwata, Keith T.; Valin, Lukas C.
2008-01-01
Methacrolein is a major product of isoprene ozonolysis, and methacrolein oxide is an important ozonolysis intermediate. We use CBS-QB3 and RRKM/master equation calculations to characterize all methacrolein formation pathways and all the unimolecular reactions of methacrolein oxide. Our predicted methacrolein yield agrees with experiment if we assume that all of the dioxirane formed from methacrolein oxide decomposes to methacrolein. The vinyl group of methacrolein oxide allows the species to cyclize to a dioxole with a reaction barrier lower than the barriers to either hydroperoxide or dioxirane formation. Two dioxole derivatives, 1,2-epoxy-2-methyl-3-propanal and 2-methyl-3-oxopropanal, should be measurable products of isoprene ozonolysis.
Generalized Quantum Master Equations In and Out of Equilibrium: When Can One Win?
Kelly, Aaron; Wang, Lu; Markland, Thomas E
2016-01-01
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. The central quantity in these approaches is the memory kernel, which encodes the effect of the projected dynamical degrees of freedom on the observable of interest. For a large number of problems it has been shown that exact and approximate methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach seems to offer no advantage over a direct evaluation of the property of interest. The development of a more detailed understanding of the conditions under which these methods will offer benefits would thus greatly enhance their utility. Here, we derive exact expressions for the memory kernel obtained from projection operators for systems both in and out of equilibrium, and show the conditions under which these expressions will be guaranteed to return an identical result to...
Critical assessment of two-qubit post-Markovian master equations
Campbell, S; Mazzola, L; Gullo, N Lo; Vacchini, B; Busch, Th; Paternostro, M
2012-01-01
A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.
Quantum dot as a spin-current diode: A master-equation approach
Souza, F.M.; Egues, J.C.; Jauho, Antti-Pekka
2007-01-01
We report a study of spin-dependent transport in a system composed of a quantum dot coupled to a normal metal lead and a ferromagnetic lead NM-QD-FM. We use the master equation approach to calculate the spin-resolved currents in the presence of an external bias and an intradot Coulomb interaction....... We find that for a range of positive external biases current flow from the normal metal to the ferromagnet the current polarization =I↑−I↓ / I↑+I↓ is suppressed to zero, while for the corresponding negative biases current flow from the ferromagnet to the normal metal attains a relative maximum value....... The system thus operates as a rectifier for spin-current polarization. This effect follows from an interplay between Coulomb interaction and nonequilibrium spin accumulation in the dot. In the parameter range considered, we also show that the above results can be obtained via nonequilibrium Green functions...
Reformulation and solution of the master equation for multiple-well chemical reactions.
Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J
2013-11-21
We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.
Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E
2015-12-03
The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.
Zalys-Geller, E.; Hatridge, M.; Silveri, M.; Narla, A.; Sliwa, K. M.; Shankar, S.; Girvin, S. M.; Devoret, M. H.
2015-03-01
Remote entanglement of two superconducting qubits may be accomplished by first entangling them with flying coherent microwave pulses, and then erasing the which-path information of these pulses by using a non-degenerate parametric amplifier such as the Josephson Parametric Converter (JPC). Crucially, this process requires no direct interaction between the two qubits. The JPC, however, will fail to completely erase the which-path information if the flying microwave pulses encode any difference in dynamics of the two qubit-cavity systems. This which-path information can easily arise from mismatches in the cavity linewidths and the cavity dispersive shifts from their respective qubits. Through analysis of the Stochastic Master Equation for this system, we have found a strategy for shaping the measurement pulses to eliminate the effect of these mismatches on the entangling measurement. We have then confirmed the effectiveness of this strategy by numerical simulation. Work supported by: IARPA, ARO, and NSF.
Entropy and Entanglement in Master Equation of Effective Hamiltonian for Jaynes-Cummings Model
H.A. Hessian; F.A. Mohammed; A.-B.A. Mohamed
2009-01-01
In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states.Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of phase damping.Qualitatively this behavior is also reflected in alternative entanglement measures, but the quantitative agreement between different measures depends on the chosen noise model.The phase decoherenee for this model results in monotonic increase in the total entropy while the atomic sub-entropy keeps its periodic behaviour without any effect.
A master equation for gravitational decoherence: probing the textures of spacetime
Anastopoulos, C.; Hu, B. L.
2013-08-01
We give a first principles derivation of a master equation for the evolution of a quantum matter field in a linearly perturbed Minkowski spacetime, based solely on quantum field theory and general relativity. We make no additional assumptions nor introduce extra ingredients, as is often done in alternative quantum theories. When the quantum matter field is projected to a one-particle state, the master equation for a non-relativistic quantum particle in a weak gravitational field predicts decoherence in the energy basis, in contrast to most existing theories of gravitational decoherence. We point out the gauge nature of time and space reparameterizations in matter-gravity couplings, and warn that ‘intrinsic’ decoherence or alternative quantum theories invoking stochastic dynamics arising from temporal or spatial fluctuations violate this fundamental symmetry of classical general relativity. Interestingly we find that the decoherence rate depends on extra parameters other than the Planck scale, an important feature of gravitational decoherence. This is similar to the dependence of the decoherence rate of a quantum Brownian particle to the temperature and spectral density of the environment it interacts with. The corresponding features when gravity acts as an environment in decohering quantum objects are what we call the ‘textures’ of spacetime. We point out the marked difference between the case when gravity is represented as a background spacetime versus the case when gravity acts like a thermodynamic bath to quantum particles. This points to the possibility of using gravitational decoherence measurements to discern whether gravity is intrinsically elemental or emergent.
MESMER: an open-source master equation solver for multi-energy well reactions.
Glowacki, David R; Liang, Chi-Hsiu; Morley, Christopher; Pilling, Michael J; Robertson, Struan H
2012-09-27
The most commonly used theoretical models for describing chemical kinetics are accurate in two limits. When relaxation is fast with respect to reaction time scales, thermal transition state theory (TST) is the theoretical tool of choice. In the limit of slow relaxation, an energy resolved description like RRKM theory is more appropriate. For intermediate relaxation regimes, where much of the chemistry in nature occurs, theoretical approaches are somewhat less well established. However, in recent years master equation approaches have been successfully used to analyze and predict nonequilibrium chemical kinetics across a range of intermediate relaxation regimes spanning atmospheric, combustion, and (very recently) solution phase organic chemistry. In this article, we describe a Master Equation Solver for Multi-Energy Well Reactions (MESMER), a user-friendly, object-oriented, open-source code designed to facilitate kinetic simulations over multi-well molecular energy topologies where energy transfer with an external bath impacts phenomenological kinetics. MESMER offers users a range of user options specified via keywords and also includes some unique statistical mechanics approaches like contracted basis set methods and nonadiabatic RRKM theory for modeling spin-hopping. It is our hope that the design principles implemented in MESMER will facilitate its development and usage by workers across a range of fields concerned with chemical kinetics. As accurate thermodynamics data become more widely available, electronic structure theory is increasingly reliable, and as our fundamental understanding of energy transfer improves, we envision that tools like MESMER will eventually enable routine and reliable prediction of nonequilibrium kinetics in arbitrary systems.
Ghaderi, Nima
2016-03-28
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.
Ghaderi, Nima
2016-03-01
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.
Master equation-based analysis of a motor-clutch model for cell traction force.
Bangasser, Benjamin L; Odde, David J
2013-12-01
Microenvironmental mechanics play an important role in determining the morphology, traction, migration, proliferation, and differentiation of cells. A stochastic motor-clutch model has been proposed to describe this stiffness sensitivity. In this work, we present a master equation-based ordinary differential equation (ODE) description of the motor-clutch model, from which we derive an analytical expression to for a cell's optimum stiffness (i.e. the stiffness at which the traction force is maximal). This analytical expression provides insight into the requirements for stiffness sensing by establishing fundamental relationships between the key controlling cell-specific parameters. We find that the fundamental controlling parameters are the numbers of motors and clutches (constrained to be nearly equal), and the time scale of the on-off kinetics of the clutches (constrained to favor clutch binding over clutch unbinding). Both the ODE solution and the analytical expression show good agreement with Monte Carlo motor-clutch output, and reduce computation time by several orders of magnitude, which potentially enables long time scale behaviors (hours-days) to be studied computationally in an efficient manner. The ODE solution and the analytical expression may be incorporated into larger scale models of cellular behavior to bridge the gap from molecular time scales to cellular and tissue time scales.
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
Marko Žnidarič
2011-11-01
We discuss recent ﬁndings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time-dependent density matrix renormalization method can be used successfully to ﬁnd a stationary solution of Lindblad master equation. Furthermore, for a speciﬁc model an exact solution is presented.
Quantum transport under ac drive from the leads: A Redfield quantum master equation approach
Purkayastha, Archak; Dubi, Yonatan
2017-08-01
Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.
Direct solution of the Chemical Master Equation using quantized tensor trains.
Kazeev, Vladimir; Khammash, Mustafa; Nip, Michael; Schwab, Christoph
2014-03-01
The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to "lift" this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the "basis" of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude storage
Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias
2015-07-16
The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.
Direct solution of the Chemical Master Equation using quantized tensor trains.
Vladimir Kazeev
2014-03-01
Full Text Available The Chemical Master Equation (CME is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to "lift" this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species and sub-linearly in the mode size (maximum copy number, and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG methods from quantum chemistry. Our method automatically adapts the "basis" of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
Kolli, Avinash; Nazir, Ahsan; Olaya-Castro, Alexandra
2011-10-21
We derive a many-site version of the non-Markovian time-convolutionless polaron master equation [Jang et al., J. Chem Phys. 129, 101104 (2008)] to describe electronic excitation dynamics in multichromophoric systems. By treating electronic and vibrational degrees of freedom in a combined frame (polaron frame), this theory is capable of interpolating between weak and strong exciton-phonon coupling and is able to account for initial non-equilibrium bath states and spatially correlated environments. Besides outlining a general expression for the expected value of any electronic system observable in the original frame, we also discuss implications of the Markovian and Secular approximations highlighting that they need not hold in the untransformed frame despite being strictly satisfied in the polaron frame. The key features of the theory are illustrated using as an example a four-site subsystem of the Fenna-Mathews-Olson light-harvesting complex. For a spectral density including a localised mode, we show that oscillations of site populations may only be observed when non-equilibrium bath effects are taken into account. Furthermore, we illustrate how this formalism allows us to identify the electronic and vibrational components of the oscillatory dynamics.
Quantum filtering of a thermal master equation with a purified reservoir
Genoni, Marco G.; Mancini, Stefano; Wiseman, Howard M.; Serafini, Alessio
2014-12-01
We consider a system subject to a quantum optical master equation at finite temperature and study a class of conditional dynamics obtained by monitoring its totally or partially purified environment. More specifically, drawing from the notion that the thermal state of the environment may be regarded as the local state of a lossy and noisy two-mode squeezed state, we consider conditional dynamics ("unravellings") resulting from the homodyne detection of the two modes of such a state. Thus, we identify a class of unravellings parametrized by the loss rate suffered by the environmental two-mode state, which interpolate between direct detection of the environmental mode alone (occurring for total loss, whereby no correlation between the two environmental modes is left) and full access to the purification of the bath (occurring when no loss is acting and the two-mode state of the environment is pure). We hence show that, while direct detection of the bath is not able to reach the maximal steady-state squeezing allowed by general-dyne unravellings, such optimal values can be obtained when a fully purified bath is accessible. More generally we show that, within our framework, any degree of access to the bath purification improves the performance of filtering protocols in terms of achievable squeezing and entanglement.
Müller, Clemens; Stace, Thomas M.
2017-01-01
Motivated by correlated decay processes producing gain, loss, and lasing in driven semiconductor quantum dots [Phys. Rev. Lett. 113, 036801 (2014), 10.1103/PhysRevLett.113.036801; Science 347, 285 (2015), 10.1126/science.aaa2501; Phys. Rev. Lett. 114, 196802 (2015), 10.1103/PhysRevLett.114.196802], we develop a theoretical technique by using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second-order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behavior at the same order of perturbation theory. We then apply these results to analyze the phonon-assisted steady-state gain of a microwave field driving a double quantum dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing-assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.
Fox, Zachary; Neuert, Gregor; Munsky, Brian
2016-08-01
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.
The Spin Density Matrix I: General Theory and Exact Master Equations
Kunikeev, Sharif D
2007-01-01
We consider a scenario where interacting electrons confined in quantum dots (QDs) are either too close to be resolved, or we do not wish to apply measurements that resolve them. Then the physical observable is an electron spin only (one cannot unambiguously ascribe a spin to a QD) and the system state is fully described by the spin-density matrix. Accounting for the spatial degrees of freedom, we examine to what extent a Hamiltonian description of the spin-only degrees of freedom is valid. We show that as long as there is no coupling between singlet and triplet states this is indeed the case, but when there is such a coupling there are open systems effects, i.e., the dynamics is non-unitary even without interaction with a true bath. Our primary focus is an investigation of non-unitary effects, based on exact master equations we derive for the spin-density matrix in the Lindblad and time-convolutionless (TCL) forms, and the implications for quantum computation. In particular, we demonstrate that the Heisenberg...
Hellander, Andreas; Lawson, Michael J.; Drawert, Brian; Petzold, Linda
2014-06-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps were adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2015-01-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735
Positioning in a flat two-dimensional space-time: the delay master equation
Coll, Bartolomé; Morales-Lladosa, Juan Antonio
2010-01-01
The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [Phys. Rev. D {\\bf 73}, 084017 (2006); {\\bf 74}, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here we study generic relativistic positioning systems in the Minkowski plane. We analyze the information that can be obtained from the data received by a user of the positioning system. We show that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. We illustrate these result...
Kidon, Lyran; Wilner, Eli Y; Rabani, Eran
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Generalized quantum master equations in and out of equilibrium: When can one win?
Kelly, Aaron; Montoya-Castillo, Andrés; Wang, Lu; Markland, Thomas E.
2016-05-01
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. For a large number of problems, it has been shown that exact and approximate quantum dynamics methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach with an approximate method has been observed to return the same dynamics as using that method directly. Here, for systems both in and out of equilibrium, we provide a more detailed understanding of the conditions under which using an approximate method can yield benefits when combined with the GQME formalism. In particular, we demonstrate the necessary manipulations, which are satisfied by exact quantum dynamics, that are required to recast the memory kernel in a form that can be analytically shown to yield the same result as a direct application of the dynamics regardless of the approximation used. By considering the connections between these forms of the kernel, we derive the conditions that approximate methods must satisfy if they are to offer different results when used in conjunction with the GQME formalism. These analytical results thus provide new insights as to when proceeding via the GQME approach can be used to improve the accuracy of simulations.
Application of quantum master equation for long-term prognosis of asset-prices
Khrennikova, Polina
2016-05-01
This study combines the disciplines of behavioral finance and an extension of econophysics, namely the concepts and mathematical structure of quantum physics. We apply the formalism of quantum theory to model the dynamics of some correlated financial assets, where the proposed model can be potentially applied for developing a long-term prognosis of asset price formation. At the informational level, the asset price states interact with each other by the means of a "financial bath". The latter is composed of agents' expectations about the future developments of asset prices on the finance market, as well as financially important information from mass-media, society, and politicians. One of the essential behavioral factors leading to the quantum-like dynamics of asset prices is the irrationality of agents' expectations operating on the finance market. These expectations lead to a deeper type of uncertainty concerning the future price dynamics of the assets, than given by a classical probability theory, e.g., in the framework of the classical financial mathematics, which is based on the theory of stochastic processes. The quantum dimension of the uncertainty in price dynamics is expressed in the form of the price-states superposition and entanglement between the prices of the different financial assets. In our model, the resolution of this deep quantum uncertainty is mathematically captured with the aid of the quantum master equation (its quantum Markov approximation). We illustrate our model of preparation of a future asset price prognosis by a numerical simulation, involving two correlated assets. Their returns interact more intensively, than understood by a classical statistical correlation. The model predictions can be extended to more complex models to obtain price configuration for multiple assets and portfolios.
Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-04-01
The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space
Nakayama, Hiroshi; Furuichi, Akihisa; Kita, Takashi; Nishino, Taneo
1997-04-01
Structural phase transition of epitaxial growing layer is quite important to understand the atomic scale mechanism of molecular beam epitaxy (MBE). GaAs and related alloy semiconductors are typical systems which show variety of such structural transitions during MBE. Structural evolution of surface reconstruction phases and an order-disorder transition in III-V alloy semiconductors are typical cases where such phase transitions appear during epitaxial processes. In this work, a stochastic theory and the Monte-Carlo simulation have been presented to describe the structural evolution of epitaxial growth in binary system. This method, known here as the 'Monte-Carlo master equation (MCME) method', couples a master equation for epitaxial growth kinetics with an Ising Hamiltonian of growing surface. The Monte-Carlo (MC) simulation of binary growing surface with atom-correlation effects has successfully revealed the evolution of atomic structure and the formation of short-range ordering (SRO) during epitaxy. This demonstrates the usefulness of the MCME method in describing the atomic-structural dynamics as compared with a conventional theory of epitaxy based on a diffusion equation and standard nucleation theory.
Charles E. Smith
2016-05-01
Full Text Available There is increasing interest concerning the details about how quantum systems interact with their surroundings. A number of methodologies have been used to describe these interactions, including Master Equations (ME based on a system-plus-reservoir (S + R approach, and more recently, Steepest Entropy Ascent Quantum Thermodynamics (SEAQT which asserts that entropy is a fundamental physical property and that isolated quantum systems that are not at stable equilibrium may spontaneously relax without environmental influences. In this paper, the ME, SEAQT approaches, and a simple linear difference equation (DE model are compared with each other and experimental data in order to study the behavior of a single trapped ion as it interacts with one or more external heat reservoirs. The comparisons of the models present opportunities for additional study to verify the validity and limitations of these approaches.
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas
2016-06-01
We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying the N =2 case, we show that RQME gives results which agree with exact analytical results for steady-state properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison, the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics of two-point correlation functions. These results explicitly show the approach to steady state and thermalization. These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot experiments.
Brasil, Carlos Alexandre
2011-01-01
The most general form for the generator of quantum dynamical semigroups is the one proposed by Lindblad, which can be used in several approaches involving quantum mechanics for open systems, from analysis of noise and dissipation to fundamental aspects of the quantum theory of measurement. When dealing with a system interacting with its environment, the trace of the environmental degrees of freedom using the traditional approach of exponentiation of the Hamiltonian terms, originates prohibitive and difficult calculations. This paper presents an alternative analytic method to derive, through superoperator algebra and Nakajima-Zwanzig thermodynamic projectors, a compact and fairly simple master equation describing the reduced system dynamics. As a simple example of the present approach, we analyze a two-level system in contact with an environment, which allows us to observe the decoherence intensification by the interaction.
Nogawa, Tomoaki
2012-10-18
We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing nonstationary nonequilibrium dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, the redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena. © 2012 American Physical Society.
Silveri, M.; Zalys-Geller, E.; Hatridge, M.; Leghtas, Z.; Devoret, M. H.; Girvin, S. M.
2015-03-01
In the remote entanglement process, two distant stationary qubits are entangled with separate flying qubits and the which-path information is erased from the flying qubits by interference effects. As a result, an observer cannot tell from which of the two sources a signal came and the probabilistic measurement process generates perfect heralded entanglement between the two signal sources. Notably, the two stationary qubits are spatially separated and there is no direct interaction between them. We study two transmon qubits in superconducting cavities connected to a Josephson Parametric Converter (JPC). The qubit information is encoded in the traveling wave leaking out from each cavity. Remarkably, the quantum-limited phase-preserving amplification of two traveling waves provided by the JPC can work as a which-path information eraser. By using a stochastic master approach we demonstrate the probabilistic production of heralded entangled states and that unequal qubit-cavity pairs can be made indistinguishable by simple engineering of driving fields. Additionally, we will derive measurement rates, measurement optimization strategies and discuss the effects of finite amplification gain, cavity losses, and qubit relaxations and dephasing. Work supported by IARPA, ARO and NSF.
Singh, Navinder
2011-01-01
A direct numerical algorithm for solving the time-nonlocal non-Markovian master equation in the second Born approximation is introduced and the range of utility of this approximation, and of the Markov approximation, is analyzed for the traditional dimer system that models excitation energy transfer in photosynthesis. Specifically, the coupled integro-differential equations for the reduced density matrix are solved by an efficient auxiliary function method in both the energy and site representations. In addition to giving exact results to this order, the approach allows us to computationally assess the range of the reorganization energy and decay rates of the phonon auto-correlation function for which the Markovian Redfield theory and the second order approximation is valid. For example, the use of Redfield theory for $\\lambda> 10 \\textrm{cm}^{-1}$ in systems like Fenna-Mathews-Olson (FMO) type systems is shown to be in error. In addition, analytic inequalities are obtained for the regime of validity of the M...
Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach.
Arrigoni, Enrico; Knap, Michael; von der Linden, Wolfgang
2013-02-22
We introduce a versatile method to compute electronic steady-state properties of strongly correlated extended quantum systems out of equilibrium. The approach is based on dynamical mean-field theory (DMFT), in which the original system is mapped onto an auxiliary nonequilibrium impurity problem imbedded in a Markovian environment. The steady-state Green's function of the auxiliary system is solved by full diagonalization of the corresponding Lindblad equation. The approach can be regarded as the nontrivial extension of the exact-diagonalization-based DMFT to the nonequilibrium case. As a first application, we consider an interacting Hubbard layer attached to two metallic leads and present results for the steady-state current and the nonequilibrium density of states.
Using non-Markovian measures to evaluate quantum master equations for photosynthesis
Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco
2015-08-01
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.
Using non-Markovian measures to evaluate quantum master equations for photosynthesis
Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco
2015-01-01
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment. PMID:26238479
Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach
Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.
2017-07-01
Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather
Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar
2017-01-01
An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.
Luo, JunYan; Jin, Jinshuang; Wang, Shi-Kuan; Hu, Jing; Huang, Yixiao; He, Xiao-Ling
2016-03-01
We present a generic unraveling scheme for a detailed-balance-preserved quantum master equation applicable for stochastic point processes in mesoscopic transport. It enables us to investigate continuous measurement of a qubit on the level of single quantum trajectories, where essential correlations between the inherent dynamics of the qubit and detector current fluctuations are revealed. Based on this unraveling scheme, feedback control of the charge qubit is implemented to achieve a desired pure state in the presence of the detailed-balance condition. With sufficient feedback strength, coherent oscillations of the measured qubit can be maintained for arbitrary qubit-detector coupling. Competition between the loss and restoration of coherence entailed, respectively, by measurement back action and feedback control is reflected in the noise power spectrum of the detector's output. It is demonstrated unambiguously that the signal-to-noise ratio is significantly enhanced with increasing feedback strength and could even exceed the well-known Korotkov-Averin bound in quantum measurement. The proposed unraveling and feedback scheme offers a transparent and straightforward approach to effectively sustaining ideal coherent oscillations of a charge qubit in the field of quantum computation.
Giirsoy, Gamze; Terebus, Anna; Cao, Youfang; Liang, Jie; Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang; Gursoy, Gamze; Cao, Youfang; Terebus, Anna; Liang, Jie
2016-08-01
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.
Master equation for the Unruh-DeWitt detector and the universal relaxation time in de Sitter space
Fukuma, Masafumi; Sugishita, Sotaro
2013-01-01
de Sitter space is known to have a thermal character. This can be best seen by an Unruh-DeWitt detector which stays in the Poincare patch and interacts with a scalar field in the Bunch-Davies vacuum. However, since the Bunch-Davies vacuum is the ground state only at the infinite past, if the scalar field starts in the ground state at a finite past, an Unruh-DeWitt detector then will feel as if it is in a medium that is not in thermodynamic equilibrium and that undergoes a relaxation to the equilibrium corresponding to the Bunch-Davies vacuum. In this paper, we first develop a general framework to treat such circumstances and write down the master equation which completely describes the finite time evolution of the density matrix of an Unruh-DeWitt detector in arbitrary background geometry. We then apply this framework to an ideal detector in de Sitter space which can get adjusted to its environment instantaneously, and show that the density distribution of the detector certainly exhibits a relaxation to the G...
Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C., E-mail: Gastone.Castellani@unibo.it [Physics and Astronomy Department, Bologna University and INFN Sezione di Bologna (Italy)
2014-08-14
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological
Tojo, C.; Bujan Nunez, M.C. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Vigo, Vigo (Spain)
1996-11-01
The stochastic master equation dP{sub i}/dt=-Sigma{sub j}G{sub i}jp{sub i}(t) is used to calculate the spectral dimension in finite lattices. it can be observed that the entropy function S(t)=-Sigma{sub i}p{sub i}(t)ln(p{sub i}(t)) grows linearly with In(t). (Author) 38 refs.
Grima, Ramon
2015-10-01
It is well known that the linear-noise approximation (LNA) agrees with the chemical master equation, up to second-order moments, for chemical systems composed of zero and first-order reactions. Here we show that this is also a property of the LNA for a subset of chemical systems with second-order reactions. This agreement is independent of the number of interacting molecules.
Glowacki, David R; Rodgers, W J; Shannon, Robin; Robertson, Struan H; Harvey, Jeremy N
2017-04-28
The extent to which vibrational energy transfer dynamics can impact reaction outcomes beyond the gas phase remains an active research question. Molecular dynamics (MD) simulations are the method of choice for investigating such questions; however, they can be extremely expensive, and therefore it is worth developing cheaper models that are capable of furnishing reasonable results. This paper has two primary aims. First, we investigate the competition between energy relaxation and reaction at 'hotspots' that form on the surface of diamond during the chemical vapour deposition process. To explore this, we developed an efficient reactive potential energy surface by fitting an empirical valence bond model to higher-level ab initio electronic structure theory. We then ran 160 000 NVE trajectories on a large slab of diamond, and the results are in reasonable agreement with experiment: they suggest that energy dissipation from surface hotspots is complete within a few hundred femtoseconds, but that a small fraction of CH3 does in fact undergo dissociation prior to the onset of thermal equilibrium. Second, we developed and tested a general procedure to formulate and solve the energy-grained master equation (EGME) for surface chemistry problems. The procedure we outline splits the diamond slab into system and bath components, and then evaluates microcanonical transition-state theory rate coefficients in the configuration space of the system atoms. Energy transfer from the system to the bath is estimated using linear response theory from a single long MD trajectory, and used to parametrize an energy transfer function which can be input into the EGME. Despite the number of approximations involved, the surface EGME results are in reasonable agreement with the NVE MD simulations, but considerably cheaper. The results are encouraging, because they offer a computationally tractable strategy for investigating non-equilibrium reaction dynamics at surfaces for a broader range of
Awan, Iftikhar A; Burgess, Donald R; Manion, Jeffrey A
2012-03-22
Kassel Marcus/Master Equation (RRKM/ME) analysis has been performed and used to extrapolate the data to temperatures between 700 and 1900 K and pressures of 10 to 1 × 10(5) kPa.
Winter, Pierre M.; Rheaume, Michael; Cooksy, Andrew L.
2017-08-01
We have calculated the temperature-dependent rate coefficients of the addition reactions of butadien-2-yl (C4H5) and acroylyl (C3H3O) radicals with ethene (C2H4), carbon monoxide (CO), formaldehyde (H2CO), hydrogen cyanide (HCN), and ketene (H2CCO), in order to explore the balance between kinetic and thermodynamic control in these combustion-related reactions. For the C4H5 radical, the 1,3-diene form of the addition products is more stable than the 1,2-diene, but the 1,2-diene form of the radical intermediate is stabilized by an allylic delocalization, which may influence the relative activation energies. For the reactions combining C3H3O with C2H4, CO, and HCN, the opposite is true: the 1,2-enone form of the addition products is more stable than the 1,3-enone, whereas the 1,3-enone is the slightly more stable radical species. Optimized geometries and vibrational modes were computed with the QCISD/aug-cc-pVDZ level and basis, followed by single-point CCSD(T)-F12a/cc-pVDZ-F12 energy calculations. Our findings indicate that the kinetics in all cases favor reaction along the 1,3 pathway for both the C4H5 and C3H3O systems. The Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficients and subsequent solution of the chemical master equation were used to predict the time-evolution of our system under conditions from 500 K to 2000 K and from 10-5 bar to 10 bars. Despite the 1,3 reaction pathway being more favorable for the C4H5 system, our results predict branching ratios of the 1,2 to 1,3 product as high as 0.48 at 1 bar. Similar results hold for the acroylyl system under these combustion conditions, suggesting that under kinetic control the branching of these reactions may be much more significant than the thermodynamics would suggest. This effect may be partly attributed to the low energy difference between 1,2 and 1,3 forms of the radical intermediate. No substantial pressure-dependence is found for the overall forward reaction rates until pressures
Shi, Qiang; Geva, Eitan
2003-12-01
The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics. The standard approach is based on using a perturbative treatment of the system-bath coupling for calculating this kernel, and is therefore restricted to systems weakly coupled to the bath. In this paper, we propose a new approach for calculating the memory kernel for an arbitrary system-bath coupling. The memory kernel is obtained by solving a set of two coupled integral equations that relate it to a new type of two-time system-dependent bath correlation functions. The feasibility of the method is demonstrated in the case of an asymetrical two-level system linearly coupled to a harmonic bath.
Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt
2017-10-01
Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon–Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.
Kishi, Ryohei; Fujii, Hiroaki; Kishimoto, Shingo; Murata, Yusuke; Ito, Soichi; Okuno, Katsuki; Shigeta, Yasuteru; Nakano, Masayoshi
2012-05-03
We develop novel calculation and analysis methods for the dynamic first hyperpolarizabilities β [the second-order nonlinear optical (NLO) properties at the molecular level] in the second-harmonic generation based on the quantum master equation method combined with the ab initio molecular orbital (MO) configuration interaction method. As examples, we have evaluated off-resonant dynamic β values of donor (NH(2))- and/or acceptor (NO(2))-substituted benzenes using these methods, which are shown to reproduce those by the conventional summation-over-states method well. The spatial contributions of electrons to the dynamic β of these systems are also analyzed using the dynamic β density and its partition into the MO contributions. The present results demonstrate the advantage of these methods in unraveling the mechanism of dynamic NLO properties and in building the structure-dynamic NLO property relationships of real molecules.
Andrei Khrennikov
2016-07-01
Full Text Available We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be represented mathematically as ultrametric spaces and the dynamics of fluids by ultrametric diffusion. The images of p-adic fields, extracted from the real multiscale rock samples and from some reference images, are depicted. In this model the porous background is treated as the environment contributing to the coefficients of evolutionary equations. For the simplest trees, these equations are essentially less complicated than those with fractional differential operators which are commonly applied in geological studies looking for some fractional analogs to conventional Euclidean space but with anomalous scaling and diffusion properties. It is possible to solve the former equation analytically and, in particular, to find stationary solutions. The main aim of this paper is to attract the attention of researchers working on modeling of geological processes to the novel utrametric approach and to show some examples from the petroleum reservoir static and dynamic characterization, able to integrate the p-adic approach with multifractals, thermodynamics and scaling. We also present a non-mathematician friendly review of trees and ultrametric spaces and pseudo-differential operators on such spaces.
Prosen, Tomaz; Zunkovic, Bojan [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia)], E-mail: tomaz.prosen@fmf.uni-lj.si
2010-02-15
We generalize the method of third quantization to a unified exact treatment of Redfield and Lindblad master equations for open quadratic systems of n fermions in terms of diagonalization of a 4nx4n matrix. Non-equilibrium thermal driving in terms of the Redfield equation is analyzed in detail. We explain how one can compute all the physically relevant quantities, such as non-equilibrium expectation values of local observables, various entropies or information measures, or time evolution and properties of relaxation. We also discuss how to exactly treat explicitly time-dependent problems. The general formalism is then applied to study a thermally driven open XY spin 1/2 chain. We find that the recently proposed non-equilibrium quantum phase transition in the open XY chain survives the thermal driving within the Redfield model. In particular, the phase of long-range magnetic correlations can be characterized by hypersensitivity of the non-equilibrium steady state to external (bath or bulk) parameters. Studying the heat transport, we find negative differential thermal conductance for sufficiently strong thermal driving as well as non-monotonic dependence of the heat current on the strength of the bath coupling.
US Agency for International Development — OPS Master is a management tool and database for integrated financial planning and portfolio management in USAID Missions. Using OPS Master, the three principal...
Berim, Gersh O.; Ruckenstein, Eli
2003-11-01
A generalized kinetic Ising model is applied to the description of phase transformations in lattice systems. A procedure, based on the conjecture that the probability distribution function of the states of the system is similar to the equilibrium one, is used for closing the infinite chain of kinetic equations. The method is illustrated by treating as an example the one-dimensional Ising model. The predicted rate of phase transformation (RPT) demonstrates various time behaviors dependent upon the details of the interactions between spins and a heat bath. If the parameters W0 and W the reciprocals of which characterize, respectively, the time scales of growth (decay) and splitting (coagulation) of clusters have the same order of magnitude, then the RPT is constant during almost the entire transformation process. For the case W=0, which corresponds to the absence of splitting and coagulation of clusters, the phase transformation follows an exponential law in the final stage and is linear with respect to time during the initial one. It has a similar behavior for W0≫W≠0; however, the RPT in the final stage is much smaller in the last case than for W=0. In the absence of supersaturation, RPT decreases to zero as T→Tc, where Tc(=0 K) is the phase transition temperature for a one-dimensional model. The time-dependent size distribution of clusters is for all times exponential with respect to the cluster size. The average size of the cluster far from both equilibrium and initial state grows linearly in time. Both the above quantities behave in a manner similar to those obtained by Monte Carlo simulations for systems of higher dimension.
Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J
2014-09-01
The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Georgiev, Ivan T.; McKay, Susan R.
2005-12-01
We present a general position-space renormalization-group approach for systems in steady states far from equilibrium and illustrate its application to the three-state driven lattice gas. The method is based upon the possibility of a closed form representation of the parameters controlling transition rates of the system in terms of the steady state probability distribution of small clusters, arising from the application of the master equations to small clusters. This probability distribution on various length scales is obtained through a Monte Carlo algorithm on small lattices, which then yields a mapping between parameters on different length scales. The renormalization-group flows indicate the phase diagram, analogous to equilibrium treatments. For the three-state driven lattice gas, we have implemented this procedure and compared the resulting phase diagrams with those obtained directly from simulations. Results in general show the expected topology with one exception. For high densities, an unexpected additional fixed point emerges, which can be understood qualitatively by comparing it with the fixed point of the fully asymmetric exclusion process.
Xinzhi Liu
1998-01-01
Full Text Available This paper studies a class of high order delay partial differential equations. Employing high order delay differential inequalities, several oscillation criteria are established for such equations subject to two different boundary conditions. Two examples are also given.
Li, Daniel
2014-01-01
This easy-to-understand tutorial provides you with several engaging projects that show you how to utilize Grunt with various web technologies, teaching you how to master build automation and testing with Grunt in your applications.If you are a JavaScript developer who is looking to streamline their workflow with build-automation, then this book will give you a kick start in fully understanding the importance of the described web technologies and automate their processes using Grunt.
Department of Veterans Affairs — As of June 28, 2010, the Master Veteran Index (MVI) database based on the enhanced Master Patient Index (MPI) is the authoritative identity service within the VA,...
Goertz, R.C.
1949-03-07
A device for manipulating a pair of tongs behind a shielding barrier has been built and tested. It is called a Master-Slave Manipulator because the slave tongs move in exact correspondence with a master handle. The "slave hands" follow the master hands in complete synchronism. This is the first completely master-slave manipulator known to exist and has proved that this type of manipulation is very successful when the unit is prooperly engineered and built.
Scattering Theory for Lindblad Master Equations
Falconi, Marco; Faupin, Jérémy; Fröhlich, Jürg; Schubnel, Baptiste
2017-03-01
We study scattering theory for a quantum-mechanical system consisting of a particle scattered off a dynamical target that occupies a compact region in position space. After taking a trace over the degrees of freedom of the target, the dynamics of the particle is generated by a Lindbladian acting on the space of trace-class operators. We study scattering theory for a general class of Lindbladians with bounded interaction terms. First, we consider models where a particle approaching the target is always re-emitted by the target. Then we study models where the particle may be captured by the target. An important ingredient of our analysis is a scattering theory for dissipative operators on Hilbert space.
Mastering mathematics statistics & probability
Various
2014-01-01
Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and eBooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions that develop fluen
Various
2014-01-01
Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions tha
Mastering mathematics geometry & measures
Various
2014-01-01
Deliver outstanding lessons that build fluency, problem-solving and mathematical reasoning skills to enable sustained progress at Key Stage 3, in preparation for GCSE. Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics . Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or exte
MASTER TELEVISION ANTENNA SYSTEM.
Rhode Island State Dept. of Education, Providence.
SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)
Interior design. Mastering the master plan.
Mesbah, C E
1995-10-01
Reflecting on the results of the survey, this proposed interior design master planning process addresses the concerns and issues of both CEOs and facility managers in ways that focus on problem-solving strategies and methods. Use of the interior design master plan process further promotes the goals and outcomes expressed in the survey by both groups. These include enhanced facility image, the efficient selection of finishes and furnishings, continuity despite staff changes, and overall savings in both costs and time. The interior design master plan allows administrators and facility managers to anticipate changes resulting from the restructuring of health care delivery. The administrators and facility managers are then able to respond in ways that manage those changes in the flexible and cost-effective manner they are striving for. This framework permits staff members to concentrate their time and energy on the care of their patients--which is, after all, what it's all about.
Gress, O.; Balanutsa, P.; Lipunov, V.; Gorbovskoy, E.; Otero, S.; Rebolo, R.; Serra-Ricart, M.; Buckley, D.; Tiurina, N. V.; Kuznetsov, A. S.; Kornilov, V. G.; Vladimirov, V. V.; Kuvshinov, D. A.; Chazov, V. V.; Shumkov, V.; Pogrosheva, T.
2017-02-01
MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 15h 05m 18.03s -14d 39m 33.6s on 2017-02-08.27692 UT. The OT unfiltered magnitude is (limit 19.8m).
MASTER: bright optical transient
Sidorenkov, V. N.; Lipunov, V. M.; Kornilov, V. G.; Chazov, V. V.; Berezhko, E. G.; Klypin, A. A.; Shafer, E. Yu.; Mironova, I. V.; Esin, V. P.; Gundorov, V. L.; Charikov, A. V.; Aitova, G. A.; Gektin, Yu. M.; Trunkovsky, E. M.; Lipunova, N. A.; Popova, A. O.; Gerasimov, I. A.; Gluschenko, Yu. V.
2017-02-01
MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 01h 44m 50.47s +45d 32m 42.9s on 2017-01-29.03010 UT. The OT unfiltered magnitude is (mlim=19.5m).
Master of science as change masters
2006-01-01
Engineers are the driving forces of technological development – how do engineers obtain the relevant skills in order to fulfil this position? In this chapter, we ask whether the concept of change master could be a possible future direction for engineering skills. Developed by Kanter, the change...
Cébron, Guillaume; Dahlqvist, Antoine; Gabriel, Franck
2017-09-01
The master field is the large N limit of the Yang-Mills measure on the Euclidean plane. It can be viewed as a non-commutative process indexed by loops on the plane. We construct and study generalized master fields, called free planar Markovian holonomy fields which are versions of the master field where the law of a simple loop can be as more general as it is possible. We prove that those free planar Markovian holonomy fields can be seen as well as the large N limit of some Markovian holonomy fields on the plane with unitary structure group.
Master of science as change masters
2006-01-01
master concept stresses the importance of creativity, innovation, leadership, and change. In this chapter, this concept will be analyzed and elaborated on partly in relation to the concepts of Bildung and Skill and partly to three different notions of engineering practice in technological innovation......Engineers are the driving forces of technological development – how do engineers obtain the relevant skills in order to fulfil this position? In this chapter, we ask whether the concept of change master could be a possible future direction for engineering skills. Developed by Kanter, the change...... process must be managed is together with the dynamic and comprehensive perspective on engineering practice used to shape the engineer of tomorrow, and by that we hint at overall trajectories in the design of engineering education. These trajectories call for exemplarity, inter-disciplinarily, integration...
2006-01-01
Development and content of an international Master in Urban Quality development and management. The work has been done in a cooperation between Berlage institut, Holland; Chulalongkorn University, Thailand; Mahidol University, Thailand; University Kebangsaan Malaysia, Malaysia; og Aalborg...
2006-01-01
Development and content of an international Master in Urban Quality development and management. The work has been done in a cooperation between Berlage institut, Holland; Chulalongkorn University, Thailand; Mahidol University, Thailand; University Kebangsaan Malaysia, Malaysia; og Aalborg...
Cardoso, Ciro
2014-01-01
This book is designed for all levels of Lumion users; from beginner to advanced, you will find useful insights and professional techniques to improve and develop your skills in order to fully control and master Lumion.
NONE
1995-06-01
This document is a master list of acronyms and other abbreviations that are used by or could be useful to, the personnel at Los Alamos National Laboratory. Many specialized and well-known abbreviations are not included in this list.
Clifford, David J.; Harris, James M.
2014-12-01
This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris
2013-01-01
Desarrollo de una aplicación en Android que sea totalmente funcional. En este caso nos hemos propuesto desarrollar el juego MasterMind, un clásico de los juegos de mesa, pero adaptándolo a las nuevas tecnologías que nos permitirán darle una orientación social al estilo de Apalabrados o Mezcladitos. Desenvolupament d'una aplicació en Android que sigui totalment funcional. En aquest cas ens hem proposat desenvolupar el joc MasterMind, un clàssic dels jocs de taula, però adaptant-lo a les nov...
Vladimir Lipunov
2010-01-01
Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.
Plane, J. M. C.; Whalley, C. L.; Goddard, A. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Frances-Soriano, L. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Physical Chemistry, University of Valencia, Valencia 46100 (Spain); Harvey, J. N.; Glowacki, D. R. [Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Viggiano, A. A. [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States)
2012-07-07
complex, suggesting that this reaction proceeds mostly by near-resonant electronic energy transfer to Fe(a{sup 5}F) + O{sub 2}(X). The reaction of Ca + O{sub 2}(a) occurs in an intermediate regime with two competing pressure dependent channels: (1) a recombination to produce CaO{sub 2}({sup 1}A{sub 1}), and (2) a singlet/triplet non-adiabatic hopping channel leading to CaO + O({sup 3}P). In order to interpret the Ca + O{sub 2}(a) results, we utilized density functional theory along with multireference and explicitly correlated CCSD(T)-F12 electronic structure calculations to examine the lowest lying singlet and triplet surfaces. In addition to mapping stationary points, we used a genetic algorithm to locate minimum energy crossing points between the two surfaces. Simulations of the Ca + O{sub 2}(a) kinetics were then carried out using a combination of both standard and non-adiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) theory implemented within a weak collision, multiwell master equation model. In terms of atmospheric significance, only in the case of Ca does reaction with O{sub 2}(a) compete with O{sub 3} during the daytime between 85 and 110 km.
Bendisch, J.; Bunte, K.; Klinkrad, H.; Krag, H.; Martin, C.; Sdunnus, H.; Walker, R.; Wegener, P.; Wiedemann, C.
2004-01-01
Meteoroid and Space Debris Terrestrial Reference model (MASTER) is the European particulate environment and risk assessment model. It is based on quasi-deterministic principles, using comprehensive orbit propagation theories and volume discretisation techniques, to derive spatial density and velocity distributions in a three-dimensional control volume ranging from LEO to GEO altitudes. The new release, MASTER-2001, incorporates new modelling and validation approaches and enables the calculation of fluxes on targets operating between the year 1957 and 2050, using detailed simulation results. This could be achieved by using not only the POEM simulation tool for the past to present debris populations, but also applying the long term prediction tool DELTA to obtain future populations. The paper describes the features and results of the MASTER-2001 model, and the updated modelling approach (e.g., the use of a new fragmentation model). The historical and future evolution of the space debris environment in terms of spatial density and object fluxes as given by MASTER-2001 are presented and discussed.
Thorn, Alan
2015-01-01
Mastering Unity Scripting is an advanced book intended for students, educators, and professionals familiar with the Unity basics as well as the basics of scripting. Whether you've been using Unity for a short time or are an experienced user, this book has something important and valuable to offer to help you improve your game development workflow.
Hvorfor master i medborgerskab?
Korsgaard, Ove
2002-01-01
Danmarks Pædagogiske Universitet planlægger i samarbejde med Syddansk Universitet at udbyde en master i medborgerskab: etisk og demokratisk dannelse. Artiklens forfatter gør rede for nogle af de tanker, der ligger bag uddannelsen, og belyser, hvorfor medborgerskab er blevet et nøglebegreb i nyere...
Hvorfor master i medborgerskab?
Korsgaard, Ove
2002-01-01
Danmarks Pædagogiske Universitet planlægger i samarbejde med Syddansk Universitet at udbyde en master i medborgerskab: etisk og demokratisk dannelse. Artiklens forfatter gør rede for nogle af de tanker, der ligger bag uddannelsen, og belyser, hvorfor medborgerskab er blevet et nøglebegreb i nyere...
Groner, Loiane
2013-01-01
Designed to be a structured guide, Mastering Ext JS is full of engaging examples to help you learn in a practical context.This book is for developers who are familiar with using Ext JS who want to augment their skills to create even better web applications.
Allegra, Carmen J.
2015-01-01
During the past decade, biomedical technologies have undergone an explosive evolution---from the publication of the first complete human genome in 2003, after more than a decade of effort and at a cost of hundreds of millions of dollars---to the present time, where a complete genomic sequence can be available in less than a day and at a small fraction of the cost of the original sequence. The widespread availability of next generation genomic sequencing has opened the door to the development of precision oncology. The need to test multiple new targeted agents both alone and in combination with other targeted therapies, as well as classic cytotoxic agents, demand the development of novel therapeutic platforms (particularly Master Protocols) capable of efficiently and effectively testing multiple targeted agents or targeted therapeutic strategies in relatively small patient subpopulations. Here, we describe the Master Protocol concept, with a focus on the expected gains and complexities of the use of this design. An overview of Master Protocols currently active or in development is provided along with a more extensive discussion of the Lung Master Protocol (Lung-MAP study). PMID:26433553
Podvorotniy, P.; Balanutsa, P.; Lipunov, V.; Shumkov, V.; Gorbovskoy, E.; Tiurina, N.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Krushinsky, V.; Zimnukhov, D.; Zalozhnih, I.; Ivanov, K.; Popov, A.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Parkhomenko, A.; Gress, O.; Tlatov, A.; Dormidontov, D.; Yurkov, V.; Senik, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Shurpakov, S.; Levato, Hugo; Saffe, Carlos; Mallamaci, Claudio; Lopez, Carlos; Podest, Federico
2012-03-01
MASTER163105.47+615548.4 - PSN MASTER-Tunka auto-detection system discovered OT source at (RA, Dec) = 16h 31m 05.47s +61d 55m 48.4s on 2012-03-14.83877 UT. The OT unfiltered magnitude is 18.1m (limit 19.8m). The OT is seen in 5 images. There is no minor planet at this place. There is one nonstar object in The Guide Star Catalog N4HU009709 with 1.3 arcsec offset (jmag=21.9). We have reference image without OT on 2011-05-01.72794 UT with unfiltered magnitude limit 20.1m.
Clark, Kelly
2004-01-01
In painting and drawing classes, it is typical to ask students to work directly from a master. It is one way to study composition techniques, and to become familiar with classical style firsthand. In museums, easels are set up as artists work, not in an attempt to copy or plagiarize, but in an attempt to be part of history by participating in it.…
Neeraj, Nishant
2013-01-01
Mastering Apache Cassandra is a practical, hands-on guide with step-by-step instructions. The smooth and easy tutorial approach focuses on showing people how to utilize Cassandra to its full potential.This book is aimed at intermediate Cassandra users. It is best suited for startups where developers have to wear multiple hats: programmer, DevOps, release manager, convincing clients, and handling failures. No prior knowledge of Cassandra is required.
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Transparency masters for mathematics revealed
Berman, Elizabeth
1980-01-01
Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The
Palamar, Todd
2011-01-01
The exclusive, official guide to the very latest version of Maya Get extensive, hands-on, intermediate to advanced coverage of Autodesk Maya 2012, the top-selling 3D software on the market. If you already know Maya basics, this authoritative book takes you to the next level. From modeling, texturing, animation, and visual effects to high-level techniques for film, television, games, and more, this book provides professional-level Maya instruction. With pages of scenarios and examples from some of the leading professionals in the industry, author Todd Palamar will help you master the entire CG
Keller, Eric
2010-01-01
A beautifully-packaged, advanced reference on the very latest version of Maya. If you already know the basics of Maya, the latest version of this authoritative book takes you to the next level. From modeling, texturing, animation, and visual effects to high-level techniques for film, television, games, and more, this book provides professional-level Maya instruction. With pages of scenarios and examples from some of the leading professionals in the industry, this book will help you master the entire CG production pipeline.: Provides professional-level instruction on Maya, the industry-leading
Fractional Chemotaxis Diffusion Equations
Langlands, T A M
2010-01-01
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecular crowding. The mesoscopic models are formulated using Continuous Time Random Walk master equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macro-molecular crowding or other obstacles.
Antila, E.; Kaario, O.; Lahtinen, T. (and others)
2004-07-01
This is the final report of the research project 'Mastering the Diesel Process'. The project has been a joint research effort of the Helsinki University of Technology, the Tampere University of Technology, the Technical Research Centre of Finland, and the Aabo Akademi University. Moreover, the contribution of the Michigan Technological University has been important. The project 'Mastering the Diesel Process' has been a computational research project on the physical phenomena of diesel combustion. The theoretical basis of the project lies on computational fluid dynamics. Various submodels for computational fluid dynamics have been developed or tested within engine simulation. Various model combinations in three diesel engines of different sizes have been studied. The most important submodels comprise fuel spray drop breakup, fuel evaporation, gas-fuel interaction in the spray, mixing model of combustion, heat transfer, emission mechanisms. The boundary conditions and flow field modelling have been studied, as well. The main simulation tool have been Star-CD. KIVA code have been used in the model development, as well. By the help of simulation, we are able to investigate the effect of various design parameters or operational parameters on diesel combustion and emission formation. (orig.)
What about Master's Students? The Master's Student Persistence Model
Cohen, Kristin E.
2012-01-01
This study was designed to investigate the factors that affect master's student persistence in the United States. More specifically, this study explored whether the following factors: students' background, institution's, academic, environmental and psychological influences, had a significant effect on whether a master's student persisted and/or…
Laursen, Steffen
2010-01-01
led to a number of insights into the social organization of the mound cemeteries that will be presented in the paper. It is obvious that there existed a close spatial relation between freshwater springs and the compact mounds cemeteries that emerged c.2050 BC. The mound cemeteries appear to have been...... flanked by villages that relied on these water recourses for agricultural production. The springs emerged in the zone separating the cemeteries from the settlements. The freshwater springs were actively incorporated into the religious landscape of the dead, by consistently erecting mounds of a particular...... high status type right above the head of each spring. These tombs of the masters of the springs are distinguished by their larger size and vertical shaft entrance. It is argued that this particular strategy of power was employed after population growth had intensified conflicts over the rights...
Christensen, Andreas Aagaard
2013-01-01
The environmental history of New Zealand is one of the clearest and most recent examples of the way humans make a home for themselves in newly explored territory. New Zealand was the last major land area in the world to be colonised by people and, given its extraordinary natural history, the first...... as Europeans. This fact makes their success in forging cultural landscapes from the new land all the more interesting for students of environmental history. As an example of such processes, New Zealand illustrates the way human newcomers learn to master an environment, change the land and its resources...... resources which change as the society itself changes. Newcomers to any environment meet it with a set of technologies and a culture which they bring with them and which changes continuously, as it aligns with experience gathered in that environment. The environmental histories told from a multiplicity...
Masters change, slaves remain.
Graham, Patricia; Penn, Jill K M; Schedl, Paul
2003-01-01
Sex determination offers an opportunity to address many classic questions of developmental biology. In addition, because sex determination evolves rapidly, it offers an opportunity to investigate the evolution of genetic hierarchies. Sex determination in Drosophila melanogaster is controlled by the master regulatory gene, Sex lethal (Sxl). DmSxl controls the alternative splicing of a downstream gene, transformer (tra), which acts with tra2 to control alternative splicing of doublesex (dsx). DmSxl also controls its own splicing, creating an autoregulatory feedback loop that ensures expression of Sxl in females, but not males. A recent paper has shown that in the dipteran Ceratitis capitata later (downstream) steps in the regulatory hierarchy are conserved, while earlier (upstream) steps are not. Cctra is regulated by alternative splicing and apparently controls the alternative splicing of Ccdsx. However, Cctra is not regulated by CcSxl. Instead it appears to autoregulate in a manner similar to the autoregulation seen with DmSxl.
Bommier, Véronique
2016-06-01
Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na i D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.
On master integrals for two loop Bhabha scattering
Czakon, M; Riemann, Tord
2004-01-01
All scalar master integrals (MIs) for massive 2-loop QED Bhabha scattering are identified. The 2- and 3-point MIs have been calculated in terms of harmonic polylogarithms with the differential equation method. The calculation of 4-point MIs is underway. We sketch some alternative methods which help to solve (mainly) singularities of some MIs.
On master integrals for two loop Bhabha scattering
Czakon, M.; Gluza, J. [Uniwersytet Slaski, Katowice (Poland). Inst. Fizyki; Riemann, T.
2004-09-01
All scalar master integrals (MIs) for massive 2-loop QED Bhabha scattering are identified. The 2- and 3-point MIs have been calculated in terms of harmonic polylogarithms with the differential equation method. The calculation of 4-point MIs is underway. We sketch some alternative methods which help to solve (mainly) singularities of some MIs. (orig.)
Lambert, Chip
2015-01-01
You've started down the path of jQuery Mobile, now begin mastering some of jQuery Mobile's higher level topics. Go beyond jQuery Mobile's documentation and master one of the hottest mobile technologies out there. Previous JavaScript and PHP experience can help you get the most out of this book.
Paga Marrero, Hector Jose
2013-01-01
The Master Console oversees the function of Computer Systems in Firing room 1 (FR1). Master Console Operators, MCOs' for short, are our customer. I was integrated into the System Monitoring and Control (SMC) software team that is under the guidance of David Slaiman, who is the product group lead. I have been brought up to speed with System Monitoring and Control. The initial time spent reading SMC software design description and understanding how it works. The current Firing Room 1 Console Display is a floor layout giving the MCO two essential pieces of information which are Health and Status. When an issue arises, the MCO has to look on the display to find which console is affected and then the MCO must use the Reference designator from the display to manually search for the Portal Workstation (PWS) installed in the console using the hardware map; which is a long process to lookup a PWS if an issue is present. My project is to make the FR1 Console Display easier for the MCO's to pinpoint PWS's without having to lookup additional resources in the process. My project also includes updating Firing Room 1 Console Display to include the F1R Non-Redundant Set. The display does not have good use of space and functionality. PWS numbers were not present in the previous design and are the critical component in efficient understanding and administration of the consoles. Part of the process includes getting feedback from the customer, instead of just emailing them with a question, we made a proposal with changes so they could respond and give us their input; which proved to be an effective method for engaging them. In order to do this I had to use the Display Editor (DE) tool developed by NASA, Paint.Net and Visio. The process I have been using has been Visio to alter the floor layout of Firing Room and take advantage of the white areas, and then I take the altered floor plan into Paint.Net. Once in Paint.Net I put the new floor plan as a background to the standard console
``Mastering`` the global commons
Stehr, N. [British Columbia Univ., Vancouver, BC (Canada). Peter Wall Inst. for Advanced Studies and Green Coll.
1999-11-01
The question of ``mastering`` the global commons will increasingly become a central socio-political issue, if it has not already attained this status. For example, the dilemmas brought about by anthropogenic climate change are in many ways unprecedented. They call for massive efforts to plan global climate change. In this context, knowledge about the physical nature of global climate changes is adequate in order to move from a comprehension to a solution of the problem. The record shows that past generations, too, have been fascinated with and concerned about the impact of climate on society, as well as, anthropogenic climate change. But these efforts have, for the most part, been informed by the doctrine of climate determinism. In much the same vein, the concept of climate policies as an ``optimal control problem`` is inadequate. Impact research has to be cognizant of the social construct of climate, as well as, fundamental secular societal changes that profoundly alter modern societies and the value orientations of its citizens. Climate policies as a form of large-scale and deliberate climate change, therefore, have to draw extensively on social science expertise. (orig.) 53 refs.
Learning profiles of Master students
Sprogøe, Jonas; Hemmingsen, Lis
2005-01-01
at DPU in 2001 several evaluations and research have been carried out on several topics relating to form, content, and didactics, but one important focus is missing: the research about the psychological profile and learning style of the master student. Knowledge is lacking on how teaching methods...... and programme designs relate to and support the learning profiles and learning styles of the master students. In other words: What are the consequences of the students' learning styles in terms of planning and teaching in the master programme?...
2011-01-01
750 x 1159 pixels. 300 ppi. RGB Poster for a production of Carlo Goldoni's "A Servant of Two Masters," directed by David Johnson, and produced at Virginia Tech's Squires Studio Theatre for the 2011-2012 season.
Enhanced Master Station History Report
National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Master Station History Report (EMSHR) is a compiled list of basic, historical information for every station in the station history database, beginning...
STS-107 Master Experiment List
2002-12-01
A master list of the various experiments conducted aboard the STS-107 Space Mission is presented. The topics include: 1) Biology; 2) Earth and Space Sciences; 3) Physical Sciences; 4) Space Product Development; and 6) Technology Development.
Masters in clinical veterinary research.
Barr, Frances
2016-08-20
A new masters qualification from the BSAVA aims to encourage and support clinical research in practice. As Frances Barr explains, it is aimed at those looking for a professional challenge. British Veterinary Association.
Danielsen, Oluf
2004-01-01
The Master in ICT and Learning (MIL)was started in 2000, and it is owned in collaboration by five Danish universities. It is an accredited virtual part-time 2-year education. MIL is unique in that it builds on the pedagogical framework of project pedagogy and is based in virtual collaboration....... It is organized around ICT and Learning. This is illustrated through a presentation of the study program, the four modules, the projects and the master thesis....
Dual arm master controller concept
Kuban, D.P.; Perkins, G.S.
1984-01-01
The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Master. 15.805 Section 15.805 Shipping COAST GUARD....805 Master. (a) There must be an individual holding an appropriate license as or a valid MMC with endorsement as master master in command of each of the following vessels: (1) Every self-propelled,...
Enhanced Master Controller Unit Tester
Benson, Patricia; Johnson, Yvette; Johnson, Brian; Williams, Philip; Burton, Geoffrey; McCoy, Anthony
2007-01-01
The Enhanced Master Controller Unit Tester (EMUT) software is a tool for development and testing of software for a master controller (MC) flight computer. The primary function of the EMUT software is to simulate interfaces between the MC computer and external analog and digital circuitry (including other computers) in a rack of equipment to be used in scientific experiments. The simulations span the range of nominal, off-nominal, and erroneous operational conditions, enabling the testing of MC software before all the equipment becomes available.
Mastering IDEAScript the definitive guide
Mueller, John Paul
2011-01-01
With approximately 44,000 users in the U.S. and Canada, as well as 42,000 in Europe, IDEA software has become a leading provider of data analysis software for use by auditors and accountants. Written to provide users with a quick access guide for optimal use of IDEAScript, Mastering IDEAScript: The Definitive Guide is IDEA's official guide to mastering IDEAScript, covering essential topics such as Introducing IDEAScript, Understanding the Basics of IDEAScript Editor, Designing Structured Applications, Understanding IDEA Databases and much more. For auditors, accountants and controllers.
Dual arm master controller development
Kuban, D.P.; Perkins, G.S.
1985-01-01
The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab.
Hood River Production Master Plan.
O' Toole, Patty
1991-07-01
The Northwest Power Planning Council's 1987 Columbia River Fish and Wildlife Program authorizes the development of artificial production facilities to raise chinook salmon and steelhead for enhancement in the Hood, Umatilla, Walla Walla, Grande Ronde and Imnaha rivers and elsewhere. On February 26, 1991 the Council agreed to disaggregate Hood River from the Northeast Oregon Hatchery Project, and instead, link the Hood River Master Plan (now the Hood River Production Plan) to the Pelton Ladder Project (Pelton Ladder Master Plan 1991).
Mastering Ninject for dependency injection
Baharestani, Daniel
2013-01-01
Mastering Ninject for Dependency Injection teaches you the most powerful concepts of Ninject in a simple and easy-to-understand format using lots of practical examples, diagrams, and illustrations.Mastering Ninject for Dependency Injection is aimed at software developers and architects who wish to create maintainable, extensible, testable, and loosely coupled applications. Since Ninject targets the .NET platform, this book is not suitable for software developers of other platforms. Being familiar with design patterns such as singleton or factory would be beneficial, but no knowledge of depende
Balanutsa, P.; Gorbovskoy, E.; Lipunov, V.; Denisenko, D.; Tiurina, N.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Zimnukhov, D.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Punanova, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Shumkov, V.; Shurpakov, S.; Levato, H.; Saffe, C.; Mallamaci, C.; Lopez, C.; Podest, F.
2012-09-01
OT MASTER J005552.55+261100.8 discovery MASTER-Amur auto-detection system discovered OT source at (RA, Dec) = 00h 55m 52.55s +26d 11m 00.8s on 2012-08-30.77359 UT by two tube simultaneously during 3 min exposition. The OT unfiltered magnitude is 14.2m (limit 18.0m). There is no minor planet at this place. There is no known satellite around 4 degrees at this time. There is one non star object NBKY021338 (jmag~ 22.3) in the Guide Star Catalog with 3.6 arcsec offset.
Master-slave micromanipulator apparatus
Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.
1999-01-01
An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Master-slave micromanipulator method
Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.
1999-01-01
A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
El Camino College Master Plan.
El Camino Coll., Torrance, CA.
This document is the educational Master Plan for El Camino Community College District. The purpose of the plan is to develop a research-based document that will be used as a foundation for decisions regarding instructional programs, support services, staffing and facilities. It is intended to serve as the basic foundation for all other plans of…
Nutrition recommendations for masters athletes.
Rosenbloom, Christine A; Dunaway, Ann
2007-01-01
"More than 3000 masters athletes from 62 countries compete in Linz, Austria, in March of 2006." In 2005, 9000 "silver-haired Americans go for the gold." The National Senior Games Association announced a "major change in the NSGA rules affecting the game of basketball; a new age division of 80+ has been added for 2007."
Adequate bases of phase space master integrals for $gg \\to h$ at NNLO and beyond
Höschele, Maik; Ueda, Takahiro
2014-01-01
We study master integrals needed to compute the Higgs boson production cross section via gluon fusion in the infinite top quark mass limit, using a canonical form of differential equations for master integrals, recently identified by Henn, which makes their solution possible in a straightforward algebraic way. We apply the known criteria to derive such a suitable basis for all the phase space master integrals in afore mentioned process at next-to-next-to-leading order in QCD and demonstrate that the method is applicable to next-to-next-to-next-to-leading order as well by solving a non-planar topology. Furthermore, we discuss in great detail how to find an adequate basis using practical examples. Special emphasis is devoted to master integrals which are coupled by their differential equations.
Adequate bases of phase space master integrals for gg → h at NNLO and beyond
Höschele, Maik; Hoff, Jens; Ueda, Takahiro
2014-09-01
We study master integrals needed to compute the Higgs boson production cross section via gluon fusion in the infinite top quark mass limit, using a canonical form of differential equations for master integrals, recently identified by Henn, which makes their solution possible in a straightforward algebraic way. We apply the known criteria to derive such a suitable basis for all the phase space master integrals in afore mentioned process at next-to-next-to-leading order in QCD and demonstrate that the method is applicable to next-to-next-to-next-to-leading order as well by solving a non-planar topology. Furthermore, we discuss in great detail how to find an adequate basis using practical examples. Special emphasis is devoted to master integrals which are coupled by their differential equations.
Testing the Master Constraint Programme for Loop Quantum Gravity I. General Framework
Dittrich, B; Dittrich, Bianca; Thiemann, Thomas
2004-01-01
Recently the Master Constraint Programme for Loop Quantum Gravity (LQG) was proposed as a classically equivalent way to impose the infinite number of Wheeler -- DeWitt constraint equations in terms of a single Master Equation. While the proposal has some promising abstract features, it was until now barely tested in known models. In this series of five papers we fill this gap, thereby adding confidence to the proposal. We consider a wide range of models with increasingly more complicated constraint algebras, beginning with a finite dimensional, Abelean algebra of constraint operators which are linear in the momenta and ending with an infinite dimensional, non-Abelean algebra of constraint operators which closes with structure functions only and which are not even polynomial in the momenta. In all these models we apply the Master Constraint Programme successfully, however, the full flexibility of the method must be exploited in order to complete our task. This shows that the Master Constraint Programme has a w...
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Master (OSV). 11.493 Section 11.493 Shipping COAST GUARD... Professional Requirements for Deck Officers § 11.493 Master (OSV). (a) Except as provided by paragraph (b) of this section, to qualify for an endorsement as Master (OSV), an applicant shall present evidence...
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Master. 104.205 Section 104.205... SECURITY: VESSELS Vessel Security Requirements § 104.205 Master. (a) Nothing in this part is intended to permit the Master to be constrained by the Company, the vessel owner or operator, or any other...
Evolution of Master Planning of Tianjin
2008-01-01
<正>1.Review on previous master planning of Tianjin From 1953 to 1999,with thanks to the great attention of the Municipal Government of Tianjin to the work of master planning,there had been 21 draft master plans finished successively for Tianjin,
14 CFR 27.1361 - Master switch.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Master switch. 27.1361 Section 27.1361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1361 Master switch. (a) There must be a master switch arrangement to allow ready disconnection of each electric power...
MASTER: 2 short optical transients
Balanutsa, P.; Lipunov, V.; Rebolo, R.; Serra-Ricart, M.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Popova, E.; Gress, O.; Kornilov, V.; Vladimirov, V.
2017-02-01
MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 13h 30m 17.28s +78d 09m 51.8s on 2017-02-02.96362 UT. The OT is seen on 3 images with the following m_OT: 2017-02-02 23:03:55.905 18.57 2017-02-02 23:05:36.496 14.48 2017-02-02 23:07:37.042 14.92 We have reference image without OT on 2016-06-10.89789 UT with unfiltered magnitude limit 19.1m.
[Master course in biomedical engineering].
Jobbágy, Akos; Benyó, Zoltán; Monos, Emil
2009-11-22
The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.
Master classes - What do they offer?
Hanken, Ingrid Maria; Long, Marion
2012-01-01
Master classes are a common way to teach music performance, but how useful are they in helping young musicians in their musical development? Based on his experiences of master classes Lali (2003:24) states that “For better or for worse, master classes can be life-changing events.” Anecdotal evidence confirm that master classes can provide vital learning opportunities, but also that they can be of little use to the student, or worse, detrimental. Since master classes are a common component in ...
Mansfield, Richard
2010-01-01
A comprehensive guide to the language used to customize Microsoft Office. Visual Basic for Applications (VBA) is the language used for writing macros, automating Office applications, and creating custom applications in Word, Excel, PowerPoint, Outlook, and Access. This complete guide shows both IT professionals and novice developers how to master VBA in order to customize the entire Office suite for specific business needs.: Office 2010 is the leading productivity suite, and the VBA language enables customizations of all the Office programs; this complete guide gives both novice and experience
王良华
2007-01-01
Mr Smith was a boss of a butcher's shop(肉店). One day a hungry dog came to the shop. The dog wagged(摇动) its tail again and again. The boss gave it some meat to eat. So later on, the dog always stayed with the owner and looked upon him as its own master. When the people found that the boss was friendly(友好) to the dog, they thought Mr Smith could be trusted. As time passed by, more and more customers(顾客) came to buy fresh meat(鲜肉). And he was getting richer and richer.
Uroš Lobnik
1999-01-01
Full Text Available The Maribor Town plan project began in 1995. The elaborate analytical part was directed into recognising and establishing key problems in the town and guidelines for their solution. Expert guidelines were elaborated and presented as conceptual ideas, easily understood by professionals and lay-people. The concept of the master plan or town plan as such is based on the division and connection of the four parts of the town. In the concluding remarks certain ideas on improving the planning system are presented.
Mastering Microsoft Azure infrastructure services
Savill, John
2015-01-01
Understand, create, deploy, and maintain a public cloud using Microsoft Azure Mastering Microsoft Azure Infrastructure Services guides you through the process of creating and managing a public cloud and virtual network using Microsoft Azure. With step-by-step instruction and clear explanation, this book equips you with the skills required to provide services both on-premises and off-premises through full virtualization, providing a deeper understanding of Azure's capabilities as an infrastructure service. Each chapter includes online videos that visualize and enhance the concepts presented i
Magnus, Wilhelm
2004-01-01
The hundreds of applications of Hill's equation in engineering and physics range from mechanics and astronomy to electric circuits, electric conductivity of metals, and the theory of the cyclotron. New applications are continually being discovered and theoretical advances made since Liapounoff established the equation's fundamental importance for stability problems in 1907. Brief but thorough, this volume offers engineers and mathematicians a complete orientation to the subject.""Hill's equation"" connotes the class of homogeneous, linear, second order differential equations with real, period
Diophantine approximations and Diophantine equations
Schmidt, Wolfgang M
1991-01-01
"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum
EVALUATION OF THE MASTER MARKETER NEWSLETTER
McCorkle, Dean A.; Waller, Mark L.; Amosson, Stephen H.; Smith, Jackie; Bevers, Stanley J.; Borchardt, Robert
2001-01-01
Several support programs have been developed to help support, reinforce, enhance, and improve the effectiveness of the educational experience of Master Marketer graduates and other marketing club participants. One of those products, the Master Marketer Newsletter, is currently mailed to over 700 Master Marketer graduates and Extension faculty on a quarterly basis. In the June 2000 newsletter, a questionnaire was sent to newsletter recipients asking them to evaluate the various sections of the...
Coherence Properties of Discrete Static Kinks, Master Thesis
Landa, H
2009-01-01
A chain of interacting particles subject also to a nonlinear on-site potential admits stable soliton-like configurations : static kinks. The linear normal-modes around such a kink contain a discrete set of localized, gap-separated modes. Quantization of the Hamiltonian in these modes results in an interacting system of phonons. We investigate numerically the coherence properties of such localized modes at low temperatures using a non-Markovian master equation. We show that low decoherence rates can be achieved in these nonlinear configurations for a surprisingly long time. If realized in the ion trap, kink internal modes may be advantageously used for Quantum Information Processing.
Practice Oriented Master's in Optics
Dimmock, John O.
1998-01-01
The development of an interdisciplinary Masters Program with a concentration in Optics and Photonics Technology has been is described. This program was developed under the U.S. Manufacturing Education and Training Activity of the Technology Reinvestment Project. This development was a collaboration between the University of Alabama in Huntsville (UAH), Alabama A&M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center (MSFC), the U.S. Army Missile Command, Oak Ridge National Laboratory (ORNL), Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research and Speedring Inc. These organizations as well as the National Institute for Standards and Technology and SCI, Inc. have been participating fully in the design, development and implementation of this program. This goal of the program is to produce highly trained graduates who can also solve practical problems. To this end, the program includes an on-site practicum at a manufacturing location. The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing to cost for commercial products. The Master's of Science (MS) in Physics and Master's of Science in Engineering (MSE) in Electrical Engineering Degrees with concentration in Optics and Photonics Technology are offered by the respective UAH academic departments with support from and in consultation with a Steering Committee composed of representatives from each of the participating organizations, and a student representative from UAH. The origins of the programs are described. The curricula of the programs is described. The course outlines of the new courses which were developed for the new curriculum are included. Also included are samples of on-site practicums which the students have been involved in. Also included as attachments are samples of the advertisements, which includes flyers, and
RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅹ)--MASTER BALANCE LAW
DAI Tian-min
2006-01-01
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally,some existing results are reduced immediately as special cases.
Efficient Simulations of Interstellar Gas-Grain Chemistry Using Moment Equations
Barzel, B
2007-01-01
Networks of reactions on dust grain surfaces play a crucial role in the chemistry of interstellar clouds, leading to the formation of molecular hydrogen in diffuse clouds as well as various organic molecules in dense molecular clouds. Due to the sub-micron size of the grains and the low flux, the population of reactive species per grain may be very small and strongly fluctuating. Under these conditions rate equations fail and the simulation of surface-reaction networks requires stochastic methods such as the master equation. However, the master equation becomes infeasible for complex networks because the number of equations proliferates exponentially. Here we introduce a method based on moment equations for the simulation of reaction networks on small grains. The number of equations is reduced to just one equation per reactive specie and one equation per reaction. Nevertheless, the method provides accurate results, which are in excellent agreement with the master equation. The method is demonstrated for the m...
The Master Artisan: A Framework for Master Tradespeople in Australia. Occasional Paper
O'Reilly-Briggs, Karen
2011-01-01
The author explores the prospect of improving pathways and opportunities for tradespeople in Australia through the introduction of a masters-level qualification. The study investigates the views and opinions of senior industry representatives and professional educators to determine whether the introduction of a master trade or master artisan…
Nuclear safety research master plan
Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others
2001-06-01
The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.
Master of Science in Applied Mathematics, Rensselaer Polytechnic Institute. Final Report.
Boyce, William E.; DiPrima, Richard C.
The purpose of this project was to develop a Master of Science program in Applied Mathematics designed specifically to meet the needs of students wishing to prepare for careers in business, industry, or government. The program emphasizes problem-solving, mathematical modeling, and areas of mathematics such as differential equations, computing, and…
MASTER-OAFA: OT detection during inspection
Gress, O.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Balanutsa, P.; Kornilov, V.; Chazov, V.; Gorbunov, I.; Krylov, A.; Lopez, C.; Podesta, F.; Saffe, C.; Shumkov, V.; Pogrosheva, T.
2017-02-01
MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 18h 36m 27.60s -47d 35m 18.1s on 2017-02-02.36706 UT. The OT unfiltered magnitude is 16.2m (mlim=18.1m).
Master's Degree Studies: Expectations versus Reality
Swanepoel, C. H.
2010-01-01
During the past two decades, higher education in South Africa has been affected drastically by transformation. An issue that has specifically been influenced is master's degrees. A significant increase in the demand for access to course work master's degrees has been experienced, while universities themselves have been confronted with a new…
Balanutsa, P.; Lipunov, V.; Buckley, D.; Budnev, N.; Gress, O.; Gorbovskoy, E.; Tiurina, N.; Vladimirov, V.; Kornilov, V.; Kuvshinov, D.; Pogrosheva, T.; Ivanov, K.
2017-02-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 09h 45m 05.87s -65d 43m 43.3s on 2017-02-15.91771 UT. The OT unfiltered magnitude is (mlim=18.6).
MASTER: possible SLSN in SDSS galaxy
Pogrosheva, T.; Lipunov, V.; Rebolo, R.; Serra-Ricart, M.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Balanutsa, P.; Kornilov, V.; Gress, O.; Vladimirov, V.
2017-02-01
MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 16h 13m 08.18s +26d 09m 53.3s on 2017-02-16.12905 UT. The OT unfiltered magnitude is (mlimit=18.6m).
MASTER: PKS 1142-225 optical flare
Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Kuznetsov, A.; Gorbunov, I.; Krylov, A.; Lopez, C.; Podesta, F.; Saffe, C.; Kuvshinov, D.; Shumkov, V.
2017-02-01
MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 11h 45m 22.02s -22d 50m 31.4s on 2017-02-10.26340 UT. The OT unfiltered magnitude is 16.7m (mlimit=18.0m).
Valuing Initial Teacher Education at Master's Level
Brooks, Clare; Brant, Jacek; Abrahams, Ian; Yandell, John
2012-01-01
The future of Master's-level work in initial teacher education (ITE) in England seems uncertain. Whilst the coalition government has expressed support for Master's-level work, its recent White Paper focuses on teaching skills as the dominant form of professional development. This training discourse is in tension with the view of professional…
Microsoft SQL Server 2012 Master Data Services
Puhakka, Jani
2014-01-01
Insinöörityössä selvitettiin Microsoft SQL Server 2012 Master Data Services -palvelimen toiminnot master datan hallintaan. Tavoitteena oli muodostaa käsitys järjestelmän toiminnallisuuksista ja miten näitä voidaan hyödyntää. Ensimmäisenä työssä tutustuttiin master data -käsitteeseen ja -käyttötarkoitukseen. Tämän jälkeen asennettiin Master Data Services -ympäristö virtuaalikoneelle sekä tutustuttiin käytettävissä oleviin hallintatyökaluihin. Seuraavana käytiin läpi Master Data Serviceen l...
A way to the Photo Master Expert
Inagaki, Toshihiko
After the author presided over the photographer's group for 15 years or more, the author met with the Photo Master certificate examination. And the author took the certificate examination, and was authorized as a Photo Master Expert in 2005. In this report, the outline how photographic technology has been mastered in order to adapt the photographer's group to the great change of photography from film to digital and how the contents of the activity of a photographer's group have changed is described. And the progress which took the Photo Master certificate examination as a good opportunity to prove the achievement level of those activities is described. And as a photographic activity after Photo Master Expert authorization, the shooting method of mural painting in the royal tomb of Amenophis III is described.
Endoscopic Release of Master Knot of Henry.
Lui, Tun Hing
2015-12-01
A post-traumatic partial tear of the flexor hallucis longus tendon at the master knot of Henry and the resultant fibrosis of the knot can result in pain at the medial foot arch or posteromedial ankle pain with trigger hallux. Open debridement of the master knot of Henry is indicated if the symptoms do not improve with nonoperative treatment. The open procedure requires extensive soft-tissue dissection because the master knot of Henry is a deep structure. Endoscopic release of the master knot of Henry is an alternative to the open procedure and has the advantage of less surgical trauma and potential for less chance of recurrence of fibrosis of the master knot of Henry.
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
PROFESSIONAL MASTER AND ITS CHALLENGES.
Ferreira, Lydia Masako
2015-01-01
To describe the history, origin, objectives, characteristics, implications, the questions of the evaluation form and some examples of the Professional Masters (MP), to differentiate the Academic Master, and identify the challenges for the next quadrennial assessment. The CAPES site on Professional Masters and documents and meeting area of reports from 2004 to 2013 of Medicine III were read as well as the reports and the sub-page of the area in Capes site. The data relating to the evaluation process and the Scoreboard of the other areas were computed and analyzed. From these data it was detected the challenges of Medicine III for the next four years (2013-2016). The creation of the Professional Master is very recent in Medicine III and no Professional Master of Medicine III course was evaluated yet. Were described the objectives, assumptions, characteristics, motivations, the possibilities, the feasibility, the profile of the students, the faculty, the curriculum, funding, intellectual production, social inclusion, the general requirements of Ordinance No. 193/2011 CAPES and some examples of proposals, technological lines of scientific activities, partnerships and counterparties. The evaluation form of the MP was discussed, the need for social, economic and political intellectual production and the differences with the MA. It was also reported the global importance of the MP and its evolution in Brazil. From the understanding of the MP, Medicine III outlined some challenges and goals to be developed in the 2013-2016 quadrennium. Medicine III understood the MP as a new technological scientific horizon within the strict sensu post-graduate and full consistency with the area. Descrever o histórico, a origem, os objetivos, as características, as implicações, os quesitos da ficha de avaliação e alguns exemplos do Mestrado Profissional (MP), sua diferenciação com o Mestrado Acadêmico, e detectar os desafios para o próximo quadriênio de avaliação. O site
Lloyd K. Williams
1987-01-01
Full Text Available In this paper we find closed form solutions of some Riccati equations. Attention is restricted to the scalar as opposed to the matrix case. However, the ones considered have important applications to mathematics and the sciences, mostly in the form of the linear second-order ordinary differential equations which are solved herewith.
Coupled Ito equations of continuous quantum state measurement, and estimation
Diósi, L; Konrad, T; Scherer, A; Audretsch, Juergen; Diosi, Lajos; Konrad, Thomas; Scherer, Artur
2006-01-01
We discuss a non-linear stochastic master equation that governs the time-evolution of the estimated quantum state. Its differential evolution corresponds to the infinitesimal updates that depend on the time-continuous measurement of the true quantum state. The new stochastic master equation couples to the two standard stochastic differential equations of time-continuous quantum measurement. For the first time, we can prove that the calculated estimate almost always converges to the true state, also at low-efficiency measurements. We show that our single-state theory can be adapted to weak continuous ensemble measurements as well.
Prentis, Jeffrey J.
1996-05-01
One of the most challenging goals of a physics teacher is to help students see that the equations of physics are connected to each other, and that they logically unfold from a small number of basic ideas. Derivations contain the vital information on this connective structure. In a traditional physics course, there are many problem-solving exercises, but few, if any, derivation exercises. Creating an equation poem is an exercise to help students see the unity of the equations of physics, rather than their diversity. An equation poem is a highly refined and eloquent set of symbolic statements that captures the essence of the derivation of an equation. Such a poetic derivation is uncluttered by the extraneous details that tend to distract a student from understanding the essential physics of the long, formal derivation.
Young, C.W. [Applied Research Associates, Inc., Albuquerque, NM (United States)
1997-10-01
In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.
Second Line of Defense Master Spares Catalog
Henderson, Dale L.; Muller, George; Mercier, Theresa M.; Brigantic, Robert T.; Perkins, Casey J.; Cooley, Scott K.
2012-11-20
This catalog is intended to be a comprehensive listing of repair parts, components, kits, and consumable items used on the equipment deployed at SLD sites worldwide. The catalog covers detection, CAS, network, ancillary equipment, and tools. The catalog is backed by a Master Parts Database which is used to generate the standard report views of the catalog. The master parts database is a relational database containing a record for every part in the master parts catalog along with supporting tables for normalizing fields in the records. The database also includes supporting queries, database maintenance forms, and reports.
A fifth order differential equation for charged perfect fluids
Kweyama, M C; Maharaj, S D
2013-01-01
We investigate the master nonlinear partial differential equation that governs the evolution of shear-free spherically symmetric charged fluids. We use an approach which has not been considered previously for the underlying equation in shear-free spherically symmetric spacetimes. We derive a fifth order purely differential equation that must be satisfied for the underlying equation to admit a Lie point symmetry. We then perform a comprehensive analysis of this equation utilising the Lie symmetry analysis and direct integration. This enables us to reduce the fifth order equation to quadratures. Earlier results are shown to be contained in our general treatment.
The master T-operator for inhomogeneous XXX spin chain and mKP hierarchy
Zabrodin, A
2014-01-01
Following the approach of [1], we show how to construct the master T-operator for the quantum GL(N)-invariant inhomogeneous XXX spin chain with twisted boundary conditions. It satisfiesthe bilinear identity and Hirota equations for the classical mKP hierarchy. We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum spin chain and the classical Ruijsenaars-Schneider system of particles.
Infinite Dimensional Free Algebra and the Forms of the Master Field
Halpern, M B
1999-01-01
We find an infinite dimensional free algebra which lives at large N in any SU(N)-invariant action or Hamiltonian theory of bosonic matrices. The natural basis of this algebra is a free-algebraic generalization of Chebyshev polynomials and the dual basis is closely related to the planar connected parts. This leads to a number of free-algebraic forms of the master field including an algebraic derivation of the Gopakumar-Gross form. For action theories, these forms of the master field immediately give a number of new free-algebraic packagings of the planar Schwinger-Dyson equations.
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
The complex chemical Langevin equation
Schnoerr, David [School of Biological Sciences, University of Edinburgh (United Kingdom); School of Informatics, University of Edinburgh (United Kingdom); Sanguinetti, Guido [School of Informatics, University of Edinburgh (United Kingdom); Grima, Ramon [School of Biological Sciences, University of Edinburgh (United Kingdom)
2014-07-14
The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE’s main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE’s predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE’s accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the “complex CLE” predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.
The complex chemical Langevin equation.
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2014-07-14
The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.
Schrodinger Equation for an Open System
毕桥; H.E.Ruda
2002-01-01
We present a Schrodinger (Liouville) type of equation for a quantum open system. It has a correlated part, and various master equations may be its special cases. It also has significant applications for constructing decoherencefree subspace for quantum computation. It is related to the original Schrodinger (Liouville) equation for the total system through a non-unitary similarity transformation. It is unnecessary for its correlated part to be self-adjoint,so there is a complex spectrum for the corresponding Hamiltonian (Liouvillian), which enables the time evolution of states to be asymmetric. This shows just the correlation to produce evolution of world.
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
A Better Way to Master English
ZHOU XIAOYAN
2010-01-01
@@ Disney English recently held a meeting for parents to communicate with experts on how to master English better by Multiple Intelligences (MI) method. MI is an internationally advocated teaching theory founded by Harvard University.
Master Plan Chincoteague National Wildlife Refuge 1993
US Fish and Wildlife Service, Department of the Interior — The purpose of this Master Plan is to give overall guidance for the protection, use, and development of Chincoteague National Wildlife Refuge during the next ten to...
Pixley National Wildlife Refuge master plan
US Fish and Wildlife Service, Department of the Interior — The Pixley NWR Master Plan has been developed as a resource document as well as a guide for Refuge management. The document is designed to be useful for a...
Master Plan for Iroquois National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This master plan presents the development and management requirements needed to make Iroquois Refuge one of the most important breeding-migration areas in the...
Moosehorn National Wildlife Refuge Master Plan
US Fish and Wildlife Service, Department of the Interior — The Moosehorn National Wildlife Refuge Master Plan guides the long-range development of the Refuge by identifying and integrating appropriate habitats, management...
Arctic National Wildlife Range: Master plan
US Fish and Wildlife Service, Department of the Interior — This is the master plan for Arctic National Wildlife Refuge. This plan outlines refuge objectives, history, existing conditions, and proposed accomplishments for the...
Master-Batch Sector Develops Rapidly
Wu Lifeng
2007-01-01
@@ Plastic industry promotes the development of the master-batch sector The plastic processing industry in China has developed rapidly. The output is increasing rapidly and the quality is improving constantly.
Kern National Wildlife Refuge master plan
US Fish and Wildlife Service, Department of the Interior — The Kern NWR Master Plan has been developed as a resource document as well as a guide for Refuge management. The document is designed to be useful for a...
Inspirational Catalogue of Master Thesis Proposals 2015
Thorndahl, Søren
2015-01-01
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....
MASTER-OAFA discovery: dwarf nova outburst
Shumkov, V.; Lipunov, V.; Podesta, R.; Levato, H.; Buckley, D.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Gorbovskoy, E.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Lopez, C.; Podesta, F.; Saffe, C.; Pogrosheva, T.
2016-10-01
MASTER-OAFA (Argentina, San Juan National Univeristy's Observatorio Astronomico Felix Aguilar) auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 02h 19m 51.96s -69d 26m 59.6s on 2016-10-18.23277 UT. The OT magnitude in unfiltered is 17.2m (limit 18.3m).
Inspirational Catalogue of Master Thesis Proposals 2015
Thorndahl, Søren
2015-01-01
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....
MASTER: 2 OT discovered in Argentina
Shumkov, V.; Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Vladimirov, V.; Gress, O.; Ivanov, K.; Chazov, V.; Lopez, C.; Podesta, F.; Saffe, C.
2016-10-01
MASTER-OAFA, located in Argentina, with auto-detection system (Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L) discovered OT source at (RA, Dec) = 03h 19m 42.92s -45d 30m 13.9s on 2016-10-27.27597 UT. The OT unfiltered magnitude is 16.9m (mlim=20.8m).
Program Notes: Masters Recital, October 3, 2009
MacAdam-Somer, Batya
2009-01-01
This Master's thesis is a document that accompanies my Master's violin recital which took place on October 3, 2009 at the University of California, San Diego. This recital consists of Piece Pour Ivry, per violino by Bruno Maderna, Sonata in C Major by J. S. Bach, Chorals for Solo Violin by John Cage, and Phantasy for Violin and Piano Accompaniment by Arnold Schoenberg. This thesis consists of four short paragraphs introducing each work to the l...
Solution of the Lindblad equation in the Kraus representation
Nakazato, H.; Hida, Y.; Yuasa, K.; Militello, B.; Napoli, A.; Messina, A.
2006-12-01
The so-called Lindblad equation, a typical master equation describing the dissipative quantum dynamics, is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form, known as the Kraus representation. Following a few simple examples, the general applicability of the method is clarified.
Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.
Daniel B Reeves
Full Text Available Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB to measure biologically relevant properties (e.g., temperature, viscosity, bound state surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles' size distribution and moment and the applied field's amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter.
19 CFR 10.90 - Master records and metal matrices.
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
21 CFR 314.420 - Drug master files.
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug master files. 314.420 Section 314.420 Food... master files. (a) A drug master file is a submission of information to the Food and Drug Administration by a person (the drug master file holder) who intends it to be used for one of the following...
2011-11-03
...] [FR Doc No: 2011-28558] CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 12-C0003] Spin Master, Inc. and Spin Master, Ltd., Provisional Acceptance of a Settlement Agreement and Order AGENCY: Consumer... Settlement Agreement with Spin Master, Inc. and Spin Master, Ltd., containing a civil penalty of...
A 4-DOF haptic master using ER fluid for minimally invasive surgery system application
Oh, Jong-Seok; Han, Young-Min; Lee, Sang-Rock; Choi, Seung-Bok
2013-04-01
This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.
EXPLORATION OF TCM MASTERS KNOWLEDGE MINING
Xijin TANG; Nan ZHANG; Zheng WANG
2008-01-01
Traditional Chinese medicine (TCM) has a rich knowledge about human health and disease by its special way evolved along a very long history. As modern medicine is achieving much progress, arguments and disputes toward TCM never end. To avoid losing precious knowledge of living TCM masters, endeavors have been engaged to systematic collection of those knowledge of TCM masters, such as their growth experiences, effective practical cases toward diseases and typical therapeutic principles and methods. Knowledge mining methods have been expected to explore some useful or hidden patterns to unveil some mysteries of the TCM system. In the paper, some computerized methods are applied toward those collected materials about some living TCM masters in China mainland to show a different way of exposing essential ideas of those TCM masters by correspondence visualization which aims to help people understand TCM holistic views toward disease and body, and facilitate tacit knowledge transfer and sense-making of the essence of TCM. The work is one kind of qualitative meta-synthesis of TCM masters' knowledge.
Excitability in a stochastic differential equation model for calcium puffs.
Rüdiger, S
2014-06-01
Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model also predicts a bifurcation from transient to sustained release which may link local and global calcium signals in cells.
Stochastic Runge-Kutta Software Package for Stochastic Differential Equations
Gevorkyan, M N; Korolkova, A V; Kulyabov, D S; Sevastyanov, L A
2016-01-01
As a result of the application of a technique of multistep processes stochastic models construction the range of models, implemented as a self-consistent differential equations, was obtained. These are partial differential equations (master equation, the Fokker--Planck equation) and stochastic differential equations (Langevin equation). However, analytical methods do not always allow to research these equations adequately. It is proposed to use the combined analytical and numerical approach studying these equations. For this purpose the numerical part is realized within the framework of symbolic computation. It is recommended to apply stochastic Runge--Kutta methods for numerical study of stochastic differential equations in the form of the Langevin. Under this approach, a program complex on the basis of analytical calculations metasystem Sage is developed. For model verification logarithmic walks and Black--Scholes two-dimensional model are used. To illustrate the stochastic "predator--prey" type model is us...
The Composition of the Master Schedule
Thomas, Cynthia C.; Behrend, Dirk; MacMillan, Daniel S.
2010-01-01
Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year.
Master-slave robot force telepresence technology
无
2001-01-01
In order to make the manipulators useful, some force-feedback is required to enable the operator to sense the robot's feelings. Without force-feedback, many tasks will not be able to be carried out. For these rea sons, a master-slave system with different kinematics has been developed. The system permits us to vary the ra tio of the position/attitude, to design a master manipulator without considering the kinematics of the slave ma nipulator, and so on. To overcome the difficulties, a master-slave manipulator system with different kinematics is proposed. The master manipulator is force-controlled via a force torque sensor in the handle. As to master slave manipulator system with two way force feedback is concerned, the force goes to the actuator from the oper ator, and come back to the operator from the actuator. The working situation is viewed by the stereo TV supervi sory system. The force and vision telepresence are thus achieved. In order to ensure the maneuverability, direct drive DC motors and PWM servo units are adopted to improve the response speed. It can provide force response in a wide range. A lot of experiments were performed with the master-slave manipulator system force telepres ence to study the force response under restricted environment. By two force sensors, the force-position bilateral force response system effectively decreases the affection of friction and inertia force, and increases the authen ticity of bilateral force response. When the slave manipulator ann is encountered with soft-object(sponge), in the experiments, the operator can clearly have the fine feeling as if he himself is contacted with the object.
Enterprise Master Data Management Trends and Solutions
2007-01-01
Full Text Available The idea of master data and master data management (MDM evolved from the increased necessities of enterprises for a more efficient and effective data management, requiring unification and integration of enterprise-wide data from multiple systems. In order to do that, many companies are considering MDM solutions, which automate data integration across various systems and applications. The paper aims to establish the correct position and role of the MDM in the enterprise IT (Information Technology systems and to identify the main approaches, trends and solutions in the emergent area of enterprise MDM.
Tybjerg, Casper
2014-01-01
In this interview, produced by the Criterion Collection in 2014, Danish film historian Casper Tybjerg discusses how Master of the House went from being a popular stage play to a film, one that was a major stepping-stone in director Carl Theodor Dreyer's career.......In this interview, produced by the Criterion Collection in 2014, Danish film historian Casper Tybjerg discusses how Master of the House went from being a popular stage play to a film, one that was a major stepping-stone in director Carl Theodor Dreyer's career....
Mastering Adobe Premiere Pro CS6
Ekert, Paul
2013-01-01
Designed to be practical and engaging, Mastering Adobe Premiere Pro CS6 is a project-based book to help you truly augment your skills and become a film editing hotshot.If you're just starting out or even migrating from existing video editing software, then this book is for you. With rapid progression through practical examples constructed to be both engaging and useful, Mastering Adobe Premiere Pro CS6 is ideal for learning the sometimes complex workflows of this powerful application.
MASTER: OT detection during Fermi trigger inspection
Popova, E.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Potter, S.; Gabovich, A.
2016-11-01
During inspection of Fermi trigger 501261070 ( (Ra,Dec)=47.190,-47.210; GRB_ERROR_radius=3.27deg, GRB_TIME=2016/11/19 15:11:06.40UT http://gcn.gsfc.nasa.gov/other/501261070.fermi ) MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 03h 22m 52.70s -48d 29m 10.9s on 2016-11-19 21:17:17.878UT with unfiltered m_OT=17.8 (mlim=19.7).
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
An introduction to ordinary differential equations
Coddington, Earl A
1989-01-01
""Written in an admirably cleancut and economical style."" - Mathematical Reviews. This concise text offers undergraduates in mathematics and science a thorough and systematic first course in elementary differential equations. Presuming a knowledge of basic calculus, the book first reviews the mathematical essentials required to master the materials to be presented. The next four chapters take up linear equations, those of the first order and those with constant coefficients, variable coefficients, and regular singular points. The last two chapters address the existence and uniqueness of solu
Master Environmental Plan for Fort Devens, Massachusetts
1992-04-01
contain a variety of sedges , reeds, and aquatic plants suitable for waterfowl (McMaster et al. 1982). 2.4 SOILS AND GEOLOGY 2.4.1 Soils The U.S...Solidago sp. Goldenrod Taraxacum officinale Dandelion Cyperaceae Carex spp. Carex Ericaceae Gualtheria procumbens Checkerberry Epigaea repens Trailing
The Master's Thesis in Applied Psychology Training.
Shultz, Kenneth S.; Kottke, Janet L.
1996-01-01
Recommends the inclusion of a master's thesis in industrial and organizational psychology programs. Argues that the thesis serves several critical educational purposes and is relevant to applied psychology. Offers suggestions for increasing the relationship between the educational requirement and the professional tasks. (MJP)
Does California's Master Plan Still Work?
Burdman, Pamela
2009-01-01
For nearly 50 years, California's higher education system has been shaped by the tripartite division of the vaunted Master Plan. The 1960 document's bold vision of access and quality safeguarded a system of selective research universities (the University of California) and provided baccalaureate education through less-selective campuses (the…
Accountability: Papers from master theses 2009
C.D. Knoops (Chris); J. Noeverman (Jan)
2010-01-01
textabstractLast year, we presented the book “Accountability 2008: papers from master theses”. The book contained eleven papers. Each paper was based on a thesis in the field of Accounting, Auditing and Control, on which these students received a Master’s degree in Economics & Business from the Eras
TEN MASTER TEACHER AND PROGRAM AWARD PROGRAMS.
KOVACH, EDITH M.A.
IN 1966 THE AMERICAN CLASSICAL LEAGUE HONORED THREE TEACHERS WITH ITS MASTER SECONDARY SCHOOL LATIN TEACHER AND PROGRAM AWARD. AMONG THE 32 PROGRAMS CITED FOR RECOGNITION, TEN (INCLUDING THOSE OF THE AWARD WINNERS) POSSESS CLEARLY INNOVATIVE FEATURES. IN BRIEF THEY FEATURE (1) A FIFTH YEAR ADVANCED PLACEMENT PROGRAM, LATIN AS INTRODUCTORY TO…
Inspirational catalogue of Master Thesis proposals 2014
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...
Evaluation of the Navy Master Planning Program
1976-05-01
The language is straightforward, but doesn’t -56- lend itself to penetrating analysis. The oniy real implication for master planning is the suggestion...the Defense Department’s Planning, Pro- graniming, Budgeting System as it affects Naval shore facilities acqusition and management; and, (5
Inspirational catalogue of Master Thesis proposals 2014
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...
MASTER: bright PSN discovered in Argentina
Shumkov, V.; Lipunov, V.; Podesta, R.; Levato, H.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Vladimirov, V.; Gress, O.; Ivanov, K.; Chazov, V.; Lopez, C.; Podesta, F.; Saffe, C.; Pogrosheva, T.; Shurpakov, S.
2016-10-01
MASTER-OAFA (located in Argentina) auto-detection system ( Lipunov et al., 2010, Advances in Astronomy, vol. 2010, 30L ) discovered OT source at (RA, Dec) = 22h 01m 01.36s -40d 15m 26.7s on 2016-10-31.08091 UT. The OT unfiltered magnitude is 16.9m (mlim=19.9m).
Mastering SQL Server 2014 data mining
Bassan, Amarpreet Singh
2014-01-01
If you are a developer who is working on data mining for large companies and would like to enhance your knowledge of SQL Server Data Mining Suite, this book is for you. Whether you are brand new to data mining or are a seasoned expert, you will be able to master the skills needed to build a data mining solution.
Gabor fusion master slave optical coherence tomography
Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller
2017-01-01
This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT syst...
Hunter College Dance Therapy Masters Program.
Schmais, Claire; White, Elissa Q.
Described is development of the Hunter College dance therapy 18-month 30-credit masters program involving 33 adult students, (in two classes beginning in 1971 and 1972), an educational model, internship in psychiatric institutions, and preparation of instructional materials. The dance therapist is said to incorporate the psychiatric patient's…
The Master's Thesis in Applied Psychology Training.
Shultz, Kenneth S.; Kottke, Janet L.
1996-01-01
Recommends the inclusion of a master's thesis in industrial and organizational psychology programs. Argues that the thesis serves several critical educational purposes and is relevant to applied psychology. Offers suggestions for increasing the relationship between the educational requirement and the professional tasks. (MJP)
Three Steps to Mastering Multiplication Facts
Kling, Gina; Bay-Williams, Jennifer M.
2015-01-01
"That was the day I decided I was bad at math." Countless times, preservice and in-service teachers make statements such as this after sharing vivid memories of learning multiplication facts. Timed tests; public competitive games, such as Around the World; and visible displays of who has and has not mastered groups of facts still…
Master Console System Monitoring and Control Development
Brooks, Russell A.
2013-01-01
The Master Console internship during the summer of 2013 involved the development of firing room displays and support applications at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I created control scripts using the Application Control Language (ACL) to analyze the health and status of Kennedy Ground Control System (KGCS) programmable logic controllers (PLCs). This application provides a system health and status display I created with summarized data for use by Master Console Operators (MCO) to monitor and verify the integrity of KGCS subsystems.
Tricomi, Francesco Giacomo
1957-01-01
This classic text on integral equations by the late Professor F. G. Tricomi, of the Mathematics Faculty of the University of Turin, Italy, presents an authoritative, well-written treatment of the subject at the graduate or advanced undergraduate level. To render the book accessible to as wide an audience as possible, the author has kept the mathematical knowledge required on the part of the reader to a minimum; a solid foundation in differential and integral calculus, together with some knowledge of the theory of functions is sufficient. The book is divided into four chapters, with two useful
MOECSW trains master trainers and supervisors.
1995-01-01
The Ministry of Education, Culture and Social Welfare (MOECSW), as part of the Population Education Programs (formal and informal), undertook a series of training programs to upgrade the knowledge and skills of master trainers, supervisors, and resource persons. As part of the Population Education in the Formal School Sector Project (NEP/93/P01), under the Curriculum Development Centre five training courses were organized to train 220 master trainers. Under the "Three Steps Training Strategy," these 220 master trainers would teach 825 secondary school headmasters who would reach 2025 secondary school teachers. The training courses were held in Dhangadi, April 23-27, 1995; in Pokhara, April 2-7; and in Biratnagar, February 20-24. The areas covered included: 1) the pedagogical aspect of population education (content, scope, objectives, nature, teaching methodologies); 2) demography and population dynamics (composition, distribution and density, sources of population data, demographic transition, consequences and determinants of population growth); 3) family life and adolescence and human sexuality education, including acquired immunodeficiency syndrome (AIDS) education; 4) maternal and child health, and family planning; 5) environment; and 6) population policy and programs. As part of the Population Education Programme (NEP/93/P08), a Master Trainers Training Workshop was held in Makwanpur, March 26-28, 1995. These master trainers would train trainers who would train the facilitators and teachers at learning centers for adult learners under the literacy and post literacy programs. This course focused on the approaches and strategies for integrating population education in development programs, and non-formal education, adult literacy, post literacy, and out-of-school children programs. Dr. D. de Rebello and Mr. S. Hutabarat, CST Advisors on Population Education, organized the training courses and served as resource persons.
Implementation of a Gamification Platform in a Master Degree (Master in Economics)
Juan Carlos Fernández Zamora; Daniel Arias Aranda
2017-01-01
.... An experiment has been carried out for this reason, in which an educational platform, created in a personalized way for the students of the Master in Economics of the University of Granada, becomes...
Lie symmetries for equations in conformal geometries
Hansraj, S; Msomi, A M; Govinder, K S
2005-01-01
We seek exact solutions to the Einstein field equations which arise when two spacetime geometries are conformally related. Whilst this is a simple method to generate new solutions to the field equations, very few such examples have been found in practice. We use the method of Lie analysis of differential equations to obtain new group invariant solutions to conformally related Petrov type D spacetimes. Four cases arise depending on the nature of the Lie symmetry generator. In three cases we are in a position to solve the master field equation in terms of elementary functions. In the fourth case special solutions in terms of Bessel functions are obtained. These solutions contain known models as special cases.
Stochastic partial differential equations
Chow, Pao-Liu
2014-01-01
Preliminaries Introduction Some Examples Brownian Motions and Martingales Stochastic Integrals Stochastic Differential Equations of Itô Type Lévy Processes and Stochastic IntegralsStochastic Differential Equations of Lévy Type Comments Scalar Equations of First Order Introduction Generalized Itô's Formula Linear Stochastic Equations Quasilinear Equations General Remarks Stochastic Parabolic Equations Introduction Preliminaries Solution of Stochastic Heat EquationLinear Equations with Additive Noise Some Regularity Properties Stochastic Reaction-Diffusion Equations Parabolic Equations with Grad
Malheur National Wildlife Refuge Master Plan/Environmental Assessment
US Fish and Wildlife Service, Department of the Interior — This is the updated Malheur National Wildlife Refuge Master Plan and Environmental Assessment. It replaces the former Master Plan Technical Report that was prepared...
46 CFR 169.817 - Master to instruct ship's company.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Master to instruct ship's company. 169.817 Section 169.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.817 Master to instruct ship's company. The master shall conduct drills and...
Psychological Testing: Trends in Masters Level Counseling Training Programs.
Keller, John W.; Piotrowski, Chris
Masters level counseling graduates often provide clinical services in applied settings. To investigate the status of psychodiagnostic testing in masters level counseling (terminal) programs in the United States, all 48 masters level counseling training programs (excluding those with doctoral level training) received a one page questionnaire.…
Fashion Retail Master Data Model and Business Development
Hovmøller, Harald; Tambo, Torben
2014-01-01
of reorganising its master data model and master data governance to remove silos of data, connect and utilise data across business processes, and design a global product master data database that integrates data for all existing and expected sales channels. As a major finding of this paper is fashion retailing...
21 CFR 211.186 - Master production and control records.
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Master production and control records. 211.186... Reports § 211.186 Master production and control records. (a) To assure uniformity from batch to batch, master production and control records for each drug product, including each batch size thereof, shall...
The Master Teacher: Role and Responsibilities in the Reform Process
McClean, Wilma A.
2009-01-01
The primary purpose of the study is to determine the opinions of educators about the "master teacher" concept within the school system. The concept of the "master teacher" refers to the ideological approach used to implement a "master teacher" initiative or programme in the school reform process. The primary school…
46 CFR 169.507 - Responsibility of master.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Responsibility of master. 169.507 Section 169.507... Lifesaving and Firefighting Equipment Lifesaving Equipment-General § 169.507 Responsibility of master. The master or operator shall ensure that the lifeboats, liferafts, davits, falls, personal flotation...
46 CFR 45.105 - Information supplied to the master.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Information supplied to the master. 45.105 Section 45... LINES Conditions of Assignment § 45.105 Information supplied to the master. Unless otherwise authorized... information. (a) To enable the master to load and ballast the vessel in a manner that avoids...
47 CFR 80.114 - Authority of the master.
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Authority of the master. 80.114 Section 80.114... Authority of the master. (a) The service of each ship station must at all times be under the ultimate control of the master, who must require that each operator or such station comply with the...
33 CFR 157.47 - Information for master.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel...
21 CFR 874.3330 - Master hearing aid.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Master hearing aid. 874.3330 Section 874.3330 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3330 Master hearing aid. (a) Identification. A master hearing aid is an electronic device intended to simulate a hearing aid during...
Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
Sang, Hongqiang; Wang, Shuxin; Li, Jianmin; He, Chao; Zhang, Lin'an; Wang, Xiaofei
2011-09-01
Compared with conventional minimally invasive surgery and open surgery, robotic-assisted minimally invasive surgery can overcome or eliminate drawbacks caused by operator restrictions, motion limitation by the trocar and the image system, such as fatigue, trembling, low precision, constrained degree-of-freedom, poor hand-eye coordination and restricted surgical vision. In this paper, a novel partly tendon-driven master-slave robot system is proposed to assist minimally invasive surgery and a master-slave control architecture is developed for abdominal surgical operations. A novel master-slave surgery robot system named MicroHand A has been developed. A kinematic analysis of master and slave manipulators was conducted, based on screw theory and vector loop equation. The relationships of the tendon-driven multi-DOF surgical instrument among Cartesian space, actuator space and joint space were derived for control purposes. The control system architecture of the MicroHand A was designed with intuitive motion control and motion scaling control. Llewellyn's absolute stability criterion and the transparency of the one-DOF master-slave system are also analysed. Intuitive motion control under dissimilar kinematics in master-slave manipulations and motion scaling control were accomplished to solve absonant hand-eye coordination, kinematic dissimilarity and workspace mismatch of master-slave manipulator problems. A series of tests and animal experiments were carried out to evaluate system performance. The experimental results demonstrate that the system could accomplish intuitive motion control and motion scaling control, and that the control system is stable and reliable. The experiments performed on the MicroHand A robotic system yielded expected control results. The system satisfies the requirements of minimally invasive surgery. Intuitive motion control and motion scaling control under different kinematics for the master and slave have been implemented. Copyright © 2011
Strategic and Master Plans: references and purposes
Clovis Ultramari
2008-07-01
Full Text Available Master Plans and Strategic Plans, the first adopted due to a new federal law, the second implemented due to a more methodological option, are current instruments observed all over Brazil, and both constitute what could be called a contemporary urban utopia for Brazilian cities. This article is an attempt to discuss the way both instruments are implemented, their potentials and their limitations. At the same time, this article aims at finding way to integrate both approaches. Such integration is discussed by means of the authors experience in the implementation of such Plans and of secondary data. Master Plans are contextualized in the adoption of the new urban legislation (The Cities Statute. Strategic Plans are viewed as an instrument already adopted by private sector but also able to respect the dogmas of community participation.
Master planning--a new way forward?
Heavisides, Bob
2009-04-01
Bob Heavisides, director of facilities, Milton Keynes Hospital NHS Foundation Trust, and senior research fellow, Medical Architecture Research Unit (MARU), at London South Bank University, considers, in a précis of a paper presented at last year's Healthcare Estates conference, how a new master planning approach may bring significant benefits to the healthcare estate, arguing that, against today's fast-changing backdrop, typical existing estates strategies may no longer be fully "fit-for-purpose".
Master Symmetry for Holographic Wilson Loops
Klose, Thomas; Munkler, Hagen
2016-01-01
We identify the symmetry underlying the recently observed spectral-parameter transformations of holographic Wilson loops alias minimal surfaces in AdS/CFT. The generator of this nonlocal symmetry is shown to furnish a raising operator on the classical Yangian-type charges of symmetric coset models. We explicitly demonstrate how this master symmetry acts on strong-coupling Wilson loops and indicate a possible extension to arbitrary coupling.
Mastering cloud computing foundations and applications programming
Buyya, Rajkumar; Selvi, SThamarai
2013-01-01
Mastering Cloud Computing is designed for undergraduate students learning to develop cloud computing applications. Tomorrow's applications won't live on a single computer but will be deployed from and reside on a virtual server, accessible anywhere, any time. Tomorrow's application developers need to understand the requirements of building apps for these virtual systems, including concurrent programming, high-performance computing, and data-intensive systems. The book introduces the principles of distributed and parallel computing underlying cloud architectures and specifical
How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
Grima, Ramon; Thomas, Philipp; Straube, Arthur V
2011-08-28
The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are commonly used approximations of the chemical master equation. These equations are derived from an uncontrolled, second-order truncation of the Kramers-Moyal expansion of the chemical master equation and hence their accuracy remains to be clarified. We use the system-size expansion to show that chemical Fokker-Planck estimates of the mean concentrations and of the variance of the concentration fluctuations about the mean are accurate to order Ω(-3∕2) for reaction systems which do not obey detailed balance and at least accurate to order Ω(-2) for systems obeying detailed balance, where Ω is the characteristic size of the system. Hence, the chemical Fokker-Planck equation turns out to be more accurate than the linear-noise approximation of the chemical master equation (the linear Fokker-Planck equation) which leads to mean concentration estimates accurate to order Ω(-1∕2) and variance estimates accurate to order Ω(-3∕2). This higher accuracy is particularly conspicuous for chemical systems realized in small volumes such as biochemical reactions inside cells. A formula is also obtained for the approximate size of the relative errors in the concentration and variance predictions of the chemical Fokker-Planck equation, where the relative error is defined as the difference between the predictions of the chemical Fokker-Planck equation and the master equation divided by the prediction of the master equation. For dimerization and enzyme-catalyzed reactions, the errors are typically less than few percent even when the steady-state is characterized by merely few tens of molecules.
Model-Based Power Plant Master Control
Boman, Katarina; Thomas, Jean; Funkquist, Jonas
2010-08-15
The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are
The Master T-Operator for Inhomogeneous XXX Spin Chain and mKP Hierarchy
Zabrodin, Anton
2014-01-01
Following the approach of [Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., J. High Energy Phys. 2013 (2013), no. 9, 064, 65 pages, arXiv:1112.3310], we show how to construct the master T-operator for the quantum inhomogeneous GL(N) XXX spin chain with twisted boundary conditions. It satisfies the bilinear identity and Hirota equations for the classical mKP hierarchy. We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum spin chain and the classical Ruijsenaars-Schneider system of particles.
Three-loop master integrals for ladder-box diagrams with one massive leg
Di Vita, Stefano; Schubert, Ulrich; Yundin, Valery
2014-01-01
The three-loop master integrals for ladder-box diagrams with one massive leg are computed from an eighty-five by eighty-five system of differential equations, solved by means of Magnus exponential. The results of the considered box-type integrals, as well as of the tower of vertex- and bubble-type master integrals associated to subtopologies, are given as a Taylor series expansion in the dimensional regulator parameter epsilon = (4-d)/2. The coefficients of the series are expressed in terms of uniform weight combinations of multiple polylogarithms and transcendental constants up to weight six. The considered integrals enter the next-to-next-to-next-to-leading order virtual corrections to scattering processes like the three-jet production mediated by vector boson decay, V* -> jjj, as well as the Higgs plus one-jet production in gluon fusion, pp -> Hj.
Fracture toughness master curve analysis of the tempered martensitic steel Eurofer97
Mueller, P.; Spatig, P.; Bonade, R. [EPFL-CBPP, Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH Villigen PSI (Switzerland); Odette, G. [UCSB, Santa-Barbara, Dept. of Mechanical Engineering UCSB, AK (United States)
2007-07-01
Full text of publication follows: The reduced activation tempered martensitic steel Eurofer97 is the European reference reduced activation steel for fusion applications. In this study, the fracture toughness properties of this steel are investigated in the ductile-to-brittle fracture transition region. The ASTM E-1921 master curve (equation 1 with {alpha} 0.019) describes well the temperature dependence of the median toughness of a variety of nuclear reactor pressure vessel steels. K{sub Jc(median)} = 30 + 70 exp[{alpha}(T - T{sub 0})] (1). We previously showed that fracture toughness data obtained with 0.35 T compact tension specimens are not satisfactorily described by the ASTM E1921 master curve in the lower transition region, corresponding to the temperature range [-150, -100 deg. C]. A better statistical description of the data was done, using a modified master curve shape with a coefficient {alpha} equal to 0.04 and a T{sub 0} value of -97 deg. C. In order to confirm the different shape of the fracture toughness curve of the Eurofer97, new fracture toughness tests were carried out at higher temperatures, up to -50 deg. C. These new data indicate that the K{sub Jc(median)}(T) curve in the transition is indeed steeper than the ASTM E1921 master curve. The validation of the modified master curve is discussed in terms of: i) the statistical predictions of scatter with temperature in comparison to the experimental data and ii) a self-consistent determination of T{sub 0} by performing series of single temperature T{sub 0}-analysis as well as multi-temperature T{sub 0}-analysis. A very good agreement between the predictions and experimental observations is found. Finally, the underlying possible physical reasons responsible for this specific fracture behavior of the Eurofer97 steel in the transition are briefly discussed in relation to its microstructure. (authors)
Effector T cell differentiation: are master regulators of effector T cells still the masters?
Wang, Chao; Collins, Mary; Kuchroo, Vijay K
2015-12-01
Effector CD4 T cell lineages have been implicated as potent inducers of autoimmune diseases. Tbet, Gata3 and Rorgt are master transcriptional regulators of Th1, Th2 and Th17 lineages respectively and promote the distinct expression of signature cytokines. Significant progress has been made in understanding the transcriptional network that drives CD4 T cell differentiation, revealing novel points of regulation mediated by transcription factors, cell surface receptors, cytokines and chemokines. Epigenetic modifications and metabolic mediators define the transcriptional landscape in which master transcription factors operate and collaborate with a network of transcriptional modifiers to guide lineage specification, plasticity and function.
Setting the stage for master's level success
Roberts, Donna
Comprehensive reading, writing, research, and study skills play a critical role in a graduate student's success and ability to contribute to a field of study effectively. The literature indicated a need to support graduate student success in the areas of mentoring, navigation, as well as research and writing. The purpose of this two-phased mixed methods explanatory study was to examine factors that characterize student success at the Master's level in the fields of education, sociology and social work. The study was grounded in a transformational learning framework which focused on three levels of learning: technical knowledge, practical or communicative knowledge, and emancipatory knowledge. The study included two data collection points. Phase one consisted of a Master's Level Success questionnaire that was sent via Qualtrics to graduate level students at three colleges and universities in the Central Valley of California: a California State University campus, a University of California campus, and a private college campus. The results of the chi-square indicated that seven questionnaire items were significant with p values less than .05. Phase two in the data collection included semi-structured interview questions that resulted in three themes emerged using Dedoose software: (1) the need for more language and writing support at the Master's level, (2) the need for mentoring, especially for second-language learners, and (3) utilizing the strong influence of faculty in student success. It is recommended that institutions continually assess and strengthen their programs to meet the full range of learners and to support students to degree completion.
Stochastic analysis of complex reaction networks using binomial moment equations.
Barzel, Baruch; Biham, Ofer
2012-09-01
The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.
The antioxidant master glutathione and periodontal health
Vivek Kumar Bains
2015-01-01
Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.
TWRS privatization phase 1 master site plan
Parazin, R.J.
1996-09-30
The DOE-RL is pursuing a new business strategy of hiring private contractors for treatment of Hanford Site tank wastes. This strategy is called `privatization` and includes design, permitting, construction, operation and deactivation of facilities for tank waste treatment. The TWRS Privatization Infrastructure Project consists of several sub-projects which will provide key services needed to support the privatization mission. This master site plan presently describes all pertinent aspects of the site and identifies all planned provisions for site development, utilities and other site services. It is a baseline document which will be revised as privatization proceeds through design, construction and start-up.
Mastering Microsoft Forefront UAG 2010 Customization
Ben-Ari, Erez
2012-01-01
"Mastering Microsoft Forefront UAG 2010 Customization" is a hands-on guide with step-by-step instructions for enhancing the functionality of UAG through customization. Each topic details one key aspect of functionality and the operative mechanism behind it, and suggests functionality that can be achieved with customization, along with helpful code samples. Whether you are a seasoned UAG consultant, deployment and support engineer or a UAG customer, this book is for you. Consultants will be able to enhance the services you can provide for UAG customization, while the book helps customers to ach
Improved master clock reference system at USNO
Winkler, G. M. R.
1985-04-01
The first phase of the NAVELEX/NRL/USNO Master Clock (MC) upgrade program has been completed with the delivery of two VLG11B hydrogen Masers to the U.S. Naval Observatory (USNO). After installation in a specially prepaid Maser Laboratory with redundant environmental control, and a ten-day burn-in operation, the masers were independently tuned. Their subsequent performance caused a review of our plans for their operational use as part of the USNO MC complex. A revised concept is the basis for system integration presently in progress.
Optical "anti-transient" detected by MASTER
Denisenko, D.; Gorbovskoy, E.; Lipunov, V.; Balanutsa, P.; Yecheistov, V.; Tiurina, N.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Zimnukhov, D.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Punanova, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Shurpakov, S.; Shumkov, V.; Podvorotny, P.; Levato, H.; Saffe, C.; Mallamaci, C.; Lopez, C.; Podest, F.
2013-02-01
We have started the search for the disappearing stars (optical "anti-transients", OATs) in the MASTER database. The first result is the detection of a deep (~3.5 magnitudes) fading of the bright star TYC 2505-672-1 whose variability was previously unknown. This star has the coordinates 09 53 10.00 +33 53 52.7 and magnitudes V=10.71, B=12.51 in Tycho2 catalogue and J=7.61, H=6.78, K=6.57 in 2MASS.
Towards a universal master curve in magnetorheology
Ruiz-López, José Antonio; Hidalgo-Alvarez, Roque; de Vicente, Juan
2017-05-01
We demonstrate that inverse ferrofluids behave as model magnetorheological fluids. A universal master curve is proposed, using a reduced Mason number, under the frame of a structural viscosity model where the magnetic field strength dependence is solely contained in the Mason number and the particle concentration is solely contained in the critical Mason number (i.e. the yield stress). A linear dependence of the critical Mason number with the particle concentration is observed that is in good agreement with a mean (average) magnetization approximation, particle level dynamic simulations and micromechanical models available in the literature.
The antioxidant master glutathione and periodontal health
Bains, Vivek Kumar; Bains, Rhythm
2015-01-01
Glutathione, considered to be the master antioxidant (AO), is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH) in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials. PMID:26604952
The Five Habits of the Master Thinker
Randolph H. Pherson
2013-08-01
Full Text Available Often analysts will observe that they do not have enough time to use Structured Analytic Techniques. When presented with this challenge by analysts in the UK Cabinet Office, the author came up with the following response: Develop these five habits when you have time so that when time is short you have developed a capacity to use them instinctively. This article describes the Five Habits of the Master Thinker in detail, reviews how they were selected, and explores how they can most easily be inculcated into how an analyst processes information.
SAS essentials mastering SAS for data analytics
Elliott, Alan C
2015-01-01
A step-by-step introduction to using SAS® statistical software as a foundational approach to data analysis and interpretation Presenting a straightforward introduction from the ground up, SAS® Essentials: Mastering SAS for Data Analytics, Second Edition illustrates SAS using hands-on learning techniques and numerous real-world examples. Keeping different experience levels in mind, the highly-qualified author team has developed the book over 20 years of teaching introductory SAS courses. Divided into two sections, the first part of the book provides an introduction to data manipulation, st
The Survivor Master Narrative in Sexual Assault.
Muldoon, Shane D; Taylor, S Caroline; Norma, Caroline
2016-04-01
This article is based on data drawn from 90 Victoria Police operational files covering the period 2004-2008. Several thematic responses by sexual assault survivors are described as forming a master narrative of "identity shock." It is argued that the "minor/serious" sexual assault legal distinction is meaningless to survivors and conceals a shared felt experience. It is also argued that sexual assault is fundamentally a "public issue" of betrayal of citizen trust--not just a collection of "private troubles"--and that effective resolutions require more than individualized therapeutic and criminal justice measures.
Mastering Windows Server 2008 Networking Foundations
Minasi, Mark; Mueller, John Paul
2011-01-01
Find in-depth coverage of general networking concepts and basic instruction on Windows Server 2008 installation and management including active directory, DNS, Windows storage, and TCP/IP and IPv4 networking basics in Mastering Windows Server 2008 Networking Foundations. One of three new books by best-selling author Mark Minasi, this guide explains what servers do, how basic networking works (IP basics and DNS/WINS basics), and the fundamentals of the under-the-hood technologies that support staff must understand. Learn how to install Windows Server 2008 and build a simple network, security co
Mastering Microsoft Windows Small Business Server 2008
Johnson, Steven
2010-01-01
A complete, winning approach to the number one small business solution. Do you have 75 or fewer users or devices on your small-business network? Find out how to integrate everything you need for your mini-enterprise with Microsoft's new Windows Server 2008 Small Business Server, a custom collection of server and management technologies designed to help small operations run smoothly without a giant IT department. This comprehensive guide shows you how to master all SBS components as well as handle integration with other Microsoft technologies.: Focuses on Windows Server 2008 Small Business Serv
Different Behaviour for the Solutions of Some Chemotaxis Equations
无
2000-01-01
@@ In biology, it is very important to investigate the movement of some cells ororganisms in some given biological system (cf. ［1, 2］). In order to understand howthe movement rules are affected by the effect of the chemo-attractant, Othmer and Stevens introduced in ［1］ several general classes of partial differential equations. In one of their models, they considered a master equation, i.e. barrier and nearestneighbor lattice model. Following a limiting process the model is described by the following system of partial differential equations:
Implementation of a Gamification Platform in a Master Degree (Master in Economics
Juan Carlos Fernández-Zamora
2017-06-01
An experiment has been carried out for this reason, in which an educational platform, created in a personalized way for the students of the Master in Economics of the University of Granada, becomes the day to day of these students, yielding results and Statistics on how to improve student motivation.
Creating a Masters in Numeracy Program
Eric Gaze
2010-07-01
Full Text Available The Master of Science in Numeracy program at Alfred University received full approval from the New York State Education Department (NYSED in May of 2007. This first-of-its-kind program seeks to provide teachers at all levels, from across the curriculum, the skills, and more importantly the confidence, to introduce relevant quantitative concepts in their own disciplines. Created to be a complement of the MS Ed. in Literacy, the 30-hour MS in Numeracy program consists of four required core courses (Teaching Numeracy, Teaching with Data, Assessment and Learning Theories in Numeracy, and Doing Science and Numeracy, five electives from a list of numeracy and literacy courses, and a Masters project. The program graduated its first student in May 2008 and three more since then. Major challenges for the program have included the uncertain (i.e., by-application connection between an MS and licensure (in contrast to the automatic professional certification for MS Ed. degrees and the small number of faculty involved in teaching the numeracy courses. The current status of the program is questionable as the person (the author who taught the first three core courses has left the University and has not yet been replaced. Even so, I believe this MS in Numeracy program offers a potentially useful example of a strategy to enhance the spread of QL through teacher preparation.
Teleoperated master-slave needle insertion.
Abolhassani, Niki; Patel, Rajni V
2009-12-01
Accuracy of needle tip placement and needle tracking in soft tissue are of particular importance in many medical procedures. In recent years, developing autonomous and teleoperated systems for needle insertion has become an active area of research. In this study, needle insertion was performed using a master-slave set-up with multi-degrees of freedom. The effect of force feedback on the accuracy of needle insertion was investigated. In addition, this study compared autonomous, teleoperated and semi-autonomous needle insertion. The results of this study show that incorporation of force feedback can improve teleoperated needle insertion. However, autonomous and semi-autonomous needle insertions, which use feedback from a deflection model, provide significantly better performance. Development of a haptic master-slave needle insertion system, which is capable of performing some autonomous tasks based on feedback from tissue deformation and needle deflection models, can improve the performance of autonomous robotics-based insertions as well as non-autonomous teleoperated manual insertions. Copyright (c) 2009 John Wiley & Sons, Ltd.
Dissecting microregulation of a master regulatory network
Kaimal Vivek
2008-02-01
Full Text Available Abstract Background The master regulator p53 tumor-suppressor protein through coordination of several downstream target genes and upstream transcription factors controls many pathways important for tumor suppression. While it has been reported that some of the p53's functions are microRNA-mediated, it is not known as to how many other microRNAs might contribute to the p53-mediated tumorigenesis. Results Here, we use bioinformatics-based integrative approach to identify and prioritize putative p53-regulated miRNAs, and unravel the miRNA-based microregulation of the p53 master regulatory network. Specifically, we identify putative microRNA regulators of a transcription factors that are upstream or downstream to p53 and b p53 interactants. The putative p53-miRs and their targets are prioritized using current knowledge of cancer biology and literature-reported cancer-miRNAs. Conclusion Our predicted p53-miRNA-gene networks strongly suggest that coordinated transcriptional and p53-miR mediated networks could be integral to tumorigenesis and the underlying processes and pathways.
Vitamin supplementation benefits in master athletes.
Brisswalter, Jeanick; Louis, Julien
2014-03-01
Master athletes are more than 35 years of age and continue to train as hard as their young counterparts despite the aging process. All life long, they are capable of accomplishing exceptional sporting performances. For these participants in endurance events, matching energy intake and expenditure is critical to maintain health and performance. The proportions of carbohydrate, fat, and protein must be optimized to provide enough calories to sustain the energy requirements of competition or training, and for recovery. In addition, endurance athletes must include adequate vitamins and minerals in their diets to maintain healthy immune function. Vitamins and minerals may be sufficient in the diets of endurance athletes, who have a high energy intake. This would make it unnecessary to use vitamin and mineral supplements. Furthermore, one major limitation for these athletes is the management of oxidative stress, which, when in excess, can be deleterious for the organism. For individuals exposed to oxidative stress, micronutritional supplementations rich in vitamins and minerals can be also an alternative strategy. Although these supplementations are increasingly used by master athletes, very few data are available on their effects on oxidative stress, muscle recovery, and physical performance. The potential benefits of supplement use in athletes are thus questionable. Some studies indicate no benefits, while others highlight potential negative side effects of vitamin supplementation. Additional studies are warranted in order to design adapted prescriptions in antioxidant vitamins and minerals.
Iimori, Yuki
2015-01-01
Developing the analysis in JHEP 03 (2014) 044 [arXiv:1312.1677] by the present authors et al., we clarify the relation between the Witten formulation and the Berkovits formulation of open superstring field theory at the level of the master action, namely the solution to the classical master equation in the Batalin-Vilkovisky formalism, which is the key for the path-integral quantization. We first scrutinize the reducibility structure, a detailed gauge structure containing the information about ghost string fields. Then, extending the condition for partial gauge fixing introduced in the above-mentioned paper to the sector of ghost string fields, we investigate the master action. We show that the reducibility structure and the master action under partial gauge fixing of the Berkovits formulation can be regarded as the regularized versions of those in the Witten formulation.
Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering
Bonciani, Roberto; Di Vita, Stefano; Mastrolia, Pierpaolo; Schubert, Ulrich
2016-09-01
We present the calculation of the master integrals needed for the two-loop QCD × EW corrections to q+overline{q}to {l}-+{l}+ and q+overline{q}^'to {l}-+overline{ν} , for massless external particles. We treat the W and Z bosons as degenerate in mass. We identify three types of diagrams, according to the presence of massive internal lines: the no-mass type, the one-mass type, and the two-mass type, where all massive propagators, when occurring, contain the same mass value. We find a basis of 49 master integrals and evaluate them with the method of the differential equations. The Magnus exponential is employed to choose a set of master integrals that obeys a canonical system of differential equations. Boundary conditions are found either by matching the solutions onto simpler integrals in special kinematic configurations, or by requiring the regularity of the solution at pseudothresholds. The canonical master integrals are finally given as Taylor series around d = 4 space-time dimensions, up to order four, with coefficients given in terms of iterated integrals, respectively up to weight four.
Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering
Bonciani, Roberto [' ' La Sapienza' ' Univ., Rome (Italy). Dipt. di Fisica; INFN Sezione Roma (Italy); Di Vita, Stefano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN Sezione di Padova (Italy); Schubert, Ulrich [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2016-04-15
We present the calculation of the master integrals needed for the two-loop QCD x EW corrections to q+ anti q → l{sup -}+l{sup +} and q+ anti q{sup '} → l{sup -}+ anti ν, for massless external particles. We treat W and Z bosons as degenerate in mass. We identify three types of diagrams, according to the presence of massive internal lines: the no-mass type, the one-mass type, and the two-mass type, where all massive propagators, when occurring, contain the same mass value. We find a basis of 49 master integrals and evaluate them with the method of the differential equations. The Magnus exponential is employed to choose a set of master integrals that obeys a canonical system of differential equations. Boundary conditions are found either by matching the solutions onto simpler integrals in special kinematic configurations, or by requiring the regularity of the solution at pseudo-thresholds. The canonical master integrals are finally given as Taylor series around d=4 space-time dimensions, up to order four, with coefficients given in terms of iterated integrals, respectively up to weight four.
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Leadership Profiling of Ocean Going Ship Masters1
Ioannis Theotokas
2014-12-01
This paper focuses on the ocean going ship Masters and aims at identifying their leadership profiles and understanding their attitudes and reactions in given circumstances. It analyses and discusses the results of a field study of ship officers of different nationalities employed as Masters on board ships of a leading international maritime group. Results of the research reveal that the characteristics and the competencies of ship Masters as identified using the specially developed questionnaire, are compatible with those proposed by situational leadership theories. Ship Masters seem to give priority to the people on board and their needs and try to be supportive in their decisions.
Fabricating an Accurate Implant Master Cast: A Technique Report.
Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F
2015-12-01
The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.
Ullersma, P.
1966-01-01
As in a previous paper1) an elastically bound particle, linearly coupled with a bath of small oscillators, is considered. At the initial time the bath is chosen in thermal equilibrium with temperature T. In the classical case the distribution function for the momentum and displacement of the particl
Two-loop planar master integrals for Higgs$\\to 3$ partons with full heavy-quark mass dependence
Bonciani, Roberto; Frellesvig, Hjalte; Henn, Johannes M; Moriello, Francesco; Smirnov, Vladimir A
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs$\\to 3$ partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic functions. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kerne...
Precise numerical evaluation of the two loop sunrise graph Master Integrals in the equal mass case
Pozzorini, Stefano
2006-01-01
We present a double precision routine in Fortran for the precise and fast numerical evaluation of the two Master Integrals (MIs) of the equal mass two-loop sunrise graph for arbitrary momentum transfer in d=2 and d=4 dimensions. The routine implements the accelerated power series expansions obtained by solving the corresponding differential equations for the MIs at their singular points. With a maximum of 22 terms for the worst case expansion a relative precision of better than a part in 10^{15} is achieved for arbitrary real values of the momentum transfer.
How to Solve the Lindblad Equation: Solution in the Kraus Representation
Nakazato, H; Yuasa, K; Militello, B; Napoli, A; Messina, A
2006-01-01
The so-called Lindblad equation, a typical master equation describing the dissipative quantum dynamics, is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form, known as the Kraus representation. Following a few simple examples, the general applicability of the method is clarified.
Master environmental plan for Fort Devens, Massachusetts
Biang, C.A.; Peters, R.W.; Pearl, R.H.; Tsai, S.Y. (Argonne National Lab., IL (United States). Energy Systems Div.)
1991-11-01
Argonne National Laboratory has prepared a master environmental plan (MEP) for Fort Devens, Massachusetts, for the US Army Toxic and Hazardous Materials Agency. The MEP is an assessment based on environmental laws and regulations of both the federal government and the Commonwealth of Massachusetts. The MEP assess the physical and environmental status of 58 potential hazardous waste sites, including 54 study areas (SAs) that pose a potential for releasing contamination into the environment and 4 areas of concern (AOCs) that are known to have substantial contamination. For each SA or AOC, this MEP describes the known history and environment, identifies additional data needs, and proposes possible response actions. Most recommended response actions consist of environmental sampling and monitoring and other characterization studies. 74 refs., 63 figs., 50 tabs.
Mastering Technologies in Design-Driven Innovation
Dell'era, Claudio; Marchesi, Alessio; Verganti, Roberto
2010-01-01
and semantic dimensions of a product. Case studies of two leading Italian companies in the furniture industry--Kartell and Luceplan--illustrate two principal interpretations of the role of technology in radical design-driven innovation: technology as an enabler of new product meanings for the customer......Only a few companies have mastered the design-driven approach to innovation. This paper examines what it means to make design a central part of the business process, able to add value to products and create new markets. More specifically, it focuses on the interplay between the functional......, and the importance of supply networks that allow manufacturers to change product technologies quickly and experiment with new technologies....
MASTER-2.0: Multi-purpose analyzer for static and transient effects of reactors
Cho, Byung Oh; Song, Jae Seung; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-01-01
MASTER-2.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the two group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM(Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with AFEN/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. Master-2.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P model can be used selectively. In addition, MASTER-2.0 is designed to cover various PWRs including SMART as well as WH-and CE-type reactors, providing all data required in their design procedures. (author). 39 refs., 12 figs., 4 tabs.
Master curves for gas amplification in low vacuum and environmental scanning electron microscopy.
Thiel, Bradley L
2004-02-01
The concept of universal amplification profiles for gas cascade amplification of signals in low vacuum and environmental scanning electron microscopes is demonstrated both experimentally and theoretically using water vapor. For a given gas, cascade amplification gain profiles can be plotted onto a single master curve where the independent reduced parameter is the ratio of pressure to amplification field strength. When plotted in this fashion, both desired secondary electron and spurious background signal components fall onto respective master curves, with the amplitude being a function of anode bias only. These master curves can be described by simple Townsend Gas Capacitor equations using only two gas-specific parameters. As long as single scattering conditions apply, this approach allows for simplified, direct comparison of the gain characteristics of different gases and allows more intelligent selection of imaging conditions. The utility of treating signal amplification in this manner is demonstrated through a series of images collected under a variety of conditions, but with the ratio of pressure to amplification field strength kept constant. In practice, the range of operational parameter space in which this description can be applied to imaging is limited, as images typically have a mixture of secondary and backscattered contributions.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Eden, Burkhard; Smirnov, Vladimir A.
2016-10-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Eden, Burkhard
2016-01-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Managerial implications and suitability of a master surgical scheduling approach
J.M. van Oostrum (Jeroen); E. Bredenhoff (Eelco); E.W. Hans (Erwin)
2008-01-01
textabstractMaster surgical scheduling can improve manageability and efficiency of operating room departments. This approach cyclically executes a master surgical schedule of surgery types. These surgery types need to be constructed with low variability to be efficient. Each surgery type is schedule
Psychological Testing: Trends in Masters-Level Counseling Psychology Programs.
Piotrowski, Chris; Keller, John W.
1984-01-01
A survey that investigated the status of psychodiagnostic testing in masters level counseling (terminal) programs showed that whereas the majority of respondents felt that masters graduates should be familiar with projective techniques such as the Rorschach and TAT, few advocated projectives personality asessment as part of the required…
Agonistic Struggle: Master-Slave Dialogues in Humanities Supervision
Grant, Barbara M.
2008-01-01
Hegel's master and slave is a significant archetype for graduate research supervision. The master-slave relation vividly exemplifies the hierarchical bond that ties supervisor and student together. Such a confronting view of supervision provides a counterbalance to contemporary emphases on equality between supervisor and student. In what follows,…
Agonistic Struggle: Master-Slave Dialogues in Humanities Supervision
Grant, Barbara M.
2008-01-01
Hegel's master and slave is a significant archetype for graduate research supervision. The master-slave relation vividly exemplifies the hierarchical bond that ties supervisor and student together. Such a confronting view of supervision provides a counterbalance to contemporary emphases on equality between supervisor and student. In what follows,…
MASTER-SAAO: OT detected during Fermi 508270281 inspection
Pogrosheva, T.; Balanutsa, P.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Gress, O.; Shumkov, V.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Potter, S.
2017-02-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 11h 34m 18.80s -51d 33m 13.5s on 2017-02-08.93060 UT. The OT unfiltered magnitude is (mlim=18.4).
Master-Saao Psn in PGC152788 and OT
Balanutsa, P.; Gress, O.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Kornilov, V.; Vladimirov, V.; Chazov, V.; Kuvshinov, D.; Pogrosheva, T.; Shumkov, V.
2017-02-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 08h 32m 56.92s -03d 51m 28.1s on 2017-02-11 22:13:06.767UT . The OT unfiltered magnitude is (mlim=19.8).
Comparative Analysis of Master of Industrial Design Education in Turkey
Erkarslan, Onder; Imamogullari, Beril
2010-01-01
This research focused on the masters degree programme in industrial design (ID), which is research and practice oriented in the light of current themes and design principles. It argued that a masters degree in industrial design would help graduates specialise in the related field and improve their skills. Therefore, institutional and academic…
Trends in Exiting Physics Master's. Focus On
Mulvey, Patrick J.; Nicholson, Starr
2014-01-01
A physics master's degree provides the recipient with a variety of career options. Some master's recipients will continue their education at the graduate level in physics or another field, where others enter the workforce pursuing a wide range of employment opportunities. This "Focus On" provides an in-depth analysis of physics…
46 CFR 78.30-20 - Master's and officer's responsibility.
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Master's and officer's responsibility. 78.30-20 Section 78.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Lookouts, Pilothouse Watch, Patrolmen, and Watchmen § 78.30-20 Master's and...
Denmark's Master of Public Governance Program: Assessment and Lessons Learned
Greve, Carsten; Pedersen, Anne Reff
2017-01-01
This paper focuses on Denmark's Master of Public Governance and its assessments and lessons learned. Denmark is seen to have an efficient economy and public sector, a digitalized public service delivery system, and an advanced work-life balance. The Danish government invested substantial resources into developing a Master of Public Governance…
Masters Level Graduate Student Writing Groups: Exploring Academic Identity
Ruggles, Tosha M.
2012-01-01
This action research project explores masters level graduate student writing and academic identity during one semester in an interdisciplinary masters program. Informing this study is a two part theoretical framework including the Academic Literacy Model (Lea and Street) and Wenger's concept of identity. The purpose of this exploration was to…
Assessing Changes in Virginia Master Gardener Volunteer Management
Dorn, Sheri T.
1999-01-01
ASSESSING CHANGES IN VIRGINIA MASTER GARDENER VOLUNTEER MANAGEMENT Sheri T. Dorn ABSTRACT Master Gardener (MG) volunteers are nonpaid, education partners with Virginia Cooperative Extension (VCE). VCE MGs have assisted Extension agents in meeting VCE's educational goals and mission by following the Sustainable Landscape Management educational program objectives within the VCE Plan of Work. Local MG volunteer programs must be managed appropriately so that vol...
Ren Shuaiying,an Accomplished Gongbi Zhongcai Master
LiuYinglan
1996-01-01
REN Shuaiying,a famous master painter of gongbi zhongcai(meticulous style painting in rich colors),has been gone for this great master,people still admire his complishment.Ren was born to a poor peasant family in Shulu County,Hebei Preovince.He became an orphan in early childhood,and was adopted by his
Managerial implications and suitability of a master surgical scheduling approach
J.M. van Oostrum (Jeroen); E. Bredenhoff (Eelco); E.W. Hans (Erwin)
2008-01-01
textabstractMaster surgical scheduling can improve manageability and efficiency of operating room departments. This approach cyclically executes a master surgical schedule of surgery types. These surgery types need to be constructed with low variability to be efficient. Each surgery type is
Trends in Distance Education: A Content Analysis of Master's Thesis
Durak, Gürhan; Çankaya, Serkan; Yunkul, Eyup; Urfa, Mehmet; Toprakliklioglu, Kivanç; Arda, Yagmur; Inam, Nazmiye
2017-01-01
The present study aimed at presenting the results of content analysis on Master's Theses carried out in the field of distance education at higher education level in Turkey between 1986 and 2015. A total of 285 Master's Theses were examined to determine the key words, academic disciplines, research areas, theoretical frameworks, research designs…
MD3M: The Master Data Management Maturity Model
Spruit, Marco; Pietzka, Katharina
2015-01-01
This research aims to assess the master data maturity of an organization. It is based on thorough literature study to derive the main concepts and best practices in master data maturity assessment. A maturity matrix relating 13 focus areas and 65 capabilities was designed and validated. Furthermore,
International Master Erasmus Mundus Quaternary and Prehistory, Master Theses 2006-2007.
Cecilia Buonsanto
2008-11-01
Full Text Available This special volume of the Annals of the University of Ferrara presents a rich collection of research carried out by a group of young scholars from around the world gathered in the Erasmus Mundus Master-Prehistory and Quaternary.This is a selection of the arguments put forward by students who participated in the first two years of this extraordinary course financed by the European Union. The first point to make as a synthesis of this advanced course is light here in these pages written in many different languages but that speak all the only language of international research.This book gives us evidence of a University that has become fully European, first of all because the institutions have invested in advanced studies and frontier research, bringing together universities from across the Continent that, in a common effort here have joined with us to give us the best possible conditions to enable young people, not only in Europe but coming from all over the world to play together a basic research on the origins of life in our common Earth.Just beware the origin of these authors to be affected: Jordan, Italy, Senegal, Spain, France, Brazil, Argentina, China, Algeria, Cambodia, Ivory Coast, Georgia, Indonesia.This volume contains the research results conducted by the master students of the first two years of training. The results represent an integral part of the final Master thesis defended before the last discussion in front of the International Commission.
Plastic masters-rigid templates for soft lithography.
Desai, Salil P; Freeman, Dennis M; Voldman, Joel
2009-06-07
We demonstrate a simple process for the fabrication of rigid plastic master molds for soft lithography directly from (poly)dimethysiloxane devices. Plastics masters (PMs) provide a cost-effective alternative to silicon-based masters and can be easily replicated without the need for cleanroom facilities. We have successfully demonstrated the use of plastics micromolding to generate both single and dual-layer plastic structures, and have characterized the fidelity of the molding process. Using the PM fabrication technique, world-to-chip connections can be integrated directly into the master enabling devices with robust, well-aligned fluidic ports directly after molding. PMs provide an easy technique for the fabrication of microfluidic devices and a simple route for the scaling-up of fabrication of robust masters for soft lithography.
Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability
Prinja, Anil K [Los Alamos National Laboratory
2012-07-02
The expected or mean neutron number (or density) provides an adequate characterization of the neutron population and its dynamical excursions in most neutronic applications, in particular power reactors. Fluctuations in the neutron number, originating from the inherent randomness of neutron interactions and fission neutron multiplicities, are relatively small and ignorable for operational purposes, although measurements of the variance and time correlations provide valuable diagnostic information on fundamental reactor physics parameters. However, it is well known that there exist situations of great interest and importance in which a strictly deterministic description, or even one supplemented with a knowledge of low order statistical averages (variance, correlation), provides an incomplete and very unsatisfactory description of the state of the neutron population. These situations are marked by persistent large fluctuations in the neutron number where the emergence of a deterministic phase is suppressed. Such situations are strongly stochastic and therefore unpredictable (i.e., the mean is not representative of the actual population), and can arise either by design or by accident. Examples where the stochastic behavior of neutron populations must be taken into account include: nuclear weapon single-point safety assessment; criticality excursions in spent fuel storage and in the handling of fissile solutions in fuel fabrication and reprocessing; approach to critical under suboptimal reactor start-up conditions; preinitiation in fast burst research reactors; and weak nuclear signatures in the passive detection of nuclear materials. What distinguishes strongly stochastic neutronic systems from strongly deterministic systems is that, in the former, neutron multiplication occurs in the presence of weak neutron sources, such as spontaneous fission and background (cosmic) radiation. Weak sources (in a sense that can be made quite precise) lead to well separated fission chains (a fission chain is defined as the initial source neutron and all its subsequent progeny) in which some chains are short lived while others propagate for unusually long times. Under these conditions, fission chains do not overlap strongly and this precludes the cancellation of neutron number fluctuations necessary for the mean to become established as the dominant measure of the neutron population. The fate of individual chains then plays a defining role in the evolution of the neutron population in strongly stochastic systems, and of particular interest and importance in supercritical systems is the extinction probability, defined as the probability that the neutron chain (initiating neutron and its progeny) will be extinguished at a particular time, or its complement, the time-dependent survival probability. The time-asymptotic limit of the latter, the probability of divergence, gives the probability that the neutron population will grow without bound, and is more commonly known as the probability of initiation or just POI. The ability to numerically compute these probabilities, with high accuracy and without overly restricting the underlying physics (e.g., fission neutron multiplicity, reactivity variation) is clearly essential in developing an understanding of the behavior of strongly stochastic systems.
Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment
Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.
2016-04-01
We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master crew member list and master non-crew member... Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49c Master crew member list and master non-crew member list requirement for commercial aircraft arriving in,...
Hasrati, Mostafa
2013-01-01
This article reports the results of a mixed methodology analysis of the assumptions of academic staff and Masters students in an Iranian university regarding various aspects of the assessment of the Masters degree thesis, including the main objective for writing the thesis, the role of the students, supervisors and advisors in writing the…
Hasrati, Mostafa
2013-01-01
This article reports the results of a mixed methodology analysis of the assumptions of academic staff and Masters students in an Iranian university regarding various aspects of the assessment of the Masters degree thesis, including the main objective for writing the thesis, the role of the students, supervisors and advisors in writing the…
Coho Salmon Master Plan, Clearwater River Basin.
Nez Perce Tribe; FishPro
2004-10-01
The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these
2012-08-01
...; Federal Perkins Loan Program Master Promissory Note SUMMARY: The Federal Perkins Loan Master Promissory... records. Title of Collection: Federal Perkins Loan Program Master Promissory Note. OMB Control...
Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)
2016-02-15
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.
Angstmann, C. N.; Donnelly, I. C.; Henry, B. I.; Jacobs, B. A.; Langlands, T. A. M.; Nichols, J. A.
2016-02-01
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction-diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.
Kinetic energy equations for the average-passage equation system
Johnson, Richard W.; Adamczyk, John J.
1989-01-01
Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.
Kinetic energy equations for the average-passage equation system
Johnson, Richard W.; Adamczyk, John J.
1989-01-01
Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.
Elliptic partial differential equations existence and regularity of distributional solutions
Boccardo, Lucio
2013-01-01
Elliptic partial differential equations is one of the main and most active areas in mathematics. In our book we study linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason the book is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Solving Nonlinear Wave Equations by Elliptic Equation
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2003-01-01
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
Tilts of the Master Equatorial Tower
Ahlstrom, H. G., Jr.; Gawronski, W.; Girdner, D.; Noskoff, E.; Sommerville, J. N.
2000-07-01
At the center of the DSS-14 antenna, a tower reaches to the focal point of the antenna dish. The master equatorial (ME) instrument is located at the top of the tower. This instrument precisely (with an accuracy that exceeds that of the antenna) follows the commanded trajectory. Through the optical coupling, the antenna focal point follows the ME. One factor of the antenna pointing precision is the movement of the ME base, i.e., the top of the tower. For this reason, measurements of the ME tower tilts have been taken in order to quantify the tilts, to determine possible causes of the tilting, and to update the antenna pointing budget. They were conducted under three antenna operating modes: during tracking, slewing, and antenna stowing. The measurements indicate that the ME tower tilts introduce significant pointing errors that exceed the required 32-GHz (Ka-band) pointing precision (estimated as 0.8 mdeg for a 0.1-dB gain loss). Four different sources of tilt were identified and require verification.
A cleavage toughness master curve model
Odette, G. R.; He, M. Y.
2000-12-01
Development of fusion power will require a fracture toughness database, derived largely from small specimen tests, closely integrated with methods to assess first wall and blanket structural integrities. A master curve-shift (MC-ΔT) method has been proposed as an engineering expedient to treat the effects of structural geometry, irradiation, loading rates and safety margins. However, a number of issues related to the MC-ΔT method remain to be resolved, including the universality of MC shapes. A new micromechanical model of fracture toughness in the cleavage transition regime is proposed that combines analytical representations of finite element analysis simulations of crack-tip stress fields with a local critical stress-critical stressed area (σ∗-A∗) fracture criterion. This model, has been successful in predicting geometry effects, as well as high loading rate and irradiation hardening-induced Charpy shifts. By incorporating a modest temperature dependence in σ∗(T), an inconsistency between model predictions and an observed universal-type MC shape is resolved.
Forecast Master Program case studies: Final report
Engle, R.; Granger, C.; Ramanathan, R. (ed.)
1987-04-01
This report presents a number of case studies using the computer software package FORECAST MASTER (FM). The series studied and forecast are, aggregate monthly California Electricity Sales, system energy demand data from Ontario Hydro, peak demand data for the residential and commercial customers of Georgia Power Company, Massachusetts Electric commercial sales, Narragansett Electric commercial sales, average and peak demand using Georgia Power Company data. A variety of methods have been studied by each of the contributing authors; trend line fitting, exponential smoothing, Box-Jenkins univariate forecasting, vector autoregression, state space modeling, dynamic econometric models including time-varying parameters and general order serial correlation corrections. Thus both the data sets and the modeling/forecasting methodologies are varied. A number of conclusions emerge from these case studies: FM provides a powerful set of tools to aid a utility forecaster, a great deal of caution should be exercised in pre-processing the data; it can have unintended side effects, diagnostic tests are very useful in econometric models, the Akaike Information Criterion is a useful measure for selecting the best state space model, and state space and econometric approaches both need equal amounts of care in model analysis and presentation.
In-Orbit Servicing: The Master Enabler
Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith
2015-01-01
Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.
The "Master Enabler" - In-Orbit Servicing
Reed, Benjamin; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin
2015-01-01
Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool-a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.
The Master Enabler: In Orbit Servicing
Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin
2015-01-01
Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.
The CEBAF Master Oscillator and Distribution Remodeling
Tomasz Plawski, J. Hovater, John Musson, Ramakrishna Bachimanchi
2009-05-01
Jefferson Lab's CEBAF accelerator operation requires various frequency references to be distributed along the site. Three signals: 10 MHz, 70 MHz and 499 MHz are synthesized in the Machine Control Center (MCC) while 1427 MHz and 429 MHz are derived from 499 MHz and 70 MHz signals in four separate locations. We are replacing our obsolete 10 MHz, 70 MHz and 499 MHz sources with new sources that will incorporate a GPS receiver to discipline a 10 MHz reference. In addition the MO (Master Oscillator) system will be redundant (duplicate MO) and a third signal source will be used as a system diagnostic. Moreover, the 12 GeV Energy Upgrade for CEBAF accelerator will be adding 80 new RF systems. To support them the distribution of 1427 MHz and 70 MHz signals has to be extended and be able to deliver enough LO (Local Oscillator) and IF (Intermediate Frequency) power to 320 old and 80 new 80 RF systems. This paper discusses the new MO and the drive line extension.
Coho Salmon Master Plan, Clearwater River Basin.
Nez Perce Tribe; FishPro
2004-10-01
The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these
A force feedback master finger in exoskeleton type
Fang Honggen; Liu Hong; Xie Zongwu
2010-01-01
In order to eliminate the drawbacks of conventional force feedback gloves,a new type of master finger has been developed.By utilizing three"four-bar mechanism joint"in series and wire coupling mechanism,the master finger transmission ratio is kept exactly 1:1.4:1 in the whole movement range and it can make active motions in both extension and flexion directions.Additionally,to assttre faster data transmission and near zero delay in the master-slave operation,a digital signal processing/field programmable gate array(DSP/FPGA-FPGA)structure with 200μs cycle time is designed.The operating modes of the master finger can be contact or non-contact,which depends on the motion states of a slave finger,free motion or constrained motion.The position control employed in non-contact mode ensures unconstrained motion and the force control adopted in contact mode guarantees natural contact sensation.To evaluate the performances of the master finger,an experiment between the master finger and a DLR/HIT dexterous finger is conducted.The results demonstrate that this new type master finger can augment telepresence.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380
An University-based masters program in occupational therapy
la Cour, Karen; Nielsen, Kristina Tomra; Peoples, Hanne;
2016-01-01
The purpose of this workshop is to share and discuss educational methods to foster master level education. Rationale Among the challenges of the post graduate master program in Occupational Therapy at University of Southern Denmark is the educational change towards an academic culture required...... of students to ascertain master level learning competencies. Through individual study plans and by use of Rubrics as tools for evaluation and feedback processes self-responsible learning is facilitated. Journal Clubs are used to qualify critical research understanding as an integrated part of the curriculum...
Bilateral Control Using Master/Slave Simulator for Haptic Communication
Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi
A bilateral controller is used to transmit and share haptic information between a master system and a slave system. In a transmission system, the bilateral controller encounters problems in the event of data packet loss and/or disconnections. In this study, a master/slave simulator and environmental data memory are used to solve the problems. In the case of normal operation, the environmental data memory stores force data in a remote side. The control system is operated by the environmental data memory and master/slave simulator when the communication lines are disconnected.
Burkhardt-Holm, Patricia; Chebbi, Camelia
2008-03-01
Sustainable development has become a key aspect in society, economics and environment. Therefore, experts dealing with questions relating to people, the environment and its resources are more and more requested. This paper presents the concept and first experiences of a specialised Master's Degree in Sustainable Development (MSD). This is a pioneer course as it is equally anchored in three faculties (Human science, Natural science, Business and Economy) at the University of Basel, Switzerland. It aims to transmit knowledge, teach methodology and enable practical work experience in the field of sustainable development. This interdisciplinary master's degree is composed of several modules. At first, the attendance of modules providing a basic understanding in the disciplines not yet covered by the former Bachelor degree, is mandatory. In optional modules, the acquired knowledge of the compulsory modules is further enhanced, focussing on four different topics and are titled as: Agglomeration and Ecosystems; Conservation and Utilisation of Natural Resources; Environment, Values, Societal Transformation and Health; and Environmental Problems in a Globalised World. In another optional module, students may complete an internship in which they can apply theoretical and thematic knowledge. To work independently on a problem in the context of, interdisciplinary projects are a central request in the MSD. Finally, the master thesis has to be planned and realized by a plying the scientific methods and skills acquired in the previous modules. Since the beginning of the programme in the winter of 2005/2006, 45 students have enrolled. They received degrees at 25 different universities, 13 of which are from abroad. Some already have several years of working experience, while others have only just completed their Bachelor's degrees. A analysis has shown that the graduates will have excellent chances in the employment market, since they are well qualified to take over sought
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
The Modified Magnetohydrodynamical Equations
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
George F R Ellis
2007-07-01
The Raychaudhuri equation is central to the understanding of gravitational attraction in astrophysics and cosmology, and in particular underlies the famous singularity theorems of general relativity theory. This paper reviews the derivation of the equation, and its significance in cosmology.
Compact 2050 nm Semiconductor Diode Laser Master Oscillator Project
National Aeronautics and Space Administration — This Phase I effort seeks to develop DFB laser master oscillators at the novel wavelength of 12050 nm. Two prototypes will be built, tested, and delivered ....
"Master i Margarita" - teatralnõi roman? / Susanna Witt
Witt, Susanna
1998-01-01
Bibl. lk. 316. Kokkuvõte inglise k. "Master and Margarita - a theatrical novel?". ""Meister ja Margarita" - teatriromaan?". Mihhail Bulgakovi romaani "Meister ja Margarita" kahene struktuur ja ukraina rahvuslik nukuteater vertep
DSSTOX MASTER STRUCTURE-INDEX FILE: SDF FILE AND DOCUMENTATION
The DSSTox Master Structure-Index File serves to consolidate, manage, and ensure quality and uniformity of the chemical and substance information spanning all DSSTox Structure Data Files, including those in development but not yet published separately on this website.
Minnesota Valley National Wildlife Refuge: Master Plan Amendment No. 1
US Fish and Wildlife Service, Department of the Interior — The Master Plan developed for Minnesota Valley National Wildlife Refuge proposed that a refuge administration office and maintenance facility be located on an upland...
[MODERN EDUCATIONAL TECHNOLOGY MASTERING PRACTICAL SKILLS OF GENERAL PRACTITIONERS].
Kovalchuk, L I; Prokopchuk, Y V; Naydyonova, O V
2015-01-01
The article presents the experience of postgraduate training of general practitioners--family medicine. Identified current trends, forms and methods of pedagogical innovations that enhance the quality of learning and mastering the practical skills of primary professionals providing care.
Bayou Sauvage National Wildlife Refuge Master Plan Report
US Fish and Wildlife Service, Department of the Interior — Work on the Bayou Sauvage National Wildlife Refuge Master Plan and Environmental Impact Statement (EIS) was initiated in November 1992 and scheduled for completion...
The Future of the Campus: Architecture and Master Planning Trends
Coulson, Jonathan; Roberts, Paul; Taylor, Isabelle
2015-01-01
The article discusses current and likely future trends within the architecture and master planning of university campuses. It argues that higher education administrators must maximise the value of the campus to create physical environments that enhance the student experience.
The Future of the Campus: Architecture and Master Planning Trends
Coulson, Jonathan; Roberts, Paul; Taylor, Isabelle
2015-01-01
The article discusses current and likely future trends within the architecture and master planning of university campuses. It argues that higher education administrators must maximise the value of the campus to create physical environments that enhance the student experience.
"Master i Margarita" - teatralnõi roman? / Susanna Witt
Witt, Susanna
1998-01-01
Bibl. lk. 316. Kokkuvõte inglise k. "Master and Margarita - a theatrical novel?". ""Meister ja Margarita" - teatriromaan?". Mihhail Bulgakovi romaani "Meister ja Margarita" kahene struktuur ja ukraina rahvuslik nukuteater vertep
Developing Scientific Index System of Urban Master Planning
2008-01-01
<正>Master plan is the fundamental basis for urban construction and administration, an important public policy of the govern-ments, as well as an overall, comprehen-sive, and strategic task related to politics, economy,
Fort Niobrara National Wildlife Refuge, Nebraska : Master Plan
US Fish and Wildlife Service, Department of the Interior — Master plan for the recreational and public use development of Fort Niobrara National Wildlife Refuge, near Valentine, Nebraska. This plan outlines the development...
Mastering languages with different rhythmic properties enhances musical rhythm perception
Roncaglia-Denissen, M.Paula; Roor, Drikus; Chen, A.; Sadakata, Makiko
Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
Renormalizing Partial Differential Equations
Bricmont, J.; Kupiainen, A.
1994-01-01
In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We discuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
DSSTOX MASTER STRUCTURE-INDEX FILE: SDF FILE AND ...
The DSSTox Master Structure-Index File serves to consolidate, manage, and ensure quality and uniformity of the chemical and substance information spanning all DSSTox Structure Data Files, including those in development but not yet published separately on this website. The DSSTox Master Structure-Index File serves to consolidate, manage, and ensure quality and uniformity of the chemical and substance information spanning all DSSTox Structure Data Files, including those in development but not yet published separately on this website.
Strength training improves cycling efficiency in master endurance athletes.
Louis, Julien; Hausswirth, Christophe; Easthope, Christopher; Brisswalter, Jeanick
2012-02-01
The purpose of this study was to test the effect of a 3-week strength training program of knee extensor muscles on cycling delta efficiency in master endurance athletes. Nine master (age 51.5 ± 5.5 years) and 8 young (age 25.6 ± 5.9 years) endurance athletes with similar training levels participated in this study. During three consecutive weeks, all the subjects were engaged in a strength training program of the knee extensor muscles. Every week, they performed three training sessions consist of 10 × 10 knee extensions at 70% of maximal repetition with 3 min rest between in a leg extension apparatus. Maximal voluntary contraction torque (MVC torque) and force endurance (End) were assessed before, after every completed week of training, and after the program. Delta efficiency (DE) in cycling was evaluated before and after the training period. Before the training period, MVC torque, End, and DE in cycling were significantly lower in masters than in young. The strength training induced a significant improvement in MVC torque in all the subjects, more pronounced in masters (+17.8% in masters vs. +5.9% in young, P < 0.05). DE in cycling also significantly increased after training in masters, whereas it was only a trend in young. A significant correlation (r = 0.79, P < 0.01) was observed between MVC torque and DE in cycling in masters. The addition of a strength training program for the knee extensor muscles to endurance-only training induced a significant improvement in strength and cycling efficiency in master athletes. This enhancement in muscle performance alleviated all the age-related differences in strength and efficiency.
2 new OT, discovered by MASTER-OAFA (Argentina)
Shumkov, V.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Vladimirov, V.; Balanutsa, P.; Kornilov, V.; Gress, O.; Chazov, V.; Kuvshinov, D.; Lopez, C.; Podesta, F.; Saffe, C.; Gabovich, A.
2016-11-01
MASTER-OAFA (located in Argentina) auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 09h 23m 26.72s -76d 28m 17.7s on 2016-11-13 06:19:38UT The OT magnitude in unfiltered is (mlim=18.0m).
MASTER: OT inside Fermi 524493492 error-box
Tiurina, N.; Lipunov, V.; Lopez, R. Rebolo; Serra-Ricart, M.; Kornilov, V.; Gorbovskoy, E.; Balanutsa, P.; Kuznetsov, A.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Podesta, R.; Lopez, C.; Podesta, F.; Francile, C.; Levato, H.; Saffe, C.; Gabovich, A.; Sergienko, Yu.; Yurkov, V.; Shumkov, V.; Pogrosheva, T.
2017-08-01
MASTER-Kislovodsk auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 21h 16m 43.97s +33d 58m 00.4s on 2017-08-15.78324 UT. We have 2 inspect images and the OT unfiltered magnitude is 17.6 m (limit 19.0m) on both of them.
Control of 4-DOF MR haptic master for medical application
Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok
2014-03-01
In this work, magnetorheological (MR) based haptic master for robot-assisted minimally invasive surgery (RMIS) is proposed and analyzed. Using a controllable MR fluid, the masters can generate a reflection force with the 4-DOF motion. The proposed master consists of two actuators: MR clutch featuring gimbal mechanism for 2-DOF rotational motion (X and Y axes) and MR clutch attached at gripper of gimbal structures for 1-DOF rotational motion (Z axis) and 1-DOF translational motion. After analyzing the dynamic motion by integrating mechanical and physical properties of the actuators, torque model of the proposed haptic master is derived. For realization of master-slave system, an encoder which can measure position information is integrated with the MR haptic master. In the RMIS system, the measured position is converted as a command signal and sent to the slave robot. In this work, slave and organ of patient are modeled in virtual space. In order to embody a human organ into virtual space, a volumetric deformable object is mathematically formulated by a shape retaining chain linked (S-chain) model. Accordingly, the haptic architecture is established by incorporating the virtual slave with the master device in which the reflection force and desired position originated from the object of the virtual slave and operator of the master, respectively, are transferred to each other. In order to achieve the desired force trajectories, a proportional-integral-derivative (PID) controller is designed and implemented. It has been demonstrated that the effective tracking control performance for the desired motion of reflection force is well presented in time domain.
A study at Masters Level Training in Software Engineering
George Clinton
2012-12-01
Full Text Available Sponsored by the Department of Defense in the United States was formed an alliance among professionals from the academy, industry and government to design and structure a new model curriculum for Masters Programs in Software Engineering. Before starting this work was conducted at study to 28 of existing programs to determine the level of training in these masters in the country and the world. This article presents the results of that study.
Oil and gas field code master list, 1993
1993-12-16
This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.
Revisiting the Master-Signifier, or, Mandela and Repression.
Hook, Derek; Vanheule, Stijn
2015-01-01
The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.
New Southern Cataclysmic Variables: Discoveries from MASTER-SAAO
Buckley, D. A. H.; Potter, S. B.; Kniazev, A.; Lipunov, V.; Gorbovskoy, E.; Tiurina, N.
2017-03-01
In this paper we report on new cataclysmic variables (CVs) discovered by the first local optical transient detection system established at the SAAO Sutherland station, namely MASTER-SAAO. The characteristics of the MASTER-SAAO system are described and the parameters of the survey compared to the Catalina Real Time Survey (CRTS). To date MASTER-SAAO has discovered over 200 (non-Solar System) optical transients with about 75% of these being likely new CVs, most being dwarf novae (DNe). Approximately 50% of the DNe have outburst amplitudes in excess of 4 magnitudes, with some extreme amplitude (> 7 mag), probable WZ Sge systems. The MASTER-SAAO detection limit of B = 19–20 is comparable to the ˜20 magnitude limit of the CRTS (depending on CV colour). Based on the CV detection statistics of CRTS, we believe that MASTER-SAAO is detecting essentially the same CV population as CRTS, for a detection outburst amplitude threshold >2.2 magnitudes. We also present results of the initial follow-up program on CVs discovered by MASTER, including dwarf novae, a bright new VY Scl system and a new eclipsing polar.
Revisiting the Master-Signifier, or, Mandela and Repression
Hook, Derek; Vanheule, Stijn
2016-01-01
The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664
Verdu, G.; Mayo, P.; Campayo, J. M.
2011-07-01
The master includes general aspects of radiation protection in nuclear facilities. also an advanced module to acquire a high level training highlights as nuclear decommissioning, shielding calculation using advanced codes, particle accelerators, international law, etc.
Klie, T; Kricheldorff, C
2007-12-01
In this article, the joint applied gerontology master program of Freiburg's two universities of applied sciences is introduced. Its particular profile is characterised, but is also reflected critically with regard to its position in German academics.
Asymptotic Limit of a Singularly Perturbed Stationary Diffusion Equation: The Case of a Limit Cycle
Ge, Hao
2010-01-01
A limit cycle for a nonlinear ordinary differential equation has a sustained, stationary oscillation in time; Any non-trivial stationary stochastic process also exhibits stationary oscillations in time, though with randomness and a stationary probability density. A reconciliation of these two views of oscillatory dynamics has been elusive, although it becomes increasingly important in the biochemical modeling of cellular dynamics, where stochatic models based on the chemical master equation and the deterministic model based on the Law of Mass Action are routinely compared. Using a singularly perturbed stationary diffusion equation as a model for the chemical master equation with sufficiently large volume, $\\epsilon \\leftrightarrow 1/V$, we show that its stationary solution $u(\\vx)$ exhibits a clear separation of the exponentially and algebraic small contributions: $u(\\vx)=C_{\\epsilon}(\\vx) e^{-\\phi(\\vx)/\\epsilon}$, in which $\\phi(x)\\ge 0$ and $=0$ on the entire stable limit cycle. On the limit cycle, $C_0(\\vx...
The Modified Magnetohydrodynamical Equations
Evangelos Chaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Fractional Differential Equations
Jianping Zhao
2012-01-01
Full Text Available An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.
ZHANG Shan-Qing; LI Zhi-Bin
2004-01-01
@@ The master equation of a one-dimensional lattice-gas model with order preservation where the occupation probabilities of sites corresponding to Bose statistics as a consequence of the prescribed dynamics is studied with the potential symmetry method. The infinite-parameter potential symmetry and a new exact solution are obtained. The result illustrates that there remains the possibility of the above nonlinear equation to a linear partial differential equation by a non-invertible mapping.
Advising Master's Students Pursuing Doctoral Study: A Survey of Counselor Educators and Supervisors
Sackett, Corrine R.; Hartig, Nadine; Bodenhorn, Nancy; Farmer, Laura B.; Ghoston, Michelle R.; Graham, Jasmine; Lile, Jesse
2015-01-01
This study explored what faculty members are recommending to counselor education master's students regarding post-master's experience when considering doctoral studies and what the current faculty hiring preferences are in reference to the amount of post-master's experience needed. Advisors in counselor education master's programs encounter these…
Acuff, Joni Boyd; Hirak, Brent; Nangah, Mary
2012-01-01
The consequence of narratives becoming stagnant or controlled is that they become a Master Narrative. The Master Narrative is an "ideological script that is being imposed by the people in authority on everybody else: The Master Fiction... history" (Moyers, 1990, para. 4). Master Narratives use myths and ideologies to sustain a sanitized version of…
46 CFR 42.15-1 - Information to be supplied to the master.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Information to be supplied to the master. 42.15-1... master. (a) The master of every new vessel shall be supplied with sufficient information in a form... authority. (b) The master of every new vessel, which is not already provided with stability...
Acuff, Joni Boyd; Hirak, Brent; Nangah, Mary
2012-01-01
The consequence of narratives becoming stagnant or controlled is that they become a Master Narrative. The Master Narrative is an "ideological script that is being imposed by the people in authority on everybody else: The Master Fiction... history" (Moyers, 1990, para. 4). Master Narratives use myths and ideologies to sustain a sanitized version of…
Lessons learned from a great master!
Wagner Seixas da Silva
2015-06-01
critical thinking as early as the their first semester was something revolutionary and very attractive. This teaching strategy was so well accepted that was common to find either students who had already approved the course of Biochemistry or students attending advanced semesters returning to attend the class and to see the beloved teacher once again! In class it was possible to both discuss biochemistry and learn history! To have the classroom invaded by "actors" playing the judgment and beheading of Antoine-Laurent Lavoisier over 100 years after his death while discussing his experiments caused a whirlwind of emotions in the students. This was important to sensitize them to the challenges experienced by renowned scientists who paid with their lives to defend their ideas. Thus, students became protagonists of story and the biochemistry classes more interesting and challenging. This challenge was shared by the "actors", who actually were students of the Biological Chemistry program sharing the classroom with the great master. For these graduate students, it was an experience where they raised awareness of the importance of dedication to the teaching of Sciences.Prof. de Meis’ speech where he stated no one owns the truth or all knowledge was another point closing the relationship with the undergraduate students. In the modern world it is nearly impossible to keep yourself up to date, so we ended up specializing in something. De Meis used to cause some perplexity among the students by showing a picture with all copies of a single reputable scientific journal in the biochemistry field published over a year. Surprisingly, this stack of magazines was 1.5 meters tall! Could you imagine that all recent knowledge in biochemistry is compiled in few pages of a textbook? de Meis, then, revealed that we do not know everything, but we do need to learn how to interpret new facts, a new experiment, a new concept, a new technique, a new discovery. We need to develop critical thinking to
Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2012-05-15
We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.
The expansion of the Fokker-Planck equation including a critical point
Dekker, H.; Kampen, N.G. van
1980-01-01
The known expansion of the master equation for weak diffusion in an external potential applies to both the monostable and the bistable case, but fails at the critical point. This can be remedied by taking as zeroth order approximation a suitably defined set of eigenfunctions. The resulting expansion
Multi-diffusive nonlinear Fokker-Planck equation
Ribeiro, Mauricio S.; Casas, Gabriela A.; Nobre, Fernando D.
2017-02-01
Nonlinear Fokker-Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker-Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker-Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker-Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution.