A suitable low-order, eight-node tetrahedral finite element for solids
Energy Technology Data Exchange (ETDEWEB)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
A suitable low-order, eight-node tetrahedral finite element for solids
International Nuclear Information System (INIS)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element's gradient operator, studies in obtaining a suitable mass lumping, and the element's performance in applications are presented. In particular they examine the eight-node tetrahedral finite element's behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties
Crack modeling of rotating blades with cracked hexahedral finite element method
Liu, Chao; Jiang, Dongxiang
2014-06-01
Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.
A Kohn–Sham equation solver based on hexahedral finite elements
International Nuclear Information System (INIS)
Fang Jun; Gao Xingyu; Zhou Aihui
2012-01-01
We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C 60 , C 120 , and C 275 H 172 . It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.
Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.
2014-12-01
We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic
Streaming Compression of Hexahedral Meshes
Energy Technology Data Exchange (ETDEWEB)
Isenburg, M; Courbet, C
2010-02-03
We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Construction of hexahedral elements mesh capturing realistic geometries of Bayou Choctaw SPR site
Energy Technology Data Exchange (ETDEWEB)
Park, Byoung Yoon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill, Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.
Symbolic Block Decomposition In Hexahedral Mesh Generation
Directory of Open Access Journals (Sweden)
Andrzej Adamek
2005-01-01
Full Text Available Hexahedral mesh generation for three-dimensional solid objects is often done in stages. Usually an object is ﬁrst subdivided into simple-shaped subregions, which then are ﬁlled withhexahedral ﬁnite elements. This article presents an automatic subdividing method of polyhedron with planar faces. The subdivision is based on medial surface, axes and nodes of a solid.The main emphasis is put on creating a topology of subregions. Obtaining such a topologyinvolves deﬁning a graph structure OMG which contains necessary information about medialsurface topology and object topology, followed by simple symbolic processing on it.
A Novel Virtual Node Hexahedral Element with Exact Integration and Octree Meshing
Directory of Open Access Journals (Sweden)
Logah Perumal
2016-01-01
Full Text Available The method presented in this work is a 3-dimensional polyhedral finite element (3D PFEM based on virtual node method. Novel virtual node polyhedral elements (termed as VPHE are developed here, particularly virtual node hexahedral element (termed as VHE. Stiffness matrices of these polyhedral elements consist of simple polynomials. Thus, a new algorithm is introduced in this paper, which enables exact integration of monomials without a need for high number of integration points and weights. The number of nodes for VHE elements is not restricted, as opposed to the conventional hexahedral elements. This feature enables formulation of transition elements (termed as T-VHE which are useful to adaptive computation. Performances of the new VHE elements in solid mechanics and conductive heat transfer phenomena are examined through numerical simulations. The new T-VHE elements are utilized in octree mesh. The VHE elements are found to produce good results and T-VHE elements help to reduce number of global nodes for the analysis.
Crack growth simulation for plural crack using hexahedral mesh generation technique
International Nuclear Information System (INIS)
Orita, Y; Wada, Y; Kikuchi, M
2010-01-01
This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.
Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
Zachariah, S G; Sanders, J E; Turkiyyah, G M
1996-06-01
A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.
Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.
Energy Technology Data Exchange (ETDEWEB)
Staten, Matthew L.; Owen, Steven James
2010-09-01
Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.
Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation
Energy Technology Data Exchange (ETDEWEB)
GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.
1999-09-27
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
Wheeler, Mary F.; Xue, Guangri; Yotov, Ivan
2011-01-01
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since
Hexahedral connection element based on hybrid-stress theory for solid structures
International Nuclear Information System (INIS)
Wu, D; Sze, K Y; Lo, S H
2010-01-01
For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra
Wheeler, Mary; Xue, Guangri; Yotov, Ivan
2011-01-01
In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields
Directory of Open Access Journals (Sweden)
O. V. Fomin
2014-12-01
Full Text Available Purpose. The purpose of work is presentation of features and results of the conducted works on determination of introduction expedience of hexahedral hollow profiles as the component elements of the modern supporting systems of railway freight gondola cars. Methodology. During the research an introduction methodology of different types of profiles as alternative to the existent supporting elements of the body module for freight car was used. This methodology had been developed by the author before. It is oriented to the reduction in material consumption and providing of strength requirements and operating reliability of the car design under study. The developed methodology includes the procedures of admissible values calculation of the resistance moments of the section of the hexahedral hollow profile, which is being introduced. It also includes the determination of optimum (i.e. characterized by the minimum material consumption when meeting the durability requirements values of height and minimum thickness of profile in the conditions of construction limitations. At the same time the admissible resistance moments are calculated as such, which are equal to the value of existent implementation of supporting element or as such that are determined taking into account the surplus design reserve. The first direction is applied in this work. Findings. As a result of the conducted research the introduction expedience of hexahedral hollow profiles as vertical rods of the lateral and latitude belts of the walls of the butt-end freight gondola cars is grounded and the optimum parameters of such replacements are determined. Originality. The problem of the use expedience of hexahedral hollow profiles as the supporting elements of the freight gondola cars bodies was first considered in the article. To solve this problem the mathematical models describing the dependence of basic strength and mass indexes of the proper profiles on varying the geometrical
A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra
Wheeler, Mary
2011-11-06
In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields a positive definite cell-centered system for the pressure by eliminating local velocities. The method is shown to be accurate on highly distorted rough quadrilateral and hexahedral grids, including hexahedra with non-planar faces. Theoretical and numerical results indicate first-order convergence for the pressure and face fluxes. © 2011 Springer-Verlag.
Strongly coupled partitioned FSI using proper orthogonal decomposition
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2012-12-01
Full Text Available structural deformation. The structural and fluid field solvers employed for this problem are the open-source solvers Calculix and OpenFOAM. 1600 eight node hexahedral finite-volume elements and 96 twenty node quadratic brick finite elements are employed...
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, E.M.
1996-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, Eric M.
1997-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed
Diffusion and growth of aluminum adatoms on magnesium clusters with hexahedral structure
International Nuclear Information System (INIS)
Dai, Xiongying; Hu, Wangyu; Yang, Jianyu; Chen, Chuanpin
2015-01-01
The surface diffusion and growth of Al atoms on Mg clusters with hexahedral structure was investigated using molecular dynamics simulations. The diffusion pathways and the corresponding energy barriers were determined via the nudged elastic band method. Two diffusion paths from a (0001) facet to a neighboring (11 ¯ 01) facet and between two adjacent (11 ¯ 01) facets were considered. The energy barriers on the (11 ¯ 01) facets and between the two (11 ¯ 01) facets were remarkably increased. As such, the adatom's mobility became limited at low temperatures. The growth of small Al–Mg nanoclusters was modeled via the one-by-one atom deposition technique to form an anomalous core–shell structure. The Mg atoms with lower surface energy and larger atomic radius occupied the core and the Al atoms with higher surface energy and smaller atomic radius occupied the shell
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Mechanical properties of regular hexahedral lattice structure formed by selective laser melting
International Nuclear Information System (INIS)
Sun, Jianfeng; Yang, Yongqiang; Wang, Di
2013-01-01
The Ti–6Al–4V lattice structure is widely used in the aerospace field. This research first designs a regular hexahedral unit, processes the lattice structure composed of the Ti–6Al–4V units by selective laser melting technology, obtains the experimental fracture load and the compression deformation of them through compression tests, then conducts a simulation of the unit and the lattice structure through ANSYS to analyze the failure point. Later, according to the force condition of the point, the model of maximum load is built, through which the analytical formula of the fracture load of the unit and the lattice structure are obtained. The results of groups of experiments demonstrate that there exists an exponential relationship between the practical fracture load and the porosity of the lattice structure. There also exists a trigonometric function relationship between the compression deformation and the porosity of the lattice structure. The fracture analysis indicates that fracture of the units and lattice structure is brittle fracture due to cleavage fracture. (paper)
Advances in 3D electromagnetic finite element modeling
International Nuclear Information System (INIS)
Nelson, E.M.
1997-01-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
International Nuclear Information System (INIS)
Urbatsch, Todd J.; Evans, Thomas M.; Hughes, H. Grady
2001-01-01
Monte Carlo particle transport plays an important role in some multi-physics simulations. These simulations, which may additionally involve deterministic calculations, typically use a hexahedral or tetrahedral mesh. Trilinear hexahedrons are attractive for physics calculations because faces between cells are uniquely defined, distance-to-boundary calculations are deterministic, and hexahedral meshes tend to require fewer cells than tetrahedral meshes. We discuss one aspect of Monte Carlo transport: sampling a position in a tri-linear hexahedron, which is made up of eight control points, or nodes, and six bilinear faces, where each face is defined by four non-coplanar nodes in three-dimensional Cartesian space. We derive, code, and verify the exact sampling method and propose an approximation to it. Our proposed approximate method uses about one-third the memory and can be twice as fast as the exact sampling method, but we find that its inaccuracy limits its use to well-behaved hexahedrons. Daunted by the expense of the exact method, we propose an alternate approximate sampling method. First, calculate beforehand an approximate volume for each corner of the hexahedron by taking one-eighth of the volume of an imaginary parallelepiped defined by the corner node and the three nodes to which it is directly connected. For the sampling, assume separability in the parameters, and sample each parameter, in turn, from a linear pdf defined by the sum of the four corner volumes at each limit (-1 and 1) of the parameter. This method ignores the quadratic portion of the pdf, but it requires less storage, has simpler sampling, and needs no extra, on-the-fly calculations. We simplify verification by designing tests that consist of one or more cells that entirely fill a unit cube. Uniformly sampling complicated cells that fill a unit cube will result in uniformly sampling the unit cube. Unit cubes are easily analyzed. The first problem has four wedges (or tents, or A frames) whose
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, E.M.
1997-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element analysis of human joints
International Nuclear Information System (INIS)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described
A voxel-based finite element model for the prediction of bladder deformation
Energy Technology Data Exchange (ETDEWEB)
Xiangfei, Chai; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan [Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Radiation Oncology Department, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)
2012-01-15
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to
A voxel-based finite element model for the prediction of bladder deformation
International Nuclear Information System (INIS)
Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan
2012-01-01
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to
International Nuclear Information System (INIS)
Marimuthu, R.; Nageswara Rao, B.
2013-01-01
Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads
Large Eddy Simulation of turbulent flows in compound channels with a finite element code
International Nuclear Information System (INIS)
Xavier, C.M.; Petry, A.P.; Moeller, S.V.
2011-01-01
This paper presents the numerical investigation of the developing flow in a compound channel formed by a rectangular main channel and a gap in one of the sidewalls. A three dimensional Large Eddy Simulation computational code with the classic Smagorinsky model is introduced, where the transient flow is modeled through the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite Element Method, Taylor-Galerkin scheme and linear hexahedrical elements are applied. Numerical results of velocity profile show the development of a shear layer in agreement with experimental results obtained with Pitot tube and hot wires. (author)
Directory of Open Access Journals (Sweden)
Flávio Luiz de Silva Bussamra
Full Text Available Abstract Hybrid quasi-Trefftz finite elements have been applied with success to the analysis of laminated plates. Two independent fields are approximated by linearly independent, hierarchical polynomials: the stress basis in the domain, adapted from Papkovitch-Neuber solution of Navier equations, and the displacement basis, defined on element surface. The stress field that satisfies the Trefftz constraint a priori for isotropic material is adapted for orthotropic materials, which leads to the term "quasi". In this work, the hexahedral hybrid quasi-Trefftz stress element is applied to the modeling of nonsymmetric laminates and laminated composite plates with geometric discontinuities. The hierarchical p-refinement is exploited.
TRIP: a finite element computer program for the solution of convection heat transfer problems
International Nuclear Information System (INIS)
Slagter, W.; Roodbergen, H.A.
1976-01-01
The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh
A simple nodal force distribution method in refined finite element meshes
Energy Technology Data Exchange (ETDEWEB)
Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)
2017-05-15
In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-12
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
Finite element formulation for fluid-structure interaction in three-dimensional space
International Nuclear Information System (INIS)
Kulak, R.F.
1979-01-01
A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading
A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
Wheeler, Mary F.
2011-01-01
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Chi-hyung Ahn
2016-01-01
Full Text Available In the previous research, laboratory tests were performed in order to measure the expansion of vermiculite upon heating and to convert it into expansion pressure. Based on these test results, this study mainly focuses on experimental field tests conducted to verify that expansion pressure obtained by heating vermiculite materials is enough to break massive and hard granite rock with an intention to excavate the tunnel. Hexahedral granite specimens with a circular hole perforated in the center were constructed for the experimental tests. The circular holes were filled with vermiculite plus thermal conduction and then heated using the cartridge heater. As a result, all of hexahedral granite specimens had cracks in the surface after 700-second thermal heating and were finally spilt into two pieces completely. The specimen of larger size only requires more heating time and expansion pressure. The material properties of granite rocks, which were obtained from the experimental tests, were utilized to produce finite element models used for numerical analyses. The analysis results show good agreement with the experimental results in terms of initial cracking, propagation direction, and expansion pressure.
Application of 3D X-ray CT data sets to finite element analysis
International Nuclear Information System (INIS)
Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.
1995-01-01
Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here
Final Report of the Project "From the finite element method to the virtual element method"
Energy Technology Data Exchange (ETDEWEB)
Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-12-20
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for the numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.
Behdadfar, S; Navarro, L; Sundnes, J; Maleckar, M; Ross, S; Odland, H H; Avril, S
2017-09-20
Hexahedral automatic model generation is a recurrent problem in computer vision and computational biomechanics. It may even become a challenging problem when one wants to develop a patient-specific finite-element (FE) model of the left ventricle (LV), particularly when only low resolution images are available. In the present study, a fast and efficient algorithm is presented and tested to address such a situation. A template FE hexahedral model was created for a LV geometry using a General Electric (GE) ultrasound (US) system. A system of centerline was considered for this LV mesh. Then, the nodes located over the endocardial and epicardial surfaces are respectively projected from this centerline onto the actual endocardial and epicardial surfaces reconstructed from a patient's US data. Finally, the position of the internal nodes is derived by finding the deformations with minimal elastic energy. This approach was applied to eight patients suffering from congestive heart disease. A FE analysis was performed to derive the stress induced in the LV tissue by diastolic blood pressure on each of them. Our model morphing algorithm was applied successfully and the obtained meshes showed only marginal mismatches when compared to the corresponding US geometries. The diastolic FE analyses were successfully performed in seven patients to derive the distribution of principal stresses. The original model morphing algorithm is fast and robust with low computational cost. This low cost model morphing algorithm may be highly beneficial for future patient-specific reduced-order modelling of the LV with potential application to other crucial organs.
International Nuclear Information System (INIS)
Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles
2012-01-01
This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.
DEFF Research Database (Denmark)
Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar
2017-01-01
The work gives a theoretical and experimental contribution to the problem of smart materials connected to double curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezoelectric fiber patch with interdigitated electrodes (IDEs......) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezoelectric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic performance of a shell with a microfiber composite (MFC) patch...
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Locally Finite Root Supersystems
Yousofzadeh, Malihe
2013-01-01
We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.
Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
Li, Zuoping; Kindig, Matthew W; Kerrigan, Jason R; Untaroiu, Costin D; Subit, Damien; Crandall, Jeff R; Kent, Richard W
2010-01-19
The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex-shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior-posterior bending loads. Then, all-hex and hex-shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex-shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force-displacement relationship predicted by both all-hex and hex-shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex-shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference rib responses and bone fractures for the loading conditions considered, but coarse hex-shell models with constant or variable shell thickness were more computationally efficient and therefore preferred. Copyright 2009 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Karimi, Alireza; Navidbakhsh, Mahdi, E-mail: mnavid@iust.ac.ir; Razaghi, Reza
2014-09-01
There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load. - Highlights: • The ability of PVA sponge to control the injury to the human mandible is computed. • A hexahedral FE model for gunshot wounds to the human mandible is established. • The kinetic energy and injury severity of the mandible is minimized by the sponge. • The highest energy loss (170 J) is observed for the impact at entry angle of 70°. • PVA suggests as an alternative
International Nuclear Information System (INIS)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
International Nuclear Information System (INIS)
Acharya, B.S.; Douglas, M.R.
2006-06-01
We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)
Nilpotent -local finite groups
Cantarero, José; Scherer, Jérôme; Viruel, Antonio
2014-10-01
We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Viceconti, Marco; Davinelli, Mario; Taddei, Fulvia; Cappello, Angelo
2004-10-01
Most of the finite element models of bones used in orthopaedic biomechanics research are based on generic anatomies. However, in many cases it would be useful to generate from CT data a separate finite element model for each subject of a study group. In a recent study a hexahedral mesh generator based on a grid projection algorithm was found very effective in terms of accuracy and automation. However, so far the use of this method has been documented only on data collected in vitro and only for long bones. The present study was aimed at verifying if this method represents a procedure for the generation of finite element models of human bones from data collected in vivo, robust, accurate, automatic and general enough to be used in clinical studies. Robustness, automation and numerical accuracy of the proposed method were assessed on five femoral CT data sets of patients affected by various pathologies. The generality of the method was verified by processing a femur, an ileum, a phalanx, a proximal femur reconstruction, and the micro-CT of a small sample of spongy bone. The method was found robust enough to cope with the variability of the five femurs, producing meshes with a numerical accuracy and a computational weight comparable to those found in vitro. Even when the method was used to process the other bones the levels of mesh conditioning remained within acceptable limits. Thus, it may be concluded that the method presents a generality sufficient to cope with almost any orthopaedic application.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Supersymmetric theories and finiteness
International Nuclear Information System (INIS)
Helayel-Neto, J.A.
1989-01-01
We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)
Alabdulmohsin, Ibrahim M.
2018-03-07
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
Alabdulmohsin, Ibrahim M.
2018-01-01
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
Finite fields and applications
Mullen, Gary L
2007-01-01
This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...
Finite element model to study temperature distribution in skin and deep tissues of human limbs.
Agrawal, Mamta; Pardasani, K R
2016-12-01
The temperature of body tissues is viewed as an indicator of tissue response in clinical applications since ancient times. The tissue temperature depends on various physical and physiological parameters like blood flow, metabolic heat generation, thermal conductivity of tissues, shape and size of organs etc. In this paper a finite element model has been proposed to study temperature distribution in skin and deep tissues of human limbs. The geometry of human limb is taken as elliptical tapered shape. It is assumed that outer surface of the limb is exposed to the environment. The appropriate boundary conditions have been framed based on physical conditions of the problem. The model has been developed for a three dimensional steady state case. Hexahedral circular sectoral elements are used to discretize the region. The results have been computed to obtain temperature profiles and study the relation of tissue temperature with the parameters like atmospheric temperature, rate of evaporation, thickness of tissues layers and shape of the limb. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Indian Academy of Sciences (India)
IAS Admin
wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
International Nuclear Information System (INIS)
Rittenberg, V.
1983-01-01
Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given
Supersymmetry at finite temperature
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1983-01-01
Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
Energy Technology Data Exchange (ETDEWEB)
Jayakumar, J S; Kumar, Inder [Bhabha Atomic Research Center, Mumbai (India); Eswaran, V, E-mail: jsjayan@gmail.com, E-mail: inderk@barc.gov.in, E-mail: eswar@iitk.ac.in [Indian Institute of Technology, Kanpur (India)
2010-12-15
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-{omega}. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
Jayakumar, J. S.; Kumar, Inder; Eswaran, V.
2010-12-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
International Nuclear Information System (INIS)
Jayakumar, J S; Kumar, Inder; Eswaran, V
2010-01-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system
International Nuclear Information System (INIS)
Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor
2012-01-01
Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.
International Nuclear Information System (INIS)
Feinsilver, Philip; Schott, Rene
2009-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
International Nuclear Information System (INIS)
Wachspress, E.
2009-01-01
Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Finite lattice extrapolation algorithms
International Nuclear Information System (INIS)
Henkel, M.; Schuetz, G.
1987-08-01
Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)
1993-09-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.; Zoupanos, G.
1993-01-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.
1993-01-01
It is shown how to obtain phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. A very interesting feature of the models with three families is that they predict the top quark mass to be around 178 GeV. 16 refs
Czech Academy of Sciences Publication Activity Database
Šorel, Michal; Šíma, Jiří
2004-01-01
Roč. 62, - (2004), s. 93-110 ISSN 0925-2312 R&D Projects: GA AV ČR IAB2030007; GA MŠk LN00A056 Keywords : radial basis function * neural network * finite automaton * Boolean circuit * computational power Subject RIV: BA - General Mathematics Impact factor: 0.641, year: 2004
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero colour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh
Strong interaction at finite temperature
Indian Academy of Sciences (India)
Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.
Supersymmetry at finite temperature
International Nuclear Information System (INIS)
Oliveira, M.W. de.
1986-01-01
The consequences of the incorporation of finite temperature effects in fields theories are investigated. Particularly, we consider the sypersymmetric non-linear sigma model, calculating the effective potencial in the large N limit. Initially, we present the 1/N expantion formalism and, for the O(N) model of scalar field, we show the impossibility of spontaneous symmetry breaking. Next, we study the same model at finite temperature and in the presence of conserved charges (the O(N) symmetry's generator). We conclude that these conserved charges explicitly break the symmetry. We introduce a calculation method for the thermodynamic potential of the theory in the presence of chemical potentials. We present an introduction to Supersymmetry in the aim of describing some important concepts for the treatment at T>0. We show that Suppersymmetry is broken for any T>0, in opposition to what one expects, by the solution of the Hierachy Problem. (author) [pt
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
International Nuclear Information System (INIS)
Hoffman, E.L.; Ammerman, D.J.
1995-04-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Optical Finite Element Processor
Casasent, David; Taylor, Bradley K.
1986-01-01
A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.
Anderson, Ian
2011-01-01
Coherent treatment provides comprehensive view of basic methods and results of the combinatorial study of finite set systems. The Clements-Lindstrom extension of the Kruskal-Katona theorem to multisets is explored, as is the Greene-Kleitman result concerning k-saturated chain partitions of general partially ordered sets. Connections with Dilworth's theorem, the marriage problem, and probability are also discussed. Each chapter ends with a helpful series of exercises and outline solutions appear at the end. ""An excellent text for a topics course in discrete mathematics."" - Bulletin of the Ame
Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu
2018-04-01
Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.
Pegg, Elise C; Gill, Harinderjit S
2016-09-06
A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool (py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study was to compare the software packages in terms of the material assignment calculation and processing speed. Three element types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), both individually and as part of a mesh. Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05kPa on average, was found between Bonemat version 3.1 (the current version) and our Python package. Errors were found in the previous release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron Jacobian, and conversion of the apparent density to modulus when integrating over the Young׳s modulus field. These issues caused up to 2GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent release of Bonemat. Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110s on average) to perform the calculations compared with the Bonemat software (10s). Nevertheless, the workflow advantages of the package and added functionality makes 'py_bonemat_abaqus' a useful tool for ABAQUS users. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Determining Finite Automata Process
Directory of Open Access Journals (Sweden)
M. S. Vinogradova
2017-01-01
Full Text Available The theory of formal languages widely uses finite state automata both in implementation of automata-based approach to programming, and in synthesis of logical control algorithms.To ensure unambiguous operation of the algorithms, the synthesized finite state automata must be deterministic. Within the approach to the synthesis of the mobile robot controls, for example, based on the theory of formal languages, there are problems concerning the construction of various finite automata, but such finite automata, as a rule, will not be deterministic. The algorithm of determinization can be applied to the finite automata, as specified, in various ways. The basic ideas of the algorithm of determinization can be most simply explained using the representations of a finite automaton in the form of a weighted directed graph.The paper deals with finite automata represented as weighted directed graphs, and discusses in detail the procedure for determining the finite automata represented in this way. Gives a detailed description of the algorithm for determining finite automata. A large number of examples illustrate a capability of the determinization algorithm.
Finite energy electroweak dyon
Energy Technology Data Exchange (ETDEWEB)
Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)
2015-02-01
The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)
Probabilistic fracture finite elements
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
Axial anomaly at finite temperature and finite density
International Nuclear Information System (INIS)
Qian Zhixin; Su Rukeng; Yu, P.K.N.
1994-01-01
The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)
Axial anomaly at finite temperature
International Nuclear Information System (INIS)
Chaturvedi, S.; Gupte, Neelima; Srinivasan, V.
1985-01-01
The Jackiw-Bardeen-Adler anomaly for QED 4 and QED 2 are calculated at finite temperature. It is found that the anomaly is independent of temperature. Ishikawa's method [1984, Phys. Rev. Lett. vol. 53 1615] for calculating the quantised Hall effect is extended to finite temperature. (author)
Finite flavour groups of fermions
International Nuclear Information System (INIS)
Grimus, Walter; Ludl, Patrick Otto
2012-01-01
We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)
On finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1984-01-01
The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Massively Parallel Finite Element Programming
Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang
2010-01-01
Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Mimetic finite difference method
Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail
2014-01-01
The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification
Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.
2017-12-01
We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a
Finite spatial volume approach to finite temperature field theory
International Nuclear Information System (INIS)
Weiss, Nathan
1981-01-01
A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)
Automatic Construction of Finite Algebras
Institute of Scientific and Technical Information of China (English)
张健
1995-01-01
This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.
Photon propagators at finite temperature
International Nuclear Information System (INIS)
Yee, J.H.
1982-07-01
We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)
Sound radiation from finite surfaces
DEFF Research Database (Denmark)
Brunskog, Jonas
2013-01-01
A method to account for the effect of finite size in acoustic power radiation problem of planar surfaces using spatial windowing is developed. Cremer and Heckl presents a very useful formula for the power radiating from a structure using the spatially Fourier transformed velocity, which combined...... with spatially windowing of a plane waves can be used to take into account the finite size. In the present paper, this is developed by means of a radiation impedance for finite surfaces, that is used instead of the radiation impedance for infinite surfaces. In this way, the spatial windowing is included...
Observations on finite quantum mechanics
International Nuclear Information System (INIS)
Balian, R.; Itzykson, C.
1986-01-01
We study the canonical transformations of the quantum mechanics on a finite phase space. For simplicity we assume that the configuration variable takes an odd prime number 4 K±1 of distinct values. We show that the canonical group is unitarily implemented. It admits a maximal abelian subgroup of order 4 K, commuting with the finite Fourier transform F, a finite analogue of the harmonic oscillator group. This provides a natural construction of F 1/K and of an orthogonal basis of eigenstates of F [fr
Finite element computational fluid mechanics
International Nuclear Information System (INIS)
Baker, A.J.
1983-01-01
This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Finite Size Scaling of Perceptron
Korutcheva, Elka; Tonchev, N.
2000-01-01
We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.
Incompleteness in the finite domain
Czech Academy of Sciences Publication Activity Database
Pudlák, Pavel
2017-01-01
Roč. 23, č. 4 (2017), s. 405-441 ISSN 1079-8986 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : finite domain Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016 https://www.cambridge.org/core/journals/bulletin-of-symbolic-logic/article/incompleteness-in-the-finite-domain/D239B1761A73DCA534A4805A76D81C76
Symbolic computation with finite biquandles
Creel, Conrad; Nelson, Sam
2007-01-01
A method of computing a basis for the second Yang-Baxter cohomology of a finite biquandle with coefficients in Q and Z_p from a matrix presentation of the finite biquandle is described. We also describe a method for computing the Yang-Baxter cocycle invariants of an oriented knot or link represented as a signed Gauss code. We provide a URL for our Maple implementations of these algorithms.
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
Finiteness of quantum field theories and supersymmetry
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
On characters of finite groups
Broué, Michel
2017-01-01
This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups. The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z).
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
Preservation theorems on finite structures
International Nuclear Information System (INIS)
Hebert, M.
1994-09-01
This paper concerns classical Preservation results applied to finite structures. We consider binary relations for which a strong form of preservation theorem (called strong interpolation) exists in the usual case. This includes most classical cases: embeddings, extensions, homomorphisms into and onto, sandwiches, etc. We establish necessary and sufficient syntactic conditions for the preservation theorems for sentences and for theories to hold in the restricted context of finite structures. We deduce that for all relations above, the restricted theorem for theories hold provided the language is finite. For the sentences the restricted version fails in most cases; in fact the ''homomorphism into'' case seems to be the only possible one, but the efforts to show that have failed. We hope our results may help to solve this frustrating problem; in the meantime, they are used to put a lower bound on the level of complexity of potential counterexamples. (author). 8 refs
Finite element analysis of a finite-strain plasticity problem
International Nuclear Information System (INIS)
Crose, J.G.; Fong, H.H.
1984-01-01
A finite-strain plasticity analysis was performed of an engraving process in a plastic rotating band during the firing of a gun projectile. The aim was to verify a nonlinear feature of the NIFDI/RB code: plastic large deformation analysis of nearly incompressible materials using a deformation theory of plasticity approach and a total Lagrangian scheme. (orig.)
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Variational collocation on finite intervals
International Nuclear Information System (INIS)
Amore, Paolo; Cervantes, Mayra; Fernandez, Francisco M
2007-01-01
In this paper, we study a set of functions, defined on an interval of finite width, which are orthogonal and which reduce to the sinc functions when the appropriate limit is taken. We show that these functions can be used within a variational approach to obtain accurate results for a variety of problems. We have applied them to the interpolation of functions on finite domains and to the solution of the Schroedinger equation, and we have compared the performance of the present approach with others
Finite elements of nonlinear continua
Oden, John Tinsley
1972-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
Finite connectivity attractor neural networks
International Nuclear Information System (INIS)
Wemmenhove, B; Coolen, A C C
2003-01-01
We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous
Differential equations and finite groups
Put, Marius van der; Ulmer, Felix
2000-01-01
The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
International Nuclear Information System (INIS)
Bovier, A.; Lueling, M.; Wyler, D.
1980-12-01
We present a new class of finite subgroups of SU(3) of the form Zsub(m) s zsub(n) (semidirect product). We also apply the methods used to investigate semidirect products to the known SU(3) subgroups Δ(3n 2 ) and Δ(6n 2 ) and give analytic formulae for representations (characters) and Clebsch-Gordan coefficients. (orig.)
On symmetric pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K. B.; Yuan, K.; Křížek, Michal
2004-01-01
Roč. 11, 1-2 (2004), s. 213-227 ISSN 1492-8760 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z1019905 Keywords : mesh generation * finite element method * composite elements Subject RIV: BA - General Mathematics Impact factor: 0.108, year: 2004
Finite length Taylor Couette flow
Streett, C. L.; Hussaini, M. Y.
1987-01-01
Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.
Finite-temperature confinement transitions
International Nuclear Information System (INIS)
Svetitsky, B.
1984-01-01
The formalism of lattice gauge theory at finite temperature is introduced. The framework of universality predictions for critical behavior is outlined, and recent analytic work in this direction is reviewed. New Monte Carlo information for the SU(4) theory are represented, and possible results of the inclusion of fermions in the SU(3) theory are listed
Ward identities at finite temperature
International Nuclear Information System (INIS)
DOlivo, J.C.; Torres, M.; Tututi, E.
1996-01-01
The Ward identities for QED at finite temperature are derived using the functional real-time formalism. They are verified by an explicit one-loop calculation. An effective causal vertex is constructed which satisfy the Ward identity with the associated retarded self-energy. copyright 1996 American Institute of Physics
Finite-Temperature Higgs Potentials
International Nuclear Information System (INIS)
Dolgopolov, M.V.; Gurskaya, A.V.; Rykova, E.N.
2016-01-01
In the present article we consider the short description of the “Finite-Temperature Higgs Potentials” program for calculating loop integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions. Here we collect the analytic forms of the relevant loop integrals for our work in reconstruction of the effective Higgs potential parameters in extended models (MSSM, NMSSM and etc.)
Introduction to finite temperature and finite density QCD
International Nuclear Information System (INIS)
Kitazawa, Masakiyo
2014-01-01
It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Representation theory of finite monoids
Steinberg, Benjamin
2016-01-01
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional ...
Structural modeling techniques by finite element method
International Nuclear Information System (INIS)
Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong
1991-01-01
This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.
$\\delta$-Expansion at Finite Temperature
Ramos, Rudnei O.
1996-01-01
We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.
Finite temperature instability for compactification
International Nuclear Information System (INIS)
Accetta, F.S.; Kolb, E.W.
1986-03-01
We consider finite temperature effects upon theories with extra dimensions compactified via vacuum stress energy (Casimir) effects. For sufficiently high temperature, a static configuration for the internal space is impossible. At somewhat lower temperatures, there is an instability due to thermal fluctuations of radius of the compact dimensions. For both cases, the Universe can evolve to a de Sitter-like expansion of all dimensions. Stability to late times constrains the initial entropy of the universe. 28 refs., 1 fig., 2 tabs
Finite mathematics models and applications
Morris, Carla C
2015-01-01
Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.
Quantum Chromodynamic at finite temperature
International Nuclear Information System (INIS)
Magalhaes, N.S.
1987-01-01
A formal expression to the Gibbs free energy of topological defects of quantum chromodynamics (QCD)by using the semiclassical approach in the context of field theory at finite temperature and in the high temperature limit is determined. This expression is used to calculate the free energy of magnetic monopoles. Applying the obtained results to a method in which the free energy of topological defects of a theory may indicate its different phases, its searched for informations about phases of QCD. (author) [pt
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
Spinor pregeometry at finite temperature
International Nuclear Information System (INIS)
Yoshimoto, Seiji.
1985-10-01
We derive the effective action for gravity at finite temperature in spinor pregeometry. The temperature-dependent effective potential for the vierbein which is parametrized as e sub(kμ) = b.diag(1, xi, xi, xi) has the minimum at b = 0 for fixed xi, and behaves as -xi 3 for fixed b. These results indicate that the system of fundamental matters in spinor pregeometry cannot be in equilibrium. (author)
Finite Metric Spaces of Strictly negative Type
DEFF Research Database (Denmark)
Hjorth, Poul G.
If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...
Characterization of finite spaces having dispersion points
International Nuclear Information System (INIS)
Al-Bsoul, A. T
1997-01-01
In this paper we shall characterize the finite spaces having dispersion points. Also, we prove that the dispersion point of a finite space with a dispersion points fixed under all non constant continuous functions which answers the question raised by J. C obb and W. Voxman in 1980 affirmatively for finite space. Some open problems are given. (author). 16 refs
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Functionals of finite Riemann surfaces
Schiffer, Menahem
1954-01-01
This advanced monograph on finite Riemann surfaces, based on the authors' 1949-50 lectures at Princeton University, remains a fundamental book for graduate students. The Bulletin of the American Mathematical Society hailed the self-contained treatment as the source of ""a plethora of ideas, each interesting in its own right,"" noting that ""the patient reader will be richly rewarded."" Suitable for graduate-level courses, the text begins with three chapters that offer a development of the classical theory along historical lines, examining geometrical and physical considerations, existence theo
International Nuclear Information System (INIS)
Barbarin, F.; Sorba, P.; Ragoucy, E.
1996-01-01
The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)
Simulating QCD at finite density
de Forcrand, Philippe
2009-01-01
In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.
Finite temperature approach to confinement
International Nuclear Information System (INIS)
Gave, E.; Jengo, R.; Omero, C.
1980-06-01
The finite temperature treatment of gauge theories, formulated in terms of a gauge invariant variable as in a Polyakov method, is used as a device for obtaining an effective theory where the confinement test takes the form of a correlation function. The formalism is discussed for the abelian CPsup(n-1) model in various dimensionalities and for the pure Yang-Mills theory in the limit of zero temperature. In the latter case a class of vortex like configurations of the effective theory which induce confinement correspond in particular to the instanton solutions. (author)
Linear and Nonlinear Finite Elements.
1983-12-01
Metzler. Con/ ugte rapdent solution of a finite element elastic problem with high Poson rato without scaling and once with the global stiffness matrix K...nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the membrane the central displacement given to the membrane is not... theory is possible based on the approximations (l-y 2 )t = +y’ 2 +y , (1-y)’ 1-y’ 2 - y" (6) that change eq. (5) to V) = , [yŖ(1 + y") - Qy
Covariant gauges at finite temperature
Landshoff, Peter V
1992-01-01
A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler to use than the conventional one.
Biset functors for finite groups
Bouc, Serge
2010-01-01
This volume exposes the theory of biset functors for finite groups, which yields a unified framework for operations of induction, restriction, inflation, deflation and transport by isomorphism. The first part recalls the basics on biset categories and biset functors. The second part is concerned with the Burnside functor and the functor of complex characters, together with semisimplicity issues and an overview of Green biset functors. The last part is devoted to biset functors defined over p-groups for a fixed prime number p. This includes the structure of the functor of rational representations and rational p-biset functors. The last two chapters expose three applications of biset functors to long-standing open problems, in particular the structure of the Dade group of an arbitrary finite p-group.This book is intended both to students and researchers, as it gives a didactic exposition of the basics and a rewriting of advanced results in the area, with some new ideas and proofs.
Phase transitions in finite systems
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire
2002-07-01
In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)
Supersymmetry breaking at finite temperature
International Nuclear Information System (INIS)
Kratzert, K.
2002-11-01
The mechanism of supersymmetry breaking at finite temperature is still only partly understood. Though it has been proven that temperature always breaks supersymmetry, the spontaneous nature of this breaking remains unclear, in particular the role of the Goldstone fermion. The aim of this work is to unify two existing approaches to the subject. From a hydrodynamic point of view, it has been argued under very general assumptions that in any supersymmetric quantum field theory at finite temperature there should exist a massless fermionic collective excitation, named phonino because of the analogy to the phonon. In the framework of a self-consistent resummed perturbation theory, it is shown for the example of the Wess-Zumino model that this mode fits very well into the quantum field theoretical framework pursued by earlier works. Interpreted as a bound state of boson and fermion, it contributes to the supersymmetric Ward-Takahashi identities in a way showing that supersymmetry is indeed broken spontaneously with the phonino playing the role of the Goldstone fermion. The second part of the work addresses the case of supersymmetric quantum electrodynamics. It is shown that also here the phonino exists and must be interpreted as the Goldstone mode. This knowledge allows a generalization to a wider class of models. (orig.)
Finite groups and quantum physics
International Nuclear Information System (INIS)
Kornyak, V. V.
2013-01-01
Concepts of quantum theory are considered from the constructive “finite” point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution—only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers—a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories—in particular, within the Standard Model.
Phase transitions in finite systems
International Nuclear Information System (INIS)
Chomaz, Ph.; Gulminelli, F.
2002-01-01
In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)
Hybrid finite difference/finite element immersed boundary method.
E Griffith, Boyce; Luo, Xiaoyu
2017-12-01
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Characterization of resonances using finite size effects
International Nuclear Information System (INIS)
Pozsgay, B.; Takacs, G.
2006-01-01
We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Finite element application to global reactor analysis
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1981-01-01
The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
A first course in finite elements
Fish, Jacob
2007-01-01
Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations. Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts
Features of finite quantum field theories
International Nuclear Information System (INIS)
Boehm, M.; Denner, A.
1987-01-01
We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)
Burnside structures of finite subgroups
International Nuclear Information System (INIS)
Lysenok, I G
2007-01-01
We establish conditions guaranteeing that a group B possesses the following property: there is a number l such that if elements w, x -1 wx,...,x -l+1 wx l-1 of B generate a finite subgroup G then x lies in the normalizer of G. These conditions are of a quite special form. They hold for groups with relations of the form x n =1 which appear as approximating groups for the free Burnside groups B(m,n) of sufficiently large even exponent n. We extract an algebraic assertion which plays an important role in all known approaches to substantial results on the groups B(m,n) of large even exponent, in particular, to proving their infiniteness. The main theorem asserts that when n is divisible by 16, B has the above property with l=6
Learning Extended Finite State Machines
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
Phase transition in finite systems
International Nuclear Information System (INIS)
Chomaz, Ph.; Duflot, V.; Duflot, V.; Gulminelli, F.
2000-01-01
In this paper we present a review of selected aspects of Phase transitions in finite systems applied in particular to the liquid-gas phase transition in nuclei. We show that the problem of the non existence of boundary conditions can be solved by introducing a statistical ensemble with an averaged constrained volume. In such an ensemble the microcanonical heat capacity becomes negative in the transition region. We show that the caloric curve explicitly depends on the considered transformation of the volume with the excitation energy and so does not bear direct informations on the characteristics of the phase transition. Conversely, partial energy fluctuations are demonstrated to be a direct measure of the equation of state. Since the heat capacity has a negative branch in the phase transition region, the presence of abnormally large kinetic energy fluctuations is a signal of the liquid gas phase transition. (author)
Finite-time braiding exponents
Budišić, Marko; Thiffeault, Jean-Luc
2015-08-01
Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Directory of Open Access Journals (Sweden)
Maria Carla Piastra
2018-02-01
Full Text Available In Electro- (EEG and Magnetoencephalography (MEG, one important requirement of source reconstruction is the forward model. The continuous Galerkin finite element method (CG-FEM has become one of the dominant approaches for solving the forward problem over the last decades. Recently, a discontinuous Galerkin FEM (DG-FEM EEG forward approach has been proposed as an alternative to CG-FEM (Engwer et al., 2017. It was shown that DG-FEM preserves the property of conservation of charge and that it can, in certain situations such as the so-called skull leakages, be superior to the standard CG-FEM approach. In this paper, we developed, implemented, and evaluated two DG-FEM approaches for the MEG forward problem, namely a conservative and a non-conservative one. The subtraction approach was used as source model. The validation and evaluation work was done in statistical investigations in multi-layer homogeneous sphere models, where an analytic solution exists, and in a six-compartment realistically shaped head volume conductor model. In agreement with the theory, the conservative DG-FEM approach was found to be superior to the non-conservative DG-FEM implementation. This approach also showed convergence with increasing resolution of the hexahedral meshes. While in the EEG case, in presence of skull leakages, DG-FEM outperformed CG-FEM, in MEG, DG-FEM achieved similar numerical errors as the CG-FEM approach, i.e., skull leakages do not play a role for the MEG modality. In particular, for the finest mesh resolution of 1 mm sources with a distance of 1.59 mm from the brain-CSF surface, DG-FEM yielded mean topographical errors (relative difference measure, RDM% of 1.5% and mean magnitude errors (MAG% of 0.1% for the magnetic field. However, if the goal is a combined source analysis of EEG and MEG data, then it is highly desirable to employ the same forward model for both EEG and MEG data. Based on these results, we conclude that the newly presented
Piastra, Maria Carla; Nüßing, Andreas; Vorwerk, Johannes; Bornfleth, Harald; Oostenveld, Robert; Engwer, Christian; Wolters, Carsten H
2018-01-01
In Electro- (EEG) and Magnetoencephalography (MEG), one important requirement of source reconstruction is the forward model. The continuous Galerkin finite element method (CG-FEM) has become one of the dominant approaches for solving the forward problem over the last decades. Recently, a discontinuous Galerkin FEM (DG-FEM) EEG forward approach has been proposed as an alternative to CG-FEM (Engwer et al., 2017). It was shown that DG-FEM preserves the property of conservation of charge and that it can, in certain situations such as the so-called skull leakages , be superior to the standard CG-FEM approach. In this paper, we developed, implemented, and evaluated two DG-FEM approaches for the MEG forward problem, namely a conservative and a non-conservative one. The subtraction approach was used as source model. The validation and evaluation work was done in statistical investigations in multi-layer homogeneous sphere models, where an analytic solution exists, and in a six-compartment realistically shaped head volume conductor model. In agreement with the theory, the conservative DG-FEM approach was found to be superior to the non-conservative DG-FEM implementation. This approach also showed convergence with increasing resolution of the hexahedral meshes. While in the EEG case, in presence of skull leakages, DG-FEM outperformed CG-FEM, in MEG, DG-FEM achieved similar numerical errors as the CG-FEM approach, i.e., skull leakages do not play a role for the MEG modality. In particular, for the finest mesh resolution of 1 mm sources with a distance of 1.59 mm from the brain-CSF surface, DG-FEM yielded mean topographical errors (relative difference measure, RDM%) of 1.5% and mean magnitude errors (MAG%) of 0.1% for the magnetic field. However, if the goal is a combined source analysis of EEG and MEG data, then it is highly desirable to employ the same forward model for both EEG and MEG data. Based on these results, we conclude that the newly presented conservative DG
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Interpretability degrees of finitely axiomatized sequential theories
Visser, Albert
In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory-like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB-have suprema. This partially answers a question posed
Interpretability Degrees of Finitely Axiomatized Sequential Theories
Visser, Albert
2012-01-01
In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory —like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB— have suprema. This partially answers a question
Finite Topological Spaces as a Pedagogical Tool
Helmstutler, Randall D.; Higginbottom, Ryan S.
2012-01-01
We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…
Lectures on zeta functions over finite fields
Wan, Daqing
2007-01-01
These are the notes from the summer school in G\\"ottingen sponsored by NATO Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields that took place in 2007. The aim was to give a short introduction on zeta functions over finite fields, focusing on moment zeta functions and zeta functions of affine toric hypersurfaces.
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Finite p′-nilpotent groups. II
Directory of Open Access Journals (Sweden)
S. Srinivasan
1987-01-01
Full Text Available In this paper we continue the study of finite p′-nilpotent groups that was started in the first part of this paper. Here we give a complete characterization of all finite groups that are not p′-nilpotent but all of whose proper subgroups are p′-nilpotent.
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
Regularization of finite temperature string theories
International Nuclear Information System (INIS)
Leblanc, Y.; Knecht, M.; Wallet, J.C.
1990-01-01
The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)
∗-supplemented subgroups of finite groups
Indian Academy of Sciences (India)
A subgroup H of a group G is said to be M∗-supplemented in G if ... normal subgroups and determined the structure of finite groups by using some ...... [12] Monakhov V S and Shnyparkov A V, On the p-supersolubility of a finite group with a.
Properties of the distributional finite Fourier transform
Carmichael, Richard D.
2016-01-01
The analytic functions in tubes which obtain the distributional finite Fourier transform as boundary value are shown to have a strong boundedness property and to be recoverable as a Fourier-Laplace transform, a distributional finite Fourier transform, and as a Cauchy integral of a distribution associated with the boundary value.
Dynamic pricing and learning with finite inventories
den Boer, A.V.; Zwart, Bert
2013-01-01
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season, perishes. The goal of the seller is to determine a pricing strategy
Dynamic pricing and learning with finite inventories
den Boer, A.V.; Zwart, Bert
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season perishes. The goal of the seller is to determine a pricing strategy
Dynamic Pricing and Learning with Finite Inventories
A.P. Zwart (Bert); A.V. den Boer (Arnoud)
2015-01-01
htmlabstractWe study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season perishes. The goal of the seller is to determine a
Dynamic pricing and learning with finite inventories
Boer, den A.V.; Zwart, B.
2015-01-01
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season perishes. The goal of the seller is to determine a pricing strategy
A Finite Model Property for Intersection Types
Directory of Open Access Journals (Sweden)
Rick Statman
2015-03-01
Full Text Available We show that the relational theory of intersection types known as BCD has the finite model property; that is, BCD is complete for its finite models. Our proof uses rewriting techniques which have as an immediate by-product the polynomial time decidability of the preorder <= (although this also follows from the so called beta soundness of BCD.
Why do probabilistic finite element analysis ?
Thacker, Ben H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
The finite-dimensional Freeman thesis.
Rudolph, Lee
2008-06-01
I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.
Factoring polynomials over arbitrary finite fields
Lange, T.; Winterhof, A.
2000-01-01
We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of
Stochastic delocalization of finite populations
International Nuclear Information System (INIS)
Geyrhofer, Lukas; Hallatschek, Oskar
2013-01-01
The localization of populations of replicating bacteria, viruses or autocatalytic chemicals arises in various contexts, such as ecology, evolution, medicine or chemistry. Several deterministic mathematical models have been used to characterize the conditions under which localized states can form, and how they break down due to convective driving forces. It has been repeatedly found that populations remain localized unless the bias exceeds a critical threshold value, and that close to the transition the population is characterized by a diverging length scale. These results, however, have been obtained upon ignoring number fluctuations (‘genetic drift’), which are inevitable given the discreteness of the replicating entities. Here, we study the localization/delocalization of a finite population in the presence of genetic drift. The population is modeled by a linear chain of subpopulations, or demes, which exchange migrants at a constant rate. Individuals in one particular deme, called ‘oasis’, receive a growth rate benefit, and the total population is regulated to have constant size N. In this ecological setting, we find that any finite population delocalizes on sufficiently long time scales. Depending on parameters, however, populations may remain localized for a very long time. The typical waiting time to delocalization increases exponentially with both population size and distance to the critical wind speed of the deterministic approximation. We augment these simulation results by a mathematical analysis that treats the reproduction and migration of individuals as branching random walks subject to global constraints. For a particular constraint, different from a fixed population size constraint, this model yields a solvable first moment equation. We find that this solvable model approximates very well the fixed population size model for large populations, but starts to deviate as population sizes are small. Nevertheless, the qualitative behavior of the
An introduction to finite tight frames
Waldron, Shayne F D
2018-01-01
This textbook is an introduction to the theory and applications of finite tight frames, an area that has developed rapidly in the last decade. Stimulating much of this growth are the applications of finite frames to diverse fields such as signal processing, quantum information theory, multivariate orthogonal polynomials, and remote sensing. Key features and topics: * First book entirely devoted to finite frames * Extensive exercises and MATLAB examples for classroom use * Important examples, such as harmonic and Heisenberg frames, are presented in preliminary chapters, encouraging readers to explore and develop an intuitive feeling for tight frames * Later chapters delve into general theory details and recent research results * Many illustrations showing the special aspects of the geometry of finite frames * Provides an overview of the field of finite tight frames * Discusses future research directions in the field Featuring exercises and MATLAB examples in each chapter, the book is well suited as a textbook ...
Finite density aspects of leptogenesis
International Nuclear Information System (INIS)
Hohenegger, Andreas
2010-01-01
Leptogenesis takes place in the early universe at high temperatures and densities and a deviation from equilibrium in the decay of heavy Majorana neutrinos is a fundamental requirement for the generation of the asymmetry. The equations, commonly used for its description, are largely based on classical Boltzmann equations (BEs) while the source of CP-violation is a quantum interference phenomenon. In view of this clash, it is desirable to study such processes in terms of non-equilibrium quantum field theory. On the other hand, it is simpler to solve BEs rather than the corresponding quantum field theoretical ones. Therefore, we derive modified BEs from first principles in the Kadanoff-Baym (KB) formalism. The results, found for a simple toy model, can be applied to popular phenomenological scenarios by analogy. This approach uncovers structural differences of the corrected equations and leads to different results for the form of the finite density contributions to the CP-violating parameter. In the case of degenerate heavy neutrino masses, corresponding to the popular scenario of resonant leptogenesis, it allows to explicitly distinguish between regimes where BEs are applicable or inapplicable.
Finite element coiled cochlea model
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Finite approximations in fluid mechanics
International Nuclear Information System (INIS)
Hirschel, E.H.
1986-01-01
This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems
What is finiteness? (Abhishek Banerjee) (Indian Institute of Science)
Indian Academy of Sciences (India)
Do finites get enough respect? • Finiteness is easy, no? • Just count whether 1, 2, 3,... • But then we miss out on the true richness of the concept of finitness. • There's more finiteness around. In fact, finiteness is what helps us really understand things. 5 ...
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
The theory of finitely generated commutative semigroups
Rédei, L; Stark, M; Gravett, K A H
1966-01-01
The Theory of Finitely Generated Commutative Semigroups describes a theory of finitely generated commutative semigroups which is founded essentially on a single """"fundamental theorem"""" and exhibits resemblance in many respects to the algebraic theory of numbers. The theory primarily involves the investigation of the F-congruences (F is the the free semimodule of the rank n, where n is a given natural number). As applications, several important special cases are given. This volume is comprised of five chapters and begins with preliminaries on finitely generated commutative semigroups before
Finite Markov processes and their applications
Iosifescu, Marius
2007-01-01
A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models.The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic ch
An introduction to finite projective planes
Albert, Abraham Adrian
2015-01-01
Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and
Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?
Sayar, Mehmet
2005-03-01
Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.
Books and monographs on finite element technology
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Modelling robot's behaviour using finite automata
Janošek, Michal; Žáček, Jaroslav
2017-07-01
This paper proposes a model of a robot's behaviour described by finite automata. We split robot's knowledge into several knowledge bases which are used by the inference mechanism of the robot's expert system to make a logic deduction. Each knowledgebase is dedicated to the particular behaviour domain and the finite automaton helps us switching among these knowledge bases with the respect of actual situation. Our goal is to simplify and reduce complexity of one big knowledgebase splitting it into several pieces. The advantage of this model is that we can easily add new behaviour by adding new knowledgebase and add this behaviour into the finite automaton and define necessary states and transitions.
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Finite element analysis of piezoelectric materials
International Nuclear Information System (INIS)
Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.
1999-01-01
This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)
Implicit and fully implicit exponential finite difference methods
Indian Academy of Sciences (India)
Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Finite Volumes for Complex Applications VII
Ohlberger, Mario; Rohde, Christian
2014-01-01
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative propert...
The finite Fourier transform of classical polynomials
Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe
2014-01-01
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
Quantiles for Finite Mixtures of Normal Distributions
Rahman, Mezbahur; Rahman, Rumanur; Pearson, Larry M.
2006-01-01
Quantiles for finite mixtures of normal distributions are computed. The difference between a linear combination of independent normal random variables and a linear combination of independent normal densities is emphasized. (Contains 3 tables and 1 figure.)
Jauch-Piron logics with finiteness conditions
Rogalewicz, Vladimír
1991-04-01
We show that there are no non-Boolean block-finite orthomodular posets possessing a unital set of Jauch-Piron states. Thus, an orthomodular poset representing a quantum physical system must have infinitely many blocks.
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Finite boson mappings of fermion systems
International Nuclear Information System (INIS)
Johnson, C.W.; Ginocchio, J.N.
1994-01-01
We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
A note on powers in finite fields
Aabrandt, Andreas; Lundsgaard Hansen, Vagn
2016-08-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.
Finite N=1 SUSY gauge field theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1986-01-01
The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established
ANSYS mechanical APDL for finite element analysis
Thompson, Mary Kathryn
2017-01-01
ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...
Collaborative Systems – Finite State Machines
Directory of Open Access Journals (Sweden)
Ion IVAN
2011-01-01
Full Text Available In this paper the finite state machines are defined and formalized. There are presented the collaborative banking systems and their correspondence is done with finite state machines. It highlights the role of finite state machines in the complexity analysis and performs operations on very large virtual databases as finite state machines. It builds the state diagram and presents the commands and documents transition between the collaborative systems states. The paper analyzes the data sets from Collaborative Multicash Servicedesk application and performs a combined analysis in order to determine certain statistics. Indicators are obtained, such as the number of requests by category and the load degree of an agent in the collaborative system.
Chiral crossover transition in a finite volume
Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi
2018-02-01
Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)
A Finite Axiomatization of G-Dependence
Paolini, Gianluca
2015-01-01
We show that a form of dependence known as G-dependence (originally introduced by Grelling) admits a very natural finite axiomatization, as well as Armstrong relations. We also give an explicit translation between functional dependence and G-dependence.
Review on Finite Element Method * ERHUNMWUN, ID ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: In this work, we have discussed what Finite Element Method (FEM) is, its historical development, advantages and ... residual procedures, are examples of the direct approach ... The paper centred on the "stiffness and deflection of ...
Finite element bending behaviour of discretely delaminated ...
African Journals Online (AJOL)
user
due to their light weight, high specific strength and stiffness properties. ... cylindrical shell roofs respectively using finite element method with centrally located .... where { }ε and { }γ are the direct and shear strains in midplane and { }κ denotes ...
Dynamic Pricing and Learning with Finite Inventories
Zwart, Bert; Boer, Arnoud
2015-01-01
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season, perishes. The goal of the seller is to determine a pricing strategy that maximizes the expected revenue. Inference on the unknown parameters is made by maximum likelihood estimation. We propose a pricing strategy for this problem, and show that the Regret - which i...
Bibliography for finite elements. [2200 references
Energy Technology Data Exchange (ETDEWEB)
Whiteman, J R [comp.
1975-01-01
This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.
Finite W-algebras and intermediate statistics
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1995-01-01
New realizations of finite W-algebras are constructed by relaxing the usual constraint conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. ((orig.))
Finite Optimal Stopping Problems: The Seller's Perspective
Hemmati, Mehdi; Smith, J. Cole
2011-01-01
We consider a version of an optimal stopping problem, in which a customer is presented with a finite set of items, one by one. The customer is aware of the number of items in the finite set and the minimum and maximum possible value of each item, and must purchase exactly one item. When an item is presented to the customer, she or he observes its…
Directory of Open Access Journals (Sweden)
S. Srinivasan
1987-01-01
Full Text Available In this paper we consider finite p′-nilpotent groups which is a generalization of finite p-nilpotent groups. This generalization leads us to consider the various special subgroups such as the Frattini subgroup, Fitting subgroup, and the hypercenter in this generalized setting. The paper also considers the conditions under which product of p′-nilpotent groups will be a p′-nilpotent group.
Entangling transformations in composite finite quantum systems
International Nuclear Information System (INIS)
Vourdas, A
2003-01-01
Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
Probabilistic finite elements for fracture mechanics
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Group foliation of finite difference equations
Thompson, Robert; Valiquette, Francis
2018-06-01
Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.
Anomalies in curved spacetime at finite temperature
International Nuclear Information System (INIS)
Boschi-Filho, H.; Natividade, C.P.
1993-01-01
We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved spacetime background, when the changes in the background are gradual. We obtain the expressions for the Seeley's coefficients and the heat kernel expansion in this regime. As applications, we consider the self-interacting lambda phi''4 and chiral Schwinger models in curved backgrounds at finite temperature. (Author) 9 refs
Collision Probabilities for Finite Cylinders and Cuboids
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1967-05-15
Analytical formulae have been derived for the collision probabilities of homogeneous finite cylinders and cuboids. The formula for the finite cylinder contains double integrals, and the formula for the cuboid only single integrals. Collision probabilities have been calculated by means of the formulae and compared with values obtained by other authors. It was found that the calculations using the analytical formulae are much quicker and give higher accuracy than Monte Carlo calculations.
Rough Finite State Automata and Rough Languages
Arulprakasam, R.; Perumal, R.; Radhakrishnan, M.; Dare, V. R.
2018-04-01
Sumita Basu [1, 2] recently introduced the concept of a rough finite state (semi)automaton, rough grammar and rough languages. Motivated by the work of [1, 2], in this paper, we investigate some closure properties of rough regular languages and establish the equivalence between the classes of rough languages generated by rough grammar and the classes of rough regular languages accepted by rough finite automaton.
Yamamoto, Naoki; Kanazawa, Takuya
2009-01-01
We study the properties of QCD at high baryon density in a finite volume where color superconductivity occurs. We derive exact sum rules for complex eigenvalues of the Dirac operator at finite chemical potential, and show that the Dirac spectrum is directly related to the color superconducting gap $\\Delta$. Also, we find a characteristic signature of color superconductivity: an X-shaped spectrum of partition function zeros in the complex quark mass plane near the origin, reflecting the $Z(2)_...
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
Generators for finite depth subfactor planar algebras
Indian Academy of Sciences (India)
The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra of depth k, it is shown there that a single 2k-box generates P. It is natural to ask what the smallest s is such that a single s-box generates P. While ...
Thomas Fermi model of finite nuclei
International Nuclear Information System (INIS)
Boguta, J.; Rafelski, J.
1977-01-01
A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2012-07-01
Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
The finite element response matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-02-01
A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt
Parquet theory of finite temperature boson systems
International Nuclear Information System (INIS)
He, H.W.
1992-01-01
In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed
Quantum channels with a finite memory
International Nuclear Information System (INIS)
Bowen, Garry; Mancini, Stefano
2004-01-01
In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless
Electron-phonon coupling from finite differences
Monserrat, Bartomeu
2018-02-01
The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
Virtual photon spectra for finite nuclei
International Nuclear Information System (INIS)
Wolynec, E.; Martins, M.N.
1988-01-01
The experimental results of an isochromat of the virtual photon spectrum, obtained by measuring the number of ground-state protons emitted by the 16.28 MeV isobaric analogue state in 90 Zr as a function of electron incident energy in the range 17-105 MeV, are compared with the values predicted by a calculation of the E1 DWBA virtual photon spectra for finite nuclei. It is found that the calculations are in excellent agreement with the experimental results. The DWBA virtual photon spectra for finite nuclei for E2 and M1 multipoles are also assessed. (author) [pt
Measures with locally finite support and spectrum.
Meyer, Yves F
2016-03-22
The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.
Finite-element analysis of dynamic fracture
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
Finite Product of Semiring of Sets
Directory of Open Access Journals (Sweden)
Coghetto Roland
2015-06-01
Full Text Available We formalize that the image of a semiring of sets [17] by an injective function is a semiring of sets.We offer a non-trivial example of a semiring of sets in a topological space [21]. Finally, we show that the finite product of a semiring of sets is also a semiring of sets [21] and that the finite product of a classical semiring of sets [8] is a classical semiring of sets. In this case, we use here the notation from the book of Aliprantis and Border [1].
Equilibration and thermalization in finite quantum systems
International Nuclear Information System (INIS)
Yukalov, V I
2011-01-01
Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned
A Note on Powers in Finite Fields
DEFF Research Database (Denmark)
Aabrandt, Andreas; Hansen, Vagn Lundsgaard
2016-01-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analys...... for squares in odd prime fields, giving it a formulation which is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom....
Finite W-algebras and intermediate statistics
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1994-09-01
New realizations of finite W-algebras are constructed by relaxing the usual conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. (author). 13 refs
Crack Propagation by Finite Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2018-01-01
Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed
Study guide for applied finite mathematics
Macri, Nicholas A
1982-01-01
Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate
Effective permittivity of finite inhomogeneous objects
Raghunathan, S.B.; Budko, N.V.
2010-01-01
A generalization of the S-parameter retrieval method for finite three-dimensional inhomogeneous objects under arbitrary illumination and observation conditions is presented. The effective permittivity of such objects may be rigorously defined as a solution of a nonlinear inverse scattering problem.
Finite difference order doubling in two dimensions
International Nuclear Information System (INIS)
Killingbeck, John P; Jolicard, Georges
2008-01-01
An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process
Finite element analysis of inelastic structural behavior
International Nuclear Information System (INIS)
Argyris, J.H.; Szimmat, J.; Willam, K.J.
1977-01-01
The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
Unknown
Abstract. The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation ...
Finite Metric Spaces of Strictly Negative Type
DEFF Research Database (Denmark)
Hjorth, Poul; Lisonek, P.; Markvorsen, Steen
1998-01-01
of Euclidean spaces. We prove that, if the distance matrix is both hypermetric and regular, then it is of strictly negative type. We show that the strictly negative type finite subspaces of spheres are precisely those which do not contain two pairs of antipodal points. In connection with an open problem raised...
Finite mode analysis through harmonic waveguides
Alieva, T.; Wolf, K.B.
2000-01-01
The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part
Finite size scaling and spectral density studies
International Nuclear Information System (INIS)
Berg, B.A.
1991-01-01
Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)
Finite Cycle Gibbs Measures on Permutations of
Armendáriz, Inés; Ferrari, Pablo A.; Groisman, Pablo; Leonardi, Florencia
2015-03-01
We consider Gibbs distributions on the set of permutations of associated to the Hamiltonian , where is a permutation and is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on ensuring that for large enough temperature there exists a unique infinite volume ergodic Gibbs measure concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuous-time birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define as the shift permutation . In the Gaussian case , we show that for each , given by is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with boundary conditions. For a general potential , we prove the existence of Gibbs measures when is bigger than some -dependent value.
Finite Algorithms for Robust Linear Regression
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun
1990-01-01
The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...
Image segmentation with a finite element method
DEFF Research Database (Denmark)
Bourdin, Blaise
1999-01-01
regularization results, make possible to imagine a finite element resolution method.In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation for the Mumford-Shah problem is proposed and its $\\Gamma$-convergence is proved. Finally, some...
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Finite size scaling and phenomenological renormalization
International Nuclear Information System (INIS)
Derrida, B.; Seze, L. de; Vannimenus, J.
1981-05-01
The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems
Quasi-particles at finite chemical potential
International Nuclear Information System (INIS)
Gardim, F. G.; Steffens, F. M.
2010-01-01
We present in this work the thermodynamic consistent quasi-particle model at finite chemical potential, to describe the Quark Gluon Plasma composed of two light quarks and gluons. The quasi-particle general solution will be discussed, and comparison with perturbative QCD and lattice data will be shown.
Finiteness of PST self-dual models
International Nuclear Information System (INIS)
Del Cima, Oswaldo M.; Piguet, Olivier; Sarandy, Marcelo S.
2000-12-01
The Pasti-Sorokin-Tonin model for describing chiral forms is considered at the quantum level. We study the ultraviolet and infrared behaviour of the model in two, four and six dimensions in the framework of algebraic renormalization. The absence of anomalies, as well as the finiteness, up to non-physical renormalizations, are shown in all dimensions analyzed. (author)
The Finite Lamplighter Groups: A Guided Tour
Siehler, Jacob A.
2012-01-01
In this article, we present a family of finite groups, which provide excellent examples of the basic concepts of group theory. To work out the center, conjuagacy classes, and commutators of these groups, all that's required is a bit of linear algebra.
Stretching and jamming of finite automata
Beijer, de N.; Kourie, D.G.; Watson, B.W.; Cleophas, L.G.W.A.; Watson, B.W.
2004-01-01
In this paper we present two transformations on automata, called stretching and jamming. These transformations will, under certain conditions, reduce the size of the transition table, and under other conditions reduce the string processing time. Given a finite automaton, we can stretch it by
The circle equation over finite fields
DEFF Research Database (Denmark)
Aabrandt, Andreas; Hansen, Vagn Lundsgaard
2017-01-01
Interesting patterns in the geometry of a plane algebraic curve C can be observed when the defining polynomial equation is solved over the family of finite fields. In this paper, we examine the case of C the classical unit circle defined by the circle equation x2 + y2 = 1. As a main result, we es...
Cooperative Games, Finite Geometries and Hyperstructures
Directory of Open Access Journals (Sweden)
Antonio Maturo
2003-02-01
Full Text Available In this paper some relations between finite geometric spaces and cooperative games are considered. In particular by some recent results on blocking sets we have new results on blocking coalitions. Finally we introduce a new research field on the possible relations between quasihypergroups and cooperative games.
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
A finite element for plates and shells
International Nuclear Information System (INIS)
Muller, A.; Feijoo, R.A.; Bevilacqua, L.
1981-08-01
A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt
On higher order pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K.B.; Křížek, Michal; Guan, L.
2011-01-01
Roč. 3, č. 2 (2011), s. 131-140 ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : pyramidal polynomial basis functions * finite element method * composite elements * three-dimensional mortar elements Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2011
Flipping Undergraduate Finite Mathematics: Findings and Implications
Guerrero, Shannon; Beal, Melissa; Lamb, Chris; Sonderegger, Derek; Baumgartel, Drew
2015-01-01
This paper reports on a research project that investigated the effects of a flipped instructional approach on student attitudes and achievement in a lower division university-level Finite Mathematics course. The project employed a mixed-methods design that included content exams, an attitude survey, open-ended student responses, observations, and…
Orthodontic treatment: Introducing finite element analysis
Driel, W.D. van; Leeuwen, E.J. van
1998-01-01
The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process
A Note on Powers in Finite Fields
Aabrandt, Andreas; Hansen, Vagn Lundsgaard
2016-01-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In…
Isogeometric finite element analysis of poroelasticity
Irzal, F.; Remmers, J.J.C.; Verhoosel, C.V.; Borst, de R.
2013-01-01
We present an alternative numerical approach for predicting the behaviour of a deformable fluid-saturated porous medium. The conventional finite element technology is replaced by isogeometric analysis that uses non-uniform rational B-splines. The ability of these functions to provide higher-order
Induced Yukawa coupling and finite mass
International Nuclear Information System (INIS)
Fujimoto, Y.
1981-06-01
We propose that the Yukawa couplings in the unified theories could be of induced nature. The idea is implemented in the gauge theory with either weak or horizontal Susub(L)(2) x SUsub(R)(2) symmetry. A related subject of finite fermion mass is also discussed. (author)
Nonlinear Conservation Laws and Finite Volume Methods
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Modelling drawbeads with finite elements and verification
Carleer, B.D.; Carleer, B.D.; Vreede, P.T.; Vreede, P.T.; Louwes, M.F.M.; Louwes, M.F.M.; Huetink, Han
1994-01-01
Drawbeads are commonly used in deep drawing processes to control the flow of the blank during the forming operation. In finite element simulations of deep drawing the drawbead geometries are seldom included because of the small radii; because of these small radii a very large number of elements is
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix...
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Simplicial Finite Elements in Higher Dimensions
Czech Academy of Sciences Publication Activity Database
Brandts, J.; Korotov, S.; Křížek, Michal
2007-01-01
Roč. 52, č. 3 (2007), s. 251-265 ISSN 0862-7940 R&D Projects: GA ČR GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : n-simplex * finite element method * superconvergence Subject RIV: BA - General Mathematics
Adsorption of Lithium on Finite Graphitic Clusters
DEFF Research Database (Denmark)
Martinez, Jose Ignacio; Cabria, I.; Lopez, M.J.
2009-01-01
The apparent discrepancies between density functional (DFT) and Moller-Plesset (MP2) calculations for the interaction of lithium with graphene recently pointed out by Ferre-Vilaplana (J. Phys. Chem. C 2008, 112, 3998) are discussed. In his calculations, this author used a finite coronene cluster, C...
Counting Subspaces of a Finite Vector Space
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 11. Counting Subspaces of a Finite Vector Space – 1. Amritanshu Prasad. General Article Volume 15 Issue 11 November 2010 pp 977-987. Fulltext. Click here to view fulltext PDF. Permanent link:
Finite element method - theory and applications
International Nuclear Information System (INIS)
Baset, S.
1992-01-01
This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs
Aging: Learning to Live a Finite Life.
Baars, Jan
2017-10-01
Although biodemographic research informs us that life expectancies have risen impressively during the last century, this has not led to much interest in these new horizons of aging. The instrumentalist culture of late modern societies, including its health cure system, has clearly difficulties to relate to the elusive but inevitable limitations of finite life. Moreover, as most people can be expected to survive into old age, thinking about finitude is easily postponed and reserved for those who are "really old." Indeed, a meaningful and realistic understanding of aging needs to include a confrontation with the finitude of life. Instead of reducing aging to the opposite or continuation of vital adulthood, it should be seen as something with a potentially broad and deep significance: a process of learning to live a finite life. As a contribution to this cultural repositioning of aging, the article presents a philosophical exploration of finitude and finite life. Among the discussed topics are the Stoic and Epicurean ways of living with death but also the necessity to expand the meaning of "finitude" beyond mortality. Aging is foremost a process of living through changes that are largely beyond our control although they require active responding. Next, individualistic or existentialist interpretations are criticized because finite lives presuppose a social world in which they emerge and on which they depend. Unfortunately, aging, the most important experiential source of knowledge about what it is to live a finite life, is neglected by the same culture that needs its wisdom. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Al-Akhrass, Dina
2014-01-01
Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan
2012-01-01
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite
Socio-economic applications of finite state mean field games
Gomes, Diogo A.; Machado Velho, Roberto; Wolfram, Marie Therese
2014-01-01
In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Finite groups with three conjugacy class sizes of some elements
Indian Academy of Sciences (India)
Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.
Finite automata over magmas: models and some applications in Cryptography
Directory of Open Access Journals (Sweden)
Volodymyr V. Skobelev
2018-05-01
Full Text Available In the paper the families of finite semi-automata and reversible finite Mealy and Moore automata over finite magmas are defined and analyzed in detail. On the base of these models it is established that the set of finite quasigroups is the most acceptable subset of the set of finite magmas at resolving model problems in Cryptography, such as design of iterated hash functions and stream ciphers. Defined families of finite semi-automata and reversible finite automata over finite $T$-quasigroups are investigated in detail. It is established that in this case models time and space complexity for simulation of the functioning during one instant of automaton time can be much lower than in general case.
Finite Larmor radius stabilization of ballooning modes in tokamaks
International Nuclear Information System (INIS)
Tsang, K.T.
1980-07-01
A ballooning mode equation that includes full finite Larmor radius effects has been derived from the Vlasov equation for a circular tokamak equilibrium. Numerical solution of this equation shows that finite Larmor radius effects are stabilizing
Finite element analysis of plastic recycling machine designed for ...
African Journals Online (AJOL)
... design was evaluated using finite element analysis (FEA) tool in Solid Works Computer ... Also, a minimum factor of safety value of 5.3 was obtained for shredder shaft ... Machine; Design; Recycling; Sustainability; Finite Element; Simulation ...
A set of pathological tests to validate new finite elements
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
The finite element method entails several approximations. Hence it ... researchers have designed several pathological tests to validate any new finite element. The .... Three dimensional thick shell elements using a hybrid/mixed formu- lation.
International Nuclear Information System (INIS)
Jones, R.E.; Schkade, A.F.; Eyberger, L.R.
1991-01-01
1 - Description of problem or function: A set of five programs which make up a self-organising mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily-shaped, two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchical input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program, RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight-node elements (with mid-side nodes) may be obtained with RENUM8., QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs, respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers. An overall plot showing the position of the selected plot areas is produced. 2 - Method of solution: The mesh generating process for each individual region begins with the installation of an initial mesh which is a transformation of a regular grid on the unit square. The dimensions and orientation of the initial mesh may be defined by the user or, optionally, may be chosen by QMESH. Various smoothing algorithms may be applied to the initial mesh. Then, the mesh may be 'restructured' using an iterative scheme involving 'element pair restructuring', 'acute element deletion', and smoothing. In element pair restructuring, the interface side between two elements is removed and placed between two different nodes belonging to the pair of elements, provided that the change produces an overall improvement in the shapes of the two elements. In acute element deletion, an element having one diagonal much shorter than the other is deleted by collapsing the short diagonal to zero length The exact order in which restructuring, element
Effect of finite β on stellarator transport
International Nuclear Information System (INIS)
Mynick, H.E.
1984-04-01
A theory of the modification of stellarator transport due to the presence of finite plasma pressure is developed, and applied to a range of stellarator configurations. For many configurations of interest, plasma transport can change by more than an order of magnitude in the progression from zero pressure to the equilibrium β limit of the device. Thus, a stellarator with transport-optimized vacuum fields can have poor confinement at the desired operating β. Without an external compensating field, increasing β tends to degrade confinement, unless the initial field structure is very carefully chosen. The theory permits one to correctly determine this vacuum structure, in terms of the desired structure of the field at a prescribed operating β. With a compensating external field, the deleterious effect of finite β on transport can be partially eliminated
Algebraic coding theory over finite commutative rings
Dougherty, Steven T
2017-01-01
This book provides a self-contained introduction to algebraic coding theory over finite Frobenius rings. It is the first to offer a comprehensive account on the subject. Coding theory has its origins in the engineering problem of effective electronic communication where the alphabet is generally the binary field. Since its inception, it has grown as a branch of mathematics, and has since been expanded to consider any finite field, and later also Frobenius rings, as its alphabet. This book presents a broad view of the subject as a branch of pure mathematics and relates major results to other fields, including combinatorics, number theory and ring theory. Suitable for graduate students, the book will be of interest to anyone working in the field of coding theory, as well as algebraists and number theorists looking to apply coding theory to their own work.
Verification of Orthogrid Finite Element Modeling Techniques
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
Thermoelectric properties of finite graphene antidot lattices
DEFF Research Database (Denmark)
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...... properties converge fast toward the bulk limit with increasing length of the lattice: only a few repetitions (≃6) of the fundamental unit cell are required to recover the electronic band gap of the infinite lattice as a transport gap for the finite lattice. We investigate how different antidot shapes...... and sizes affect the thermoelectric properties. The resulting thermoelectric figure of merit, ZT, can exceed 0.25, and it is highly sensitive to the atomic arrangement of the antidot edges. Specifically, hexagonal holes with pure armchair edges lead to an order-of-magnitude larger ZT as compared to pure...
On polynormality in finite solvable groups
Mamadou-Sadialiou-Bah
2003-01-01
In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal.
On polynormality in finite solvable groups
International Nuclear Information System (INIS)
Mamadou Sadialiou Bah
2003-05-01
In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal. (author)
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1983-01-01
A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2002-01-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature
Blocks of finite groups and their invariants
Sambale, Benjamin
2014-01-01
Providing a nearly complete selection of up-to-date methods and results on block invariants with respect to their defect groups, this book covers the classical theory pioneered by Brauer, the modern theory of fusion systems introduced by Puig, the geometry of numbers developed by Minkowski, the classification of finite simple groups, and various computer assisted methods. In a powerful combination, these tools are applied to solve many special cases of famous open conjectures in the representation theory of finite groups. Most of the material is drawn from peer-reviewed journal articles, but there are also new previously unpublished results. In order to make the text self-contained, detailed proofs are given whenever possible. Several tables add to the text's usefulness as a reference. The book is aimed at experts in group theory or representation theory who may wish to make use of the presented ideas in their research.
Finite element computation of plasma equilibria
International Nuclear Information System (INIS)
Rivier, M.
1977-01-01
The applicability of the finite element method is investigated for the numerical solution of the nonlinear Grad-Shafranov equation with free boundary for the flux function of a plasma at equilibrium. This method is based on the case of variational principles and finite dimensional subspaces whose elements are piecewise polynomial functions obtained by a Lagrange type interpolation procedure over a triangulation of the domain. Two cases of plasma pressure (exponential and quadratic including a vacuum region) were examined. In both cases the nonuniqueness of the solutions was shown in exhibiting a deeper solution in the case of exponential pressure function, and a non-constant solution for a quadratic pressure function. In order to get this ''other'' solution, two linearization methods were tested with two different constraints. Different cross sections are investigated
Finite element reliability analysis of fatigue life
International Nuclear Information System (INIS)
Harkness, H.H.; Belytschko, T.; Liu, W.K.
1992-01-01
Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)
Multicomplementary operators via finite Fourier transform
International Nuclear Information System (INIS)
Klimov, Andrei B; Sanchez-Soto, Luis L; Guise, Hubert de
2005-01-01
A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail
On the reliability of finite element solutions
International Nuclear Information System (INIS)
Prasad, K.S.R.K.
1975-01-01
The extent of reliability of the finite element method for analysis of nuclear reactor structures, and that of reactor vessels in particular and the need for the engineer to guard against the pitfalls that may arise out of both physical and mathematical models have been high-lighted. A systematic way of checking the model to obtain reasonably accurate solutions is presented. Quite often sophisticated elements are suggested for specific design and stress concentration problems. The desirability or otherwise of these elements, their scope and utility vis-a-vis the use of large stack of conventional elements are discussed from the view point of stress analysts. The methods of obtaining a check on the reliability of the finite element solutions either through modelling changes or an extrapolation technique are discussed. (author)
Tearing mode saturation with finite pressure
International Nuclear Information System (INIS)
Lee, J.K.
1988-01-01
With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)
Thermal quench at finite 't Hooft coupling
Directory of Open Access Journals (Sweden)
H. Ebrahim
2016-03-01
Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.
Finite Element Simulation of Fracture Toughness Test
International Nuclear Information System (INIS)
Chu, Seok Jae; Liu, Cong Hao
2013-01-01
Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
Finite Blaschke products and their connections
Garcia, Stephan Ramon; Ross, William T
2018-01-01
This monograph offers an introduction to finite Blaschke products and their connections to complex analysis, linear algebra, operator theory, matrix analysis, and other fields. Old favorites such as the Carathéodory approximation and the Pick interpolation theorems are featured, as are many topics that have never received a modern treatment, such as the Bohr radius and Ritt's theorem on decomposability. Deep connections to hyperbolic geometry are explored, as are the mapping properties, zeros, residues, and critical points of finite Blaschke products. In addition, model spaces, rational functions with real boundary values, spectral mapping properties of the numerical range, and the Darlington synthesis problem from electrical engineering are also covered. Topics are carefully discussed, and numerous examples and illustrations highlight crucial ideas. While thorough explanations allow the reader to appreciate the beauty of the subject, relevant exercises following each chapter improve technical fluency with t...
On fracture in finite strain gradient plasticity
DEFF Research Database (Denmark)
Martínez Pañeda, Emilio; Niordson, Christian Frithiof
2016-01-01
In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....
Solving hyperbolic equations with finite volume methods
Vázquez-Cendón, M Elena
2015-01-01
Finite volume methods are used in numerous applications and by a broad multidisciplinary scientific community. The book communicates this important tool to students, researchers in training and academics involved in the training of students in different science and technology fields. The selection of content is based on the author’s experience giving PhD and master courses in different universities. In the book the introduction of new concepts and numerical methods go together with simple exercises, examples and applications that contribute to reinforce them. In addition, some of them involve the execution of MATLAB codes. The author promotes an understanding of common terminology with a balance between mathematical rigor and physical intuition that characterizes the origin of the methods. This book aims to be a first contact with finite volume methods. Once readers have studied it, they will be able to follow more specific bibliographical references and use commercial programs or open source software withi...
Finite element analysis of ARPS structures
International Nuclear Information System (INIS)
Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.
1998-01-01
Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S
2002-03-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
International Nuclear Information System (INIS)
Yamamoto, Naoki; Kanazawa, Takuya
2009-01-01
We study the properties of QCD at high baryon density in a finite volume where color superconductivity occurs. We derive exact sum rules for complex eigenvalues of the Dirac operator at a finite chemical potential, and show that the Dirac spectrum is directly related to the color superconducting gap Δ. Also, we find a characteristic signature of color superconductivity: an X-shaped spectrum of partition function zeros in the complex quark mass plane near the origin, reflecting the Z(2) L xZ(2) R symmetry of the diquark pairing. Our results are universal in the domain Δ -1 π -1 where L is the linear size of the system and m π is the pion mass at high density.
Quark bag coupling to finite size pions
International Nuclear Information System (INIS)
De Kam, J.; Pirner, H.J.
1982-01-01
A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)
ZONE: a finite element mesh generator
International Nuclear Information System (INIS)
Burger, M.J.
1976-05-01
The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Time-optimal control with finite bandwidth
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
Error-controlled adaptive finite elements in solid mechanics
National Research Council Canada - National Science Library
Stein, Erwin; Ramm, E
2003-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...
Finite element based electric motor design optimization
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
The adjoint string at finite temperature
International Nuclear Information System (INIS)
Damgaard, P.H.
1986-10-01
Expectations for the behavior of the adjoint string at finite temperature are presented. In the Migdal-Kadanoff approximation a real-space renormalization group study of the effective Polyakov like action predicts a deconfinement-like crossover for adjoint sources at a temperature slightly below the deconfinement temperature of fundamental sources. This prediction is compared with a Monte Carlo simulation of SU(2) lattice gauge theory on an 8 3 x2 lattice. (orig.)
Which finite simple groups are unit groups?
DEFF Research Database (Denmark)
Davis, Christopher James; Occhipinti, Tommy
2014-01-01
We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2^k −1 for some k; or (c) a projective special linear group PSLn(F2) for some n ≥ 3. Moreover, these groups do all occur a...
Infrared finiteness in Yang--Mills theories
International Nuclear Information System (INIS)
Appelquist, T.; Carazzone, J.; Kluberg-Stern, H.; Roth, M.
1976-01-01
The infrared divergences of renormalizable theories with coupled massless fields (in particular, the Yang--Mills theory) are shown to cancel for transition probabilities corresponding to finite-energy-resolution detectors, just as in quantum electrodynamics. This result is established through lowest nontrivial order in perturbation theory for the detection of massive muons in a quantum electrodynamic theory containing massless electrons or the detection of massive quarks in a Yang--Mills theory
Robust weak measurements on finite samples
International Nuclear Information System (INIS)
Tollaksen, Jeff
2007-01-01
A new weak measurement procedure is introduced for finite samples which yields accurate weak values that are outside the range of eigenvalues and which do not require an exponentially rare ensemble. This procedure provides a unique advantage in the amplification of small nonrandom signals by minimizing uncertainties in determining the weak value and by minimizing sample size. This procedure can also extend the strength of the coupling between the system and measuring device to a new regime
Limitations of Shallow Networks Representing Finite Mappings
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
submitted 5.1. (2018) ISSN 0941-0643 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : shallow and deep networks * sparsity * variational norms * functions on large finite domains * concentration of measure * pseudo-noise sequences * perceptron networks Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.505, year: 2016
Behavior of supersymmetry at finite temperature
International Nuclear Information System (INIS)
Midorikawa, Shoichi.
1984-11-01
Supersymmetry breaking at finite temperature is investigated by using the real-time formalism. We derive the Ward-Takahashi identities of the composite fields by using the path integral formalism. We also calculate the one-loop correction to fermion and boson masses, and discuss the connection of the perturbative result with that obtained from the effective potential. Our result shows that supersymmetry is broken explicitly even in the real-time formalism. (author)
Finite element analysis of nonlinear creeping flows
International Nuclear Information System (INIS)
Loula, A.F.D.; Guerreiro, J.N.C.
1988-12-01
Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt
Finite volume QCD at fixed topological charge
Aoki, Sinya; Fukaya, Hidenori; Hashimoto, Shoji; Onogi, Tetsuya
2007-01-01
In finite volume the partition function of QCD with a given $\\theta$ is a sum of different topological sectors with a weight primarily determined by the topological susceptibility. If a physical observable is evaluated only in a fixed topological sector, the result deviates from the true expectation value by an amount proportional to the inverse space-time volume 1/V. Using the saddle point expansion, we derive formulas to express the correction due to the fixed topological charge in terms of...
Thermal operator representation of finite temperature graphs
International Nuclear Information System (INIS)
Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana
2005-01-01
Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed
Hidden charm molecules in a finite volume
International Nuclear Information System (INIS)
Albaladejo, M.; Hidalgo-Duque, C.; Nieves, J.; Oset, E.
2014-01-01
In the present paper we address the interaction of charmed mesons in hidden charm channels in a finite box. We use the interaction from a recent model based on heavy quark spin symmetry that predicts molecules of hidden charm in the infinite volume. The energy levels in the box are generated within this model, and several methods for the analysis of these levels ("inverse problem") are investigated. (author)
Stochastic synchronization in finite size spiking networks
Doiron, Brent; Rinzel, John; Reyes, Alex
2006-09-01
We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Elementary introduction to finite difference equations
International Nuclear Information System (INIS)
White, J.W.
1976-01-01
An elementary description is given of the basic vocabulary and concepts associated with finite difference modeling. The material discussed is biased toward the types of large computer programs used at the Lawrence Livermore Laboratory. Particular attention is focused on truncation error and how it can be affected by zoning patterns. The principle of convergence is discussed, and convergence as a tool for improving calculational accuracy and efficiency is emphasized
Control of Petri Nets by finite automata
Energy Technology Data Exchange (ETDEWEB)
Burkhard, H D
1983-01-01
Petri Nets are considered where the firings are controlled by finite automata. The control may be distributed to various automata working over disjoint sets of transitions. To avoid deadlocks and conflicts for the whole system the distribution of control must be organised in an appropriate manner. The existence of deadlocks and conflicts is shown to be undecidable in general, but conflict resolving and deadlock free controls can be constructed for given nets. 10 references.
The geometry of finite equilibrium sets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
2009-01-01
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....
The Geometry of Finite Equilibrium Datasets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely non collinear....
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Topics on field theories at finite temperature
International Nuclear Information System (INIS)
Eboli, O.J.P.
1985-01-01
The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt
Upstand Finite Element Analysis of Slab Bridges
O'Brien, Eugene J.; Keogh, D.L.
1998-01-01
For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...
Crack Propagation by Finite Element Method
H. Ricardo, Luiz Carlos
2017-01-01
Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Using of Finite Automation at Programming PLC
Directory of Open Access Journals (Sweden)
Karol Rastocny
2004-01-01
Full Text Available The paper is concerning with systematic advances at programming programmable logic controllers (PLC, which comes out from algebraic description of behaviour of sequential circuit, in the way of finite automaton. This kind of access is streamlining the work of a programmer and enabling to use formalisms in the of whole process of system development, that is from process of analysing demands to process of verification and validation created program. The paper considers about using of ladder diagram at programming PLC.
Quantum Finance: The Finite Dimensional Case
Chen, Zeqian
2001-01-01
In this paper, we present a quantum version of some portions of Mathematical Finance, including theory of arbitrage, asset pricing, and optional decomposition in financial markets based on finite dimensional quantum probability spaces. As examples, the quantum model of binomial markets is studied. We show that this quantum model ceases to pose the paradox which appears in the classical model of the binomial market. Furthermore, we re-deduce the Cox-Ross-Rubinstein binomial option pricing form...
Supersymmetric field theories at finite temperature
International Nuclear Information System (INIS)
Dicus, D.A.; Tata, X.R.
1983-01-01
We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry
Development and analysis of finite volume methods
International Nuclear Information System (INIS)
Omnes, P.
2010-05-01
This document is a synthesis of a set of works concerning the development and the analysis of finite volume methods used for the numerical approximation of partial differential equations (PDEs) stemming from physics. In the first part, the document deals with co-localized Godunov type schemes for the Maxwell and wave equations, with a study on the loss of precision of this scheme at low Mach number. In the second part, discrete differential operators are built on fairly general, in particular very distorted or nonconforming, bidimensional meshes. These operators are used to approach the solutions of PDEs modelling diffusion, electro and magneto-statics and electromagnetism by the discrete duality finite volume method (DDFV) on staggered meshes. The third part presents the numerical analysis and some a priori as well as a posteriori error estimations for the discretization of the Laplace equation by the DDFV scheme. The last part is devoted to the order of convergence in the L2 norm of the finite volume approximation of the solution of the Laplace equation in one dimension and on meshes with orthogonality properties in two dimensions. Necessary and sufficient conditions, relatively to the mesh geometry and to the regularity of the data, are provided that ensure the second-order convergence of the method. (author)
Field emission from finite barrier quantum structures
Energy Technology Data Exchange (ETDEWEB)
Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)
2014-10-01
We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.
Variational approach to probabilistic finite elements
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Results in finite temperature quantum electrodynamics
International Nuclear Information System (INIS)
Down, D.M.
1985-01-01
First, three quantities of physical interest are calculated. The first two quantities are the self energy of the electron at order α and the self mass of the electron at order α 2 due to its interaction with a thermal bath of photons. The third quantity of physical interest is the thermal contribution to the self mass of the axion. Second, some formal developments are presented. First among these is the proof of an extension to the familiar optical theorem to cover processes taking place at finite temperature. Then an example of the application of the theorem is given for a simple field theory involving two types of scalar particles. The example illustrates that the relationship between the forward scattering amplitude and the total cross section is more complex at finite temperature than at zero temperature. Third, a method for calculating the wave function renormalization constant at finite temperature for an electron in a thermal bath of photons is presented. This method is compared with methods invented by other authors
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
Finite Range Decomposition of Gaussian Processes
Brydges, C D; Mitter, P K
2003-01-01
Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0
Finiteness in Jordanian Arabic: A Semantic and Morphosyntactic Approach
Al-Aqarbeh, Rania
2011-01-01
Previous research on finiteness has been dominated by the studies in tensed languages, e.g. English. Consequently, finiteness has been identified with tense. The traditional definition influences the morphological, semantic, and syntactic characterization of finiteness which has also been equated with tense and its realization. The present study…
The finite element method in engineering, 2nd edition
International Nuclear Information System (INIS)
Rao, S.S.
1986-01-01
This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications
Oscillations of the static meson fields at finite baryon density
International Nuclear Information System (INIS)
Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt
1996-04-01
The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)
Finite Mathematics and Discrete Mathematics: Is There a Difference?
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
Cycles through all finite vertex sets in infinite graphs
DEFF Research Database (Denmark)
Kundgen, Andre; Li, Binlong; Thomassen, Carsten
2017-01-01
is contained in a cycle of G. We apply this to extend a number of results and conjectures on finite graphs to Hamiltonian curves in infinite locally finite graphs. For example, Barnette’s conjecture (that every finite planar cubic 3-connected bipartite graph is Hamiltonian) is equivalent to the statement...
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Feidt, Michel; Costea, Monica
2018-04-01
Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
On Algebraic Study of Type-2 Fuzzy Finite State Automata
Directory of Open Access Journals (Sweden)
Anupam K. Singh
2017-08-01
Full Text Available Theories of fuzzy sets and type-2 fuzzy sets are powerful mathematical tools for modeling various types of uncertainty. In this paper we introduce the concept of type-2 fuzzy finite state automata and discuss the algebraic study of type-2 fuzzy finite state automata, i.e., to introduce the concept of homomorphisms between two type-2 fuzzy finite state automata, to associate a type-2 fuzzy transformation semigroup with a type-2 fuzzy finite state automata. Finally, we discuss several product of type-2 fuzzy finite state automata and shown that these product is a categorical product.
Finiteness of Lorentzian 10j symbols and partition functions
International Nuclear Information System (INIS)
Christensen, J Daniel
2006-01-01
We give a short and simple proof that the Lorentzian 10j symbol, which forms a key part of the Barrett-Crane model of Lorentzian quantum gravity, is finite. The argument is very general, and applies to other integrals. For example, we show that the Lorentzian and Riemannian causal 10j symbols are finite, despite their singularities. Moreover, we show that integrals that arise in Cherrington's work are finite. Cherrington has shown that this implies that the Lorentzian partition function for a single triangulation is finite, even for degenerate triangulations. Finally, we also show how to use these methods to prove finiteness of integrals based on other graphs and other homogeneous domains
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.
International Nuclear Information System (INIS)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel
Determination of finite-difference weights using scaled binomial windows
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.
Determination of finite-difference weights using scaled binomial windows
Chu, Chunlei
2012-05-01
The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1978-01-01
A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)
Finite element simulation of piezoelectric transformers.
Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H
2001-07-01
Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.
FINELM: a multigroup finite element diffusion code
International Nuclear Information System (INIS)
Higgs, C.E.; Davierwalla, D.M.
1981-06-01
FINELM is a FORTRAN IV program to solve the Neutron Diffusion Equation in X-Y, R-Z, R-theta, X-Y-Z and R-theta-Z geometries using the method of Finite Elements. Lagrangian elements of linear or higher degree to approximate the spacial flux distribution have been provided. The method of dissections, coarse mesh rebalancing and Chebyshev acceleration techniques are available. Simple user defined input is achieved through extensive input subroutines. The input preparation is described followed by a program structure description. Sample test cases are provided. (Auth.)
On constitutive modelling in finite element analysis
International Nuclear Information System (INIS)
Bathe, K.J.; Snyder, M.D.; Cleary, M.P.
1979-01-01
This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)
Finite Source Effects in Microlensing Events
Gould, Andrew; Gaucherel, Cedric
1996-01-01
The computation of the magnification of a finite source by an arbitrary gravitational lens can be reduced from a two-dimensional to a one-dimensional integral using a generalization of Stoke's theorem. For a large source lensed by a planetary-system whose planet lies at the position where one of the two images would be in the absence of a planet, the integral can be done analytically. If the planet lies at the position of the major (unperturbed) image, the excess flux is the same as it would ...
On Uniformly finitely extensible Banach spaces
Castillo, Jesús M. F.; Ferenczi, Valentin; Moreno, Yolanda
2013-01-01
We continue the study of Uniformly Finitely Extensible Banach spaces (in short, UFO) initiated in Moreno-Plichko, \\emph{On automorphic Banach spaces}, Israel J. Math. 169 (2009) 29--45 and Castillo-Plichko, \\emph{Banach spaces in various positions.} J. Funct. Anal. 259 (2010) 2098-2138. We show that they have the Uniform Approximation Property of Pe\\l czy\\'nski and Rosenthal and are compactly extensible. We will also consider their connection with the automorphic space problem of Lindenstraus...
Modelling bucket excavation by finite element
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
Trasforiiazioni Termoelastiche Finite di Solidi Incomprimibili
Signorini, A.
Queste lezlioni hanno come direttiva una sintesi di quanto si trova sistematicamente sviluppato in una mia Memoria sulle trasformazioni termoelastiche finite di solidi incomprimibili, in corso di stampa negli Annali di Matematica pura e applicata t. XXXIX ( 1955) pp. 147-201 , Verranno anche esposti, come necessaria premessa, alcuni d ei risultati di due precedenti Memorie degli stessi Annali. Invece, per motivo di brevità, non potrò dare neppure un cenno delle ulteriori ricerche svilup pate dal prof. T. Manacorda in tre recentissimi suoi lavori:
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Finite field dependent mixed BRST transformation
International Nuclear Information System (INIS)
Upadhyay, Sudhaker; Mandal, Bhabani Prasad
2013-01-01
Joglekar and Mandal have generalized the usual Bechhi-Rouet-Stora-Tyutin (BRST) transformation by allowing infinitesimal BRST parameter finite and field dependent. Such a generalized BRST transformation (so-called FFBRST transformation) is also the symmetry of the effective action but not of the generating functional of the theory. We generalize the mixed BRST (sum of totally anti-commuting BRST and anti-BRST) symmetry transformation in same manner. We show that such a generalized mixed BRST transformation is the symmetry of the effective action as well as of the generating functional. We show our result by considering several explicit examples. (author)
Soliton pair creation at finite temperatures
International Nuclear Information System (INIS)
Grigoriev, D.Yu.; Rubakov, V.A.
1988-01-01
Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)
Gribov gap equation at finite temperature
International Nuclear Information System (INIS)
Canfora, Fabrizio; Pais, Pablo; Salgado-Rebolledo, Patricio
2014-01-01
In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. An intermediate regime in between the confined and free phases can be read off from the resulting gluon propagator, which appears to be closely related to partial deconfinement. (orig.)
Integral and finite difference inequalities and applications
Pachpatte, B G
2006-01-01
The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero
Thermal geometry from CFT at finite temperature
Directory of Open Access Journals (Sweden)
Wen-Cong Gan
2016-09-01
Full Text Available We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
Thermal geometry from CFT at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Gan, Wen-Cong, E-mail: ganwencong@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Wu, Meng-He, E-mail: menghewu.physik@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)
2016-09-10
We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
The Finite Deformation Dynamic Sphere Test Problem
Energy Technology Data Exchange (ETDEWEB)
Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-02
In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r_{i} = 10mm, r_{o} = 20mm and p = 1000Kg/m^{3} respectively.
TITUS: a general finite element system
International Nuclear Information System (INIS)
Bougrelle, P.
1983-01-01
TITUS is a general finite element structural analysis system which performs linear/non-linear, static/dynamic analyses of heat-transfer/thermo-mechanical problems. One of the major features of TITUS is that it was designed by engineers, to address engineers in an industrial environment. This has resulted in an easy to use system, with a high-level free-formatted problem oriented language, a large selection of pre- and post processors and sophisticated graphic capabilities. TITUS has many references in civil, mechanical and nuclear engineering applications. The TITUS system is available on various types of machines, from large mainframes to mini computers
Gribov gap equation at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Canfora, Fabrizio; Pais, Pablo [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Universidad Andres Bello, Santiago (Chile); Salgado-Rebolledo, Patricio [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universite Libre de Bruxelles and International Solvay Insitutes, Physique Theorique et Mathematique, Bruxelles (Belgium)
2014-05-15
In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. An intermediate regime in between the confined and free phases can be read off from the resulting gluon propagator, which appears to be closely related to partial deconfinement. (orig.)
Towards finite density QCD with Taylor expansions
International Nuclear Information System (INIS)
Karsch, F.; Schaefer, B.-J.; Wagner, M.; Wambach, J.
2011-01-01
Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N f =2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N f =2+1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.
Measuring Communication in Parallel Communicating Finite Automata
Directory of Open Access Journals (Sweden)
Henning Bordihn
2014-05-01
Full Text Available Systems of deterministic finite automata communicating by sending their states upon request are investigated, when the amount of communication is restricted. The computational power and decidability properties are studied for the case of returning centralized systems, when the number of necessary communications during the computations of the system is bounded by a function depending on the length of the input. It is proved that an infinite hierarchy of language families exists, depending on the number of messages sent during their most economical recognitions. Moreover, several properties are shown to be not semi-decidable for the systems under consideration.
Quantum fields at finite temperature and density
International Nuclear Information System (INIS)
Blaizot, J.P.
1991-01-01
These lectures are an elementary introduction to standard many-body techniques applied to the study of quantum fields at finite temperature and density: perturbative expansion, linear response theory, quasiparticles and their interactions, etc... We emphasize the usefulness of the imaginary time formalism in a wide class of problems, as opposed to many recent approaches based on real time. Properties of elementary excitations in an ultrarelativistic plasma at high temperature or chemical potential are discussed, and recent progresses in the study of the quark-gluon plasma are briefly reviewed
Finite element analysis of permanent magnet motors
International Nuclear Information System (INIS)
Boglietti, A.; Chiampi, M.; Tartaglia, M.; Chiarabaglio, D.
1989-01-01
The analysis of permanent magnet D.C. brushless motors, supplied by current control inverters, is developed employing a finite element package tailored for such devices. The study is devoted to predicting the performance of a set of four poles machines, under different operating conditions (no-load, rated load). The over-load conditions are also considered including the saturation effect. Moreover the influence of such design parameters, as the tooth shape and the number of magnet segments, is investigated. Computed results are found in satisfactory agreement with experimental ones
Helix-Hopes on Finite Hyperfields
Directory of Open Access Journals (Sweden)
Thomas Vougiouklis
2016-12-01
Full Text Available Hyperstructure theory can overcome restrictions which ordinary algebraic structures have. A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. We study the helix-hyperstructures on the representations using ordinary fields. The related theory can be faced by defining the hyperproduct on the set of non square matrices. The main tools of the Hyperstructure Theory are the fundamental relations which connect the largest class of hyperstructures, the Hv-structures, with the corresponding classical ones. We focus on finite dimensional helix-hyperstructures and on small Hv-fields, as well.
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
Nuclear collective states at finite temperature
International Nuclear Information System (INIS)
Milian, A.; Barranco, M.; Mas, D.; Lombard, R.J.
1987-04-01
The Energy Density Method (EDM) has been used to study low-lying nuclear collective states as well as isoscalar giant resonances at finite temperature (T). Giant states have been studied by computing the corresponding strength function moments (sum rules) in the Random-Phase Approximation (RPA). For the description of the low lying states we have resorted to a variety of models from the rather sophisticated RPA method to liquid drop and schematic models. It has been found that low lying states are most affected by thermal effects, giant resonances being little affected in the range of temperatures here studied
Quantization and representation theory of finite W algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1993-01-01
In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)
Finite canonical measure for nonsingular cosmologies
International Nuclear Information System (INIS)
Page, Don N.
2011-01-01
The total canonical (Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite for completely nonsingular Friedmann-Lemaître-Robertson-Walker classical universes with a minimally coupled massive scalar field and a positive cosmological constant. For a cosmological constant very small in units of the square of the scalar field mass, most of the measure is for nearly de Sitter solutions with no inflation at a much more rapid rate. However, if one restricts to solutions in which the scalar field energy density is ever more than twice the equivalent energy density of the cosmological constant, then the number of e-folds of rapid inflation must be large, and the fraction of the measure is low in which the spatial curvature is comparable to the cosmological constant at the time when it is comparable to the energy density of the scalar field. The measure for such classical FLRWΛ-φ models with both a big bang and a big crunch is also finite. Only the solutions with a big bang that expand forever, or the time-reversed ones that contract from infinity to a big crunch, have infinite measure
Quantum statistical metastability for a finite spin
Garanin, D. A.; Chudnovsky, E. M.
2001-01-01
We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finite spins S=10 (such as Mn12Ac and Fe8) and S=100 by a direct numerical approach. At second-order transitions the level making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between first- and second-order transitions are shifted, favoring a second-order transition: For Fe8 in zero field the transition should be first order according to a theory with S-->∞, but we show that there are no skipped levels at the transition. Applying a field along the hard axis in Fe8 makes transition the strongest first order. For the same model with S=100 we confirmed the existence of a region where a second-order transition is followed by a first-order transition [X. Martínes Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Matter 12, 4243 (2000)].
Leptodermous expansion of finite-nucleus incompressibility
International Nuclear Information System (INIS)
Nayak, R.C.
1990-01-01
We consider the influence of higher-order terms in the leptodermous expansion used to extract the incompressibility K v of infinite nuclear matter from data on the breathing mode of finite nuclei. The terms we calculate are the curvature term K cv A -2/3 , the surface-symmetry term K ss I 2 A -1/3 , the quartic volume-symmetry term K 4 I 4 , and a Coulomb-exchange term. Working within the framework of the scaling model we derive expressions for their coefficients in terms of quantities that are defined for infinite and semi-infinite nuclear matter. We calculate these coefficients for four different Skyrme-type forces, using the extended Thomas-Fermi (ETF) approximation. With the same forces we also calculate the incompressibility K (A, I) for a number of finite nuclei, fit the results to the leptodermous expansion, and thereby extract new results for the same coefficients. The comparison of the two calculations shows that the leptodermous expansion is converging rapidly. Of the new terms, the term K 4 I 4 is quite negligible, the curvature term should be included, and we discuss to what extent the other higher-order terms are significant. (orig.)
The finite element response Matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-01-01
A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed
Measurement Uncertainty for Finite Quantum Observables
Directory of Open Access Journals (Sweden)
René Schwonnek
2016-06-01
Full Text Available Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result x rather than y, for any pair ( x , y . This induces a notion of optimal transport cost for a pair of probability distributions, and we include an Appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
International Nuclear Information System (INIS)
Bauer, M.; Itzykson, C.
1990-01-01
Recent investigations on the classification of rational conformal theories have suggested relations with finite groups. It is not known at present if this is more than a happy coincidence in simple cases or possibly some more profound link exploiting the analogy between fusion rules and decompositions of tensor products of group representations or even in a more abstract context q-deformations of Lie algebras for roots of unity. Although finite group theory is a very elaborate subject the authors review on a slightly non-trivial example some of its numerous aspects, in particular those related to rings of invariants. The hope was to grasp, if possible, some properties which stand a chance of being related to conformal theories. Subgroups of SU(2) were found to be related to the A-D-E classification of Wess-Zumino-Witten models based on the corresponding affine Lie algebra. Extending the investigations to SU(3) the authors have picked one of its classical subgroups as a candidate of interest
Finite temperature system of strongly interacting baryons
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite Unification: Theory, Models and Predictions
Heinemeyer, S; Zoupanos, G
2011-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...
New mixed finite-element methods
International Nuclear Information System (INIS)
Franca, L.P.
1987-01-01
New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates
QCD at finite isospin chemical potential
Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian
2018-03-01
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
Finite temperature system of strongly interacting baryons
Energy Technology Data Exchange (ETDEWEB)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
A summary of maintenance policies for a finite interval
International Nuclear Information System (INIS)
Nakagawa, T.; Mizutani, S.
2009-01-01
It would be an important problem to consider practically some maintenance policies for a finite time span, because the working times of most units are finite in actual fields. This paper converts the usual maintenance models to finite maintenance models. It is more difficult to study theoretically optimal policies for a finite time span than those for an infinite time span. Three usual models of periodic replacement with minimal repair, block replacement and simple replacement are transformed to finite replacement models. Further, optimal periodic and sequential policies for an imperfect preventive maintenance and an inspection model for a finite time span are considered. Optimal policies for each model are analytically derived and are numerically computed
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Maximum likelihood estimation of finite mixture model for economic data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-06-01
Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.
Hadronic electroweak processes in a finite volume
International Nuclear Information System (INIS)
Agadjanov, Andria
2017-01-01
In the present thesis, we study a number of hadronic electroweak processes in a finite volume. Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory called quantum chromodynamics. According to the available computational resources, the numerical calculations are necessarily performed on lattices with a finite spatial extension. The first part of the thesis is based on the finite volume formalism which is a standard method to investigate the processes with the final state interactions, and in particular, the elastic hadron resonances, on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective range expansion parameters. After a brief introduction into the subject, we formulate a framework for the extraction of the ΔNγ * as well as the B→K * transition form factors from lattice data. Both processes are of substantial phenomenological interest, including the search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow width approximation. In the second part we consider certain aspects of the doubly virtual nucleon Compton scattering. The main objective of the work is to answer the question whether there is, in the Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined. The external field method provides a feasible approach to tackle this problem on the lattice. Considering the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up to a second order in the field strength. The obtained result encodes the value of the
Hadronic electroweak processes in a finite volume
Energy Technology Data Exchange (ETDEWEB)
Agadjanov, Andria
2017-11-07
In the present thesis, we study a number of hadronic electroweak processes in a finite volume. Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory called quantum chromodynamics. According to the available computational resources, the numerical calculations are necessarily performed on lattices with a finite spatial extension. The first part of the thesis is based on the finite volume formalism which is a standard method to investigate the processes with the final state interactions, and in particular, the elastic hadron resonances, on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective range expansion parameters. After a brief introduction into the subject, we formulate a framework for the extraction of the ΔNγ{sup *} as well as the B→K{sup *} transition form factors from lattice data. Both processes are of substantial phenomenological interest, including the search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow width approximation. In the second part we consider certain aspects of the doubly virtual nucleon Compton scattering. The main objective of the work is to answer the question whether there is, in the Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined. The external field method provides a feasible approach to tackle this problem on the lattice. Considering the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up to a second order in the field strength. The obtained result encodes the
Impact of new computing systems on finite element computations
International Nuclear Information System (INIS)
Noor, A.K.; Fulton, R.E.; Storaasi, O.O.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified
Algebraic complexities and algebraic curves over finite fields.
Chudnovsky, D V; Chudnovsky, G V
1987-04-01
We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields.
Finite fission chain length and symmetry around prompt-criticality
International Nuclear Information System (INIS)
Xie Qilin; Yin Yanpeng; Gao Hui; Huang Po; Fang Xiaoqiang
2012-01-01
Probability distribution of finite fission chain length was derived by assuming that all neutrons behave identically. Finite fission chain length was also calculated using a zero-dimension Monte-Carlo method based on point kinetics. Then symmetry of finite fission chain length probability distribution around prompt-criticality was deduced, which helps understanding the emission rate of delayed neutrons and initiation of fission chain in super-prompt-critical system. (authors)
Finite-size scaling of survival probability in branching processes
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro
2014-01-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
Oscillations of the static meson fields at finite baryon density
International Nuclear Information System (INIS)
Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt
1996-04-01
The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs
Finite-Larmor-radius stability theory of EBT plasmas
International Nuclear Information System (INIS)
Berk, H.L.; Cheng, C.Z.; Rosenbluth, M.N.; Van Dam, J.W.
1982-11-01
An eikonal ballooning-mode formalism is developed to describe curvature-driven modes of hot electron plasmas in bumpy tori. The formalism treats frequencies comparable to the ion-cyclotron frequency, as well as arbitrary finite Larmor radius and field polarization, although the detailed analysis is restricted to E/sub parallel/ = 0. Moderate hot-electron finite-Larmor-radius effects are found to lower the background beta core limit, whereas strong finite-Lamor-radius effects produce stabilization
Modes in a nonneutral plasma column of finite length
International Nuclear Information System (INIS)
Rasband, S. Neil; Spencer, Ross L.
2002-01-01
A Galerkin, finite-element, nonuniform mesh computation of the mode equation for waves in a non-neutral plasma of finite length in a Cold-Fluid model gives an accurate calculation of the mode eigenfrequencies and eigenfunctions. We report on studies of the following: (1) finite-length Trivelpiece-Gould modes with flat-top and realistic density profiles, (2) finite-length diocotron modes with flat density profiles. We compare with the frequency equation of Fine and Driscoll [Phys Plasmas 5, 601 (1998)
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models
International Nuclear Information System (INIS)
Quak, W.; Boogaard, A. H. van den
2011-01-01
A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.
Optimization of powered Stirling heat engine with finite speed thermodynamics
International Nuclear Information System (INIS)
Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel
2016-01-01
Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.
Friction welding; Magnesium; Finite element; Shear test.
Directory of Open Access Journals (Sweden)
Leonardo Contri Campanelli
2013-06-01
Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.
Adaptive finite element method for shape optimization
Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco
2012-01-01
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...
Topology optimization using the finite volume method
DEFF Research Database (Denmark)
in this presentation is focused on a prototype model for topology optimization of steady heat diffusion. This allows for a study of the basic ingredients in working with FVM methods when dealing with topology optimization problems. The FVM and FEM based formulations differ both in how one computes the design...... derivative of the system matrix K and in how one computes the discretized version of certain objective functions. Thus for a cost function for minimum dissipated energy (like minimum compliance for an elastic structure) one obtains an expression c = u^\\T \\tilde{K}u $, where \\tilde{K} is different from K...... the well known Reuss lower bound. [1] Bendsøe, M.P.; Sigmund, O. 2004: Topology Optimization - Theory, Methods, and Applications. Berlin Heidelberg: Springer Verlag [2] Versteeg, H. K.; W. Malalasekera 1995: An introduction to Computational Fluid Dynamics: the Finite Volume Method. London: Longman...
Finite Unified Theories and the Higgs boson
Heinemeyer, Sven; Zoupanos, George
2012-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N = 1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. Based on this theoretical framework phenomenologically consistent FUTs have been constructed. Here we review two FUT models based on the SU(5) gauge group, which can be seen as special, restricted and thus very predictive versions of the MSSM. We show that from the requirement of correct prediction of quark masses and other experimental constraints a light Higgs-boson mass in the range M_h ~ 121 - 126 GeV is predicted, in striking agreement with recent experimental results from ATLAS and CMS. The model furthermore naturally predicts a relatively heavy spectrum with colored supersymmetric particles above ~ 1.5 TeV in agreement with the non-observation of those particles at the LHC.
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Finite element program Lamcal. (User's manual)
International Nuclear Information System (INIS)
Lamain, L.G.; Blanckenburg, J.F.G.
1982-01-01
The present user's manual gives the input formats, job control and an input example for the finite element part of the Lamcal program. The input data have been organized in a more or less self explaining way, using keywords and standard input formats and is printed at the beginning of every run. To simplify the use of the whole program and to avoid unecessary data handling, all three parts of the Lamcal program, meshgeneration, plotting and, FE, are combined into one load module. This setup allows to do all calculations in one single run. However, preprocessing, postprocessing and restarts can be made in separate runs as well. The same reserved space for the dynamic core storage is used in all three parts, if the available space is not sufficient the FE program will stop
Finite Volume Method for Unstructured Grid
International Nuclear Information System (INIS)
Casmara; Kardana, N.D.
1997-01-01
The success of a computational method depends on the solution algorithm and mesh generation techniques. cell distributions are needed, which allow the solution to be calculated over the entire body surface with sufficient accuracy. to handle the mesh generation for multi-connected region such as multi-element bodies, the unstructured finite volume method will be applied. the advantages of the unstructured meshes are it provides a great deal more flexibility for generating meshes about complex geometries and provides a natural setting for the use of adaptive meshing. the governing equations to be discretized are inviscid and rotational euler equations. Applications of the method will be evaluated on flow around single and multi-component bodies
On the total character of finite groups
Directory of Open Access Journals (Sweden)
Sunil Kumar Prajapati
2014-09-01
Full Text Available For a finite group $G$, we study the total character $tau_G$ afforded by the direct sum of all the non-isomorphic irreducible complex representations of $G$. We resolve for several classes of groups (the Camina $p$-groups, the generalized Camina $p$-groups, the groups which admit $(G,Z(G$ as a generalized Camina pair, the problem of existence of a polynomial $f(x in mathbb{Q}[x]$ such that $f(chi = tau_G$ for some irreducible character $chi$ of $G$. As a consequence, we completely determine the $p$-groups of order at most $p^5$ (with $p$ odd which admit such a polynomial. We deduce the characterization that these are the groups $G$ for which $Z(G$ is cyclic and $(G,Z(G$ is a generalized Camina pair and, we conjecture that this holds good for $p$-groups of any order.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Linearized holographic isotropization at finite coupling
Energy Technology Data Exchange (ETDEWEB)
Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-06-15
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)
Abstract Level Parallelization of Finite Difference Methods
Directory of Open Access Journals (Sweden)
Edwin Vollebregt
1997-01-01
Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.
A course in finite group representation theory
Webb, Peter
2016-01-01
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Group-invariant finite Fourier transforms
International Nuclear Information System (INIS)
Shenefelt, M.H.
1988-01-01
The computation of the finite Fourier transform of functions is one of the most used computations in crystallography. Since the Fourier transform involved in 3-dimensional, the size of the computation becomes very large even for relatively few sample points along each edge. In this thesis, there is a family of algorithms that reduce the computation of Fourier transform of functions respecting the symmetries. Some properties of these algorithms are: (1) The algorithms make full use of the group of symmetries of a crystal. (2) The algorithms can be factored and combined according to the prime factorization of the number of points in the sample space. (3) The algorithms are organized into a family using the group structure of the crystallographic groups to make iterative procedures possible
Commutative algebra constructive methods finite projective modules
Lombardi, Henri
2015-01-01
Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...
Finite-amplitude, pulsed, ultrasonic beams
Coulouvrat, François; Frøysa, Kjell-Eivind
An analytical, approximate solution of the inviscid KZK equation for a nonlinear pulsed sound beam radiated by an acoustic source with a Gaussian velocity distribution, is obtained by means of the renormalization method. This method involves two steps. First, the transient, weakly nonlinear field is computed. However, because of cumulative nonlinear effects, that expansion is non-uniform and breaks down at some distance away from the source. So, in order to extend its validity, it is re-written in a new frame of co-ordinates, better suited to following the nonlinear distorsion of the wave profile. Basically, the nonlinear coordinate transform introduces additional terms in the expansion, which are chosen so as to counterbalance the non-uniform ones. Special care is devoted to the treatment of shock waves. Finally, comparisons with the results of a finite-difference scheme turn out favorable, and show the efficiency of the method for a rather large range of parameters.
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.
2007-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid
Finite difference computation of Casimir forces
International Nuclear Information System (INIS)
Pinto, Fabrizio
2016-01-01
In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing
QCD and instantons at finite temperature
International Nuclear Information System (INIS)
Gross, D.J.; Pisarski, R.D.; Yaffe, L.G.
1981-01-01
The current understanding of the behavior of quantum chromodynamics at finite temperature is presented. Perturbative methods are used to explore the high-temperature dynamics. At sufficiently high temperatures the plasma of thermal excitations screens all color electric fields and quarks are unconfined. It is believed that the high-temperature theory develops a dynamical mass gap. However in perturbation theory the infrared behavior of magnetic fluctuations is so singular that beyond some order the perturbative expansion breaks down. The topological classification of finite-energy, periodic fields is presented and the classical solutions which minimize the action in each topological sector are examined. These include periodic instantons and magnetic monopoles. At sufficiently high temperature only fields with integral topological charge can contribute to the functional integral. Electric screening completely suppresses the contribution of fields with nonintegral topological charge. Consequently the theta dependence of the free energy at high temperature is dominated by the contribution of instantons. The complete temperature dependence of the instanton density is explicitly computed and large-scale instantons are found to be suppressed. Therefore the effects of instantons may be reliably calculated at sufficiently high temperature. The behavior of the theory in the vicinity of the transition from the high-temperature quark phase to the low-temperature hadronic phase cannot be accurately computed. However, at least in the absence of light quarks, semiclassical techniques and lattice methods may be combined to yield a simple picture of the dynamics valid for both high and low temperature, and to estimate the transition temperature
Finite nucleus Dirac mean field theory and random phase approximation using finite B splines
International Nuclear Information System (INIS)
McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)
1989-01-01
We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results
finite element model for predicting residual stresses in shielded
African Journals Online (AJOL)
eobe
This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.
Mixed isogeometric finite cell methods for the stokes problem
Hoang, T.; Verhoosel, C.V.; Auricchio, F.; van Brummelen, E.H.; Reali, A.
2017-01-01
We study the application of the Isogeometric Finite Cell Method (IGA-FCM) to mixed formulations in the context of the Stokes problem. We investigate the performance of the IGA-FCM when utilizing some isogeometric mixed finite elements, namely: Taylor-Hood, Sub-grid, Raviart-Thomas, and Nédélec
Finite difference time domain analysis of a chiro plasma
International Nuclear Information System (INIS)
Torres-Silva, H.; Obligado, A.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
The finite difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetics. Using FDTD, Maxwell's equations are solved directly in the time domain via finite differences and time stepping. The basic approach is relatively easy to understand and is an alternative to the more usual frequency-domain approaches. (author). 5 refs
Finite-time analysis of global projective synchronization on coloured ...
Indian Academy of Sciences (India)
A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of ...
An introduction to the UNCLE finite element scheme
International Nuclear Information System (INIS)
Enderby, J.A.
1983-01-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
A simple finite element method for linear hyperbolic problems
International Nuclear Information System (INIS)
Mu, Lin; Ye, Xiu
2017-01-01
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Finite Element Modelling of Seismic Liquefaction in Soils
Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.
2013-01-01
Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom
Analysis of Tube Drawing Process – A Finite Element Approach ...
African Journals Online (AJOL)
In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...
Finite anticanonical transformations in field-antifield formalism
Energy Technology Data Exchange (ETDEWEB)
Batalin, Igor A.; Tyutin, Igor V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)
2015-06-15
We study the role of arbitrary (finite) anticanonical transformations in the field-antifield formalism and the gauge-fixing procedure based on the use of these transformations. The properties of the generating functionals of the Green functions subjected to finite anticanonical transformations are considered. (orig.)
On Chudnovsky-Based Arithmetic Algorithms in Finite Fields
Atighehchi, Kevin; Ballet, Stéphane; Bonnecaze, Alexis; Rolland, Robert
2015-01-01
Thanks to a new construction of the so-called Chudnovsky-Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized while maintaining a low number of bilinear multiplications. We give an example with the finite field ${\\mathbb F}_{16^{13}}$.
A finite element thermohydrodynamic analyis of profile bore bearing
International Nuclear Information System (INIS)
Shah Nor bin Basri
1994-01-01
A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained
A Note on TI-Subgroups of Finite Groups
Indian Academy of Sciences (India)
A subgroup of a finite group is called a TI-subgroup if H ∩ H x = 1 or for any x ∈ G . In this short note, the finite groups all of whose nonabelian subgroups are TI-subgroups are classified. Author Affiliations. Jiakuan Lu1 Linna Pang1. Department of Mathematics, Guangxi Normal University, Guangxi, Guilin 541004, ...
Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions
Directory of Open Access Journals (Sweden)
Armando Martínez-Pérez
2017-10-01
Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.
Finite element simulation of laser transmission welding of dissimilar ...
African Journals Online (AJOL)
user
materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.
A Note on Symplectic, Multisymplectic Scheme in Finite Element Method
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke
2001-01-01
We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
On Finite Hjelmslev Planes of Parameters (pk−1, p)
Atilla Akpinar
2010-01-01
In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.
Finite Element Analysis of Pipe T-Joint
P.M.Gedkar; Dr. D.V. Bhope
2012-01-01
This paper reports stress analysis of two pressurized cylindrical intersection using finite element method. The different combinations of dimensions of run pipe and the branch pipe are used to investigate thestresses in pipe at the intersection. In this study the stress analysis is accomplished by finite element package ANSYS.
Finite Groups with Given Quantitative Non-Nilpotent Subgroups II
DEFF Research Database (Denmark)
Shi, Jiangtao; Zhang, Cui
2014-01-01
As an extension of Shi and Zhang's 2011 article [4], we prove that any finite group having at most 23 non-normal non-nilpotent proper subgroups is solvable except for G ≅ A 5 or SL(2, 5), and any finite group having at most three conjugacy classes of non-normal non-nilpotent proper subgroups is s...
Removing the Restrictions Imposed on Finite State Machines ...
African Journals Online (AJOL)
This study determines an effective method of removing the fixed and finite state amount of memory that restricts finite state machines from carrying out compilation jobs that require larger amount of memory. The study is ... The conclusion reviewed the various steps followed and made projections for further reading. Keyword: ...
An introduction to the UNCLE finite element scheme
Energy Technology Data Exchange (ETDEWEB)
Enderby, J A [UK Atomic Energy Authority, Northern Division, Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)
1983-05-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
Olber's Paradox Revisited in a Static and Finite Universe
Couture, Gilles
2012-01-01
Building a Universe populated by stars identical to our Sun and taking into consideration the wave-particle duality of light, the biological limits of the human eye, the finite size of stars and the finiteness of our Universe, we conclude that the sky could very well be dark at night. Besides the human eye, the dominant parameter is the finite…
An essential representation for a product system over a finitely ...
Indian Academy of Sciences (India)
25
2017-10-06
An essential representation for a product system over a finitely generated subsemigroup of Z d. S.P. Murugan and S. Sundar. October 6, 2017. Abstract. Let S ⊂ Zd be a finitely generated subsemigroup. Let E be a product system over S. We show that there exists an infinite dimensional separable Hilbert space. H and a ...
Approximate Approaches to the One-Dimensional Finite Potential Well
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.