WorldWideScience

Sample records for eggshell membrane-based solid-phase

  1. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  2. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  3. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  4. Physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films

    DEFF Research Database (Denmark)

    Mohammadi, Reza; Mohammadifar, Mohammad Amin; Rouhi, Milad

    2018-01-01

    This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p< 0.05), but r......This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p... interactions introduced by the addition of chitosan to eggshell membrane gelatin as new resources could improve the films’ functional properties....

  5. Tensile Strength of the Eggshell Membranes

    Czech Academy of Sciences Publication Activity Database

    Strnková, J.; Nedomová, Š.; Kumbár, V.; Trnka, Jan

    2016-01-01

    Roč. 64, č. 1 (2016), s. 159-164 ISSN 1211-8516 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : eggshell membrane * tesile test * loading rate * tensile strength * fracture strain Subject RIV: GM - Food Processing

  6. Behaviour of eggshell membranes at tensile loading

    Czech Academy of Sciences Publication Activity Database

    Strnková, M.J.; Nedomová, Š.; Trnka, Jan; Buchar, J.; Kumbár, V.

    46 B, December (2014), s. 44-48 ISSN 0324-1130 Institutional support: RVO:61388998 Keywords : eggshell membrane * tensile loading * loading rate * stress * strain strength Subject RIV: GM - Food Processing Impact factor: 0.201, year: 2014

  7. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    Science.gov (United States)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  8. Eggshell membranes as a noninvasive sampling for molecular ...

    African Journals Online (AJOL)

    Noninvasive sampling is of prime essential on conservation genetics and molecular ecology. It is particularly preferred to use in the genetic identification of individuals and genetic analysis. A simple and efficient sampling is described for molecular studies from eggshell membranes in an endemic population of Chinese ...

  9. Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane

    Directory of Open Access Journals (Sweden)

    Bohari Noor Aini

    2015-06-01

    Full Text Available A novel electrochemical glucose biosensor was developed by depositing an ionic liquid (IL (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate; [EMIM][Otf], ZnO nanoparticles (ZnONPs and eggshell membrane (ESM on a modified glassy carbon electrode (GCE for determination of glucose. Glucose oxidase (GOx was covalently immobilized on eggshell membrane with glutaraldehyde as a cross-linker. Methylene blue was used as a redox indicator to enhance the electron transfer capacity and to ensure stability of both the oxidized and reduced forms in the reaction of enzyme and substrate. The morphological characteristics of microstructures eggshell membranes, chitosan, GOx/ESM, GOx/ZnONPs/IL/ESM and GOx/ZnONPs-IL/CHIT were observed using scanning electron microscopy (SEM. The effects of scan rate, time and pH on the response of glucose biosensors were studied in detail. Under optimal conditions (pH 6.5, 50 s, cyclic voltammetry showed different glucose concentrations on the range of 1 × 10−12 to 0.6 M, with a detection limit of 1 × 10−13 M. The GOx/ZnONPs/IL/ESM was found to be more sensitive as compared to GOx/ZnONPs-IL/CHIT. This developed glucose biosensor detection approach has several advantages such as fast, simple and convenient method, sensitivity, low cost, eco-friendly, low concentrations and remarkable catalytic activities of current signals during glucose reaction.

  10. Utilization of eggshell waste as low-cost solid base catalyst for biodiesel production from used cooking oil

    Science.gov (United States)

    Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini

    2017-05-01

    A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.

  11. Electromechanical-conductive natural rubber doped eggshell and ...

    African Journals Online (AJOL)

    The main composition of eggshells is calcium carbonate (CaCO3) of high purity more than 96.35 wt% whereas the main composition of eggshell membrane is fibrous protein in terms of collagen. The best condition is addition of eggshell 40 phr (formula 3) and eggshell membrane 20 phr (formula 5) to obtain the highest ...

  12. Penguin eggshell membranes reflect homogeneity of mercury in the marine food web surrounding the Antarctic Peninsula

    International Nuclear Information System (INIS)

    Brasso, Rebecka L.; Polito, Michael J.; Lynch, Heather J.; Naveen, R.; Emslie, Steven D.

    2012-01-01

    Remote regions such as the Antarctic have become increasingly important for investigations into far-reaching anthropogenic impacts on the environment, most recently in regard to the global mercury cycle. Spatial patterns of mercury availability in four regions of the Antarctic Peninsula were investigated using three species of sympatrically breeding Pygoscelis penguins as biomonitors. Eggshells with intact membranes from Adélie, Gentoo, and Chinstrap penguins were collected at 24 breeding colonies in the South Orkney Islands, South Shetland Islands, eastern Antarctic Peninsula, and western Antarctic Peninsula during the 2006/2007 austral summer. In addition, we compared eggshell membrane mercury concentrations with eggshell stable isotope values (δ 15 N and δ 13 C) to determine if species-specific trophic or foraging habitat preferences influenced female mercury exposure prior to breeding. With few exceptions, mercury concentrations were found to be fairly homogeneous throughout the Antarctic Peninsula suggesting little spatial variation in the risk of exposure to dietary mercury in this food web. Mercury concentrations in Gentoo and Adélie penguins were similar while Chinstrap penguins tended to have higher eggshell membrane mercury concentrations than their congeners. However, inter and intra-specific differences in eggshell membrane mercury concentration were not related to eggshell δ 15 N or δ 13 C values, a likely result of all three species foraging at similar trophic positions. The lack of regional-scale differences in mercury availability in this marine ecosystem may be a reflection of generally uniform atmospheric deposition and upwelling of regionally homogeneous deep water rather than from geographically distinct point sources. -- Highlights: ► We examined regional patterns of mercury availability in the Antarctic Peninsula. ► Three species of Pygoscelis penguins were used as biomonitors. ► Chinstrap penguins tended to have higher mercury

  13. Eggshell membrane: A natural substrate for immobilization and detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Preetam Guha; Roy, Somenath, E-mail: sroy@cgcri.res.in

    2016-02-01

    Chemically modified eggshell membranes (ESM) have been explored as potentially novel platforms for immobilization of oligonucleotides and subsequent detection of target DNA. The fibrous network of the native ESM as well those functionalized with acetic acid or n-butyl acetate has been examined by field-emission scanning electron microscopy (FESEM). The formation of surface functional moieties has been confirmed by Fourier-transform infrared spectroscopy (FTIR). DNA molecules, with an end terminal − NH{sub 2} group (at 5′ end) have been immobilized on the chemically modified ESM surface. The effect of surface modification on the DNA immobilization efficiency has been investigated using fluorescence microscopy and atomic force microscopy (AFM). The above studies concurrently suggest that functionalization of ESM with n-butyl acetate causes a better homogeneity of the DNA probes on the membrane surface. On-chip hybridization of the target DNA with the surface bound capture probes has been performed on the functionalized membranes. It is observed that n-butyl acetate modification of ESM pushes the limit of detection (LOD) of the DNA sensors by at least an order of magnitude compared to the other modification method. - Graphical abstract: Eggshell membranes (ESM) have been chemically modified with acetic acid or n-butyl acetate for immobilization of aminated capture probes and subsequent detection of fluorophore-tagged target DNA molecules. n-Butyl acetate modified ESM exhibits superior homogeneity of capture probe immobilization and lower limit of detection for the target DNA molecules. - Highlights: • Eggshell membranes (ESM) have been explored as potentially novel platforms for immobilization of oligonucleotides. • Compared to native ESM, those modified with acetic acid or n-butyl acetate have shown more efficient loading of DNA probes. • ESM modified with n-butyl acetate pushed the lower limit of detection (LOD) of the sensor down to 10 nM of target DNA

  14. Penguin eggshell membranes reflect homogeneity of mercury in the marine food web surrounding the Antarctic Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Brasso, Rebecka L., E-mail: rlb1196@uncw.edu [University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 South College Road, Wilmington, NC 28403 (United States); Polito, Michael J. [University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 South College Road, Wilmington, NC 28403 (United States); Lynch, Heather J. [Ecology and Evolution Department, 640 Life Sciences Bldg., Stony Brook University, Stony Brook, NY 11794 (United States); Naveen, R. [Oceanites Inc., PO Box 15259, Chevy Chase, MD 20825 (United States); Emslie, Steven D. [University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 South College Road, Wilmington, NC 28403 (United States)

    2012-11-15

    Remote regions such as the Antarctic have become increasingly important for investigations into far-reaching anthropogenic impacts on the environment, most recently in regard to the global mercury cycle. Spatial patterns of mercury availability in four regions of the Antarctic Peninsula were investigated using three species of sympatrically breeding Pygoscelis penguins as biomonitors. Eggshells with intact membranes from Adelie, Gentoo, and Chinstrap penguins were collected at 24 breeding colonies in the South Orkney Islands, South Shetland Islands, eastern Antarctic Peninsula, and western Antarctic Peninsula during the 2006/2007 austral summer. In addition, we compared eggshell membrane mercury concentrations with eggshell stable isotope values ({delta}{sup 15}N and {delta}{sup 13}C) to determine if species-specific trophic or foraging habitat preferences influenced female mercury exposure prior to breeding. With few exceptions, mercury concentrations were found to be fairly homogeneous throughout the Antarctic Peninsula suggesting little spatial variation in the risk of exposure to dietary mercury in this food web. Mercury concentrations in Gentoo and Adelie penguins were similar while Chinstrap penguins tended to have higher eggshell membrane mercury concentrations than their congeners. However, inter and intra-specific differences in eggshell membrane mercury concentration were not related to eggshell {delta}{sup 15}N or {delta}{sup 13}C values, a likely result of all three species foraging at similar trophic positions. The lack of regional-scale differences in mercury availability in this marine ecosystem may be a reflection of generally uniform atmospheric deposition and upwelling of regionally homogeneous deep water rather than from geographically distinct point sources. -- Highlights: Black-Right-Pointing-Pointer We examined regional patterns of mercury availability in the Antarctic Peninsula. Black-Right-Pointing-Pointer Three species of Pygoscelis

  15. Calcined eggshell (CES): An efficient natural catalyst for ...

    Indian Academy of Sciences (India)

    hydes with active methylene compounds using calcined eggshell (CES) as an efficient ... of the important reactions to achieve carbon–carbon ... solid catalyst for biodiesel production,24 as a catalyst ... which supports for adsorption of water on CaO and ... The organic phase .... After extraction of the product with ethylac-.

  16. Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Khan, Mariam

    2018-02-01

    This study investigated the use of eggshell membrane (ESM) as a bio-sorbent and the effect of temperature, pH, and initial concentration on its efficiency. Furthermore, by altering the chemical composition, modified eggshell membrane (MESM) was prepared, and its efficiency was compared with the ESM. Results showed that the adsorption of boron preferred an acidic condition; pH 6 at 35 °C. In addition, the positive value of ΔH° suggested that the reaction favored endothermic pathway, while the negative value for ΔG° further suggested that the adsorption process was spontaneous. Furthermore, the ESM could adsorb 97% of boron, while MESM was able to adsorb 95%. From the Fourier transform infrared (FTIR), different functional groups were recorded on the surface of the ESM and MESM, and they played key role in the boron adsorption mechanisms. Linear Freundlich model was suggested to best describe the experimental data with 99.4% correlation coefficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhang, Li; Amirkhiz, Babak Shalchi; Tan, Xuehai; Xu, Zhanwei; Wang, Huanlei; Olsen, Brian C.; Holt, Chris M.B.; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Edmonton, AB (Canada); National Institute for Nanotechnology (NINT), NRC, Edmonton, AB (Canada)

    2012-04-15

    Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three-dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m{sup 2} g{sup -1}, exceptional specific capacitances of 297 F g{sup -1} and 284 F g{sup -1} are achieved in basic and acidic electrolytes, respectively, in a 3-electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g{sup -1}. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes

    Czech Academy of Sciences Publication Activity Database

    Kumbár, V.; Nedomová, Š.; Trnka, Jan; Buchar, J.; Pytel, R.

    2016-01-01

    Roč. 95, č. 7 (2016), s. 1693-1701 ISSN 0032-5791 Institutional support: RVO:61388998 Keywords : egg yolk * albumen * liquid whole egg * rheology * eggshell membrane Subject RIV: BO - Biophysics Impact factor: 1.908, year: 2016 http://ps.oxfordjournals.org/

  19. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  20. Synthesis of mesh-shaped calcia partially stabilized zirconia using eggshell membrane template as filler composite

    Directory of Open Access Journals (Sweden)

    Gema Gempita

    2017-08-01

    Full Text Available This experiment was conducted experimentally to synthesize Calcia Partially Stabilized Zirconia (Ca-PSZ by sol-gel method using eggshell membrane template as a composite filler. The eggshell membrane was used to produce a mesh shaped structure, which hopefully can improve the mechanical properties of the composite. Ca-PSZ filler was synthesized from ZrOCl2 precursor and Ca(NO32 stabilizer with a 24 hours immersion time. Ca-PSZ of synthesis then mixed with the resin matrix to test its composite hardness. The EDS characterization results suggested that the sample contained elements of zirconia, calcium, and oxygen. Whereas, the XRD characterization identified that crystal structures that formed in the sample were nano scale tetragonal. Characterization of SEM showed Ca-PSZ with mesh structured. The average composite hardness value was 15.79 VHN. The composites with Ca-PSZ-synthesized filler could be prepared and its hardness value was higher than the composite with Ca-PSZ filler in spherical particles, but the hardness was still below the composite on the market.

  1. Graphene Quantum Dots/Eggshell Membrane Composite as a Nano-sorbent for Preconcentration and Determination of Organophosphorus Pesticides by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Vahideh Abdollahi

    2017-10-01

    Full Text Available In this study graphene quantum dots/eggshell membrane nanocomposite (GQDS/ESM is prepared and used as an efficient solid-phase extraction (SPE sorbent for preconcentration of organophosphorus pesticides (OPPs from aqueous solutions. The retained analytes on the sorbent are stripped by acetonitrile and subsequently are determined by high-performance liquid chromatography. Various parameters affecting the extraction efficiency of OPPs on the GQDS/ESM, such as solution pH, amount of nano-sorbent, sample loading flow rate, elution conditions and sample volume are investigated. The results demonstrated that the proposed method has a wide dynamic linear range (0.05–100 ng mL-1, good linearity (R2>0.997 and low detection limits (0.006-0.32 ng mL-1. High enrichment factors are achieved ranging from 110 to 140. In the optimum experimental conditions, the established method is successfully applied for the determination of OPPs in spiked water samples (well, tap, shaft and canal and apple juice. Satisfactory recovery results show that the sample matrices under consideration do not significantly affect the extraction process.

  2. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical properties. It showed that flexibility and thermal stability of composite were enhanced. No significant effect of mechanical properties was therefore observed. The thermal stability of composite was stable up to 300°C. The adsorption experiment on water and vegetable oil capacity was performed. The enhancement on adsorption was due to the existence of eggshell in bacterial cellulose composite. It exhibited the potential to be a good candidate for absorbent material in active packaging.

  3. Engineering Tough Materials: Biomimetic Eggshell

    Science.gov (United States)

    2016-08-29

    Fellow Dr. David Labonte Cambridge University Engineering Dept., Trumpington Street, Cambridge CB2 1PZ, UK ~ Approved for public release; distribution...with a brief outlook, including next steps to pursue in the new cooperative research arrangement between ERDC and the University of Cambridge . Summary...HCl in 2 h at room temperature. Shell & Membrane Shell Outer membrane Inner membrane Figure 1: Cross section of an eggshell illustrating the direct

  4. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  5. Evolution and characterization of eggshell as a potential candidate of raw material

    Directory of Open Access Journals (Sweden)

    T. Zaman

    Full Text Available Abstract Characterization of both uncalcined and calcined eggshells was done in this work. Raw eggshells turned out as a good source of calcite phase. Calcined eggshells had a mixture of lime and portlandite phase. A significant impact of calcination temperature on the percentage of generated phases was observed. Qualitative as well as semi-quantitative phase analysis, morphological characterization and physical property estimation was done for the produced powder. The influence of synthesized raw material on soil stabilization and biomaterial formation was further assessed. The eggshell turned out as a potential source of raw material for various sectors.

  6. A novel disulfide-rich protein motif from avian eggshell membranes.

    Directory of Open Access Journals (Sweden)

    Vamsi K Kodali

    2011-03-01

    Full Text Available Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4-C-X(5-C-X(8-C-X(6 pattern (where X represents intervening non-cysteine residues. These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata and in the oviparous green anole lizard (Anolis carolinensis. In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact

  7. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    International Nuclear Information System (INIS)

    Ke Guizhen; Xie Huifang; Ruan Ruping; Yu Weidong

    2010-01-01

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  8. Evolution and characterization of eggshell as a potential candidate of raw material

    OpenAIRE

    Zaman, T.; Mostari, Mst. S.; Mahmood, Md. A. Al; Rahman, Md. S.

    2018-01-01

    Abstract Characterization of both uncalcined and calcined eggshells was done in this work. Raw eggshells turned out as a good source of calcite phase. Calcined eggshells had a mixture of lime and portlandite phase. A significant impact of calcination temperature on the percentage of generated phases was observed. Qualitative as well as semi-quantitative phase analysis, morphological characterization and physical property estimation was done for the produced powder. The influence of synthesize...

  9. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  10. Introduction to solid supported membrane based electrophysiology.

    Science.gov (United States)

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-05-11

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.

  11. Solid phase extraction membrane

    Science.gov (United States)

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  12. Characteristics of global organic matrix in normal and pimpled chicken eggshells.

    Science.gov (United States)

    Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J

    2017-10-01

    The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.

  13. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electro spun Nano fibers for Guided Tissue Regeneration Membrane

    International Nuclear Information System (INIS)

    Jia, J.; Liu, G.; Duan, Y.; Guo, Z.; Yu, J.

    2012-01-01

    Guided tissue regeneration (GTR) is a widely used method in periodontal therapy, which involves the placement of a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells. The objective of this study is to prepare and evaluate a new type of soluble eggshell membrane protein (SEP)/poly (lactic-co-glycolic acid) (PLGA) nano fibers using electro spinning method for GTR membrane application. SEP/PLGA nano fibers were successfully prepared with various blending ratios. The morphology, chemical composition, surface wettability, and mechanical properties of the nano fibers were characterized using scanning electron microscopy (SEM), contact angle measurement, Fourier transform-infrared spectroscopy (FTIR), and a universal testing machine. L-929 fibroblast cells were used to evaluate the biocompatibility of SEP/PLGA nano fibers and investigate the interaction between cells and nano fibers. Results showed that the SEP/PLGA electro spun membrane was composed of uniform, bead-free nano fibers, which formed an interconnected porous network structure. Mechanical property of SEP has been greatly improved by the addition of PLGA. The biological study results showed that SEP/PLGA nano fibers could enhance cell attachment, spreading, and proliferation. The study indicated the potential of SEP/PLGA nano fibers for GTR application and provided a basis for future optimization

  14. Proteomic analysis of chicken eggshell cuticle membrane layer

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Ergang, Peter; Pácha, Jiří

    2014-01-01

    Roč. 406, č. 29 (2014), s. 7633-7640 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA13-17224S Institutional support: RVO:67985823 Keywords : mass spectrometry * bioanalyticalmethods * cuticle * chicken proteins * insoluble proteins * eggshell Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.436, year: 2014

  15. Anti-glomerular basement membrane autoantibodies in the Brown Norway rat: detection by a solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Bowman, C.; Peters, D.K.; Lockwood, C.M.

    1983-01-01

    A solid-phase radioimmunoassay (RIA) is described for the detection of IgG autoantibodies to glomerular basement membrane (GBM) induced in the Brown Norway rat by mercuric chloride. The assay involves the adsorption of a collagenase digest of GBM to plastic microtitre plates and detection of bound antibody with affinity purified radiolabelled rabbit anti-rat IgG. Comparison with existing immunofluorescence methods for detection of anti-GBM antibody showed that the solid-phase RIA is highly sensitive, allowing detection of antibody in solutions with as low as 0.5 ng protein/ml. The assay is suitable for detection of anti-GBM antibody both in serum and in eluates from nephritic kidneys. The assay proved to be specific in competitive studies of inhibition brought about by GBM, keyhole limpet antigen and ovalbumin. This solid-phase RIA is reproducible, robust and easy to perform. (Auth.)

  16. The cuticle modulates ultraviolet reflectance of avian eggshells

    Directory of Open Access Journals (Sweden)

    Daphne C. Fecheyr-Lippens

    2015-07-01

    Full Text Available Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  17. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  18. Solid-phase spectrophotometry

    International Nuclear Information System (INIS)

    Brykina, G.D.; Marchenko, D.Yu.; Shpigun, O.A.

    1995-01-01

    Solid-phase spectrophotometry (SPS), which is based on the direct measurement of light absorption of an ion exchanger containing a substance of interest, was reviewed. Since 1976, it has been known that aborbance of an ion exchanger is directly proportional to the concentration of a particular ion in solution. A similar dependence can also be followed for other sorbents, as well as for foams, membranes, films, etc., which do not exhibit ion exchange properties. One can use absorption, diffuse reflection, and luminescence spectra parameters as an analytical signal. Thus, SPS of ion exchangers is among the analytical techniques that combine the sorption concentration and surface determination of the substance of interest. This review summarizes the advancements in SPS over the last six years and demonstrates the prospects for its development. Special attention is paid to experimental methods for measuring solid-phase absorption and to the basic procedures of sample preparation, including new ones. These two facets are of great importance for obtaining precise results and extending the capabilities of SPS

  19. Greenlandic Peregrines will have normal eggshell thickness by mid 2030’ies

    DEFF Research Database (Denmark)

    Falk, Knud; Møller, Søren; Riget, Frank Farsø

    haliaetus) in Europe have documented that it took 30 years from DDT was phased out until eggshell thickness was back to normal pre-DDT levels. In Greenland, the peregrine population has been the subject of long-term studies, and a previous study of eggshell thinning found a significant increase over time...... and reinterpreted data for a 43 year time span. Mean shell thickness was estimated for 184 clutches based on fragments from hatched eggs, and for 56 whole addled eggs from 44 clutches. During the period 1972-2014 there was a highly significant increasing trend in the average eggshell thickness of 0.25% per year...... recovery of the shell thickness in the Greenland population as compared to other studies is likely indicative of the slower phasing out of DDT in the Greenlandic peregrine’s wintering grounds in Latin America. The shell thinning in the Greenlandic population crossed the 17% “danger limit” associated...

  20. Embryonic eggshell thickness erosion: A literature survey re-assessing embryo-induced eggshell thinning in birds

    International Nuclear Information System (INIS)

    Orłowski, Grzegorz; Hałupka, Lucyna

    2015-01-01

    Although eggshell thinning has been described mainly in the context of environmental pollution, it can also be the effect of reproductive changes induced by a developing embryo. On the basis of a literature survey of 25 bird species (26 published papers) we reviewed data on embryo-induced eggshell thinning (EET) in three groups of birds: precocials, semi-precocials and altricials. The average EET at the equator of the eggs was 6.4% (median = 4.7%). Our review did not confirm a general prediction of elevated EET at the egg equator in precocial species: altricial birds exhibited the highest EET (average = 12.0%), followed by precocials (7.6%) and semi-precocials (4.2%). We make certain critical recommendations based on the results of this study. Studies aiming to assess variation in eggshell thickness should examine intrinsic factors affecting shell properties of avian eggs, like thickness, which are the result of anatomical or reproductive changes. - Highlights: • We reviewed literature data on embryo-induced eggshell thinning (EET) in birds. • The average EET at the equator of the eggs of 25 bird species was 6.4%. • Altricial birds exhibited the highest EET, followed by precocials and semi-precocials. • All studies on variation in eggshell thickness should take EET into consideration. - Our study emphasizes the need to consider embryo-induced eggshell thinning in studies aiming to assess variation in eggshell thickness

  1. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  2. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress.

    Science.gov (United States)

    Makkar, S K; Rath, N C; Packialakshmi, B; Zhou, Z Y; Huff, G R; Donoghue, A M

    2016-01-01

    Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM) as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS) challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase resistance of

  3. Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells.

    Science.gov (United States)

    Chang, Yin; Chen, Po-Yu

    2016-02-01

    After hundreds of million years of evolution, natural armors have evolved in various organisms, and has manifested in diverse forms such as eggshells, abalone shells, alligator osteoderms, turtle shells, and fish scales. Eggshells serve as multifunctional shields for successful embryogenesis, such as protection, moisture control and thermal regulation. Unlike calcareous avian eggshells which are brittle and hard, reptilians have leathery eggshells that are tough and flexible. Reptilian eggshells can withstand collision damages when laid in holes and dropped onto each other, and reduce abrasion caused by buried sand. In this study, we investigate structure and mechanical properties of eggshells of Taiwan cobra snake (Naja atra) and Chinese striped-neck turtle (Ocadia sinensis). From Acid Fuchsin Orange G (AFOG) staining and ATR-FTIR examination, we found that both eggshells are mainly composed of keratin. The mechanical properties of demineralized snake and turtle eggshells were evaluated by tensile and fracture tests and show distinctly difference. Turtle eggshells are relatively stiff and rigid, while snake eggshells behave as elastomers, which are highly extensible and reversible. The exceptional deformability (110-230% tensile strain) and toughness of snake eggshells are contributed by the wavy and random arrangement of keratin fibers as well as collagen layers. Multi-scale toughening mechanisms of snake eggshells were observed and elucidated, including crack deflection and twisting, fibers reorientation, sliding and bridging, inter-laminar shear effect, as well as the α-β phase transition of keratin. Inspirations from the structural and mechanical designs of reptilian eggshells may lead to the synthesis of tough, extensible, lightweight composites which could be further applied in the flexible devices, packaging and bio-medical fields. Amniotic eggshells serve as multifunctional shields for successful embryogenesis. The avian eggshells have been extensively

  4. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes

    Science.gov (United States)

    Li, Yaling; Zhou, Ji; Fan, Yunde; Ye, Yong; Tang, Bin

    2017-12-01

    We fabricated a low-cost and efficient composite photocatalyst material, combining eggshell membrane (ESM) and titanium dioxide (TiO2) nanoparticles, through self-assembly method. ESM with 3D porous structures provide scaffolds for TiO2 nanoparticles. Polyethyleneimine (PEI) was used to modify ESM by grafting amine groups. The microstructure and property of the fabricated composites were studied by various characterization methods. The composite was used for the photodegradation of Rhodamine B (RhB). The results demonstrate that the composite catalyst possesses good photocatalytic performance for dye degradation under sunlight irradiation simulated by a xenon lamp. Functionalization based on nanomaterials may promote the applications of ESM.

  5. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    Science.gov (United States)

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  6. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  7. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  8. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    Science.gov (United States)

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  9. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress.

    Directory of Open Access Journals (Sweden)

    S K Makkar

    Full Text Available Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase

  10. Eggshells as an index of aedine mosquito production. 1: Distribution, movement and sampling of Aedes taeniorhynchus eggshells.

    Science.gov (United States)

    Ritchie, S A; Addison, D S; van Essen, F

    1992-03-01

    The distribution of Aedes taeniorhynchus eggshells in Florida mangrove basin forests was determined and used to design a sampling plan. Eggshells were found in 10/11 sites (91%), with a mean +/- SE density of 1.45 +/- 0.75/cc; density did not change significantly year to year. Highest densities were located on the sloping banks of hummocks, ponds and potholes. Eggshells were less clumped in distribution than eggs and larvae and thus required a smaller sample size for a given precision level. While eggshells were flushed from compact soil that was subject to runoff during heavy rain, mangrove peat, the dominant soil of eggshell-bearing sites, was less dense and had little runoff or eggshell flushing. We suggest that eggshell surveys could be used to identify Ae. taeniorhynchus oviposition sites and oviposition patterns.

  11. Mechanical Properties of Composite Waste Material Based Styrofoam, Baggase and Eggshell Powder for Application of Drone Frames

    Science.gov (United States)

    Perdana, Mastariyanto; Prastiawan; Hadi, Syafrul

    2017-12-01

    The garbage issue becomes a very serious problem at the moment. Much research has been done to make waste into useful materials. One of the utilization of waste is as the basic material of composite material that can be applied in the field of engineering. Some of the wastes generated are styrofoam, bagasse and eggshell. Styrofoam, bagasse and eggshell can be applied to a composite material. Styrofoam serves as a composite binder material while the bagasse and eggshells serve as a reinforcement. Volume fraction between styrofoam, bagasse and eggshell are 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25%. The aims of research are determine the mechanical properties of composite material based waste materials from styrofoam, bagasse and eggshell. Mechanical properties tested in this study are bending strength and toughness of composite materials. The results showed bending strength of composite for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 5.07 MPa, 8.45 MPa, 8.68 MPa, and 11.01 MPa, respectively. Toughness of composite materials for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 0.33 J/mm2, 0.42 J/mm2, 0.75 J/mm2, and 0.75 J/mm2, respectively. Composite materials based on waste materials from styrofoam, bagasse and eggshell can be used as an alternative material for drone frames.

  12. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  13. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James Seymour; McLay, Emma

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful...... isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids......, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has...

  14. Eggshells as an index of aedine mosquito production. 2: Relationship of Aedes taeniorhynchus eggshell density to larval production.

    Science.gov (United States)

    Addison, D S; Ritchie, S A; Webber, L A; Van Essen, F

    1992-03-01

    To test if eggshell density could be used as an index of aedine mosquito production, we compared eggshell density with the larval production of Aedes taeniorhynchus in Florida mangrove basin forests. Quantitative (n = 7) and categorical (n = 34) estimates of annual larval production were regressed against the number of eggshells per cc of soil. Significant regressions were obtained in both instances. Larval production was concentrated in zones with the highest eggshell density. We suggest that eggshell density and distribution can be used to identify oviposition sites and the sequence of larval appearance.

  15. Eggshell spottiness reflects maternally transferred antibodies in blue tits.

    Directory of Open Access Journals (Sweden)

    Marie-Jeanne Holveck

    Full Text Available Blue-green and brown-spotted eggshells in birds have been proposed as sexual signals of female physiological condition and egg quality, reflecting maternal investment in the egg. Testing this hypothesis requires linking eggshell coloration to egg content, which is lacking for brown protoporphyrin-based pigmentation. As protoporphyrins can induce oxidative stress, and a large amount in eggshells should indicate either high female and egg quality if it reflects the female's high oxidative tolerance, or conversely poor quality if it reflects female physiological stress. Different studies supported either predictions but are difficult to compare given the methodological differences in eggshell-spottiness measurements. Using the blue tit Cyanistes caeruleus as a model species, we aimed at disentangling both predictions in testing if brown-spotted eggshell could reflect the quality of maternal investment in antibodies and carotenoids in the egg, and at improving between-study comparisons in correlating several common measurements of eggshell coloration (spectral and digital measures, spotted surface, pigmentation indices. We found that these color variables were weakly correlated highlighting the need for comparable quantitative measurements between studies and for multivariate regressions incorporating several eggshell-color characteristics. When evaluating the potential signaling function of brown-spotted eggshells, we thus searched for the brown eggshell-color variables that best predicted the maternal transfer of antibodies and carotenoids to egg yolks. We also tested the effects of several parental traits and breeding parameters potentially affecting this transfer. While eggshell coloration did not relate to yolk carotenoids, the eggs with larger and less evenly-distributed spots had higher antibody concentrations, suggesting that both the quantity and distribution of brown pigments reflected the transfer of maternal immune compounds in egg yolks

  16. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  17. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  18. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  19. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  20. Eggshell membrane: A possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies

    Directory of Open Access Journals (Sweden)

    Kevin J Ruff

    2009-05-01

    Full Text Available Kevin J Ruff1, Dale P DeVore2, Michael D Leu3, Mark A Robinson41ESM Technologies, LLC, Carthage, MO, USA; 2Membrell, LLC, Carthage, MO, USA; 3Private Practice, Jenks, OK, USA; 4Robinson Family Health Center, Carthage, MO, USABackground: Natural Eggshell Membrane (NEM® is a novel dietary supplement that contains naturally occurring glycosaminoglycans and proteins essential for maintaining healthy joint and connective tissues. Two single center, open-label human clinical studies were conducted to evaluate the efficacy and safety of NEM® as a treatment for pain and inflexibility associated with joint and connective tissue disorders. Methods: Eleven (single-arm trial and 28 (double-arm trial patients received oral NEM® 500 mg once daily for four weeks. The primary outcome measure was to evaluate the change in general pain associated with the treatment joints/areas (both studies. In the single-arm trial, range of motion (ROM and related ROM-associated pain was also evaluated. The primary treatment response endpoints were at seven and 30 days. Both clinical assessments were performed on the intent-to-treat (ITT population within each study.Results: Single-arm trial: Supplementation with NEM® produced a significant treatment response at seven days for flexibility (27.8% increase; P = 0.038 and at 30 days for general pain (72.5% reduction; P = 0.007, flexibility (43.7% increase; P = 0.006, and ROM-associated pain (75.9% reduction; P = 0.021. Double-arm trial: Supplementation with NEM® produced a significant treatment response for pain at seven days for both treatment arms (X: 18.4% reduction; P = 0.021. Y: 31.3% reduction; P = 0.014. There was no clinically meaningful difference between treatment arms at seven days, so the Y arm crossed over to the X formulation for the remainder of the study. The significant treatment response continued through 30 days for pain (30.2% reduction; P = 0.0001. There were no adverse events reported during either

  1. A Highly Sensitive and Selective Hydrogen Peroxide Biosensor Based on Gold Nanoparticles and Three-Dimensional Porous Carbonized Chicken Eggshell Membrane.

    Directory of Open Access Journals (Sweden)

    Di Zhang

    Full Text Available A sensitive and noble amperometric horseradish peroxidase (HRP biosensor is fabricated via the deposition of gold nanoparticles (AuNPs onto a three-dimensional (3D porous carbonized chicken eggshell membrane (CESM. Due to the synergistic effects of the unique porous carbon architecture and well-distributed AuNPs, the enzyme-modified electrode shows an excellent electrochemical redox behavior. Compared with bare glass carbon electrode (GCE, the cathodic peak current of the enzymatic electrode increases 12.6 times at a formal potential of -100 mV (vs. SCE and charge-transfer resistance decreases 62.8%. Additionally, the AuNPs-CESM electrode exhibits a good biocompatibility, which effectively retains its bioactivity with a surface coverage of HRP 6.39×10(-9 mol cm(-2 (752 times higher than the theoretical monolayer coverage of HRP. Furthermore, the HRP-AuNPs-CESM-GCE electrode, as a biosensor for H2O2 detection, has a good accuracy and high sensitivity with the linear range of 0.01-2.7 mM H2O2 and the detection limit of 3 μM H2O2 (S/N = 3.

  2. A solid phase radio immunoassay on hydrophobic membrane filters: detection of antibodies to gonocal surface antigens

    International Nuclear Information System (INIS)

    Lambden, P.R.; Watt, P.J.

    1978-01-01

    A solid phase radioimmunoassay (SPRIA) has been developed for detection of IgG antibodies to gonococcal outer membrane components. Gonococcal antigens was immobilised on a solid support by covalent coupling to CNBr-activated Sepharose in the presence of the detergent Triton X-100. Binding of specific antibody to the Sepharose-antigen complex was detected using radiolabelled Protein A as the antiglobulin. Protein A was labelled by radioacetylation with tritiated acetic anhydride, yielding a product of high specific activity and high stability. No detectable loss of activity was observed over a ten month period. The entire assay was performed on Mitex teflon hydrophobic membrane filters which held the Sepharose beads and aqueous supernatant as a discrete drop of liquid. The supernatants and incubation were easily and rapidly removed from the beads by suction on a specially-designed manifold system. This procedure removed the need for repeated and time-consuming centrifugations. Titres were obtained graphically from double log plots of cpm bound versus antiserum dilution by extrapolation of the straight line to a point corresponding to twice the control level of radioactivity binding. The assay proved to be a very reliable and simple procedure for the detection of IgG antibodies to gonococcal surface antigens. (Auth.)

  3. Biodegradation of thermoplastic starch/eggshell powder composites.

    Science.gov (United States)

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Eggshell membrane hydrolyzates activate NF-κB in vitro: possible implications for in vivo efficacy

    Directory of Open Access Journals (Sweden)

    Ruff KJ

    2015-02-01

    significant levels of activation at the 1:1,000 dilution (P=0.005 but failed to differ from untreated cells at the 1:10,000 dilution (P=0.193 in THP-1 cells. Conclusion: Results from our studies provide evidence that ESM hydrolyzates significantly activate NF-κB, and the source of this activity was investigated to confirm that it is inherent to ESM and not derived from bacterial contamination. Based on our findings, we propose a plausible hypothesis as to how increased NF-κB activity might translate into the in vivo efficacy that has been observed with ESM via an “oral tolerance” mechanism. Keywords: eggshell membrane, NF-κB, lipopolysaccharide, polymyxin B, lipoprotein lipase, hydrolyzate

  5. Chicken eggshell as suitable calcium source at home.

    Science.gov (United States)

    Brun, Lucas R; Lupo, Maela; Delorenzi, Damián A; Di Loreto, Verónica E; Rigalli, Alfredo

    2013-09-01

    Taken into consideration that the deficiency of calcium (Ca) in the diet is a common problem, the aim of this work was to study the chicken eggshell as Ca source at home. It was evaluated: (1) different mechanisms to process eggshells and find an easy way to determine the required amount of Ca at home and; (2) the flavor and the texture for eggshell fortified food. Chemical and mechanical methods of eggshell processing were evaluated. Changes in flavor and texture were evaluated in volunteers coordinated by a professional chef. A single eggshell contains 2.07 ± 0.18 g of Ca; therefore half an eggshell could provide the amount of Ca needed by adult human beings per day. The best way to use chicken eggshell as Ca dietary supplement is powdered to add to bread, pizza or spaghetti as there were small changes in texture and no changes in flavor.

  6. Thermoluminescence properties of CaO powder obtained from chicken eggshells

    Science.gov (United States)

    Nagabhushana, K. R.; Lokesha, H. S.; Satyanarayana Reddy, S.; Prakash, D.; Veerabhadraswamy, M.; Bhagyalakshmi, H.; Jayaramaiah, J. R.

    2017-09-01

    Eggshell wastage has created serious problem in disposal of the food processing industry which has been triggered the thoughts of researchers to use wasted eggshells as good source of calcium. In the present work, calcium oxide (CaO) has been synthesized by combustion process in furnace (F-CaO) and microwave oven (M-CaO) using the source of chicken eggshells. The obtained F-CaO and M-CaO are characterized by XRD, SEM with EDX and thermoluminescence (TL) technique. XRD pattern of both the samples show cubic phase with crystallite size 45-52 nm. TL glow curves are recorded for various gamma radiation dose (300-4000 Gy). Two TL glows, a small peak at 424 K and stronger peak at 597 K are observed. TL response of M-CaO is 2.67 times higher than F-CaO sample. TL kinetic parameters are calculated by computerized curve deconvolution analysis (CCDA) and discussed.

  7. Cone-shaped membrane liquid phase micro extraction

    International Nuclear Information System (INIS)

    Hong, Heng See; Sanagi, M.M.; Ibrahim, W.A.W.; Naim, A.A.

    2008-01-01

    A novel sample pre-treatment technique termed cone-shaped membrane liquid phase micro extraction (CSM-LPME) was developed and combined with micro-liquid chromatography (micro-LC) for the determination of selected pesticides in water samples. Several important extraction parameters such as types of extraction solvent, agitation rate, pH value, total exposure time and effect of salt and humic acids were investigated and optimized. Enrichment factors of >50 folds were easily achieved within 20 min of extraction. The new developed method demonstrated an excellent performance in terms of speed, cost effectiveness, reproducibility, as well as exceptional low detection limits. Current work provides a great interest to further investigate on the applicability of the CSM-LPME technique in analytical chemistry and explores the possibility of replacing conventional extraction techniques such as soxhlet, solid phase extraction (SPE) and solid phase micro extraction (SPME). (author)

  8. Thermoluminescence properties of CaO powder obtained from chicken eggshells

    International Nuclear Information System (INIS)

    Nagabhushana, K.R.; Lokesha, H.S.; Satyanarayana Reddy, S.; Prakash, D.; Veerabhadraswamy, M.; Bhagyalakshmi, H.; Jayaramaiah, J.R.

    2017-01-01

    Eggshell wastage has created serious problem in disposal of the food processing industry which has been triggered the thoughts of researchers to use wasted eggshells as good source of calcium. In the present work, calcium oxide (CaO) has been synthesized by combustion process in furnace (F–CaO) and microwave oven (M–CaO) using the source of chicken eggshells. The obtained F–CaO and M–CaO are characterized by XRD, SEM with EDX and thermoluminescence (TL) technique. XRD pattern of both the samples show cubic phase with crystallite size 45–52 nm. TL glow curves are recorded for various gamma radiation dose (300–4000 Gy). Two TL glows, a small peak at 424 K and stronger peak at 597 K are observed. TL response of M–CaO is 2.67 times higher than F–CaO sample. TL kinetic parameters are calculated by computerized curve deconvolution analysis (CCDA) and discussed. - Highlights: • Calcium oxide powders have been synthesized using chicken egg shells as raw material. • Crystallite size was found to be 45–52 nm. • CaO derived from eggshells shows good thermoluminescence TL response. • TL response of the M–CaO is 2.67 times higher than the F–CaO sample.

  9. Recycled Aluminium Cans/Eggshell Composites: Evaluation of Mechanical and Wear Resistance Properties

    Directory of Open Access Journals (Sweden)

    J.O. Agunsoye

    2015-03-01

    Full Text Available Aluminium based metal matrix composites have been produced from recycled aluminium cans and 150µm sized eggshell particles using a stir cast process. The mechanical properties of the control and aluminium can/eggshell composites produced have been investigated. The microstructures of the aluminium can/eggshell composites were examined with the aids of Scanning Electron Microscope (SEM after the sample surfaces have been carefully prepared and etched with aqueous solution of 0.5 cm3 nitric acid. Micrographs revealed that there was a homogenous distribution of eggshell particles within the aluminium can matrix. An indication of effective stirring action during the melting process. The wear resistance was also investigated under different applied loads (6 to 14 N on an abrasive surface emery paper of grade 220. The results revealed an increase in Young’s modulus of elasticity and yield stress from 1,206.45 and 50.23 Mpa respectively of the cast aluminium can with 0 % eggshell particle to the maximum of 3,258.87and 73.2 MPa of aluminium can/12 % eggshell composites. The hardness values increased from 66.23 to 75.13 VN. There was a gradual increase in wear rate of the tested samples as the applied load increased. However, the wear resistance of the aluminium can/6 % eggshell and aluminium can/12 % eggshell composites increased significantly. Hence, recycling of aluminium cans and eggshells can be harnessed into development of useful engineering metal matrix composite materials.

  10. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  11. Correlates of eggshell thickness | Okereke | Global Journal of Pure ...

    African Journals Online (AJOL)

    This study discussed the effects of age and genotype of birds and location of farm on eggshell thickness. The ultimate objective of the study is to determine the correlates of eggshell thickness which may be relevant to improve eggshell thickness. Secondary data on eggshell thickness collected from the Agricultural ...

  12. Influence of industrial solid waste addition on properties of soil-cement bricks

    Directory of Open Access Journals (Sweden)

    F. B. Siqueira

    Full Text Available Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, water absorption, bulk density, durability, and compressive strength, microstructure and mineral phases of soil-cement bricks. Microstructural evolution was evaluated via confocal microscopy. The experimental results showed that the solid wastes behave as charge material and influenced both technical properties and microstructure of the soil-cement bricks. It was found that up to 15 wt% of welding flux slag waste and up to 30 wt% of avian eggshell waste could be added into the soil-cement bricks for use as building material.

  13. Relevance of the Physicochemical Properties of Calcined Quail Eggshell (CaO as a Catalyst for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Leandro Marques Correia

    2017-01-01

    Full Text Available The CaO solid derived from natural quail eggshell was calcined and employed as catalyst to produce biodiesel via transesterification of sunflower oil. The natural quail eggshell was calcined at 900°C for 3 h, in order to modify the calcium carbonate present in its structure in CaO, the activity phase of the catalyst. Both precursor and catalyst were characterized using Hammett indicators method, X-ray fluorescence (XRF, X-ray diffraction (XRD, thermogravimetric analysis (TG/DTG, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectronic spectroscopy (XPS, Fourier infrared spectroscopy (FTIR, scanning electron microscopy (SEM, N2 adsorption-desorption at −196°C, and distribution particle size. The maximum biodiesel production was of 99.00 ± 0.02 wt.% obtained in the following transesterification reaction conditions: XMR (sunflower oil/methanol molar ratio of 1 : 10.5 mol : mol, XCAT (catalyst loading of 2 wt.%, XTIME (reaction time of 2 h, stirring rate of 1000 rpm, and temperature of 60°C.

  14. Protective effect of soluble eggshell membrane protein hydrolysate on cardiac ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Tao Yang

    2015-12-01

    Full Text Available Background: Soluble eggshell membrane protein (SEP has been proved to hold the antioxidant activity. The functional role of SEP on cardioprotection was investigated in vivo and in vitro. Methods: Rats and cardiomyocytes were pretreated with SP2, a hydrolysate attained from SEP, and then subjected to ischemia/reperfusion (I/R or hypoxia/reoxygenation (H/R and hydrogen peroxide, respectively. The measurement of myocardial infarct size, cell apoptosis assay, cell viability assay, and caspase activity assay were performed on rats and cardiomyocytes. Results: The results showed that the treatment of SP2 induced the resistance to I/R or H/R injury on rats and cardiomyocytes as indicated by decreased infarct size and decreased cellular apoptosis. The cardioprotective roles of SP2 were partly resulted from the downregulated expression and activity of caspase-3 in which the effect was similar to the caspase inhibitor, z-VAD-fmk, and could be rescued by caspase activator, PAC-1. Conclusions: This investigation has demonstrated that SP2 attenuated the damage of I/R and H/R on rats and cardiomyocytes by the caspase-dependent pathway. This cardioprotective effect of SP2 suggested a novel therapeutic agent of SEP for ischemic-related heart diseases.

  15. Dual phase oxygen transport membrane for efficient oxyfuel combustion

    International Nuclear Information System (INIS)

    Ramasamy, Madhumidha

    2016-01-01

    Oxygen transport membranes (OTMs) are attracting great interest for the separation of oxygen from air in an energy efficient way. A variety of solid oxide ceramic materials that possess mixed ionic and electronic conductivity (MIEC) are being investigated for efficient oxygen separation (Betz '10, Skinner '03). Unfortunately these materials do not exhibit high degradation stability under harsh ambient conditions such as flue gas containing CO_2, SO_x, H_2O and dust, pressure gradients and high temperatures that are typical in fossil fuel power plants. For this reason, dual phase composite membranes are developed to combine the best characteristics of different compounds to achieve high oxygen permeability and sufficient chemical and mechanical stability at elevated temperatures. In this thesis, the dual phase membrane Ce_0_._8Gd_0_._2O_2_-_δ - FeCo_2O_4 (CGO-FCO) was developed after systematic investigation of various combinations of ionic and electronic conductors. The phase distribution of the composite was investigated in detail using electron microscopes and this analysis revealed the phase interaction leading to grain boundary rock salt phase and formation of perovskite secondary phase. A systematic study explored the onset of phase interactions to form perovskite phase and the role of this unintended phase as pure electronic conductor was identified. Additionally optimization of conventional sintering process to eliminate spinel phase decomposition into rock salt was identified. An elaborate study on the absolute minimum electronic conductor requirement for efficient percolation network was carried out and its influence on oxygen flux value was measured. Oxygen permeation measurements in the temperature range of 600 C - 1000 C under partial pressure gradient provided by air and argon as feed and sweep gases are used to identify limiting transport processes. The dual phase membranes are much more prone to surface exchange limitations because of the limited

  16. A 700-year record of mercury in avian eggshells of Guangjin Island, South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liqiang [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Center, Suzhou, Jiangsu 215123 (China); Liu Xiaodong, E-mail: ycx@ustc.edu.cn [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Sun Liguang, E-mail: slg@ustc.edu.cn [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen Qianqian; Yan Hong; Liu Yi; Luo Yuhan; Huang Jing [Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-04-15

    Ancient eggshells over the past 700 years were extracted from an ornithogenic sediment profile on Guangjin Island, South China Sea. Based on SEM and nitrogen isotope analyses, we determined that neither post-depositional processes nor seabirds' dietary changes had a large influence on eggshell Hg levels. The historical change of Hg in these eggshells was reconstructed. Eggshell Hg was a marker for past Hg deposition in marine environment. The eggshell Hg showed three small peaks at around 1300AD, 1600 AD and 1700-1750AD and rapid increase since 1800 AD. Before 1970 AD the Hg deposition in the Xisha area had global distribution characteristics, with increased Hg emissions due to global anthropogenic activities in industrial times. However, after 1970 AD, a further sharp increase up to present day occurred, implying that the Hg production center had gradually shifted from Europe and America to Asia. - Research highlights: > Eggshell Hg is a marker for past mercury deposition in marine environment. > This is a Hg record from ancient sequential eggshell samples. > The 700-year record of eggshell Hg is closely related to human activities. > Eggshell Hg suggests the increase of Hg production in Asia over the past decades. - Our work provides a potential use of ancient sequential eggshells to reconstruct past mercury deposition in marine ecosystems.

  17. A 700-year record of mercury in avian eggshells of Guangjin Island, South China Sea

    International Nuclear Information System (INIS)

    Xu Liqiang; Liu Xiaodong; Sun Liguang; Chen Qianqian; Yan Hong; Liu Yi; Luo Yuhan; Huang Jing

    2011-01-01

    Ancient eggshells over the past 700 years were extracted from an ornithogenic sediment profile on Guangjin Island, South China Sea. Based on SEM and nitrogen isotope analyses, we determined that neither post-depositional processes nor seabirds' dietary changes had a large influence on eggshell Hg levels. The historical change of Hg in these eggshells was reconstructed. Eggshell Hg was a marker for past Hg deposition in marine environment. The eggshell Hg showed three small peaks at around 1300AD, 1600 AD and 1700-1750AD and rapid increase since 1800 AD. Before 1970 AD the Hg deposition in the Xisha area had global distribution characteristics, with increased Hg emissions due to global anthropogenic activities in industrial times. However, after 1970 AD, a further sharp increase up to present day occurred, implying that the Hg production center had gradually shifted from Europe and America to Asia. - Research highlights: → Eggshell Hg is a marker for past mercury deposition in marine environment. → This is a Hg record from ancient sequential eggshell samples. → The 700-year record of eggshell Hg is closely related to human activities. → Eggshell Hg suggests the increase of Hg production in Asia over the past decades. - Our work provides a potential use of ancient sequential eggshells to reconstruct past mercury deposition in marine ecosystems.

  18. Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells.

    Science.gov (United States)

    Liu, Zhangguo; Song, Lingzi; Lu, Lizhi; Zhang, Xianfu; Zhang, Fuming; Wang, Kehua; Linhardt, Robert J

    2017-09-07

    Eggshell matrix can be dissociated into three matrix fractions: acid-insoluble matrix (M1), water-insoluble matrix (M2) and acid-water facultative-soluble matrix (M3). Matrix fractions from pimpled and normal eggshells were compared using label-free proteomic method to understand the differences among three matrix fractions and the proteins involved with eggshell quality. A total of 738 and 600 proteins were identified in the pimpled and normal calcified eggshells, respectively. Both eggshells showed a combined proteomic inventory of 769 proteins. In the same type of eggshell, a high similarity was present in the proteomes of three matrix fractions. These triply overlapped common proteins formed the predominant contributor to proteomic abundance in the matrix fractions. In each matrix fraction and between both eggshell models, normal and pimpled eggshells, a majority of the proteomes of the fractions were commonly observed. Forty-two common major proteins (iBAQ-derived abundance ≥0.095% of proteomic abundance) were identified throughout the three matrix fractions and these proteins might act as backbone constituents in chicken eggshell matrix. Finally, using 1.75-fold as up-regulated and using 0.57-fold as down-regulated cutoff values, twenty-five differential major proteins were screened and they all negatively influence and none showed any effect on eggshell quality. Overall, we uncovered the characteristics of proteomics of three eggshell matrix fractions and identified candidate proteins influencing eggshell quality. The next research on differential proteins will uncover the potential mechanisms underlying how proteins affect eggshell quality. It was reported that the proteins in an eggshell can be divided into insoluble and soluble proteins. The insoluble proteins are thought to be an inter-mineral matrix and acts as a structural framework, while the soluble proteins are thought as intra-mineral matrix that are embedded within the crystal during

  19. (Ce,Gd)O2−δ-based dual phase membranes for oxygen separation

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2014-01-01

    and characterized with respect to sinterability, oxygen permeation rate, phase interaction, and microstructure. These factors are important when considering the development of composite membranes with CGO as the oxide ion conducting phase. Composite membranes with relative densities >91% were fabricated using....... The results indicate a promising prospect for further tailoring and optimization of CGO-based composites for application in oxygen separation....

  20. Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Pu Zhang

    2016-07-01

    Full Text Available In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs with high quantum yield (QY, ~16%, excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanomaterials dispersed in solution, the AuNCs-based solid membrane has distinct advantages including convenience of transportation, while still maintaining strong red luminescence, and relatively long duration storage without aggregation. Taking hydrogen peroxide (H2O2 as a typical example, we then employed the AuNCs as a luminescent probe and investigated their sensing performance, either in solution phase or on a solid substrate. The detection of H2O2 could be achieved in wide concentration ranges over 805 nM–1.61 mM and 161 μM–19.32 mM in solution and on a solid membrane, respectively, with limits of detection (LOD of 80 nM and 20 μM. Moreover, the AuNCs-based membrane could also be used for visual detection of H2O2 in the range of 0–3.22 mM. In view of the convenient synthesis route and attractive luminescent properties, the AuNCs-based membrane presented in this work is quite promising for applications such as optical sensing, fluorescent imaging, and photovoltaics.

  1. Dual phase oxygen transport membrane for efficient oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Madhumidha

    2016-07-01

    Oxygen transport membranes (OTMs) are attracting great interest for the separation of oxygen from air in an energy efficient way. A variety of solid oxide ceramic materials that possess mixed ionic and electronic conductivity (MIEC) are being investigated for efficient oxygen separation (Betz '10, Skinner '03). Unfortunately these materials do not exhibit high degradation stability under harsh ambient conditions such as flue gas containing CO{sub 2}, SO{sub x}, H{sub 2}O and dust, pressure gradients and high temperatures that are typical in fossil fuel power plants. For this reason, dual phase composite membranes are developed to combine the best characteristics of different compounds to achieve high oxygen permeability and sufficient chemical and mechanical stability at elevated temperatures. In this thesis, the dual phase membrane Ce{sub 0.8}Gd{sub 0.2}O{sub 2-δ} - FeCo{sub 2}O{sub 4} (CGO-FCO) was developed after systematic investigation of various combinations of ionic and electronic conductors. The phase distribution of the composite was investigated in detail using electron microscopes and this analysis revealed the phase interaction leading to grain boundary rock salt phase and formation of perovskite secondary phase. A systematic study explored the onset of phase interactions to form perovskite phase and the role of this unintended phase as pure electronic conductor was identified. Additionally optimization of conventional sintering process to eliminate spinel phase decomposition into rock salt was identified. An elaborate study on the absolute minimum electronic conductor requirement for efficient percolation network was carried out and its influence on oxygen flux value was measured. Oxygen permeation measurements in the temperature range of 600 C - 1000 C under partial pressure gradient provided by air and argon as feed and sweep gases are used to identify limiting transport processes. The dual phase membranes are much more prone to surface

  2. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  3. Synthesis and chemical and structural characterization of hydroxyapatite obtained from eggshell and tricalcium phosphate

    OpenAIRE

    Arboleda, Alejandro; Franco, Manuel; Caicedo, Julio; Tirado, Liliana; Goyes, Clara

    2016-01-01

    The eggshell is a common residue that is usually discarded without giving any use to it. In this paper the results obtained from a proposed procedure to get hydroxyapatite (HA) from eggshell are shown. The HA is a calcium phosphate which has been widely used as implant material due to the close similarity of its composition with the inorganic phase of natural bone. HA generally has a high cost and it is presented as micro and nanostructured bioceramics; the last one is a promising option for ...

  4. U-Th Burial Dates on Ostrich Eggshell

    Science.gov (United States)

    Sharp, W. D.; Fylstra, N. D.; Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2015-12-01

    Obtaining precise and accurate dates at archaeological sites beyond the range of radiocarbon dating is challenging but essential for understanding human origins. Eggshells of ratites (large flightless birds including ostrich, emu and others) are common in many archaeological sequences in Africa, Australia and elsewhere. Ancient eggshells are geochemically suitable for the U-Th technique (1), which has about ten times the range of radiocarbon dating (>500 rather than 50 ka), making eggshells attractive dating targets. Moreover, C and N isotopic studies of eggshell provide insights into paleovegetation and paleoprecipitation central to assessing past human-environment interactions (2,3). But until now, U-Th dates on ratite eggshell have not accounted for the secondary origin of essentially all of their U. We report a novel approach to U-Th dating of eggshell that explicitly accounts for secondary U uptake that begins with burial. Using ostrich eggshell (OES) from Pleistocene-Holocene east African sites, we have measured U and 232Th concentration profiles across OES by laser ablation ICP-MS. U commonly peaks at 10s to 100s of ppb and varies 10-fold or more across the ~2 mm thickness of OES, with gradients modulated by the layered structure of the eggshell. Common Th is high near the shell surfaces, but low in the middle "pallisade" layer of OES, making it optimal for U-Th dating. We determine U-Th ages along the U concentration gradient by solution ICP-MS analyses of two or more fractions of the pallisade layer. We then estimate OES burial dates using a simple model for diffusive uptake of uranium. Comparing such "U-Th burial dates" with radiocarbon dates for OES calcite from the same shells, we find good agreement in 7 out of 9 cases, consistent with rapid burial and confirming the accuracy of the approach. The remaining 2 eggshells have anomalous patterns of apparent ages that reveal they are unsuitable for U-Th dating, thereby providing reliability criteria innate

  5. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  6. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  7. An insight into the heat and mass transfer mechanisms of eggshells hatching broiler chicks and its effects to the hatcher environment.

    Science.gov (United States)

    Romanini, C E B; Exadaktylos, V; Hong, S W; Tong, Q; McGonnell, I; Demmers, T G M; Bergoug, H; Guinebretière, M; Eterradossi, N; Roulston, N; Verhelst, R; Bahr, C; Berckmans, D

    2015-02-01

    Thermodynamic study of incubated eggs is an important component in the optimisation of incubation processes. However, research on the interaction of heat and moisture transfer mechanisms in eggs is rather limited and does not focus on the hatching stage of incubation. During hatch, both the recently hatched chick and the broken eggshell add extra heat and moisture contents to the hatcher environment. In this study, we have proposed a novel way to estimate thermodynamically the amount of water evaporated from a broken eggshell during hatch. The hypothesis of this study considers that previously reported drops in eggshell temperature during hatching of chicks is the result remaining water content evaporating from the eggshell, released on the inner membrane by the recently hatched wet chick, just before hatch. To reproduce this process, water was sprayed on eggshells to mimic the water-fluid from the wet body of a chick. For each sample of eggshell, the shell geometry and weight, surface area and eggshell temperature were measured. Water evaporation losses and convection coefficient were calculated using a novel model approach considering the simultaneous heat and mass transfer profiles in an eggshell. The calculated average convective coefficient was 23.9 ± 7.5 W/m(2) °C, similar to previously reported coefficients in literature as a function of 0.5-1m/s air speed range. Comparison between measured and calculated values for the water evaporation showed 68% probability accuracy, associated to the use of an experimentally derived single heat transfer coefficient. The results support our proposed modelling approach of heat and mass transfer mechanisms. Furthermore, by estimating the amount of evaporated water in an eggshell post-hatch, air humidity levels inside the hatcher can be optimised to ensure wet chicks dry properly while not dehydrating early hatching chicks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microwave Irradiation of Nanohydroxyapatite from Chicken Eggshells and Duck Eggshells

    Directory of Open Access Journals (Sweden)

    Nor Adzliana Sajahan

    2014-01-01

    Full Text Available Due to similarity in composition to the mineral component of bones and human hard tissues, hydroxyapatite with chemical formula Ca10(PO46(OH2 has been widely used in medical field. Both chicken and duck eggshells are mainly composed of calcium carbonate. An attempt has been made to fabricate nanohydroxyapatite (nHA by chicken (CES and duck eggshells (DES as calcium carbonate source (CaCO3. CES and DES were reacted with diammonium hydrogen [(NH42HPO4] solution and subjected to microwave heating at 15 mins. Under the effect of microwave irradiation, nHA was produced directly in the solution and involved in crystallographic transformation. Sample characterization was done using by X-ray diffraction (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM.

  9. Correlation between the ripple phase and stripe domains in membranes.

    Science.gov (United States)

    Bernchou, Uffe; Midtiby, Henrik; Ipsen, John Hjort; Simonsen, Adam Cohen

    2011-12-01

    We investigate the relationship between stripe domains and the ripple phase in membranes. These have previously been observed separately without being linked explicitly. Past results have demonstrated that solid and ripple phases exhibit rich textural patterns related to the orientational order of tilted lipids and the orientation of ripple corrugations. Here we reveal a highly complex network pattern of ripple and solid domains in DLPC, DPPC bilayers with structures covering length scales from 10 nm to 100 μm. Using spincoated double supported membranes we investigate domains by correlated AFM and fluorescence microscopy. Cooling experiments demonstrate the mode of nucleation and growth of stripe domains enriched in the fluorescent probe. Concurrent AFM imaging reveals that these stripe domains have a one-to-one correspondence with a rippled morphology running parallel to the stripe direction. Both thin and thick stripe domains are observed having ripple periods of 13.5±0.2 nm and 27.4±0.6 nm respectively. These are equivalent to previously observed asymmetric/equilibrium and symmetric/metastable ripple phases, respectively. Thin stripes grow from small solid domains and grow predominantly in length with a speed of ~3 times that of the thick stripes. Thick stripes grow by templating on the sides of thinner stripes or can emerge directly from the fluid phase. Bending and branching angles of stripes are in accordance with an underlying six fold lattice. We discuss mechanisms for the nucleation and growth of ripples and discuss a generic phase diagram that may partly rationalize the coexistence of metastable and stable phases. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Test of a mosquito eggshell isolation method and subsampling procedure.

    Science.gov (United States)

    Turner, P A; Streever, W J

    1997-03-01

    Production of Aedes vigilax, the common salt-marsh mosquito, can be assessed by determining eggshell densities found in soil. In this study, 14 field-collected eggshell samples were used to test a subsampling technique and compare eggshell counts obtained with a flotation method to those obtained by direct examination of sediment (DES). Relative precision of the subsampling technique was assessed by determining the minimum number of subsamples required to estimate the true mean and confidence interval of a sample at a predetermined confidence level. A regression line was fitted to cube-root transformed eggshell counts obtained from flotation and DES and found to be significant (P eggshells present. Eggshells obtained with the flotation method can be used to predict those from DES using the following equation: DES count = [1.386 x (flotation count)0.33 - 0.01]3.

  11. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    Science.gov (United States)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  12. Synthesis and characterization of Fe–Ni/ɣ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition

    DEFF Research Database (Denmark)

    Silva, Hugo José Lopes; Nielsen, Morten Godtfred; Fiordaliso, Elisabetta Maria

    2015-01-01

    The Fe–Ni alloyed nanoparticles are a promising alternative to expensive ruthenium-based catalysts for a real-scale application of hydrogen generation by ammonia decomposition. In practical applications, millimeter-sized extrudates are used as catalyst supports, where the spatial distribution...... of the active phase should match with the type of reaction. In this work, a novel synthesis route was developed for the preparation of a Fe–Ni/ɣ-Al2O3 egg-shell catalyst. Egg-shell is a preferred profile considering the highly endothermic nature of ammonia decomposition reaction. The high viscosity of glycerol...... using focused ion bean (FIB) milling allowed to acquire high resolution images of the Ni and Fe nanoparticles on ɣ-Al2O3, which is particularly challenging due to the crystalline nature of this support. Distinct regions of the egg-shell catalyst were analyzed through scanning TEM (STEM) and TEM...

  13. The influence of chicken eggshell powder as a buffer on biohydrogen production from rotten orange (Citrus nobilis var. microcarpa) with immobilized mixed culture

    Science.gov (United States)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2017-06-01

    This research observed the influence of chicken eggshell on hydrogen production from anaerobic fermentation of rotten orange (Citrus nobilis var. microcarpa) using batch method at 36 °C and pH 7. Fermentation material were varied in several types, the first type was meat and peel of oranges with VS of 59.152 g.L-1 in A, B, C, and D compositions. The second type was orange meat added with peel (OMP) with VS of 36.852 g.L-1. The immobilized ingredients used in the experiment consisted of 2 % (w/v) alginate and active carbon with the ratio of 1:1. 3.2 g chicken eggshell powder was added to the first type of material (substrates A, B, C, and D). Results showed that pH during fermentation process using chicken eggshell as a buffer was constant at 5.5; however, without the use of chicken eggshell, the pH decreased to 3.8 and increased slightly before it stayed stable at 4.0. The total amount of gas produced in sample using the chicken eggshell was 46,35 mL.mg VS-1 and in sample produced without the eggshell, it was 3,4 mL.mg VS-1. The production of hydrogen in substrate that used chicken eggshell was 1,276 mL.gVS-1 in average on the first day. Meanwhile, for the substrate with no addition of chicken eggshell, the average production of hydrogen was 0,163 mL.gVS-1. The reduction of volatile solid (VS) in sample that used chicken eggshell was 24 %, while in sample produced without addition of chicken eggshell, the reduction was 12 %. The liquid compounds (VFA) produced in the fermentation using chicken eggshell were acetic acid and butyric acid. Meanwhile, without addition of chicken eggshell, the products were acetic acid, butyric acid, and propionic acid. This study shows that addition of chicken eggshell as a buffer effectively contributed to hydrogen production during fermentation of rotten oranges.

  14. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  15. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    Science.gov (United States)

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  16. Purification and characterization of an eggshell membrane decomposing protease from Pseudomonas aeruginosa strain ME-4.

    Science.gov (United States)

    Cheng, Minyi; Takenaka, Shinji; Aoki, Shunsuke; Murakami, Shuichiro; Aoki, Kenji

    2009-04-01

    A bacterial strain, ME-4, isolated from farm soil and identified as Pseudomonas aeruginosa, grew well on a medium containing eggshell membrane (ESM). P. aeruginosa strain ME-4 decomposed the ESM by producing an extracellular protease able to solubilize it. The protease was purified to homogeneity from culture supernatant by fractionation with (NH(4))(2)SO(4), as well as CM52 cellulose and DE52 cellulose column chromatography, with a final yield of 47%. The molecular mass of the enzyme was 33 kDa. The isolated enzyme was a metalloprotease and was strongly inhibited by EDTA, o-phenanthroline, and phosphoramidon. The enzyme inhibited by these reagents was reactivated in the presence of several metal ions. The enzyme acted on various proteins and showed higher activity with collagen than collagenase from Clostridium histolyticum. Results of assays with the FRETS combinatorial libraries revealed that the enzyme preferred Ser at the P1 position and Lys at the P2 position. It also preferred hydrophobic amino acid residues at the P1' and P2' positions. The enzyme showed a much higher solubilization activity with the ESM substrate than commercially obtained enzymes. The enzyme decomposed ESM to produce water-soluble peptides, Val-Leu-Pro-Pro and (X)-Val-Pro-Pro, and a free amino acid, tryptophan.

  17. Strontium-90 in Canada goose eggshells: Nonfatal monitoring for contamination in wildlife

    International Nuclear Information System (INIS)

    Rickard, W.H.; Eberhardt, L.E.

    1990-01-01

    90 Sr was measured in eggshells from Canada geese (Branta canadensis moffitti) that nested on Columbia River islands up- and downstream from deactivated plutonium production reactors on the U.S. Department of Energy's Hanford Site in southeastern Washington. We also measured 90 Sr in wing bones of goose carcasses. Background levels of 90 Sr were based on eggshells collected on an island upstream of the reactors. A few eggshells collected from nests on a single island downstream of the reactors had slightly higher than background levels of 90 Sr. This may have resulted from geese eating shoreline plants or crops irrigated with Columbia River water that contained 90 Sr released into the river through groundwater seepage

  18. Can macular xanthophylls replace cholesterol in formation of the liquid-ordered phase in lipid-bilayer membranes?

    Science.gov (United States)

    Subczynski, Witold K; Wisniewska-Becker, Anna; Widomska, Justyna

    2012-01-01

    Lateral organization of membranes made from binary mixtures of dimyristoylphosphatidylcholine (DMPC) or dipalmitoylphosphatidylcholine (DPPC) and macular xanthophylls (lutein or zeaxanthin) was investigated using the saturation-recovery (SR) EPR spin-labeling discrimination by oxygen transport (DOT) method in which the bimolecular collision rate of molecular oxygen with the nitroxide spin label is measured. This work was undertaken to examine whether or not lutein and zeaxanthin, macular xanthophylls that parallel cholesterol in its function as a regulator of both membrane fluidity and hydrophobicity, can parallel other structural functions of cholesterol, including formation of the liquid-ordered phase in membranes. The DOT method permits discrimination of different membrane phases when the collision rates (oxygen transport parameter) differ in these phases. Additionally, membrane phases can be characterized by the oxygen transport parameter in situ without the need for separation, which provides information about the dynamics of each phase. In gel-phase membranes, two coexisting phases were discriminated in the presence of macular xanthophylls - namely, the liquid-ordered-like and solid-ordered-like phases. However, in fluid-phase membranes, xanthophylls only induce the solitary liquid-ordered-like phase, while at similar concentrations, cholesterol induces coexisting liquid-ordered and liquid-disordered phases. No significant differences between the effects of lutein and zeaxanthin were found.

  19. Study on Solid Phase Extraction and Spectrophotometric Determination of Nickel in Waters and Biological Samples

    International Nuclear Information System (INIS)

    Hu, Qiufen; Yang, Guangyu; Huang, Zhangjie; Yin, Jiayuan

    2004-01-01

    A sensitive, selective and rapid method for the determination of nickel based on the rapid reaction of nickel(II) with QADMAA and the solid phase extraction of the Ni(II)-QADMAA chelate with C 18 membrane disks has been developed. In the presence of pH 6.0 buffer solution and sodium dodecyl sulfonate (SDS) medium, QADMAA reacts with nickel to form a violet complex of a molar ratio of 1 : 2 (nickel to QADMAA). This chelate was enriched by solid phase extraction with C 18 membrane disks. An enrichment factor of 50 was obtained by elution of the chelates form the disks with the minimal amount of isopentyl alcohol. The molar absorptivity of the chelate was 1.32 x 10 5 L mol -1 cm -1 at 590 nm in the measured solution. Beer's law was obeyed in the range of 0.01-0.6 μg/mL. This method was applied to the determination of nickel in water and biological samples with good results

  20. Solid-phase radioimmunoassay for Epstein-Barr virus-associated membrane antigen prepared from B95-8 cell culture supernatants

    International Nuclear Information System (INIS)

    Doelken, G.; Klein, G.

    1977-01-01

    Epstein-Barr virus (EBV)-associated membrane antigen (MA) was concentrated from B95-8 cell culture media by precipitation with polyethylene glycol followed by chromatography on Bio-Gel A-50m. In a RAJI cell-binding assay, MA-positive material could only be found in the void volume of the column. After ultracentrifugation all antigenic activity appeared in the pellet, which suggested that MA was present in aggregates, presumably fragments of cellular membranes and/or virus envelopes. The MA-containing preparation was photopolymerized in polyacrylamide gel. The homogenized gel was used in a solid-phase radioimmunoassay with 125 I-labeled IgG from an anti-MA positive reference serum and an anti-MA negative control serum. The specificity of the reaction was confirmed in blocking tests with anti-EBV positive and negative sera. A good correlation was found between the results obtained in the radioimmunoassay and the results obtained in direct immunofluorescence tests for the detection of MA. The existence of at least two subspecificities of the MA complex could be confirmed by this radioimmunoassay

  1. Eggshell thickness variation in red-legged partridge (Alectoris rufa) from Spain

    DEFF Research Database (Denmark)

    Castilla, Aurora M.; de Aragón, Juan Martínez; Herrel, Anthony

    2009-01-01

    Eggshell thickness is commonly used as an indicator of habitat quality and effects of environmental pollution on avian reproduction. We present the first data available on eggshell thickness for Red-legged Partridge (Alectoris rufa) in Spain. We compared eggshell thickness between eggs collected...

  2. Hybrid biofilm-membrane bioreactor (Bf-MBR) for minimization of bulk liquid-phase organic substances and its positive effect on membrane permeability.

    Science.gov (United States)

    Sun, F Y; Li, P; Li, J; Li, H J; Ou, Q M; Sun, T T; Dong, Z J

    2015-12-01

    Four biofilm membrane bioreactors (Bf-MBRs) with various fixed carrier volumes (C:M) were operated in parallel to investigate the effect of attached-growth mode biomass involvement to the change of liquid-phase organics characteristics and membrane permeability, by comparing with conventional MBR. The experiments displayed that C:M and co-existence of biofilm with suspended solids in Bf-MBRs resulted in slight difference in pollutants removal effectiveness, and in rather distinct biomass properties and bacterial activities. The membrane permeability and specific resistance of bulk suspension of Bf-MBRs related closely with the liquid-phase organic substance, including soluble microbial products (SMP) and biopolymer cluster (BPC). Compared with conventional MBR, Bf-MBR with proper C:M had a low total biomass content and food-chain, where biofilm formation and its dominance affected liquid-phase organics, especially through reducing their content and minimizing strongly and weakly hydrophobic components with small molecular weight, and thus to mitigate membrane fouling significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies

    NARCIS (Netherlands)

    Schaafsma, A.; Beelen, G.M.

    1999-01-01

    Powdered chicken eggshells might be an interesting and widely available source of calcium. In two studies using piglets we determined the digestibility of calcium from different diets. The first study compared casein-based diets with CaCO3 (CasCC) or eggshell powder (CasES). The second study

  5. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    Science.gov (United States)

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  6. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  7. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  9. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil.

    Science.gov (United States)

    Ok, Yong Sik; Lee, Sang Soo; Jeon, Weon-Tai; Oh, Sang-Eun; Usman, Adel R A; Moon, Deok Hyun

    2011-01-01

    Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO₃) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0-5% powdered eggshell waste and curing the soil (1,246 mg Pb kg⁻¹ soil and 17 mg Cd kg⁻¹ soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl₂), 1 M CaCl₂, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH₃COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO₃ and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO₃ and eggshell waste, regardless of extractant. Using CaCl₂ extraction, the lowest Cd concentration was achieved upon both CaCO₃ and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH₃COOH or EDTA in soils treated with CaCO₃ and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO₃ for the immobilization of heavy metals in soils.

  10. Microporous Carbon Spheres Solid Phase Membrane Tip Extraction for the Analysis of Nitrosamines in Water Samples

    International Nuclear Information System (INIS)

    Mohammed Salisu Musa; Wan Aini Wan Ibrahim

    2015-01-01

    A simple solid phase membrane tip extraction (SPMTE) utilizing microporous carbon spheres (MCS) was developed for the analysis of nitrosamines in aqueous samples. The method termed MCS-SPMTE was optimized for various important extraction parameters namely conditioning organic solvent, extraction time, effects of salt addition and pH change, desorption time, desorption solvent and sample volume. Under the optimized conditions, the method indicated good linearity in the range of 10-100 μg/ L with coefficients of determination, r 2 ≥0.9984. The method also demonstrated good reproducibility with % RSDs values ranging from 2.2 - 8.9 (n = 3). Limit of detection (LOD) and limit of quantification (LOQ) for the method ranged from 3.2 - 4.8 μg/ L and 10.9 - 15.9 μg/L respectively. Recoveries for both tap-water and lake water samples spiked at 10 μg/L were in the range of 83.2 - 107.5 %. (author)

  11. Synthesis and characterization of eggshell-derived hydroxyapatite via mechanochemical method: A comparative study

    Science.gov (United States)

    Hamidi, A. A.; Salimi, M. N.; Yusoff, A. H. M.

    2017-04-01

    The focus of bone graft properties has developed through generations, from the ability to withstand mechanical stress to the ability to integrate with the biological structure. In recent years, the use of hydroxyapatite (HA) as bone graft material in orthopedic and dental applications has been increasing. HA is a natural occuring mineral with excellent bioactivity but relatively poor mechanical properties. It constitutes 96% portion of enamel in teeth and 67% portion of bone. HA can be extracted from animal bones or fabricated from synthetic or biologic sources. In this study, eggshells were used as raw material to synthesize eggshell-derived HA (EHA) via mechanochemical method. The synthesis of EHA involved CaO, which was obtained from the calcination of eggshells, and reaction with dicalcium hydrogen phosphate dihydrous (DCPD) or phosphoric acid (H3PO4). The effects of rotational speed and heat treatment temperature on EHA's characteristics were investigated. The characterization studies were carried out by using the Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). HA powder was successfully synthesized with crystallite and particle sizes in the range of 8-47 nm and 250-550 nm respectively. It was observed from this study that the increase of milling rotational speed had increased the phase purity of EHA samples. Furthermore, the higher heating temperature of HA samples resulted in higher degree of crystallinity of HA and the appearance of β-tricalcium phosphate (β-TCP) as secondary phase.

  12. The Effect of Eggshell Thickness on Hatching Traits of Partridges

    Directory of Open Access Journals (Sweden)

    US Yamak

    Full Text Available ABSTRACT Incubation is an important factor in poultry production, particularly in species with relatively low fertility and hatchability rates. This study examined the effect of eggshell thickness on hatching traits of partridges (A. chukar. A total of 462 eggs from intensively reared partridges were separated into three groups according to eggshell thickness, which was measured ultrasonically before incubation. Hatchability, chick weight, and chick length were assessed at the end of the incubation period. Hatching times were recorded during hatching. Embryonic mortalities in unhatched eggs were classified according to mortality stage at the end of incubation. The effect of eggshell thickness on hatchability was found to be insignificant for all groups. Moreover, eggshell thickness had no significant effect on chick weight or length.

  13. Synthesis of nano-textured biocompatible scaffolds from chicken eggshells

    International Nuclear Information System (INIS)

    Asghar, Waseem; Ilyas, Azhar; Sankaran, Jeyantt; Wan Yuan; Iqbal, Samir M; Kim, Young-Tae

    2012-01-01

    Cell adhesion, morphology and growth are influenced by surface topography at nano and micrometer scales. Nano-textured surfaces are prepared using photolithography, plasma etching and long polymer chemical etching which are cost prohibitive and require specialized equipment. This article demonstrates a simple approach to synthesize nano-textured scaffolds from chicken eggshells. Varieties of pattern are made on the eggshells like micro-needle forests and nanopores, giving very uniform nano-textures to the surfaces. The surfaces are characterized for chemical composition and crystal phase. The novel patterns are transferred to PDMS surfaces and the nano-textured PDMS surfaces are used to study the effect of texturing on human fibroblast cell growth and attachment. The effects of surface topographies, along with laminin coating on cell cultures, are also studied. We find an exciting phenomenon that the initial seeding density of the fibroblast cells affects the influence of the nano-texturing on cell growth. These nano-textured surfaces give 16 times more fibroblast growth when compared to flat PDMS surfaces. The novel nano-textured patterns also double the laminin adsorption on PDMS. (paper)

  14. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  15. Analysis of Siamese Crocodile (Crocodylus siamensis) Eggshell Proteome

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Pataridis, Statis; Eckhardt, Adam; Sedmera, David

    2018-01-01

    Roč. 37, č. 1 (2018), s. 21-37 ISSN 1572-3887 R&D Projects: GA ČR(CZ) GA15-01948S; GA ČR(CZ) GA16-02972S Institutional support: RVO:67985823 Keywords : protein s of eggshell * eggshell pigment * crocodile Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.139, year: 2016

  16. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  17. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  18. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  19. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  20. Assessing the prevalence of Salmonella enterica in poultry hatcheries by using hatched eggshell membranes.

    Science.gov (United States)

    Chao, M-R; Hsien, C-H; Yeh, C-M; Chou, S-J; Chu, C; Su, Y-C; Yu, C-Y

    2007-08-01

    Salmonella enterica causes a number of significant poultry diseases and is also a major pathogen in humans. Most poultry infected by Salmonella become carriers; infection may also be fatal, depending on the particular serovar and the age of the bird at infection. Younger birds are more susceptible to infection by Salmonella, so it is critical that hatcheries monitor birds. We developed a method to use hatched eggshell membranes (HEM) to assess contamination by Salmonella in poultry hatching cabinets and to evaluate the prevalence of Salmonella in a goose hatchery and rearing farm. Comparison of the Salmonella isolation rate in hatching cabinets using 3 sampling methods showed that the highest Salmonella contamination was detected in HEM, and that these results differed significantly from those obtained from fluff samples and cabinet swab samples (P chicken, and duck hatcheries. The lowest Salmonella-positive rate was found for the chicken hatchery, followed by the goose and the duck hatcheries (P hatcheries: A, B, C1, C2, D, and E. The distribution of these serogroups differed among the hatcheries. Salmonella serogroup C1 was the major serogroup found in geese, compared with serogroup B in chickens and ducks. However, Salmonella Typhimurium was dominant in 1 goose hatchery and also in geese from this hatchery that had been transferred to a farm. Antibiotic susceptibility analysis showed that Salmonella Typhimurium strains isolated from the farm geese with diarrhea showed significantly higher resistance to doxycycline, colistin, sulfamethoxazole-trimethoprin, and cephalothin than those isolated from the hatchery (P hatcheries and rearing farms.

  1. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    Science.gov (United States)

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  2. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    International Nuclear Information System (INIS)

    Mora, Miguel A.

    2003-01-01

    High concentrations of Sr in eggshells may be associated with lower hatching success of some passerine birds. - Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2-35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell

  3. Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahtab [Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Hashimoto, Yohey [Department of Bioresource Science, Mie University, 1577 Kurima-machiya, Mie 514-8507 (Japan); Moon, Deok Hyun [Department of Environmental Engineering, Chosun University, Gwangju 501-759 (Korea, Republic of); Lee, Sang Soo, E-mail: sslee97@kangwon.ac.kr [Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Ok, Yong Sik, E-mail: soilok@kangwon.ac.kr [Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Eggshell and calcined eggshell immobilized Pb in the shooting range soil. Black-Right-Pointing-Pointer Calcined eggshell was more effective on Pb immobilization compared to eggshell. Black-Right-Pointing-Pointer Exchangeable Pb fractions were transformed to carbonate bound fractions. Black-Right-Pointing-Pointer Calcined eggshell stabilized Pb by enwrapping into calcium silicate hydrate. Black-Right-Pointing-Pointer Soil Pb toxicity can be reduced by applying eggshell and calcined eggshell. - Abstract: This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to {approx}1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH){sub 2}] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb{sub 2}O(SO{sub 4})]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils.

  4. Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach

    International Nuclear Information System (INIS)

    Ahmad, Mahtab; Hashimoto, Yohey; Moon, Deok Hyun; Lee, Sang Soo; Ok, Yong Sik

    2012-01-01

    Highlights: ► Eggshell and calcined eggshell immobilized Pb in the shooting range soil. ► Calcined eggshell was more effective on Pb immobilization compared to eggshell. ► Exchangeable Pb fractions were transformed to carbonate bound fractions. ► Calcined eggshell stabilized Pb by enwrapping into calcium silicate hydrate. ► Soil Pb toxicity can be reduced by applying eggshell and calcined eggshell. - Abstract: This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ∼1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0–47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH) 2 ] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb 2 O(SO 4 )]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils.

  5. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    Science.gov (United States)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  6. Viability of Eggshells Ash Affecting the Setting Time of Cement

    OpenAIRE

    Fazeera Ujin; Kamran Shavarebi Ali; Zarina Yasmin Hanur Harith

    2016-01-01

    This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement....

  7. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  8. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  9. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    Science.gov (United States)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  11. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2015-09-01

    Full Text Available Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1 widespread deposition of amorphous calcium carbonate (ACC, (2 ACC transformation into crystalline calcite aggregates, (3 formation of larger calcite crystal units and (4 rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  12. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification.

    Science.gov (United States)

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-09-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  13. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  14. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  15. Data set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2014-12-01

    Full Text Available Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015 [1].

  16. The microbial burden load of eggshells from different poultry rearing ...

    African Journals Online (AJOL)

    The results obtained from the study revealed that eggshell samples from different poultry rearing systems (battery cage, deep litter and free-range chicken eggs) were contaminated with bacterial and fungal species of public health concern. Microbial species isolated from eggshells were Enterobacter aerogenes, ...

  17. Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller

    Directory of Open Access Journals (Sweden)

    M. C. Yew

    2014-01-01

    Full Text Available This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens’ B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I=4.3 and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.

  18. Experimental Study on the Geometrical and Mechanical Properties of Goose Eggshells

    Directory of Open Access Journals (Sweden)

    J Zhang

    Full Text Available ABSTRACT This paper examined the properties of goose eggshells to determine possible areas of improvement in egg transport and storage. First, we measured goose egg sizes and performed statistical tests, and found that the major axis, minor axis, and egg-shape index presented normal distribution. Eggshell thickness first increased and then decreased from the blunt end to the sharp end. Second, the shape of individual goose eggshell was measured using a 3D scanner. Volume equation, surface equation, and contour function of goose eggshell shape were obtained, exhibiting a highly symmetrical structure. Finally, goose eggs were compressed along their major and minor axes between two plates. Breaking strength was highly dependent on the shape index. A crack was found on the force point along the major axis of each goose egg.

  19. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    Science.gov (United States)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  20. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application

    Science.gov (United States)

    Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive

    2018-01-01

    We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ˜1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ˜32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ˜100 nA cm-2 at 2.5 V when held for 72 h.

  1. Effect of polyethyleneglycol on CH{sub 4} permeation through poly(amide-b-ethylene oxide)-based nanocomposite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Morteza, E-mail: asghari@kashanu.ac.ir [Separation Processes Research Group (SPRG), University of Kashan, Kashan (Iran, Islamic Republic of); Energy Research Institute, University of Kashan, Ghotb-e-Ravandi Avenue, Kashan (Iran, Islamic Republic of); Mahmudi, Amir; Zargar, Vida [Separation Processes Research Group (SPRG), University of Kashan, Kashan (Iran, Islamic Republic of); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2014-11-01

    Graphical abstract: - Highlights: • A three-phase polymer/liquid/solid (PEBA/PEG/zeolite X) membrane was fabricated. • Nanocrystalline zeolite X was used as filler to stabilize membrane polymeric matrix. • Introducing zeolite to PEBA matrix caused its total free volume to decrease. • A gradual decrease with pressure was observed in CH{sub 4} permeability for the membranes. • In all the experiments, operating pressures varied from 2 to 8 bar. - Abstract: A three-phase polymer/liquid/solid poly(amide-b-ethylene oxide) (PEBA)/polyethylene glycol (PEG)/zeolite X was fabricated and its gas permeability was investigated. CH{sub 4} permeability of neat PEBA, two-phase PEBA/NaX and three-phase PEBA/PEG/NaX were compared for different pressures within the range of 2–8 bar. The fabricated membranes were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscope (AFM). SEM images showed that the zeolite grain size was homogeneously smaller than 2 μm. They also revealed the dense structures of the membranes and no pores were observed at these magnifications. AFM surface images indicated that the membranes surface roughness increased significantly with increasing zeolite loading. CH{sub 4} permeability for single-, two- and three-phase membranes decreased from 3.13 to 2.81, from 3.96 to 2.31 and from 2.67 to 2.14 barrer, respectively.

  2. Chemical characteristics and thickness of Podocnemis expansa post-hatching eggshells (Testudines, Podocnemididae

    Directory of Open Access Journals (Sweden)

    Caio Henrique Ferreira

    2016-10-01

    Full Text Available Knowledge on chemical components of the post-hatching eggshell of reptiles may provide indicators of the quality of the diet offered to females kept in captivity. Therefore, the objective of this study was to investigate the chemical characteristics of the calcareous layer, as well as the thickness of Podocnemis expansa post-hatching eggshells. Eggshell thickness was 183±1.405 µm. This value is similar to that of the eggs of other Testudines with flexible eggshells. As for the chemical composition, the following percentages were observed: nitrogen 7.983 ± 0.054; crude protein 49.91 ± 0.324; crude fat 0.068 ± 0.002; mineral matter 20.302 ± 0.807; calcium 13.374 ± 0.647; and phosphorus 0.176 ± 0.003. Knowledge on chemical composition of the eggshell may aid the nutrition of P. expansa raised in commercial facilities, once this species is an alternative and promising source of exotic meat.

  3. Solution phase and membrane immobilized iron-based free radical reactions: Fundamentals and applications for water treatment

    Science.gov (United States)

    Lewis, Scott Romak

    Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H 2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes. In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane's responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water

  4. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song

    2015-01-01

    Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.

  5. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals.

    Science.gov (United States)

    Stefanello, C; Santos, T C; Murakami, A E; Martins, E N; Carneiro, T C

    2014-01-01

    This study was carried out with the purpose of evaluating the effect of supplementing hens' diets with trace minerals from inorganic or organic sources on the productive performance, eggshell quality, and eggshell ultrastructure of laying hens. Three hundred sixty Hy-Line W36 laying hens between 47 to 62 wk of age were used and distributed in a completely randomized experimental design with 9 treatments, 5 replicates, and 8 birds for each experimental unit. The treatments consisted of a control diet without supplementation of the trace minerals Mn, Zn, and Cu; 4 supplementation levels of these trace minerals from an inorganic source; and the same levels of supplementation from an organic source (proteinates). The supplementation levels in milligrams per kilogram for Mn, Zn, and Cu, were, respectively, 35-30-05, 65-60-10, 95-90-15, and 125-120-20. There was no effect of supplementation of trace minerals on the rate of posture, feed intake, feed conversion, specific weight, and Haugh unit of eggs. However, there was a quadratic effect (P < 0.05) of the levels of trace mineral supplementation on average egg weight and egg mass; the results did not differ regarding the source used. The increase in the levels of supplementation of Mn, Zn, and Cu provided a linear increase (P < 0.05) in the breaking strength and the percentage of eggshell. There was a linear decrease (P < 0.05) in the egg loss and the number of mammillary buttons in the shell. The best results were obtained using diets supplemented with trace minerals from an organic source because these diets provided lower egg loss, higher thickness, and increased strength of the shell. Structurally, organic Mn, Zn, and Cu provided higher thickness of the palisade layer and lower mammillary density. The trace mineral supplementation improved the structural characteristics and the quality of the eggshells.

  6. Eggshells – assisted hydrolysis of banana pulp for biogas production

    African Journals Online (AJOL)

    KARAKANA

    In this study, pretreatment of banana pulp using eggshells in both calcined and un-calcined forms to examine the ... Key words: Anaerobic digestion, banana pulp hydrolysis biogas, eggshells. .... obtain fine powder. ..... using pig waste and cassava peels. ... from bioethanol waste: the effect of pH and urea addition to biogas.

  7. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  8. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    Science.gov (United States)

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  10. Membranes as separators of dispersed emulsion phases

    OpenAIRE

    Lefferts, A.G.

    1997-01-01

    The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the continuous phase. For this purpose dispersed phase separators can be applied, which combine the features of conventional coalescers and membrane filtration. The membrane surface promotes coalescence ...

  11. Solid-phase reductive amination for glycomic analysis.

    Science.gov (United States)

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  12. Effect of limestone particle size on egg production and eggshell ...

    African Journals Online (AJOL)

    Different limestone particle sizes had no effect on any of the tested egg production and eggshell quality parameters. These results suggested that larger particles limestone are not necessarily essential to provide sufficient Ca2+ to laying hens for egg production and eggshell quality at end-of-lay, provided that the dietary Ca ...

  13. Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach.

    Science.gov (United States)

    Ahmad, Mahtab; Hashimoto, Yohey; Moon, Deok Hyun; Lee, Sang Soo; Ok, Yong Sik

    2012-03-30

    This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ≈ 1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH)(2)] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb(2)O(SO(4))]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effects of Eggshell Calcium Supplementation on Bone Mass in Postmenopausal Vietnamese Women.

    Science.gov (United States)

    Sakai, Seigo; Hien, Vu Thi Thu; Tuyen, Le Danh; Duc, Ha Anh; Masuda, Yasunobu; Yamamoto, Shigeru

    2017-01-01

    Bone mass decreases along with aging, especially for women after menopause because of lower estrogen secretion together with low calcium intake. This study was conducted to study the effect of eggshell calcium supplementation on bone mass in 54 postmenopausal Vietnamese women living in a farming area about 60 km from Hanoi, Vietnam. Sets of 3 subjects matched by age, bone mass, BMI and calcium intake were divided randomly into 3 groups with 18 subjects in each group. The eggshell calcium group was administered 300 mg/d calcium from eggshell, the calcium carbonate group 300 mg/d calcium from calcium carbonate and the placebo group received no calcium supplementation. Bone mass (Speed of Sound (SOS)) was measured at the beginning (the baseline), the middle (6th month) and the end of the study (12th month) by the single blind method. SOS of the eggshell group increased significantly at 12 mo (p0.05). In conclusion, eggshell calcium was more effective in increasing bone mass than calcium carbonate in postmenopausal Vietnamese women.

  15. The evolution of eggshell cuticle in relation to nesting ecology

    Science.gov (United States)

    Hauber, Mark E.

    2016-01-01

    Avian eggs are at risk of microbial infection prior to and during incubation. A large number of defence mechanisms have evolved in response to the severe costs imposed by these infections. The eggshell's cuticle is an important component of antimicrobial defence, and its role in preventing contamination by microorganisms in domestic chickens is well known. Nanometer-scale cuticular spheres that reduce microbial attachment and penetration have recently been identified on eggs of several wild avian species. However, whether these spheres have evolved specifically for antimicrobial defence is unknown. Here, we use comparative data on eggshell cuticular structure and nesting ecology to test the hypothesis that birds nesting in habitats with higher risk of infection (e.g. wetter and warmer) are more likely to evolve cuticular nanospheres on their eggshells than those nesting in less risky habitats. We found that nanostructuring, present in 54 of 296 analysed species, is the ancestral condition of avian eggshells and has been retained more often in taxa that nest in humid infection-prone environments, suggesting that they serve critical roles in antimicrobial egg defence. PMID:27488648

  16. Characterization of the Lλ phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction

    International Nuclear Information System (INIS)

    Lee, C.W.B.; Das Gupta, S.K.; Mattai, J.; Shipley, G.G.; Abdel-Mageed, O.H.; Makriyannis, A.; Griffin, R.G.

    1989-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition at temperatures similar to the transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. 2 H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and 13 C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicting very little motion at the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. The authors postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluididty of the hydrophobic region in the L λ phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms

  17. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  18. Biosorption of strontium ions from aqueous solution using modified eggshell materials

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, Sayed S.; Rizk, Hoda E.; Gasser, Mona S. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center

    2017-07-01

    Green composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin-Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO{sub 3}, desorption percent was found to be 96.4%; the results revealed the reusability of the modified eggshell for further sorption.

  19. or without eggshell's contamination that produced in Tabriz.

    Directory of Open Access Journals (Sweden)

    M Khakpoor

    2011-08-01

    Full Text Available Zoonotic bacterial diseases are considered as the most important human infectious diseases. In this category, a disease that transfer and infect human through food has an special role. Among foods with animal origin, eggs due to their application as food ingredient in food products, like sauces, spices, ice creams and other food products that may use in half cooked or crude forms, always has the potential to transfer microbial pathogens to human. This study is about to prove that presence of remainder feces on eggshells leads the penetration of bacterial agents into egg yolk. A total of 120 daily egg samples (with and without fecal contamination were collected from henneries around Tabriz and transferred immediately to microbiology laboratory. After performing microbial examinations (using BHI Broth, BHI Agar, Blood Agar, Selenite F, Tetrationate, XLD,SS Agar,Gram Staining, Oxidase and Catalase tests, bacteria of eggshells and egg yolks has been identified. Out of 120 eggs, 15.83% bacterial contaminants were found in egg yolks samples. Among them, 73.68%  were gram negative and 26.31% were gram positive. Among gram negatives, Pseudomonas with occurrence of 8.3% and in gram positives group, Bacillus with abundance of  4.16% were the most frequent bacterias. Also in samples collected from eggshells, 99.16% of the eggs demonstrated bacterial contamination which 23.55% of positive samples were among gram negative group and 76.44% were gram positive. The most contribution of eggshell gram negative bacterias were relevant to Pseudomonas, E.coli, Proteus and Citrobacter with respectively 18.33%,10.83%,5.83% and 4.16% rations. Among gram positive bacteria that isolates form eggshell samples for the most frequent bacterias, were Bacillus, Staphylococccus, Streptococcus, Rhodococcus and Micrococcus with respectively 80.00%, 34.16%, 15%, 9.16% and 7.5% rations. Use and consumption of eggs with shells contaminated with faces in food products is a serious

  20. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  1. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  2. Chicken eggshells (Gallus gallus domesticus) as carbonate calcium source for biomaterials production

    International Nuclear Information System (INIS)

    Junior, E.A. de O.; Bastos, J.S.B.; Silva, R.C. de S.; Macedo, H.R.A.; Macedo, M. O.C.; Bradim, A.S.

    2016-01-01

    The eggshells present high levels of calcium carbonate. Calcium carbonate obtained from eggshells has been used in the production of biomaterials with applications in bone regeneration, since it is biocompatible. In this work, calcium carbonate was obtained from eggshells to prepare a composite biomaterial. The presence of calcium carbonate bands was observed through spectrometry in the infrared region. Scanning electron microscopy showed the presence of calcium carbonate particles with different sizes and shapes. Carbonate predominance in the form of calcite was also observed through the X-ray diffraction

  3. Ostrich eggshell as an alternative raw material for hydroxyapatite synthesis

    International Nuclear Information System (INIS)

    Caliman, L.B.; Gouvea, D.

    2011-01-01

    The goal of this study was to investigate the use of ostrich eggshell for hydroxyapatite synthesis, a biomaterial of great medical importance due to its high biocompatibility. The eggshell was used as calcium ions source due its great containing of CaCO3. For its utilization, the eggshell was calcined and the obtained oxide (CaO) was transformed into Ca(OH)_2. Hydroxyapatite synthesis consisted in a wet precipitation reaction between Ca(OH)_2 and commercial H_3PO_4. The X ray Diffraction analysis has shown that the precipitated Hydroxyapatite calcined at 800°C resulted in a bifasic powder of Hydroxyapatite and β-Tricalcium Phosphate, which proves that this precipitated Hydroxyapatite was deficient in calcium. The Infrared Spectroscopy, showed the presence of CO_3"2"- ions, result of carrying out the reaction in open atmosphere. By Scanning Electron Microscopy nanometric particles arranged in agglomerates were observed and Specific Surface Area measurement resulted in 11,70 m²/g. Following this procedure, the ostrich eggshell gets a technological profitable reuse also environmentally friendly, being transformed in a new product of high aggregate value. (author)

  4. C18, C8, and perfluoro reversed phases on diamond for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Wiest, Landon A; Herbert, David; Biggs, Katherine N; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2009-04-17

    In spite of advances in solid-phase extraction (SPE) technology there are certain disadvantages to current SPE silica-based, column packings. The pH range over which extraction can occur is limited and each column is generally only used once. New diamond-based reversed SPE phases (C(18), C(8), and perfluorinated) were developed in our laboratories. Studies were done which show that these phases do not have the same limitations as traditional silica-based stationary phases. The synthesis and properties of these diamond-based phases are presented, and the stability, percent recovery, and column capacity are given for the C(18) phase.

  5. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  6. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  7. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  8. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  9. Streamlined Membrane Proteome Preparation for Shotgun Proteomics Analysis with Triton X-100 Cloud Point Extraction and Nanodiamond Solid Phase Extraction

    Directory of Open Access Journals (Sweden)

    Minh D. Pham

    2016-05-01

    Full Text Available While mass spectrometry (MS plays a key role in proteomics research, characterization of membrane proteins (MP by MS has been a challenging task because of the presence of a host of interfering chemicals in the hydrophobic protein extraction process, and the low protease digestion efficiency. We report a sample preparation protocol, two-phase separation with Triton X-100, induced by NaCl, with coomassie blue added for visualizing the detergent-rich phase, which streamlines MP preparation for SDS-PAGE analysis of intact MP and shot-gun proteomic analyses. MP solubilized in the detergent-rich milieu were then sequentially extracted and fractionated by surface-oxidized nanodiamond (ND at three pHs. The high MP affinity of ND enabled extensive washes for removal of salts, detergents, lipids, and other impurities to ensure uncompromised ensuing purposes, notably enhanced proteolytic digestion and down-stream mass spectrometric (MS analyses. Starting with a typical membranous cellular lysate fraction harvested with centrifugation/ultracentrifugation, MP purities of 70%, based on number (not weight of proteins identified by MS, was achieved; the weight-based purity can be expected to be much higher.

  10. Clumped isotope paleothermometry of eggshells as an indicator of vertebrate endothermy

    Science.gov (United States)

    Canavan, R. R.; Field, D. J.; Therrien, F.; Zelenitsky, D.; Affek, H. P.

    2014-12-01

    Isotopic analyses of the calcite or aragonite shells of aquatic organisms are often used in the study of the environmental conditions in which they grow; however, this approach is less straightforward in the terrestrial realm, where environments may be more heterogeneous. In such terrestrial localities, the bioapatite of vertebrate teeth comprises the typical archival material for isotopic analyses. The calcitic eggshells of birds and other reptiles may provide suitable material for isotopic analyses that are aimed at studying their physiology and ecology. Here we apply a novel thermometer, carbonate clumped isotopes (Δ47), to test for endothermy in extinct non-avian dinosaurs in the context provided by eggs of modern reptiles and birds. These Δ47-derived temperatures should reflect the temperature of shell formation, which in endothermic animals such as birds should represent the mother's internal body temperature. In ectothermic animals, the same is true although their body temperatures are more affected by the external environment and thus Δ47 temperatures could more accurately describe local environmental temperatures during eggshell formation. Fossil eggshells represent appropriate material for reconstructing internal body temperatures of extinct non-avian dinosaurs since they mineralized within the mother's body, and fragments of eggshell are commonly recovered from dinosaur-bearing fossil deposits. The dimensions of these fragments provide sufficient material for the relatively large sample required for clumped isotope analysis (~20mg). Fossil eggshell samples from several taxa of Late Cretaceous non-avian dinosaurs were analyzed using Δ47 paleothermometry. Textural inspection was used as a first test for diagenetic alteration of the original calcite, and histological indicators were used for broad taxonomic identifications. Preliminary results of Δ47-derived body temperature estimates from eggshells are consistent with previous body temperatures

  11. Analytical study of solids-gas two phase flow

    International Nuclear Information System (INIS)

    Hosaka, Minoru

    1977-01-01

    Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)

  12. Eggshell Biliverdin and Protoporphyrin Pigments in a Songbird: Are They Derived from Erythrocytes, Blood Plasma, or the Shell Gland?

    Science.gov (United States)

    Hargitai, Rita; Boross, Nóra; Hámori, Susanne; Neuberger, Eszter; Nyiri, Zoltán

    Biliverdin and protoporphyrin pigments are deposited into the eggshell when the developing egg is in the shell gland. However, the site of synthesis of eggshell pigments is still uncertain, although it may influence the possible costs and potential functions of eggshell coloration in avian species. Eggshell pigments may be derived from red blood cells or be produced in other organs and then transferred to the shell gland, or they may be synthesized de novo in the shell gland. We studied in the canary (Serinus canaria) whether eggshell blue-green and brown pigmentations are associated with experimentally elevated anemia, female hematocrit level, immature erythrocyte percentage, and feces and plasma pigment levels during egg laying to find out the possible origin of eggshell pigments. We found no significant effects of hematocrit level or experimentally elevated anemia on intensity of eggshell blue-green and brown pigmentations; therefore, we consider it less likely that eggshell pigments are derived from erythrocytes. In addition, we found no significant associations between female feces biliverdin concentration during egg laying and intensity of eggshell blue-green pigmentation, suggesting that eggshell biliverdin may not originate from the spleen or liver. We found a negative association between plasma and feces protoporphyrin concentrations during egg laying and eggshell brown chroma. This result suggests that an increased production of protoporphyrin in the liver, which could have elevated plasma and feces protoporphyrin concentrations, could inhibit eggshell protoporphyrin pigmentation, probably through affecting enzymatic activities. We suggest that both pigments are produced de novo in the shell gland in the canary, but circulating pigment levels may influence shell gland pigment synthesis, thus connecting the physiological status of the female to eggshell coloration.

  13. Development of a solid-phase assay for measurement of proteolytic enzyme activity

    International Nuclear Information System (INIS)

    Varani, J.; Johnson, K.; Kaplan, J.

    1980-01-01

    A solid-phase, plate assay was developed for the measurement of proteolytic enzyme activity. In this assay procedure, radiolabeled substrates were dried onto the surface of microtiter wells. Following drying, the wells were washed two times with saline to remove the nonadherent substrate. When proteolytic enzymes were added to the wells, protein hydrolysis occurred, releasing radioactivity into the supernatant fluid. The amount of protein hydrolysis that occurred was reflected by the amount of radioactivity in the supernatant fluid. When 125 I-hemoglobin was used as the substrate, it was as susceptible to hydrolysis by trypsin in the solid-phase assay as it was in solution in a standard assay procedure. Protease activity from a variety of sources (including from viable cells as well as from extracellular sources) were also able to hydrolyze the hemoglobin on the plate. 125 I-Labeled serum albumen, fibrinogen, and rat pulmonary basement membrane were also susceptible to hydrolysis by trypsin in the solid phase. When [ 14 C]elastin was dried onto the plate, it behaved in a similar manner to elastin in solution. It was resistant to hydrolysis by nonspecific proteases such as trypsin and chymotrypsin but was highly susceptible to hydrolysis by elastase. The solid-phase plate assay has several features which recommended it for routine use. It is as sensitive as standard tube assays (and much more sensitive than routinely used colormetric assays). It is quick and convenient; there are no precipitation, centrifugation, or filtration steps. In addition, very small volumes of radioactive wastes are generated. Another advantage of the solid-phase plate assay is the resistance of the dried substrates to spontaneous breakdown and to microbial contamination. Finally, this assay is suitable for use with viable cells as well as for extracellular proteases

  14. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    Science.gov (United States)

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase

    OpenAIRE

    Pham Xuan , Huynh; Pham Minh , Doan; Galera Martinez , Marta; Nzihou , Ange; Sharrock , Patrick

    2015-01-01

    International audience; This paper focuses on the valorization of calcium carbonate-based solid wastes for theremoval of hydrogen sulfide from gas phase. Two solid wastes taken from industrial sites for theproduction of sodium carbonate and sodium bicarbonate by the Solvay process® were analyzedby different physico-chemical methods. Calcium carbonate was found as the main component ofboth the solid wastes. Trace amounts of other elements such as Mg, Al, Fe, Si, Cl, Na etc. werealso present in...

  16. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  17. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  18. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    Science.gov (United States)

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  1. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  2. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode

    DEFF Research Database (Denmark)

    Joon, Narender Kumar; He, Ning; Wagner, Michal

    2017-01-01

    In this work, the influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb2+-selective electrode (Pb2+-ISE) was studied. The effects of bovine serum albumin (BSA) adsorption at the surface of the ion-selective membrane combined...... ions studied (Cu2+, Cd2+). Conditioning of the Pb2+-ISE in 0.01 mol dm–3 PBS resulted in a super-Nernstian response which was related to fixation/extraction of Pb2+ in the ion-selective membrane via precipitation of Pb3(PO4)2 by PO43– anions present in PBS. By conditioning of the Pb2+-ISE in 0.01 mol...

  3. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  4. The role of python eggshell permeability dynamics in a respiration-hydration trade-off.

    Science.gov (United States)

    Stahlschmidt, Zachary R; Heulin, Benoit; DeNardo, Dale F

    2010-01-01

    Parental care is taxonomically widespread because it improves developmental conditions and thus fitness of offspring. Although relatively simplistic compared with parental behaviors of other taxa, python egg-brooding behavior exemplifies parental care because it mediates a trade-off between embryonic respiration and hydration. However, because egg brooding increases gas-exchange resistance between embryonic and nest environments and because female pythons do not adjust their brooding behavior in response to the increasing metabolic requirements of developing offspring, python egg brooding imposes hypoxic costs on embryos during the late stages of incubation. We conducted a series of experiments to determine whether eggshells coadapted with brooding behavior to minimize the negative effects of developmental hypoxia. We tested the hypotheses that python eggshells (1) increase permeability over time to accommodate increasing embryonic respiration and (2) exhibit permeability plasticity in response to chronic hypoxia. Over incubation, we serially measured the atomic and structural components of Children's python (Antaresia childreni) eggshells as well as in vivo and in vitro gas exchange across eggshells. In support of our first hypothesis, A. childreni eggshells exhibited a reduced fibrous layer, became more permeable, and facilitated greater gas exchange as incubation progressed. Our second hypothesis was not supported, as incubation O(2) concentration did not affect the shells' permeabilities to O(2) and H(2)O vapor. Our results suggest that python eggshell permeability changes during incubation but that the alterations over time are fixed and independent of environmental conditions. These findings are of broad evolutionary interest because they demonstrate that, even in relatively simple parental-care models, successful parent-offspring relationships depend on adjustments made by both the parent (i.e., egg-brooding behavioral shifts) and the offspring (i

  5. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation.

    Science.gov (United States)

    Mustapha, Omer; Kim, Kyung Soo; Shafique, Shumaila; Kim, Dong Shik; Jin, Sung Giu; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-02-01

    The objective of this study was to develop a novel solid self-nanoemulsifying drug delivery system (SNEDDS) using a membrane emulsification technique involving Shirasu porous glass (SPG) which produced very small and uniform emulsion droplets, resulting in enhanced solubility, dissolution and oral bioavailability of poorly water-soluble cilostazol. The effects of carriers on the drug solubility were assessed, and pseudo-ternary phase diagrams were plotted. Among the liquid SNEDDS formulations tested, the liquid SNEDDS composed of peceol (oil), Tween 20 (surfactant) and Labrasol (cosurfactant) at a weight ratio of 15/55/30, produced the smallest emulsion droplet size. The cilostazol-loaded liquid SNEDDS formulation was suspended in the distilled water and subjected to SPG membrane emulsification. Calcium silicate was added as a solid carrier in this liquid SNEDDS, completely suspended and spray-dried, leading to the production of a cilostazol-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of the emulsified solid SNEDDS were assessed as compared to the solid SNEDDS prepared without emulsification. Moreover, the physicochemical characteristics and pharmacokinetics in rats were evaluated with the emulsified solid SNEDDS. The emulsified solid SNEDDS provided significantly smaller and more uniform nanoemulsions than did the non-emulsified solid SNEDDS. The emulsified solid SNEDDS showed significantly higher drug solubility and dissolution as compared to the non-emulsified solid SNEDDS. The crystalline drug in it was converted into the amorphous state. Moreover, in rats, it gave significantly higher initial plasma concentrations and AUC compared to the drug powder, suggesting its improved oral bioavailability of cilostazol. Thus, this novel solid SNEDDS developed using a membrane emulsification technique represents a potentially powerful oral delivery system for cilostazol. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of long-term selection for egg production on eggshell quality of Japanese quail (Coturnix japonica).

    Science.gov (United States)

    Fathi, M M; El-Dlebshany, A E; El-Deen, M Bahie; Radwan, L M; Rayan, G N

    2016-11-01

    An experiment was conducted to evaluate egg quality and ultrastuctural measurements of eggshell using a Scanning Electron Microscope (SEM) in 2 lines (selected and control) of Japanese quail. A selection program was applied over 22 consecutive generations for higher egg production and lower broken egg percentage. The results revealed that the females of the selected line produced significantly (P < 0.01) higher egg mass compared to that of the control line. Also, the selection procedure significantly improved feed conversion ratio. The eggshells of the selected line had a higher breaking strength compared to those of the control line, although there was no difference between them in shell thickness. Significantly higher wet (P < 0.01) and dry (P < 0.05) eggshell percentages were found in the selected line. In general, the eggshells of the selected line had a lower total score (good) of ultrastructural evaluation compared to the control line. According to scanning electron microscope data, the incidence of certain structural variants was more common in eggshells of the control line suggesting poor shell strength. The incidence of alignment was more prevalent in control eggshells compared to selected ones, suggesting lower resistance to breakage. Late fusion and large interstitial spaces of the palisade layer indicating decreased resistance to fracture were observed in control eggshells. It could be concluded that the improvement eggshell quality may be caused by the long-term selection for lower cracked and broken egg rates from generation to generation. © 2016 Poultry Science Association Inc.

  7. DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7

    DEFF Research Database (Denmark)

    Yi, Sun; Dhumpa, Raghuram; Bang, Dang Duong

    2011-01-01

    of RNA extract in the liquid phase with sequence-specific nested PCR on the solid phase. A simple ultraviolet cross-linking method was used to immobilize the DNA probes over an unmodified glass surface, which makes solid-phase PCR a convenient possibility for AIV screening. The testing of 33 avian fecal....... In this article, a DNA microarray-based solid-phase polymerase chain reaction (PCR) approach has been developed for rapid detection of influenza virus type A and for simultaneous identification of pathogenic virus subtypes H5 and H7. This solid-phase RT-PCR method combined reverse-transcription amplification...

  8. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    Science.gov (United States)

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Bioinspired magnetite synthesis via solid precursor phases

    NARCIS (Netherlands)

    Lenders, J.J.M.; Mirabello, G.; Sommerdijk, N.A.J.M.

    2016-01-01

    Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms-without the need of high supersaturation levels-to accumulate significant quantities of

  10. Low-pH-induced transformation of bilayer membrane into bicontinuous cubic phase in dioleoylphosphatidylserine/monoolein membranes.

    Science.gov (United States)

    Okamoto, Yoshihide; Masum, Shah Md; Miyazawa, Haruna; Yamazaki, Masahito

    2008-04-01

    Cubic biomembranes, nonbilayer membranes with connections in three-dimensional space that have a cubic symmetry, have been observed in various cells. Interconversion between the bilayer liquid-crystalline (L(alpha)) phase and cubic phases attracted much attention in terms of both biological and physicochemical aspects. Herein we report the pH effect on the phase and structure of dioleoylphosphatidylserine (DOPS)/monoolein (MO) membranes under a physiological ion concentration condition, which was revealed by small-angle X-ray scattering (SAXS) measurement. At neutral pH, DOPS/MO membranes containing high concentrations of DOPS were in the L(alpha) phase. First, the pH effect on the phase and structure of the multilamellar vesicles (MLVs) of the DOPS/MO membranes preformed at neutral pH was investigated by adding various low-pH buffers into the MLV suspension. For 20%-DOPS/80%-MO MLVs, at and below pH 2.9, a transition from the L(alpha) to cubic (Q(224)) phase occurred within 1 h. This phase transition was reversible; a subsequent increase in pH to a neutral one in the membrane suspension transformed the cubic phase into the original L(alpha) phase. Second, we found that a decrease in pH transformed large unilamellar vesicles of DOPS/MO membranes into the cubic phase under similar conditions. We have proposed the mechanism of the low-pH-induced phase transition and also made a quantitative analysis on the critical pH of the phase transition. This finding is the first demonstration that a change in pH can induce a reversible phase transition between the L(alpha) and cubic phases of lipid membranes within 1 h.

  11. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  12. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  13. The impact of eggshell colour and spot area in Japanese quails: II. Slaughter and carcass characteristic

    Directory of Open Access Journals (Sweden)

    Sema Alasahan

    Full Text Available ABSTRACT This study was carried out to investigate the effects of eggshell colour and spot properties (colour and size of the spot area on growth performance and carcass traits of Japanese quail (Coturnix coturnix japonica eggs. Study material were allocated to five groups according to their eggshell and spot colours: black spots on greyish white coloured eggshell (I, blue spots on greyish white coloured eggshell (II, diffuse brown spots on greyish brown coloured eggshell (III, brown spots on light green colored eggshell (IV, and small brown spots on greyish brown coloured eggshell (V. The size of the spotted area was determined in each egg group using digital image analysis. The groups did not differ for body weight and length of the shank at the end of the growth period. However, the groups differed significantly for carcass yield after slaughter (not eviscerated and carcass yield. These parameters were highest in Group I (82.08 and 76.09% and lowest in Group III (80.20 and 73.86%. Digital image analysis demonstrated that heart length, cardiac fat area, gizzard width, and intestine length varied between the groups. Cardiac fat area was largest in Group III (0.86 cm2 and smallest in Group V (0.65 cm2. Gizzard width was greatest in Group I (2.63 cm and smallest in Group V (2.47 cm. Intestine length was greatest in Group V (78.45 cm and smallest in Group IV (72.39 cm. Body weight, shank length, and slaughter and carcass weight do not vary in relation to eggshell colour or the size of the spotted area. The lengths of intestine and heart, gizzard width, and cardiac fat area do vary in relation to eggshell colour or the size of the spotted area.

  14. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    Science.gov (United States)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  15. Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application

    International Nuclear Information System (INIS)

    Sarwar, J.; Mansoor, B.

    2016-01-01

    Highlights: • Thermal cycling of paraffin waxes phase change materials. • Differential Scanning Calorimetry and thermogravimetric study of the materials. • Characterization of the phase change materials via Temperature History Method. • Investigation of suitability of materials for indirect solar desalination system. • Paraffin waxes are suitable for non-membrane indirect solar desalination system. - Abstract: Phase change material as a thermal energy storage medium has been widely incorporated in various technologies like solar air/water heating, buildings, and desalination for efficient use and management of fluctuating solar energy. Temperature and thermal energy requirements dictate the selection of an appropriate phase change material for its application in various engineering systems. In this work, two phase change materials belonging to organic paraffin wax class have been characterized to obtain their thermophysical properties. The melting/solidification temperatures, latent heat of fusion and heat capacities of the phase change materials have been investigated using Differential Scanning Calorimetry, Thermogravimetric analysis and Temperature History Method. Thermal cycles up to 300 are performed to investigate melting and solidification reversibility as well as degradation over time. It is shown that the selected paraffin waxes have reversible phase change with no degradation of thermophysical properties over time. It is also shown that melting/solidification temperature and thermal energy storage capabilities make them suitable for their application as a thermal energy storage medium, in high temperature vapour compression, multi-stage flash and multi-effect distillation processes of non-membrane based indirect desalination systems.

  16. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  17. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    Science.gov (United States)

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  18. Density-functional theory for fluid-solid and solid-solid phase transitions.

    Science.gov (United States)

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/nfcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  19. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Science.gov (United States)

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  20. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  1. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  2. Complement fixation by solid phase immune complexes. Reduced capacity in SLE sera

    DEFF Research Database (Denmark)

    Baatrup, G; Jonsson, H; Sjöholm, A

    1988-01-01

    We describe an ELISA for assessment of complement function based on the capacity of serum to support fixation of complement components to solid phase immune complexes (IC). Microplates were coated with aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA IgG. The solid phase IC were...

  3. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  4. Potential ecotoxicological significance of elevated concentrations of strontium in eggshells of passerine birds

    Science.gov (United States)

    Mora, Miguel A.; Taylor, Robert J.; Brattin, Bryan L.

    2007-01-01

    We investigated the occurrence and potential ecotoxicological significance of elevated concentrations of strontium (Sr) in eggshells of nine passerine birds from four regions in Arizona. Concentrations of Sr in eggshells ranged from 70 to 1360 µg g−1 dry weight (overall mean  =  684 ± 345 SD µg g−1 dw) for the four regions. 23% of the eggshells had Sr concentrations greater than 1000 µg g−1 dw. To our knowledge, these are among the highest levels of Sr that have been reported in bird eggshells in North America. Of the nine species, Brown-headed Cowbirds (Molothrus ater) had the greatest concentrations of Sr. There was a significant positive correlation between Sr and calcium (Ca), and between barium (Ba) and Ca. Ca, Sr, and Ba interact with each other and can exert similar chemical and pharmacological effects. Mean (n ≥ 3) eggshell∶egg ratios for Sr varied with species and ranged from 6.1∶1 to 40.2∶1; ratios for individual eggs reached 92.7∶1. Mean Sr/Ca values ranged from 1.3 × 10−3 to 3.0 × 10−3 and mean eggshell thickness ranged from 83 ± 6 to 120 ± 9 µm for all species. Eggshell thickness was not significantly correlated with Sr for any species but tended to increase with Sr concentrations. We postulate that high concentrations of Sr in the shell could affect later-stage embryos by possible interference with Ca metabolism and bone growth, resulting in reduced hatching success and potential minor beak deformities.

  5. Solid phase assays

    International Nuclear Information System (INIS)

    Reese, M.G.; Johnson, L.R.; Ransom, D.K.

    1980-01-01

    In a solid phase assay for quantitative determination of biological and other analytes, a sample such as serum is contacted with a receptor for the analyte being assayed, the receptor being supported on a solid support. No tracer for the analyte is added to the sample before contacting with the receptor; instead the tracer is contacted with the receptor after unbound analyte has been removed from the receptor. The assay can be otherwise performed in a conventional manner but can give greater sensitivity. (author)

  6. Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection.

    Science.gov (United States)

    Mark I. Cook; Steven R. Beissinger; Gary A. Toranzos; Wayne J. Arendt

    2005-01-01

    Avian eggshells harbour microbes shortly after laying, and under appropriate ambient conditions they can multiply rapidly, penetrate through shell pores, infect egg contents and cause embryo mortality. We experimentally examined how incubation affects bacterial processes on the eggshells of pearl-eyed thrashers Margarops fuscatus nesting in tropical montane and lowland...

  7. Investigation of binary solid phases by calorimetry and kinetic modelling

    OpenAIRE

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid. For a proper description of the crystallization process the equilibrium approach is insufficient and a kinetic approach is actually required. In this work, we show that during slow crystallizatio...

  8. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  9. Estimation of genetic parameters related to eggshell strength using random regression models.

    Science.gov (United States)

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  10. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  11. Thinner eggshells of dipper (Cinclus cinclus) eggs from an acidified area compared to a non-acidified area in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Nyboe, S.; Staurnes, M.; Jerstad, K. [Norwegian University of Science and Technology, Dragvoll (Norway). Dept. of Zoology

    1997-01-01

    Eggs of dippers Cinclus cinclus from a chronically acidified area in Southern Norway were compared with eggs from a non-acidified area in Central Norway. There were no differences in egg size, as measured by volume, weight, length and calculated surface area, between the two areas. Eggshells were 7.0% lighter and 6.1% thinner, as measured by the Ratcliffe index and 7.0% as measured by the eggshell index (shell weight/surface area) in Southern Norway than in Central Norway. The Ratcliffe and eggshell indices were highly correlated. Scanning electron micrography showed that the palisade layer of eggshells of eggs from the acidified area was 10.7% thinner than that of eggshells of eggs from the non-acidified area. Eggshell vapour permeability was not significantly influenced by area. Since the moderately lower thickness in Southern Norway was not accompanied by higher vapour permeability, this indicates that the reduced eggshell thickness did not cause desiccation of dipper eggs in the acidified area. The possibility of underestimating the environmental effects of acidification on dippers is discussed. 42 refs.,2 figs., 4 tabs.

  12. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  13. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  14. Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca).

    Science.gov (United States)

    Ruuskanen, Suvi; Laaksonen, Toni; Morales, Judith; Moreno, Juan; Mateo, Rafael; Belskii, Eugen; Bushuev, Andrey; Järvinen, Antero; Kerimov, Anvar; Krams, Indrikis; Morosinotto, Chiara; Mänd, Raivo; Orell, Markku; Qvarnström, Anna; Slate, Fred; Tilgar, Vallo; Visser, Marcel E; Winkel, Wolfgang; Zang, Herwig; Eeva, Tapio

    2014-03-01

    Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in metal pollution across a species' breeding range. We studied large-scale geographic variation in metal levels in the eggs of a small passerine, the pied flycatcher (Ficedula hypoleuca), sampled from 15 populations across Europe. We measured 10 eggshell elements (As, Cd, Cr, Cu, Ni, Pb, Zn, Se, Sr, and Ca) and several shell characteristics (mass, thickness, porosity, and color). We found significant variation among populations in eggshell metal levels for all metals except copper. Eggshell lead, zinc, and chromium levels decreased from central Europe to the north, in line with the gradient in pollution levels over Europe, thus suggesting that eggshell can be used as an indicator of pollution levels. Eggshell lead levels were also correlated with soil lead levels and pH. Most of the metals were not correlated with eggshell characteristics, with the exception of shell mass, or with breeding success, which may suggest that birds can cope well with the current background exposure levels across Europe.

  15. Study on the solid phase extraction and spectrophotometric determination of cobalt with 5-(2-benzothiazolylazo-8-hydroxyquinolene

    Directory of Open Access Journals (Sweden)

    Alaa S. Amin

    2014-11-01

    Full Text Available A highly sensitive, selective and rapid method for the determination of cobalt based on the rapid reaction of cobalt(II with 5-(2-benzothiazolylazo-8-hydroxyquinolene BTAHQ and the solid phase extraction of the Co(II-BTAHQ complex with C18 membrane disks were developed. In the presence of pH = 6.4 buffer solution and cetylpyridenium chloride (CPC medium, BTAHQ reacts with cobalt to form a deep violet complex with a molar ratio of 1:1 (cobalt to BTAHQ. This complex was enriched by the solid phase extraction with C18 membrane disks. An enrichment factor of 100 was obtained by elution of the complex from the disks with a minimal amount of isopentyl alcohol. In isopentyl alcohol medium, the molar absorptivity of the complex is 2.42 × 105 L mol−1 cm−1 at 658 nm. Beer’s law is obeyed in the range of 0.01–0.38 μg mL−1 in the measured solution. The relative standard deviation for 11 replicate samples of 0.20 μg mL−1 level is 1.37%. The detection and quantification limits reach 3.1 and 9.7 ng mL−1 in the original samples. This method was applied for the determination of cobalt in biological, water, soil and pharmaceutical preparation samples with good results.

  16. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  17. Dietary supplementation with sodium bicarbonate improves calcium absorption and eggshell quality of laying hens during peak production.

    Science.gov (United States)

    Jiang, M J; Zhao, J P; Jiao, H C; Wang, X J; Zhang, Q; Lin, H

    2015-01-01

    The advantage of supplemental sodium bicarbonate (NaHCO3) on eggshell quality in laying hens changes with age. Besides increasing calcium (Ca) secretion in the eggshell gland, it may improve Ca absorption in the intestine or kidney. Hy-Line Brown layers (n = 384), 25 weeks of age, were allocated to two treatment groups in two experiments, each of which included 4 replicates of 24 hens. Hens were fed a basal diet (control) or the basal diet containing 3 g NaHCO3 g/kg for 50 or 20 weeks in Experiment 1 or 2, respectively. A 24-h continuous lighting regimen was used to allow hens to consume the dietary supplements during the period of active eggshell formation. In Experiment 1, particularly from 25 to 50 weeks of age, and in Experiment 2, NaHCO3 supplementation favoured hen-d egg production at the expense of lower egg weight. The increased eggshell thickness should have nothing to do with the additional eggshell formation, because of the unchanged egg mass and daily eggshell calcification. At 35 weeks of age in both experiments, NaHCO3 supplementation increased duodenal expression of calbindin-d28k (CaBP-D28k) protein, contributing to higher Ca retention and balance. From 50 to 75 weeks of age in Experiment 1, the hens had little response to NaHCO3 supplementation and showed a negative trend on eggshell thickness and strength. It is concluded that dietary supplementation with 3 g NaHCO3 g/kg improves Ca absorption and eggshell quality of laying hens during the peak but not late production period, with the introduction of continuous lighting.

  18. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    DEFF Research Database (Denmark)

    Nielsen, John; Lyngsø, Lars Ole

    1996-01-01

    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...

  19. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa M

    2015-12-01

    This study aims to evaluate the capacity of a compost obtained by co-composting of industrial eggshell (CES) to immobilise lead (Pb) and zinc (Zn) in an acidic soil contaminated by mining activities. Mature compost without eggshell (CWES) and natural eggshell (ES) were also tested as soil amendments for comparison purposes. Three different application rates were used for each material, ensuring the same quantity in terms of neutralizing capacity. Incubation experiments were conducted under controlled conditions and CO2 emissions monitored for 94 days. The environmental availability of Pb and Zn in the amended soil was assessed and bioassays were performed at the end of the incubation period. When eggshells were present, the CES compost raised the soil pH to values higher than 6 and reduced the soil mobile fraction for both Pb and Zn, in more than 95%. Soil toxicity towards Vibrio fischeri was also suppressed and environmental risk decreased to "low level". However, the immobilisation in the acid insoluble soil component was significantly achieved only for Zn. In addition, regarding soil carbon dynamics the CO2-C emissions were enhanced, mainly in the case of the highest rate of amendment. Both first order-E and parallel first order models may adequately describe the kinetic data of CO2-C cumulative release. Without eggshells, the CWES compost revealed limited effect on heavy metals immobilisation, likely due to its small capacity to correct soil acidity, at lower application rates. Using solely eggshells, the ES waste had similar outcomes when compared with CES, but at the higher application rate, CO2 emissions were enhanced with the eggshell compost due to the contribution of biotic carbon present therein. Therefore, this study points out that CES is an effective liming material and may be used for in situ remediation of contaminated soil with Pb and Zn. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  1. Regional and interspecific variation in Sr, Ca, and Sr/Ca ratios in avian eggshells from the USA.

    Science.gov (United States)

    Mora, Miguel A; Brattin, Bryan; Baxter, Catherine; Rivers, James W

    2011-08-01

    To examine regional variation in strontium (Sr), which at high concentrations may reduce eggshell quality, increase egg breakage and reproductive failure, we analyzed Sr, and calcium (Ca) concentrations and Sr/Ca ratios in eggshells from 20 avian species from California, Texas, Idaho, Kansas, and Michigan. In addition, we included data previously reported from Arizona to expand the regional comparisons and to better establish patterns of Sr, and Sr/Ca ratios in bird species across the United States. We found Sr concentrations varied significantly among regions, among species, and among foraging guilds; this variability is strongly influenced by the Sr/Ca ratios in surface water from locations close to the region where the eggshells were collected. Sr concentrations and Sr/Ca ratios were significantly higher in bird eggshells from the Volta wildlife region in the San Joaquin Valley, California and in various locales from Arizona. Sr concentrations and Sr/Ca ratios in bird eggshells from other locations in the USA were lower than those detected in these two regions. Among foraging guilds, invertivores had the highest Sr concentrations and Sr/Ca ratios and carnivores had the lowest. In general, the Sr/Ca ratio increased strongly with increasing Sr concentrations (R(2) = 0.99, P eggshells suggesting that these values could be determined from Sr/Ca ratios in water. Eggshell thickness was poorly correlated with Sr (R(2) = 0.03) but had a significant and positive correlation with Ca and was more properly correlated by a quadratic equation (R(2) = 0.50, Thickness = 2.13 - 0.02Ca - 3.07 * 10(-5)Ca(2)). Our study provides further evidence that Sr accumulates significantly in the avian eggshell, in some regions at concentrations which could be of concern for potential negative effects on reproduction. We suggest that when assessing the effects of metals on avian reproduction in regions with high Sr deposits in rock and soil, Sr concentrations in the eggshell also should be

  2. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    Science.gov (United States)

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  3. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    Science.gov (United States)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  4. Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cai, Mei-Qiang; Wei, Xiao-Qing; Du, Chun-Hui; Ma, Xu-Ming; Jin, Mi-Cong

    2014-07-04

    A novel amphiphilic polymeric ionic liquid membrane containing a hydrophilic bromide anion and a hydrophobic carbonyl group was synthesized in dimethylformamide (DMF) systems using the ionic liquid 1-butyl-3-vinylimidazolium bromide (BVImBr) and the methylmethacrylate (MMA) as monomers. The prepared amphiphilic ploy-methylmethacrylate-1-butyl-3-vinylimidazolium bromide (MMA-BVImBr) was characterized by a scanning electron microscope and an infrared spectrum instrument. The results of solid-phase micro-extraction membrane (SPMM) experiments showed that the adsorption capacity of membrane was about 0.76μgμg(-1) for aniline. Based on this, a sensitive method for the determination of trace aniline, as a degradation product of azo dye Orange G under sonication, was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The calibration curve showed a good linearity ranging from 0.5 to 10.0μgL(-1) with a correlation coefficient value of 0.9998. The limit of quantification was 0.5μgL(-1). The recoveries ranged from 90.6% to 96.1%. The intra- and inter-day relative standard deviations were less than 8.3% and 10.9%. The developed SPMM-LC-MS/MS method was used successfully for preconcentration of trace aniline produced during the sonication of Orange G solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MOLECULARLY IMPRINTED SOLID PHASE EXTRACTION FOR TRACE ANALYSIS OF DIAZINON IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. Rahiminejad ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani ، F. Golbabaei

    2009-04-01

    Full Text Available Amongst organophosphate pesticides, the one most widely used and common environmental contaminant is diazinon; thus methods for its trace analysis in environmental samples must be developed. Use of diazinon imprinted polymers such as sorbents in solid phase extraction, is a prominent and novel application area of molecular imprinted polymers. For diazinon extraction, high performance liquid chromatography analysis was demonstrated in this study. During optimization of the molecular imprinted solid phase extraction procedure for efficient solid phase extraction of diazinon, Plackett-Burman design was conducted. Eight experimental factors with critical influence on molecular imprinted solid phase extraction performance were selected, and 12 different experimental runs based on Plackett-Burman design were carried out. The applicability of diazinon imprinted polymers as the sorbent in solid phase extraction, presented obtained good recoveries of diazinon from LC-grade water. An increase in pH caused an increase in the recovery on molecular imprinted solid phase extraction. From these results, the optimal molecular imprinted solid phase extraction procedure was as follows: solid phase extraction packing with 100 mg diazinon imprinted polymers; conditioning with 5 mL of methanol and 6 mL of LC-grade water; sample loading containing diazinon (pH=10; washing with 1 mL of LC-grade water, 1 mL LC- grade water containing 30% acetonitrile and 0.5 mL of acetonitrile, respectively; eluting with 1 mL of methanol containing 2% acetic acid. The percentage recoveries obtained by the optimized molecular imprinted solid phase extraction were more than 90% with drinking water spiked at different trace levels of diazinon. Generally speaking, the molecular imprinted solid phase extraction procedure and subsequent high performance liquid chromatography analysis can be a relatively fast and proper approach for qualitative and quantitative analysis of diazinon in

  6. Vibration properties of the ostrich eggshell at impact

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Stoklasová, Pavla; Strnková, J.; Nedomová, Š.; Buchar, J.

    2013-01-01

    Roč. 61, č. 6 (2013), s. 1873-1880 ISSN 1211-8516 Institutional support: RVO:61388998 Keywords : eggshell * impact * surface displacement Subject RIV: GM - Food Processing http://acta.mendelu.cz/61/6/1873/same_authors/

  7. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1.

    Science.gov (United States)

    Sergeyeva, Tetyana; Yarynka, Daria; Piletska, Elena; Lynnik, Rostyslav; Zaporozhets, Olga; Brovko, Oleksandr; Piletsky, Sergey; El'skaya, Anna

    2017-12-01

    Nanostructured polymeric membranes for selective recognition of aflatoxin B1 were synthesized in situ and used as highly sensitive recognition elements in the developed fluorescent sensor. Artificial binding sites capable of selective recognition of aflatoxin B1 were formed in the structure of the polymeric membranes using the method of molecular imprinting. A composition of molecularly imprinted polymer (MIP) membranes was optimized using the method of computational modeling. The MIP membranes were synthesized using the non-toxic close structural analogue of aflatoxin B1, ethyl-2-oxocyclopentanecarboxylate as a dummy template. The MIP membranes with the optimized composition demonstrated extremely high selectivity towards aflatoxin B1 (AFB1). Negligible binding of close structural analogues of AFB1 - aflatoxins B2 (AFB2), aflatoxin G2 (AFG2), and ochratoxin A (OTA) was demonstrated. Binding of AFB1 by the MIP membranes was investigated as a function of both type and concentration of the functional monomer in the initial monomer composition used for the membranes' synthesis, as well as sample composition. The conditions of the solid-phase extraction of the mycotoxin using the MIP membrane as a stationary phase (pH, ionic strength, buffer concentration, volume of the solution, ratio between water and organic solvent, filtration rate) were optimized. The fluorescent sensor system based on the optimized MIP membranes provided a possibility of AFB1 detection within the range 14-500ngmL -1 demonstrating detection limit (3Ϭ) of 14ngmL -1 . The developed technique was successfully applied for the analysis of model solutions and waste waters from bread-making plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  9. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  10. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  11. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    Science.gov (United States)

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  12. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  13. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  14. Investigation of binary solid phases by calorimetry and kinetic modelling

    NARCIS (Netherlands)

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the

  15. Solid phase transformations

    CERN Document Server

    Čermák, J

    2008-01-01

    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  16. Variability and interaction of some egg physical and eggshell quality attributes during the entire laying hen cycle.

    Science.gov (United States)

    Sirri, F; Zampiga, M; Berardinelli, A; Meluzzi, A

    2018-05-01

    The aim of this study was to investigate the variability and relationships between some egg physical (egg weight, width, length, shape index, and surface area) and eggshell parameters (weight and percentage, thickness, breaking strength, and L*, a*, and b* values) during the entire laying hen cycle. A total of 8,000 eggs was collected every 5 wk, from 30 to 81 wk of hen age (10 samplings of 400 eggs/house), in 2 identical poultry houses equipped with enriched cages. For the statistical analysis, ANOVA, Bivariate Correlation, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis were used. An increase of egg weight, length, and eggshell lightness (L*) associated with a reduction of eggshell percentage, breaking strength, and redness (a*) was observed as the hen aged (P 10% of eggshell breaking strength and a*. According to the PCA, the highest changes during the laying cycle are related to egg physical parameters (32%) and to eggshell breaking strength, percentage, and thickness (26%). The egg physical parameters appeared to be strongly correlated to each other, whereas a slight correlation between eggshell breaking strength and color attributes were evidenced (-0.231 and 0.289, respectively, for L* and a*; P quality attributes throughout the entire laying hen cycle.

  17. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  18. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  19. Membrane solid-phase extraction: Field application for isolation of polycyclic aromatic hydrocarbons from water samples

    International Nuclear Information System (INIS)

    Furlong, E.T.; Koleis, J.C.; Gates, P.M.

    1995-01-01

    Solid-phase extraction (SPE) membranes (M-SPE) were used to isolate microgram-per-liter to nanogram-per-liter quantities of polycyclic aromatic hydrocarbons (PAH) in 4- to 8-liter ground-water samples from a crude-oil-contaminated ground-water site near Bemidji, Minnesota. The M-SPE method was evaluated (1) under laboratory conditions using reagent water fortified with individual PAH at 1.23 micrograms per liter, and (2) at the Bemidji site. At the site, ground-water samples were processed and PAH isolated using a M-SPE system connected directly to the well pump. Following sample isolation, all M-SPE samples were extracted using dichloromethane and analyzed by gas chromatography-mass spectrometry with selected-ion monitoring. Operationally, the M-SPE method provided a simple means to isolate PAH on site at the wellhead, particularly for anoxic water samples. Acceptable recoveries, ranging from 56 to over 100 percent, were observed for lower molecular weight PAH (naphthalene to pyrene) using the M-SPE method. Recoveries using M-SPE were somewhat lower, but reproducible, for higher molecular weight PAH (chrysene to benzo[ghi]perylene), ranging from 18 to 56 percent. M-SPE provides the capability to collect and field isolate PAH from a sufficiently large number of samples to identify environmental chemical processes occurring at individual compound concentrations of 50 to 1,200 nanograms per liter. Using M-SPE, the potential for facilitated transport of PAH by in situ-derived dissolved organic carbon (DOC) was evaluated at the site. Plots comparing DOC and PAH concentrations indicate that PAH concentrations increase exponentially with linear increases in DOC concentrations

  20. Yeast lipids can phase separate into micrometer-scale membrane domains

    DEFF Research Database (Denmark)

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J

    2010-01-01

    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is bioc......The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  1. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  2. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  3. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  4. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  5. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  6. Effect of varying solid membrane area of bristled wings on clap and fling aerodynamics in the smallest flying insects

    Science.gov (United States)

    Ford, Mitchell; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects with body lengths under 1.5 mm, such as thrips, fairyflies, and some parasitoid wasps, show marked morphological preference for wings consisting of a thin solid membrane fringed with long bristles. In particular, thrips have been observed to use clap and fling wing kinematics at chord-based Reynolds numbers of approximately 10. More than 6,000 species of thrips have been documented, among which there is notable morphological diversity in bristled wing design. This study examines the effect of varying the ratio of solid membrane area to total wing area (including bristles) on aerodynamic forces and flow structures generated during clap and fling. Forewing image analysis on 30 species of thrips showed that membrane area ranged from 16%-71% of total wing area. Physical models of bristled wing pairs with ratios of solid membrane area to total wing area ranging from 15%-100% were tested in a dynamically scaled robotic platform mimicking clap and fling kinematics. Decreasing membrane area relative to total wing area resulted in significant decrease in maximum drag coefficient and comparatively smaller reduction in maximum lift coefficient, resulting in higher peak lift to drag ratio. Flow structures visualized using PIV will be presented.

  7. The relationship between the density of Aedes vigilax (Diptera: Culicidae) eggshells and environmental factors on Kooragang Island, New South Wales, Australia.

    Science.gov (United States)

    Turner, P A; Streever, W J

    1997-12-01

    Knowledge of oviposition sites selected by wetland mosquitoes could improve mosquito control and guide wetland rehabilitation practices to avoid creating or exacerbating a mosquito problem. Two studies that enumerated Aedes vigilax eggshells found in salt marsh soil on the western portion of Kooragang Island in New South Wales, Australia, allowed an evaluation of oviposition sites. In one study, the density of eggshells found in samples collected from a large area was related to environmental factors, including distance from nearby drainage channels, vegetation cover, elevation, and terrain characteristics. Multiple-regression analysis suggested eggshell densities were positively correlated with the presence of depressions and ponds, vegetation cover, and distance from culverts, but negatively related to elevation. In another study, eggshell density was related to relative elevation and vegetation species within each of two 400-m2 plots on Kooragang Island. In all but one instance, samples from bare soil contained fewer eggshells than samples with vegetation cover at both plots. Eggshell density did not differ between the two dominant vegetation species, Sarcocornia quinqueflora and Sporobolus virginicus, although bare soil of one plot had a mean eggshell density similar to that of soil with S. quinqueflora cover. Eggshells were at highest density at intermediate elevations at one plot but at low elevations at the other.

  8. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    Science.gov (United States)

    Sano, Ryoko; Masum, Shah Md; Tanaka, Tomoki; Yamashita, Yuko; Levadny, Victor; Yamazaki, Masahito

    2005-08-01

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La3+, which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the Lα phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the Lα phase but not into that in the lo phase. La3+ induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the Lα phase. This indicates that the binding of La3+ induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the Lα phase and the lo phase is discussed.

  9. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    International Nuclear Information System (INIS)

    Sano, Ryoko; Masum, Shah Md; Tanaka, Tomoki; Yamashita, Yuko; Levadny, Victor; Yamazaki, Masahito

    2005-01-01

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La 3+ , which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the L α phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the L α phase but not into that in the lo phase. La 3+ induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the L α phase. This indicates that the binding of La 3+ induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the L α phase and the lo phase is discussed

  10. A study on the relationship between iridium concentration in hen eggshell and iridium-enriched feed by NAA

    International Nuclear Information System (INIS)

    Yang Gaochuang; Mao Xueying; Wang Jinchun; Lu Yali; Ouyang Hong; Zhang Zhaohui; Chai Zhifang

    2001-01-01

    Four hens were fed by adding ammonium hexachloroiridate into their forage. After two weeks, Ir concentration in three fractions (eggshell, albumen, egg yolk) of their eggs were measured by instrumental neutron activation analysis (INAA). Ir was present in all the three parts of the eggs. Further, the highest concentration of Ir was found in the egg yolk fraction, about 10 times higher than that in the eggshell and albumen. Moreover, the longer the Ir-containing feed was used, the higher the Ir concentration in the egg fractions was. After 4-6 day feeding, the Ir concentration became stable. The experimental results indicated that the Ir concentration was about 2-7 x 10 -10 g/g in the eggshell fraction compared to 5.6 x 10 -7 g/g in feed. Therefore, the ratio from the feed over the eggshell via gastrointestinal pathway was estimated to be about 0.08%. The new result is useful to evaluate the iridium-enriched eggshell fossils of dinosauria and to interpret the origin of the mass extinction of dinosauria at the end of Cretaceous. (author)

  11. Gas phase fractionation method using porous ceramic membrane

    Science.gov (United States)

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  12. Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird.

    Science.gov (United States)

    D'Alba, Liliana; Jones, Darryl N; Badawy, Hope T; Eliason, Chad M; Shawkey, Matthew D

    2014-04-01

    Infection is an important source of mortality for avian embryos but parental behaviors and eggs themselves can provide a network of antimicrobial defenses. Mound builders (Aves: Megapodiidae) are unique among birds in that they produce heat for developing embryos not by sitting on eggs but by burying them in carefully tended mounds of soil and microbially decomposing vegetation. The low infection rate of eggs of one species in particular, the Australian brush-turkey (Alectura lathami), suggests that they possess strong defensive mechanisms. To identify some of these mechanisms, we first quantified antimicrobial albumen proteins and characterized eggshell structure, finding that albumen was not unusually antimicrobial, but that eggshell cuticle was composed of nanometer-sized calcite spheres. Experimental tests revealed that these modified eggshells were significantly more hydrophobic and better at preventing bacterial attachment and penetration into the egg contents than chicken eggs. Our results suggest that these mechanisms may contribute to the antimicrobial defense system of these eggs, and may provide inspiration for new biomimetic anti-fouling surfaces.

  13. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  14. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    Science.gov (United States)

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  15. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    Science.gov (United States)

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD metabolites of dipyrone had not been studied before in sewage sludge.

  16. Mercury concentrations in eggshells of the Southern Ground-Hornbill (Bucorvus leadbeateri) and Wattled Crane (Bugeranus carunculatus) in South Africa.

    Science.gov (United States)

    Daso, Adegbenro P; Okonkwo, Jonathan O; Jansen, Raymond; Brandao, José D D O; Kotzé, Antoinette

    2015-04-01

    In this study, wild hatched eggshells were collected from the nests of threatened Wattled Crane and South Ground-Hornbill in an attempt to determine their total Hg concentrations. A total of fourteen eggshell samples from both bird species were collected from different study areas in the Mpumlanga and KwaZulu-Natal Provinces of South Africa. The eggshells were acid digested under reflux and their total Hg concentrations were determined using cold-vapour atomic absorption spectrophotometry (CV-AAS). The observed total Hg levels for the South Ground-Hornbill samples ranged from 1.31 to 8.88 µg g(-1) dry weight (dw), except for one outlier which had an elevated 75.0 µg g(-1) dw. The levels obtained for the Wattled Crane samples were relatively high and these ranged from 14.84 to 36.37 µg g(-1) dw. Generally, all the measured total Hg concentrations for the Wattled Crane samples exceeded the estimated total Hg levels derived for eggshell which were known to cause adverse reproductive effects in avian species from previous studies. Based on these findings, it is, therefore, possible that the exposure of these birds to elevated Hg may have contributed to their present population decline. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    International Nuclear Information System (INIS)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V; Hohlbauch, Sophia; Proksch, Roger; King, William P; Voitchovsky, Kislon; Contera, Sonia Antoranz

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  18. Eggshell appearance does not signal maternal corticosterone exposure in Japanese quail: an experimental study with brown-spotted eggs.

    Directory of Open Access Journals (Sweden)

    Camille Duval

    Full Text Available Reproduction is a critical period for birds as they have to cope with many stressful events. One consequence of an acute exposure to stress is the release of corticosterone, the avian stress hormone. Prolonged stress can have negative impacts on the immune system, resulting in, for example, increased oxidative stress. Through maternal effects, females are known to modulate their investment in eggs content according to their own physiological condition. Less is known about maternal investment in eggshells, especially in pigments. The two main eggshell pigments may possess opposite antioxidant properties: protoporphyrin (brown is a pro-oxidant, whereas biliverdin (blue-green is an antioxidant. In Japanese quail, we know that the deposition of both pigments is related to female body condition. Thus, a chronic stress response may be reflected in eggshell coloration. Using female Japanese quails that lay brown-spotted eggs, we explored whether physiological exposure to corticosterone induces a change in female basal stress and antioxidant factors, and eggshell pigment concentration, spectrophotometric reflectance, and maculation coverage. We supplemented adult females over a 2 week period with either peanut oil (control or corticosterone (treatment. We collected pre- and post-supplementation eggs and analysed the effect of corticosterone treatment on female physiology and eggshell appearance parameters. Except for corticosterone-fed birds which laid eggs with brighter spots, supplementation had no significant effect on female physiology or eggshell pigment concentration, reflectance and maculation. The change in eggshell spot brightness was not detected by a photoreceptor noise-limited color opponent model of avian visual perception. Our data confirms that eggshell reflectance in spotted eggs varies over the laying sequence, and spot reflectance may be a key factor that is affected by females CORT exposure, even if the changes are not detected by an

  19. Study of ion separation through solid-supported liquid membrane

    International Nuclear Information System (INIS)

    Kang, Young Ho; Kim, Jung Do; Kim, Kyoung Ho

    1990-01-01

    The membranes used in this study consist of a microporous polymeric support with the solvent contraining alamine 336, Tri-N-Octyl phosphine oxide, Tri-N-butyl phosphate, Di-(2-ethylhexyl) phosphoric acid as a carrier within the pores by the capillary forces. When this liquid membrane is interposed between aqueous feed and product solutions, the carrier serving as a complexing agent, can pick up the uranium ions on the feed side of the membrane and carry them across the membrane by diffusion. In this study, the uranium flux through the solid-supported liquid membrane was analyzed as a function of carrier concentration and acidity of the feed solution for the carrier species. Also, the Gel-liquid extraction of uranium ions from aqueous solution was performed. The adsorbents were prepared by casting the polymer solution composed of polyvinyl chloride, TOPO, and additions. The extraction of uranyl nitrate ions has been investigated as a function of TOPO/PVC ratio, evaporation time, and the stability. The results show that is maybe possible to develop an alternative uranium purification process. (author)

  20. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan

    2005-01-01

    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub......-temperature and low-temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n-decane solutions. (C) 2004 American Institute of Chemical Engineers....

  1. Local Cloudiness Development Forecast Based on Simulation of Solid Phase Formation Processes in the Atmosphere

    Science.gov (United States)

    Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid

    2013-04-01

    Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we

  2. Bacteriological contamination, dirt, and cracks of eggshells in furnished cages and noncage systems for laying hens: an international on-farm comparison.

    Science.gov (United States)

    De Reu, K; Rodenburg, T B; Grijspeerdt, K; Messens, W; Heyndrickx, M; Tuyttens, F A M; Sonck, B; Zoons, J; Herman, L

    2009-11-01

    For laying hens, the effects of housing system on bacterial eggshell contamination and eggshell quality is almost exclusively studied in experimental hen houses. The aim of this study was to compare eggshell hygiene and quality under commercial conditions. Six flocks of laying hens in furnished cages and 7 flocks in noncage systems were visited when hens were about 60 wk of age. Farms from Belgium, the Netherlands, and Germany were included in the study. The following parameters were determined on eggs sampled at the egg belts: 1) bacterial eggshell contamination, as expressed by total count of aerobic bacteria and number of Enterobacteriaceae; 2) proportion of dirty eggs; and 3) proportion of cracked eggs and eggs with microcracks. Considerable within-flock differences were found in eggshell contamination with total count of aerobic bacteria, both for furnished cages (P < or = 0.001, range 4.24 to 5.22 log cfu/eggshell) and noncage systems (P < or = 0.001, range 4.35 to 5.51 log cfu/eggshell). On average, lower levels of contamination with total count of aerobic bacteria (4.75 vs. 4.98 log cfu/eggshell; P < or = 0.001) were found on eggshells from furnished cages compared with noncage systems. Concerning Enterobacteriaceae, no significant difference in average eggshell contamination between both systems could be shown. The total percentage of cracked eggs was higher (P < or = 0.01) in furnished cages (7.8%) compared with noncage systems (4.1%). This was, however, due to the high percentage of cracked eggs (24%) observed on one of the furnished cage farms. We conclude that bacteriological eggshell contamination and percentage of cracked eggs differed substantially between individual farms using the same housing system. This may also explain some discrepancies between the findings of the present study versus some findings of previous experimental studies or studies on a small number of farms. Although statistically significant, the average differences in

  3. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  4. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    International Nuclear Information System (INIS)

    Baker, Lindsay A.; Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR

  5. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  6. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  7. All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for Determination of Donepezil Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Khamees, Nesreen; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad; Aziz, Azza

    2017-09-01

    All-solid-state, polyvinyl chloride (PVC) membrane, and carbon paste potentiometric ion-selective electrodes (ISEs) were proposed for the determination of donepezil hydrochloride (DON) in the drug substance and a pharmaceutical formulation. The potentiometric response toward DON was based on the existence of donepezil-tetraphenyl borate (DON-TPB) in a PVC membrane or a carbon paste in the presence of dioctylphthalate. In contrast, the solid-state electrode was prepared by direct incorporation of DON-TPB into a commercial nail varnish without external additives. The electrodes exhibited Nernstian slopes of 55.0, 57.0, and 53.0 mV/decade over the concentration ranges of 1 × 10-5 to 1 × 10-3, 1 × 10-4 to 10-2, and 1 × 10-4 to 5 × 10-3 for the solid-state, PVC membrane, and carbon paste electrodes, respectively. The response of the electrodes is independent of pH in the range of 2-≤8. The electrodes showed good selectivity for DON with respect to a number of inorganic cations and amino acids. The electrodes were used for the determination of DON in pure solution and in pharmaceutical tablets with high accuracy (±2%) and precision (RSD ≤2%). The solid-state electrode is simple, economical, and rapid when compared to the PVC membrane and carbon paste electrodes.

  8. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ryoko [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Masum, Shah Md [Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan); Tanaka, Tomoki [Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan); Yamashita, Yuko [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Levadny, Victor [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Scientific Council for Cybernetics, Russian Academy of Sciences, Vavilov street 34, 333117, Moscow (Russian Federation); Yamazaki, Masahito [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan)

    2005-08-10

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La{sup 3+}, which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the L{sub {alpha}} phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the L{sub {alpha}} phase but not into that in the lo phase. La{sup 3+} induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the L{sub {alpha}} phase. This indicates that the binding of La{sup 3+} induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the L{sub {alpha}} phase and the lo phase is discussed.

  9. The Microbial Burden Load of Eggshells from Different Poultry ...

    African Journals Online (AJOL)

    PROF HORSFALL

    In this study, the microbial load of egg shell from different poultry system in .... eggshell surface and also decrease bacterial and fungal invasion ... measures of central tendency (mean ± standard .... Salmonella Contamination and Disinfection.

  10. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    Science.gov (United States)

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  11. An improved method for the separation of 210Bi and 210Po from 210Pb by using solid-phase extraction disk membranes: environmental applications

    International Nuclear Information System (INIS)

    Marley, N.A.; Gaffney, J.S.; Orlandini, K.A.; Cunningham, M.M.; Drayton, P.J.

    1999-01-01

    An improved method is described for the rapid separation of 210 Bi and 210 Po from the parent radionuclide, 210 Pb, in environmental samples. After the metals were leached from a variety of matrices, they were converted to their anionic chloride complexes by addition of 1 M HCl. These complexes can be separated by solid-phase extraction with disk extraction membranes impregnated with anionic chelating particles. This separation technique takes advantage of the differences in sorption behavior of the chloride complexes to strongly basic anion exchange groups. The extraction membranes can then be counted directly for 210 Bi and 210 Po. If sufficient time is allowed for ingrowth of the daughter, the concentration of the parent 210 Pb in the original sample can be determined from the concentration of 210 Bi. In addition, the ratios of 210 Bi/ 210 Pb and 210 Po/ 210 Pb can be obtained by immediate extraction of 210 Bi followed by ingrowth of 210 Bi for a second determination to establish 210 Pb concentration levels. This can be accomplished easily in order to estimate the residence times of atmospheric aerosols or aqueous colloidal materials. This new technique avoids the time consuming extraction, precipitation, and electroplating procedures used previously and eliminates the experimental errors associated with multiple sample manipulations. (orig.)

  12. The Effects of Eggshell Ash on Strength Properties of Cement-stabilized Lateritic

    OpenAIRE

    Okonkwo U. N; Odiong I. C; Akpabio E. E

    2012-01-01

    Eggshell ash obtained by incinerating Fowls’ eggshells to ash has been established to be a good accelerator for cement-bound materials and this would be useful for road construction work at the peak of rainy seasons for reducing setting time of stabilized road pavements. However this should be achieved not at the expense of other vital properties of the stabilized matrix. This is part of the effort in adding value to agricultural materials which probably cause disposal problems. Thus this stu...

  13. Impact of egg holding temperatures on the recovery of Salmonella from eggshells and stainless steel coupons

    Science.gov (United States)

    This experiment was conducted to determine the impact of egg holding temperature on the ability to recover Salmonella from eggshells after 24 h. Salmonella enterica Enteritidis (nalidixic acid resistant marker strain) inoculated eggshells and stainless steel coupons (SSC, 14 mm diameter) were held a...

  14. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  15. Multiple solid-phase microextraction

    NARCIS (Netherlands)

    Koster, EHM; de Jong, GJ

    2000-01-01

    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  16. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  17. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  18. Nesting environment may drive variation in eggshell structure and egg characteristics in the Testudinata.

    Science.gov (United States)

    Deeming, D Charles

    2018-05-14

    Testudines exhibit considerable variation in the degree of eggshell calcification, which affects eggshell conductance, water physiology of the embryos, and calcium metabolism of embryos. However, the underlying reason for different shell types has not been explored. Phylogenetically controlled analyses examined relationships between egg size, shell mass, and clutch size in ∼200 turtle species from a range of body sizes and assigned by family as laying either rigid- or pliable-shelled eggs. Shell type affected egg breadth relative to pelvic dimensions, egg mass, and relative shell mass but did not affect size, mass, or total shell mass of the clutch. These results suggest that calcium availability may be a function of body size and the type of shell may reflect in part the interplay between clutch size and egg size. It was further concluded that the eggshell probably evolved as a means of physical protection. Differences in shell calcification may not primarily reflect reproductive parameters but rather correlate with the acidity of a species' nesting environment. Low pH environments may have thicker calcareous layer to counteract the erosion caused by the soil and maintain the integrity of the physical barrier. Limited calcium availability may constrain clutch size. More neutral nesting substrates expose eggshells to less erosion so calcification per egg can be reduced and this allows larger clutch sizes. This pattern is also reflected in thick, calcified crocodilian eggs. Further research is needed to test whether eggshell calcification in the testudines correlates with nest pH in order to verify this relationship. © 2018 Wiley Periodicals, Inc.

  19. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  20. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    International Nuclear Information System (INIS)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan; Yan Yong

    2009-01-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  1. Effect of solids, caloric content on dual-phase gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Maegdenbergh, V.; Urbain, J.L.; Siegel, J.A.; Mortelmans, L.; De Roo, M. (Univ. Hospital Gasthuisberg, Leuven (Belgium) Temple Univ. Hospital, Philadelphia, PA (USA))

    1990-03-01

    The dual-phase gastric emptying technique is routinely employed to determine the differential emptying of solids and liquids in a wide spectrum of gastrointestinal diseases. Composition, acidity, volume, caloric density, physical form and viscosity of the test means have been shown to be important determinants for the quantitative evaluation of gastric emptying. In this study, the authors have evaluated the effect of increasing the caloric content of the solid portion of a physiologic test mean on both solid and liquid emptying kinetics in health male volunteers. They observed that increasing solid caloric content delayed emptying of both solids and liquids. For the solid phase, the delay was accounted for by a longer lag phase and decrease in emptying rate; for liquids a longer emptying rate was also obtained. They conclude that modification of the caloric content of the solid portion of a meal not only affects the emptying of the solid phase but also alters the emptying of the liquid component of the meal.

  2. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  3. Eggshell thinning and residues in mallards on year after DDE exposure

    Science.gov (United States)

    Haegele, M.A.; Hudson, R.H.

    1974-01-01

    A group of 16 mallard hens (Anas platyrhynchos), that had been given feed containing 40 ppm ofp,p'-DDE for 96 days, laid eggs with shells averaging about 15%?20% thinner than those of ten control birds during and up to 42 days after treatment. In eight of the treated birds killed at that time, whole-body DDE residues averaged 33.1 ppm (wet weight). The other eight treated birds and ten controls were kept through the winter with no additional DDE exposure and penned separately five days for individual egg collection about three weeks after laying began in spring. At that time (nearly 11 months after DDE feeding had stopped), the treated birds laid eggs with shells averaging 7.4% thinner than control eggshells (significant at P<0.05) and their whole-body DDE residues averaged 9.6 ppm (wet weight). Variations in eggshell thickness and DDE residues were considerable among treated birds. However, regression analysis showed moderate negative correlations (r=?0.51 to ?0.62) between eggshell thickness and DDE residues in whole bodies and eggs, and strong positive correlations (r=0.73 and 0.91) between DDE residues in whole bodies and in eggs.

  4. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  5. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  6. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    Science.gov (United States)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  7. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  8. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  9. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  10. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Science.gov (United States)

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  12. Dysprosium separation from aqueous phase by non-dispersive solvent extraction employing hollow fibre membrane module

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) consist of fourteen lanthanides and three elements which are Sc, Y and La resulting in total 17 REEs. In the last decade, these rare earths elements which have unique physical and chemical properties have been highly in demand for their application in almost all walks of life. Various methods such as ion exchange, precipitation and solvent extraction have been used to recover these elements from aqueous solutions. These traditional methods have some inherent disadvantages like handling of hazardous organic chemicals, ineffectiveness to recover a very low concentration of contaminated source etc. In this regard, an important method i.e. liquid membrane offers separation scheme; which combines the characteristics, of solvent extraction and solid membrane separation, to overcome the disadvantages of conventional techniques. Various experiments were carried out to evaluate the effect of feed acidity, metal ion concentration, carrier concentration, feed composition, flow rates and phase ratio on the transport of rare earths metal ions across the membrane

  13. Determination of insoluble avian eggshell matrix proteins

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Sedláková, Pavla; Lacinová, Kateřina; Pataridis, Statis; Eckhardt, Adam

    2010-01-01

    Roč. 397, č. 1 (2010), s. 205-214 ISSN 1618-2642 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z50110509 Keywords : eggshell proteins * insoluble proteins * matrix proteins Subject RIV: CE - Biochemistry Impact factor: 3.841, year: 2010

  14. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  15. Factors Affecting Element Concentrations in Eggshells of Three Sympatrically Nesting Waterbirds in Northern Poland.

    Science.gov (United States)

    Kitowski, Ignacy; Jakubas, Dariusz; Indykiewicz, Piotr; Wiącek, Dariusz

    2018-02-01

    Avian eggshells are convenient samples in biomonitoring studies, because they are easily accessible, especially from colonially or semicolonially breeding birds. In the present study, concentrations of 17 elements, including heavy metals and essential elements in post-hatch eggshells, were compared among three species of waterbirds of differing strategies for gaining reserves for egg production and diet: mallard, Anas platyrhynchos (ML, a capital breeder, mainly herbivorous), common tern, Sterna hirundo (CT, an income breeder, piscivorous) and black-headed gull, Chroicocephalus ridibundus (BHG, mixed strategy, omnivorous) and breeding sympatrically in three sites in North Poland. Analyses revealed that Fe, Zn, and Cu levels differed the most in the studied species, which may be explained by various contributions of fish, aquatic plants, and soil invertebrates in their diets. Generally, the studied species' eggshells accumulated amounts of elements comparable to those reported for other waterbirds without putting the growth and development of the embryo at risk. The only exception was very high levels of Cr in ML and CT, which may be explained by their foraging on aquatic organisms in waterbodies polluted by this element. Intersite differences in eggshell concentrations of Ni, Sr, Hg and Cr in CT (an income breeder) may be explained by the influence of local pollution sources (small factories, polluted river).

  16. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota.

    Science.gov (United States)

    van Veelen, H Pieter J; Salles, Joana Falcão; Tieleman, B Irene

    2018-05-01

    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.

  17. Synthesis of three-dimensional calcium carbonate nanofibrous structure from eggshell using femtosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan Krishnan

    2011-01-01

    Full Text Available Abstract Background Natural biomaterials from bone-like minerals derived from avian eggshells have been considered as promising bone substitutes owing to their biodegradability, abundance, and lower price in comparison with synthetic biomaterials. However, cell adhesion to bulk biomaterials is poor and surface modifications are required to improve biomaterial-cell interaction. Three-dimensional (3D nanostructures are preferred to act as growth support platforms for bone and stem cells. Although there have been several studies on generating nanoparticles from eggshells, no research has been reported on synthesizing 3D nanofibrous structures. Results In this study, we propose a novel technique to synthesize 3D calcium carbonate interwoven nanofibrous platforms from eggshells using high repetition femtosecond laser irradiation. The eggshell waste is value engineered to calcium carbonate nanofibrous layer in a single step under ambient conditions. Our striking results demonstrate that by controlling the laser pulse repetition, nanostructures with different nanofiber density can be achieved. This approach presents an important step towards synthesizing 3D interwoven nanofibrous platforms from natural biomaterials. Conclusion The synthesized 3D nanofibrous structures can promote biomaterial interfacial properties to improve cell-platform surface interaction and develop new functional biomaterials for a variety of biomedical applications.

  18. Novel materials and methods for solid-phase extraction and liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  19. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Donghua H.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.; Rienstra, Chad M.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

  20. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2018-02-01

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality

    OpenAIRE

    Soares, Micaela A. R.; Quina, Margarida M. J.; Quinta-Ferreira, Rosa M.

    2013-01-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporati...

  2. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  3. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  4. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  5. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  6. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  7. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  8. Influence of industrial solid waste addition on properties of soil-cement bricks

    OpenAIRE

    Siqueira, F. B.; Amaral, M. C.; Bou-Issa, R. A.; Holanda, J. N. F.

    2016-01-01

    Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste) as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, wa...

  9. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    Science.gov (United States)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  11. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    Science.gov (United States)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  12. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  13. THE EFFECT OF EGGSHELL MOSAIC TRAINING TOWARD FINE MOTOR SKILLS OF CHILDREN WITH INTELLECTUAL AND DEVELOPMENTAL DISABILITY (IDD

    Directory of Open Access Journals (Sweden)

    Diadra Finalistiani

    2017-02-01

    Full Text Available The purpose of this research was to determine the effect of eggshell mosaic toward fine motor skills of children with intellectual and develompental disability. The data was collected with observation, and the analysis technique used analysis in condition and analysis between conditions. The conclusion of this research was eggshell mosaic gives effect toward the fine motor skills of the children, it was shown from fine motor skills of the children before eggshell mosaic treatment, during the treatment and after controlling, and the fine motor skills of the children was improved.

  14. Composite Superabsorbent Hydrogel of Acrylic Copolymer and Eggshell: Effect of Biofiller Addition

    OpenAIRE

    Queirós, Marcos Vinícius A.; Bezerra, Maslândia N.; Feitosa, Judith P. A.

    2017-01-01

    Eggshell (ES) is an abundant waste material which is mainly composed of calcium carbonate. A superabsorbent hydrogel composite based on poly(acrylamide-co-potassium acrylate) as matrix containing 17 wt.% of chicken ES powder as a filler was synthesized and compared with the gel without filler. The characterization was carried out by Fourier transform infrared (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), thermogravimetric analysis (TGA), X-ray diffr...

  15. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    Science.gov (United States)

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  16. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  17. SEISMIC DISTRESS AND PROTECTION OF FLEXIBLE MEMBRANE LINERS OF SOLID WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2011-01-01

    Seismic distress of solid waste landfills may result from any of the two consequences of a seismic event: (a) the transient ground deformation related to seismic wave propagation, (b) the permanent ground deformation caused by abrupt fault dislocation. Design provisions for solid waste landfills...... prohibit the construction of landfills in the vicinity of an active fault aiming to prevent the latter. Nonetheless, the impact of applied permanent deformation on the system components of landfills and on the waste mass has not been fully demonstrated yet. For this purpose, efficient finite......-element analyses were performed, taking also into account the potential slip displacement development along the interfaces formulated on each side of the flexible membrane liner (FML). It is shown that base fault dislocation causes significant plastic strains at each one of the components of the waste landfill...

  18. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  19. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    Science.gov (United States)

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  20. Assessment of diagenetic alteration of dinosaur eggshells through petrography and geochemical analysis

    Science.gov (United States)

    Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.

    2012-12-01

    Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.

  1. Adsorption of iron by using hybrid Akar Putra and commercialized chicken eggshells as bio-sorbents from aqueous solution

    Directory of Open Access Journals (Sweden)

    H.M. Nasir

    2016-05-01

    Full Text Available Heavy metal contamination in the environment could cause harmful effects both to human health and aquatic life. Numerous remediation methods had been developed to encounter with the contamination problem prior to degrade, decrease and to purify the contaminated water at minimal concentration as low as possible. Therefore, in current study, commercialized chicken eggshells and hybrid Akar Putra chicken eggshells were conducted in batch experiment to testify the capabilities of bio-sorbent materials in iron (II ion removal from aqueous solution at optimized level of dosage and equilibrium contact time. The optimum condition for iron (II removal for commercialized chicken eggshells and hybrid Akar Putra chicken eggshells bio-sorbents reached at 0.30 g with optimum contact time of 50 minutes and 91.83% and 91.07% of removal percentage with 0.60 g at 40 minutes. The final concentration from both bio-sorbents is achieved below than drinking water guideline (0.30 mg/L, 0.1635 mg/L and 0.1785 mg/L, respectively. The isotherm adsorption results showed it fitted better in Langmuir Isotherm Model than in Freundlich Isotherm Model, however with weak bonding, which could not held onto the heavy metal ions in long time period. In brief, commercialized chicken eggshells and hybrid Akar Putra chicken eggshells have considerable potential in removing heavy metal in aqueous solution. The selection of the bio-sorbent materials is more favorable as it reduces dependency towards chemical usage in water treatment which could have complied with drinking water guideline that can be obtained easily, abundance in amount, cheap and biodegradable.

  2. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    Science.gov (United States)

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  3. Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets.

    Science.gov (United States)

    Olgun, Osman; Altay, Y; Yildiz, Alp O

    2018-04-01

    1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3 × 2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500.00 U/kg, β-glucanase: 100 000 U/kg, cellulase: 1 000 000 U/kg, α-amylase: 160 000 U/kg) inclusion in the diet. Wheat replaced 0, 50, or 100% of maize with or without 1.0 g/kg enzyme supplementation in iso-nitrogenous and iso-caloric experimental diets. 3. Body weight, egg production, egg weight, egg mass, eggshell thickness, and the feed conversion ratio were adversely affected by the wheat-based diet. The eggshell quality parameters decreased with enzyme supplementation to the diet. 4. Wheat-based diets adversely affected calcium and phosphorus concentrations in the tibia, but the addition of the enzymes to the wheat-based diet prevented the negative effects of wheat-based diets on tibia mineralisation in laying hens. The wheat-based diets tended to reduce plasma mineral contents, and the addition of enzymes tended to affect plasma minerals and biomechanical properties of the tibia positively in laying hens. 5. These results indicate that wheat-based diets in aged laying hens adversely affected the mineral metabolism compared with maize-based diets, and the negative effects of wheat on bone mineralisation can be prevented by enzyme supplementation to the diets in laying hens.

  4. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire, E-mail: gregoire.danger@univ-amu.fr [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France)

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  5. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    Science.gov (United States)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.

  6. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  7. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  8. Effects of deep cryogenic treatment on the solid-state phase transformation of Cu-Al alloy in cooling process

    Science.gov (United States)

    Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun

    2012-07-01

    The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.

  9. Role of nanoparticles in analytical solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.

    2013-01-01

    Solid phase microextraction (SPME) is commonly used to measure the free concentration of fairly hydrophobic substances in aqueous media on the basis of their partitioning between sample solution and a solid phase. Here we study the role of nanoparticles that may sorb the analyte in the sample

  10. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins

    International Nuclear Information System (INIS)

    Kim, GeunHyung; Min, Taijin; Park, Su A; Kim, Wan Doo; Koh, Young Ho

    2007-01-01

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly(ε-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes

  11. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    Science.gov (United States)

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  13. Study on confirmation of Solid-Meal Lag Phase of Gastric Emptying

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Kyoung Soo; Kim, Chang Guhn; Juhng, Seon Kwan; Won, Jong Jin; Nah, Yong Ho

    1991-01-01

    The purpose of this study was to examine the existence of a lag phase of gastric emptying of solid meals. We studied solid phase gastric emptying in 26 normal subject using continuous data acquisition for 30 minutes. Each ingested a 300 g meal containing 99m Tc-labeled scrambled egg (solid 150 g, milk 150 ml). Lag phase was determined by 1) inspection of the gastric emptying curve 2) time to a 2% decrease in stomach activity 3) the time of visual appearance of duodenal activity on computer image. We concluded that solid meal lag phase exist.

  14. Study on confirmation of Solid-Meal Lag Phase of Gastric Emptying

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Kyoung Soo; Kim, Chang Guhn; Juhng, Seon Kwan; Won, Jong Jin; Nah, Yong Ho [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    1991-07-15

    The purpose of this study was to examine the existence of a lag phase of gastric emptying of solid meals. We studied solid phase gastric emptying in 26 normal subject using continuous data acquisition for 30 minutes. Each ingested a 300 g meal containing {sup 99m}Tc-labeled scrambled egg (solid 150 g, milk 150 ml). Lag phase was determined by 1) inspection of the gastric emptying curve 2) time to a 2% decrease in stomach activity 3) the time of visual appearance of duodenal activity on computer image. We concluded that solid meal lag phase exist.

  15. Assaying the proton transport and regulation of UCP1 using solid supported membranes.

    Science.gov (United States)

    Blesneac, Iulia; Ravaud, Stéphanie; Machillot, Paul; Zoonens, Manuela; Masscheylen, Sandrine; Miroux, Bruno; Vivaudou, Michel; Pebay-Peyroula, Eva

    2012-08-01

    The uncoupling protein 1 (UCP1) is a mitochondrial protein that carries protons across the inner mitochondrial membrane. It has an important role in non-shivering thermogenesis, and recent evidence suggests its role in human adult metabolism. Using rapid solution exchange on solid supported membranes, we succeeded in measuring electrical currents generated by the transport activity of UCP1. The protein was purified from mouse brown adipose tissue, reconstituted in liposomes and absorbed on solid supported membranes. A fast pH jump activated the ion transport, and electrical signals could be recorded. The currents were characterized by a fast rise and a slow decay, were stable over time, inhibited by purine nucleotides and activated by fatty acids. This new assay permits direct observation of UCP1 activity in controlled cell-free conditions, and opens up new possibilities for UCP1 functional characterization and drug screening because of its robustness and its potential for automation.

  16. Solid Phase Radioimmunoassay for Measuring Serum Prolactin Using Antibody Coupled Magnetizable Particles

    International Nuclear Information System (INIS)

    El-Bayoumy, A.S.A.

    2012-01-01

    The objective of the present work was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase magnetic particles for the measurement of prolactin (PRL) in human serum are described. The production of polyclonal antibodies was carried out by immunizing three Balb/C mice intraperitoneal through primary injection and two booster doses. Low density magnetizable cellulose iron oxide particles have been used to couple covalently to the IgG fraction of polyclonal anti-prolactin using carbonyl diimidazole activation method and applied as a solid phase separating agent for RIA of serum prolactin. Preparation of 125 I-PRL tracer was prepared using lactoperoxidase method and it was purified by gel filtration using sephadex G-100. The PRL standards were prepared using a highly purified PRL antigen with assay buffer as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of prolactin based on magnetizable solid phase separation. These magnetic particles retain their characteristics during storage for 6 months at 4 degree C. In conclusion, this assay could be used as a useful diagnostic tool for pituitary dysfunction and possible reproductive disability.

  17. Ratite eggshells from lanzarote, canary islands.

    Science.gov (United States)

    Franz Sauer, E G; Rothe, P

    1972-04-07

    Struthious and aepyornithoid eggshells from Tertiary calcareous sediments on Lanzarote prove the presence, until about 12 million years ago, of large flightless birds. The calcarenite horizon is recognized as an old land surface. Mesozoic sedimentary rocks in the basement of the volcanic islands of Lanzarote and neighboring Fuerteventura indicate that at least part of the Canary Archipelago is underlain by continental crust. Separation of the eastern Canaries from Africa raight have been by rifting, and a land connection might still have existed in the lower Pliocene.

  18. Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force

    DEFF Research Database (Denmark)

    Hudson, Elton P.; Nikoshkov, Andrej; Uhlén, Mathias

    2012-01-01

    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and th...

  19. Gas-phase and liquid-phase pre-irradiation grafting of AAc onto LDPE and HDPE films for pervaporation membranes

    International Nuclear Information System (INIS)

    Rao Zhigong; Li Guixiang; Sugo, Takanobu; Okamoto, Jiro

    1992-01-01

    A study has been made on gas-phase and liquid-phase pre-irradiation grafting of acrylic acid onto LDPE and HDPE films for pervaporation membranes of ethanol-water mixtures. It was found that the degree of grafting, percent volume change of grafted membranes and length of grafting chains depend on the methods of grafting, crystal state of substrate films and diffusion rate of the monomer in the films. The pervaporation characteristics of grafted membranes is influenced directly by the surface hydrophilicity of grafted membranes, temperature of the feed, degree of grafting, crosslinking of grafted chains and alkaline metal ions in the functional groups. The potassium ion exchange membrane of HDPE synthesized by gas-phase grafting has better pervaporation efficiency. At 80 wt% ethanol in the feed, 25 o C feed temperature and 70% degree of grafting a grafted membrane has a 0.65 kg/m 2 h flux and a separation factor of 20. (Author)

  20. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  1. Solid phase extraction-electrospray ionization mass spectrometric method for the determination of palladium

    International Nuclear Information System (INIS)

    Pranaw Kumar; Telmore, Vijay M.; Jaison, P.G.; Sarkar, Arnab; Alamelu, D.; Aggarwal, S.K.

    2015-01-01

    Platinum group of element (PGEs) are extensively used as a catalyst and anticancer reagent. Due to the soft nature of PGEs, sulphur based donar ligands are used for the separation of these elements. Studies on the formation of different species are helpful for obtaining the ideas about separation of these elements from the complex matrices. Palladium (Pd) is studied as a representative element which is also formed by nuclear fission of fissile nuclides. In view of the relatively small amount of solvent required for separation, solid phase extraction is preferred over most of the separation methods. Solid phase extraction method using DPX as a stationary phase was previously reported for the separation of Pd in SHLLW using benzoylthiourea as a ligand. However, in case of large volume samples manual extraction by DPX is tedious task. In the present studies, the feasibility of extraction using benzoylthiourea on automated solid phase extraction system was carried out for the extraction of Pd

  2. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography.

    Science.gov (United States)

    Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee

    2016-01-04

    A facile method of extraction using porous membrane protected micro-solid phase extraction (μ-SPE) with a graphene-based sorbent followed by high performance liquid chromatography-ultraviolet detector was developed. The reduced graphene oxide (r-GO) (1mg), synthesized from graphite oxide, was enclosed in a polypropylene bag representing the μ-SPE device, which was used for the extraction of estrogens such as estrone, 17β-estradiol, 17α-ethynylestradiol and diethylstilbestrol in water. The r-GO obtained was identified and characterized by Fourier transform infrared, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. The sorbent was loaded with sodium dodecyl sulfate by sonication to prevent agglomeration in aqueous solution. With this method, low limits of detection of between 0.24 and 0.52 ng L(-1) were achieved. For estrogen analysis a linear calibration range of 0.01-100 μg L(-1) was obtained, with the coefficients of determination (r(2)) higher than 0.992. This proposed method was successfully applied to determine estrogens in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  4. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  5. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  6. Nonlinear acoustics determination of phase characteristics of PVDF membrane hydrophones

    International Nuclear Information System (INIS)

    Bloomfield, Philip E; Lewin, Peter A; Gandhi, Gaurav

    2011-01-01

    When an ultrasonic pressure wave propagates through a nonlinear medium, the relative phasing of the generated harmonics causes a distinct asymmetry between the positive and negative pressure levels and between the rise and fall time of examined waveforms. A faithful quantitative reproduction of the source transducer's pressure field requires amplitude and phase measurements by calibrated hydrophone probes. Nonlinear hydrophone calibration provides amplitude and phase information at discrete multiples of an acoustic source's fundamental frequency. Two PVDF bilaminar membrane hydrophones were first calibrated in terms of their amplitude sensitivity to the pressure levels generated by two different HIFU (High Intensity Focused Ultrasound) circular source transducers operating at 5 MHz and 10 MHz, enabling phase studies up to 105 and 100 MHz, respectively. Introducing two newly-developed phase-dispersion representations, the phase responses of the two membrane hydrophones were determined with respect to the phase of the complex frequency response extracted from the nonlinear field simulated by a semi-empirical computer model which predicts the near and the far field pressure distributions. These phase differences compared favorably with the results obtained from the commercially available PiezoCAD simulation model. The protocol for specifying the complex pressure field of source transducers through measurements using the calibrated hydrophones is described. The results obtained indicate that the membranes exhibit close to linear decay of phase against the frequency.

  7. Nonlinear acoustics determination of phase characteristics of PVDF membrane hydrophones

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, Philip E; Lewin, Peter A; Gandhi, Gaurav, E-mail: bloomfpe@drexel.edu [Drexel University School of Biomedical Engineering, Science, and Health Systems, Philadelphia, PA 19104-2875 (United States)

    2011-02-01

    When an ultrasonic pressure wave propagates through a nonlinear medium, the relative phasing of the generated harmonics causes a distinct asymmetry between the positive and negative pressure levels and between the rise and fall time of examined waveforms. A faithful quantitative reproduction of the source transducer's pressure field requires amplitude and phase measurements by calibrated hydrophone probes. Nonlinear hydrophone calibration provides amplitude and phase information at discrete multiples of an acoustic source's fundamental frequency. Two PVDF bilaminar membrane hydrophones were first calibrated in terms of their amplitude sensitivity to the pressure levels generated by two different HIFU (High Intensity Focused Ultrasound) circular source transducers operating at 5 MHz and 10 MHz, enabling phase studies up to 105 and 100 MHz, respectively. Introducing two newly-developed phase-dispersion representations, the phase responses of the two membrane hydrophones were determined with respect to the phase of the complex frequency response extracted from the nonlinear field simulated by a semi-empirical computer model which predicts the near and the far field pressure distributions. These phase differences compared favorably with the results obtained from the commercially available PiezoCAD simulation model. The protocol for specifying the complex pressure field of source transducers through measurements using the calibrated hydrophones is described. The results obtained indicate that the membranes exhibit close to linear decay of phase against the frequency.

  8. Nonlinear acoustics determination of phase characteristics of PVDF membrane hydrophones

    Science.gov (United States)

    Bloomfield, Philip E.; Gandhi, Gaurav; Lewin, Peter A.

    2011-02-01

    When an ultrasonic pressure wave propagates through a nonlinear medium, the relative phasing of the generated harmonics causes a distinct asymmetry between the positive and negative pressure levels and between the rise and fall time of examined waveforms. A faithful quantitative reproduction of the source transducer's pressure field requires amplitude and phase measurements by calibrated hydrophone probes. Nonlinear hydrophone calibration provides amplitude and phase information at discrete multiples of an acoustic source's fundamental frequency. Two PVDF bilaminar membrane hydrophones were first calibrated in terms of their amplitude sensitivity to the pressure levels generated by two different HIFU (High Intensity Focused Ultrasound) circular source transducers operating at 5 MHz and 10 MHz, enabling phase studies up to 105 and 100 MHz, respectively. Introducing two newly-developed phase-dispersion representations, the phase responses of the two membrane hydrophones were determined with respect to the phase of the complex frequency response extracted from the nonlinear field simulated by a semi-empirical computer model which predicts the near and the far field pressure distributions. These phase differences compared favorably with the results obtained from the commercially available PiezoCAD simulation model. The protocol for specifying the complex pressure field of source transducers through measurements using the calibrated hydrophones is described. The results obtained indicate that the membranes exhibit close to linear decay of phase against the frequency.

  9. Bringing Radiotracing to Titanium-Based Antineoplastics: Solid Phase Radiosynthesis, PET and ex Vivo Evaluation of Antitumor Agent [45Ti](salan)Ti(dipic)

    DEFF Research Database (Denmark)

    Severin, Gregory; Nielsen, Carsten H.; Jensen, Andreas Tue Ingemann

    2015-01-01

    We present a novel solid-phase based 45Ti radiolabeling methodology and the implementation of 45Ti-PET in titanium-based antineoplastics using the showcase compound [45Ti](salan)Ti(dipic). This development is intended to allow elucidation of the biodistribution and pharmacokinetics of promising new...

  10. Synthesis of hydroxyapatite from waste egg-shell by Precipitation ...

    African Journals Online (AJOL)

    ... of the samples. At optimal conditions, calculated stoichiometric ratio of Ca/P of the synthesized HAp powder (74 - 0565) of 1.65 closed to the theoretical value of Ca/P ratio (1.67) and amenable to biomedical applications, was obtained. Keywords: Hydroxyapatite; Egg-shell; Precipitation Method, Ca/P Stoichiometric Ratio.

  11. Amino-modified diamond as a durable stationary phase for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Yang, Li; Lee, Milton L; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2008-08-15

    We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced pressure or chemical cross-linking with a diepoxide was shown to fix the polymer to the particles. The resulting adsorbents are stable under even extreme pH conditions (from at least pH 0-14) and significantly more stable than a commercially available amino SPE adsorbent. Coated diamond particles were characterized by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance Fourier transform-infrared spectroscopy (DRIFT). Model silicon surfaces were characterized by spectroscopic ellipsometry and wetting. Solid-phase extraction was demonstrated using cholesterol, hexadecanedioic acid, and palmitoyloleoylphosphatidylcholine as analytes, and these results were compared to those obtained with commercially available materials. Breakthrough curves indicate that, as expected, porous diamond particles have higher analyte capacity than nonporous solid particles.

  12. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions.

    Science.gov (United States)

    Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed

    2018-02-15

    The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of

  13. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  14. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S

    1997-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  15. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  16. Comparison of eggshell surface sanitization technologies and impacts on consumer acceptability.

    Science.gov (United States)

    Al-Ajeeli, Morouj N; Taylor, T Matthew; Alvarado, Christine Z; Coufal, Craig D

    2016-05-01

    Shell eggs can be contaminated with many types of microorganisms, including bacterial pathogens, and thus present a risk for the transmission of foodborne disease to consumers. Currently, most United States egg processors utilize egg washing and sanitization systems to decontaminate surfaces of shell eggs prior to packaging. However, previous research has indicated that current shell egg sanitization technologies employed in the commercial egg industry may not completely eliminate bacteria from the surface of eggshells, and thus alternative egg sanitization technologies with the potential for increased microbial reductions on eggshells should be investigated. The objectives of this study were to compare the antimicrobial efficacy and consumer sensory attributes of industry-available eggshell sanitization methods (chlorine and quaternary ammonium compounds (QAC) applied via spray) to various alternative egg sanitization technologies. Eggs (White Leghorn hens; n=195) were obtained for evaluation of sanitizer-induced reduction in mesophilic aerobic bacteria (n=90) or inoculated Salmonella Enteritidis (SE) reduction (n=105). Sanitizing treatments evaluated in this experiment were: chlorine spray (100 ppm available chlorine), QAC spray (200 ppm), peracetic acid spray (PAA; 135 ppm) alone or in combination with ultraviolet light (UV; 254 nm), and hydrogen peroxide (H2O2; 3.5% solution) spray in combination with UV (H2O2+UV). For enumeration of aerobic bacteria, eggs were sampled at 0, 7, and 14 days of storage at 4°C; surviving SE cells from inoculated eggs were enumerated by differential plating. Sensory trials were conducted to determine consumer liking of scrambled eggs made from eggs sanitized with chlorine, QAC, H2O2+UV, or no treatment (control). The H2O2 and UV treatment resulted in the greatest reductions in eggshell aerobic plate counts compared to other treatments throughout egg storage (Peggs represents a novel technology that could have important

  17. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers

    International Nuclear Information System (INIS)

    Liu Rong; Ma Xinpeng; Zhao Fengli; Wang Xiangjian; Wang Guangwei; Huang Yongqing; Zhang Donghui

    2009-01-01

    To study the phase characteristics of solid-state amplifiers(20 kW/142.8 MHz,10 kW/571.2 MHz) in sub-harmonic bunchers(SHBs) of the BEPC II linear accelerator, phase shift in pulse and phase stability are measured using a digital measurement method based on field programmable gate array(FPGA). The hardware of the measurement system includes the frequency synthesizer, digital signal processing board(FPGA) and PC, and the software includes an internal algorithm on FPGA, communication procedures and PC client interface procedures. The measurement results of phase characteristics are consistent with the actual situation, which is the basis for the further implement of phase compensation in SHBs. (authors)

  18. Effect of loading rate on hen´s eggshell mechanics

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Buchar, J.; Severa, L.; Nedomová, Š.; Stoklasová, Pavla

    2012-01-01

    Roč. 1, č. 4 (2012), s. 1-5 ISSN 1927-0887 Institutional research plan: CEZ:AV0Z20760514 Keywords : eggshell * strength * elasticity * numerical simulation Subject RIV: GM - Food Processing http://www.ccsenet.org/journal/index.php/jfr/article/view/19064

  19. Rationalization of reduced penetration of drugs through ceramide gel phase membrane.

    Science.gov (United States)

    Paloncýová, Markéta; DeVane, Russell H; Murch, Bruce P; Berka, Karel; Otyepka, Michal

    2014-11-25

    Since computing resources have advanced enough to allow routine molecular simulation studies of drug molecules interacting with biologically relevant membranes, a considerable amount of work has been carried out with fluid phospholipid systems. However, there is very little work in the literature on drug interactions with gel phase lipids. This poses a significant limitation for understanding permeation through the stratum corneum where the primary pathway is expected to be through a highly ordered lipid matrix. To address this point, we analyzed the interactions of p-aminobenzoic acid (PABA) and its ethyl (benzocaine) and butyl (butamben) esters with two membrane bilayers, which differ in their fluidity at ambient conditions. We considered a dioleoylphosphatidylcholine (DOPC) bilayer in a fluid state and a ceramide 2 (CER2, ceramide NS) bilayer in a gel phase. We carried out unbiased (100 ns long) and biased z-constraint molecular dynamics simulations and calculated the free energy profiles of all molecules along the bilayer normal. The free energy profiles converged significantly slower for the gel phase. While the compounds have comparable affinities for both membranes, they exhibit penetration barriers almost 3 times higher in the gel phase CER2 bilayer. This elevated barrier and slower diffusion in the CER2 bilayer, which are caused by the high ordering of CER2 lipid chains, explain the low permeability of the gel phase membranes. We also compared the free energy profiles from MD simulations with those obtained from COSMOmic. This method provided the same trends in behavior for the guest molecules in both bilayers; however, the penetration barriers calculated by COSMOmic did not differ between membranes. In conclusion, we show how membrane fluid properties affect the interaction of drug-like molecules with membranes.

  20. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  1. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  2. Intraclutch eggshell colour variation in birds: are females able to identify their eggs individually?

    Directory of Open Access Journals (Sweden)

    Miroslav Poláček

    2017-08-01

    Full Text Available Background One possibility suggested regarding female post-mating strategies is differential allocation into offspring investment. Female birds produce not only the largest, but also most colourful eggs of all oviparous taxa. Larger eggs provide space for bigger embryos, or more nutrition for their development, but the question why eggs are more colourful and why there is variation in eggshell colouration remains. In this context, the focus of interest has been to explain inter-clutch variation but in many bird species, eggshell colouration also varies within a clutch. Surprisingly, less attention has been paid to this phenomenon. Therefore, we propose the “female egg recognition” hypothesis, suggesting that mothers use colour characteristics to interpret egg attributes and allocate further investment into each egg accordingly. To evaluate the feasibility of the hypothesis, we tested several underlying predictions and examined their suitability using a dataset from our tree sparrow (Passer montanus study. We predict (i substantial within-clutch variation in eggshell colouration which, (ii should be related to laying sequence, (iii reflect egg quality and, (iv should stimulate a female response. Methods Eggshell coloration data were obtained via digital photography under standardized conditions, taken after clutch completion. Lightness (L*, representing the achromatic properties of an egg has been chosen as the most important predictor in dark cavities and was related to egg quality and position in the nest. Results In our tree sparrows, first and mainly last eggs were less pigmented, providing information about laying order. Egg volume, which predicts chick quality, positively correlates with eggshell coloration. Finally, we could show that female tree sparrows placed darker, but not bigger, eggs into more central incubation positions. Discussion All basic prerequisites for the “female egg recognition” hypothesis are fulfilled. In this

  3. Composite Membranes Based on Polyether Sulfone

    Directory of Open Access Journals (Sweden)

    A. Soroush

    2010-12-01

    Full Text Available The role of polymeric additives such as PVP and PEG is studied with respect to the morphology of PES porous layer as a sublayer of nanofiltration composite membranes based on PES/PA. Results show that by phase inversionprocess of quaternary systems comprised of four components of polymer/solvent/non-solvent/additive and the diffusion of intertwined polymers some changes occur in membrane morphology with changes in their concentration. With addition of PVP, tear-like pores, finger-like and channel-like morphology change to enlarged channel cavities and by adding more PVP, membrane morphology changes further and spongy regions are extended in the membrane. Presence of PEG in casting solution delayed the precipitation time. By adding PEG, the solution viscosity is increased which is followed by decreases in diffusion rates of solvent/non-solvent in coagulation bath.Therefore, membrane morphology shifts to small pores and spongier region. Another effect of increased PEG content would be deformed PA layer formation in PES sublayer which affects membrane performance. However, PVP as an additive does not change membrane salt rejection very much while it leads to higher fluxes. A membrane with 2.5 percent PVP would perform by 40 percent flux increases, while a membrane with 5% PVP shows flux reductions even below the initial value. Contrary to PVP, the PEG content of 20 percent leads to 4 folds flux increases and in a membrane with 50 percent PEG, there is a flux increase by 7 folds and drop in salt rejection occurs by 50 percent and 70 percent, respectively.

  4. N-Acyliminium Intermediates in Solid-Phase Synthesis

    DEFF Research Database (Denmark)

    Quement, Sebastian Thordal le; Petersen, Rico; Meldal, M.

    2010-01-01

    N-Acyliminium ions are powerful intermediates in synthetic organic chemistry. Examples of their use are numerous in solution-phase synthesis, but there are unmerited few reports on these highly reactive electrophiles in solid-phase synthesis. The present review covers the literature to date and i...

  5. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    Science.gov (United States)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  6. Trace and ultratrace determination of heavy metal ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2014-04-01

    In this paper, the adsorptive properties of graphene nanosheets were used for simultaneous preconcentration of cobalt, nickel, copper and lead ions from water samples. The developed methodology is based on dispersive micro-solid phase extraction (DMSPE) which is miniaturized and a simplified version of classical solid phase extraction technique. In proposed procedure only 200 μL of suspension containing graphene (0.2 mg), ammonium pyrrolidine dithiocarbamate (APDC) (0.8 mg) and Triton-X-100 (0.1 mg) is rapidly injected to 50 mL of water sample. Then, graphene nanosheets with adsorbed metal-APDC chelates are collected on membrane filter and measured using energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The various parameters including pH, amount of APDC, sample volume, amount of Triton-X-100 and sorption time were optimized in order to obtain the best recoveries. The experiment shows that Co, Ni, Cu and Pb can be simultaneously preconcentrated at pH of 5 with high recoveries (97%, 96%, 99% and 96% for Co, Ni, Cu and Pb, respectively) and very good precision (RSDs within 2.6–3.4%). Due to the excellent enrichment factors ranging from 400 to 2500 the proposed DMSPE–EDXRF procedure offers low detection limits. For optimized measurement conditions (voltage and current of X-ray tube, primary beam filter) the detection limits are even 0.08, 0.07, 0.08 and 0.20 ng mL{sup −1} for Co, Ni, Cu and Pb, respectively. - Highlights: • Excellent detection limits using EDXRF • A new preconcentration procedure combining DMSPE and EDXRF measurement • Graphene as a promising and efficient solid sorbent in DMSPE • Simple, fast, inexpensive and environmental friendly method.

  7. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  8. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    Science.gov (United States)

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  9. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders

    2014-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible......-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis...

  10. Kinetics of americium(VI) mass transfer through solid supported liquid membrane with HDEHP

    International Nuclear Information System (INIS)

    Mikheeva, M.N.; Novicoov, P.; Myasoedov, B.F.; Tikhomirov, S.V.

    1994-01-01

    The main regularities of membrane extraction of americium under conditions of different redox potentials in aqueous phases have been studied. The physico-chemical model of the process including steps of americium oxidation in feed solution, extraction by membrane, partial reduction on membrane surface, trans-membrane diffusion and reextraction to strip solution has been developed. The calculation of reduction rate constant on membrane surface has been carried out. (author) 9 refs.; 4 figs.; 3 tabs

  11. Solid polymer electrolyte water electrolyser based on Nafion-TiO{sub 2} composite membrane for high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Matteucci, F.; Martina, F.; Zama, I. [Tozzi Renewable Energy SpA, Mezzano (Italy); Ciccarella, G. [National Nanotechnology Laboratory (NNL) of INFM-CNR, Distretto Tecnologico ISUFI, Innovazione, Universita del Salento, Lecce (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro Sanfandila (Mexico); Ornelas, R.

    2009-06-15

    A composite Nafion-TiO{sub 2} membrane was manufactured by a recast procedure, using an in-house prepared TiO{sub 2}. This membrane has shown promising properties for high temperature operation in an SPE electrolyser allowing to achieve higher performance with respect to a commercial Nafion 115 membrane. This effect is mainly due to the water retention properties of the TiO{sub 2} filler. A promising increase in electrical efficiency was recorded at low current densities for the composite membrane-based SPE electrolyser at high temperature compared to conventional membrane-based devices. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Development of hydrazinium nitroformate based solid propellants

    NARCIS (Netherlands)

    Schöyer, H.F.R.; Schnorhk, A.J.; Korting, P.A.O.G.; Lit, P.J. van; Mul, J.M.; Gadiot, G.; Meulenbrugge, J.J.

    1995-01-01

    The development of new high-performance propellant combinations requires the establishment of safety and handling characteristics and thermodynamic decomposition and explosive properties. This paper addresses the early development phases of a new composite solid propellant based on HNF as oxidizer

  13. [Effects of silver nitrate on the phase state of model multibilayer membranes].

    Science.gov (United States)

    Vashchenko, O V; Iermak, Yu L; Krasnikova, A O; Lisetski, L N

    2015-01-01

    In order to study the effects caused by silver nitrate (AgNO3) on model lipid membranes, we studied multibilayer membranes based on L-α-dipalmitoylphosphatidylcholine (DPPC) and AgNO3 aqueous soluitions in a wide concentration range (up to 30 wt%) by means of differential scanning calorimetry. It has been shown that the presence of AgNO3 leads both to an increase in the main phase transition temperature (T(m)) and appearance of an additional phase transition peak (T(m)), suggesting increasing of both density and heterogeneity of the lipid membrane. The effect of nitrate ions (NO ) was shown to be of the opposite nature (bilayer fluidizing), so the integral densifying effect of AgNO3 can be referred solely to the action of silver ions (Ag(+)). With increasing AgNO3 concentration, the tendency was observed to opposite changes in T(m) and T'(m) peaks intensity, thereby at about 26. wt% of AgNO3 the initial peak (T(m)) disappeared. In the range of Ag+ therapeutic concentrations (up to 2 wt%) no significant changes in the DPPC membrane were revealed. This can be one of the reasons of the absence of a damaging effect of silver drugs on a host organism with simultaneous pronounced bactericidal effect.

  14. Effects of ultrasonic waves on eggshell strength and hatchability of ...

    African Journals Online (AJOL)

    tarek shafey

    2013-03-13

    Mar 13, 2013 ... eggs (Trial 1), and egg weight loss, embryo weight, hatchability and CHW of ... 5, 10 and 15 minutes in a water bath (W5, W10 and W15) or a ULT bath (ULT5, ... eggshell strength between ULT-treated eggs and the control.

  15. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  16. Using Eggshell in Acid Orange 2 Dye Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-05-01

    Full Text Available Background and purpose: Generated dye wastewater by the textile industry is usually toxic, non-biodegradable and resistant in the environment. Eggshell is one of the inexpensive material and for the reason the vesicular structures can be used as a proper adsorbent for pollutants removal. The aim of this study is to investigate the efficiency of eggshell for removal of acid orange 2 dye from aqueous solution. Materials and Methods: In the experimental study was determined the efficacy of variant variables such as contact time (15, 30, 60, 90 and 120 min, pH (3, 7 and 11, adsorbent dose (10, 25, 50 and 75 g/L, and initial dye concentration (25, 50 and 100 mg/L. The concentration of dye by spectrophotometer ultraviolet/visible in the wavelength 483 nm was examined. Results: The results showed that with increasing contact time and adsorbent dose, the dye removal efficiency was increased, but with increasing pH and initial dye concentration the removal efficiency was decreased. The maximum of removal efficiency of acid orange 2 dye got in the optimum pH: 3, contact time: 90 min, adsorbent dose: 50 g/L and initial dye concentration: 25 mg/L. Adsorption of acid orange 2 dye (R2 = 0.87 follow the Freundlich isotherm. Conclusion: Eggshells can be used as an inexpensive and effective adsorbent for the removal of acid orange 2 dye.

  17. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  18. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  19. Solid polymer composite electrolytes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, S M.J.; Mikhailenko, S D; Kaliaguine, S

    1998-07-01

    Composite electrolyte membranes for fuel cell technology were prepared from solid state proton conductors and polymer binders. The polymers were partially sulfonated and non-sulfonated polysulfone (PS), porous polyetherimide (PEI) and polymethylmethacrylate (PMMA). As proton conductors H-chabazite, tungstophosphoric acid and its Na-salt and non-stoichiometric boron phosphate were employed. All membranes prepared using sulfonated PS as a binder with sulfonation degree higher than 50% were found to be mechanically unstable. They possess however reasonably high conductivity up to 6{times}10{sup {minus}3} S/cm. Introducing the tungstophosphoric acid (TPA) into the nonsulfonated porous PS makes possible to obtain strong and flexible membranes with s=4{times}10{sup {minus}3} S/cm, while use of boron phosphate in that case results in the conductivity of about 10{sup {minus}5} S/cm. Porous PEI impregnated with aqueous solution of TPA retains its original tensile strength and exhibited the conductivity s=2{times}10{sup {minus}4} S/cm. It however fell to 3{times}10{sup {minus}5} S/cm when the binder was modified with 2% of propionic acid, which caused a decrease in polymer pore size. Incorporation of the sodium acid salt of TPA into PEI allows one to obtain a composite with reasonably good mechanical properties and a conductivity of ca 10{sup {minus}5} S/cm for membranes prepared by the cast method. Using the phase inversion technique for preparation of the membranes of the same composition makes possible to increase their conductivity up to 10{sup {minus}4} S/cm. When boron phosphate was used in lieu of TPA salt the conductivity obtained is still higher reaching 3{times}10{sup {minus}5} and 3{times}10{sup {minus}4} S/cm for membranes prepared by cast and phase inversion techniques respectively. The PMMA based membranes were mechanically stable even when a solid content reached 55wt.%. Among PMMA membranes the highest conductivity of 10{sup {minus}3} S/cm was registered for

  20. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  1. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Science.gov (United States)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  2. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    Science.gov (United States)

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  3. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  4. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  5. Linkage of biomolecules to solid phases for immunoassay

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    Topics covered by this lecture include a brief review of the principal methods of linkage of biomolecules to solid phase matrices. Copies of the key self explanatory slides are presented as figures together with reprints of two publications by the author dealing with a preferred chemistry for the covalent linkage of antibodies to hydroxyl and amino functional groups and the effects of changes in solid phase matrix and antibody coupling chemistry on the performance of a typical excess reagent immunoassay for thyroid stimulating hormone

  6. Phase diagram of a Lennard-Jones solid

    International Nuclear Information System (INIS)

    Choi, Y.; Ree, T.; Ree, F.H.

    1993-01-01

    A phase diagram of a Lennard-Jones solid at kT/ε≥0.8 is constructed by our recent perturbation theory. It shows the stability of the face-centered-cubic phase except within a small pressure and temperature domain, where the hexagonal-close packed phase may occur. The theory predicts anharmonic contributions to the Helmholtz free energy (important to the crystal stability) in good agreement with Monte Carlo data

  7. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    International Nuclear Information System (INIS)

    Cassidy, D.P.; Irvine, R.L.

    1995-01-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies

  8. Determination of the electroporation onset of bilayer lipid membranes as a novel approach to establish ternary phase diagrams: example of the L-α-PC/SM/cholesterol system

    NARCIS (Netherlands)

    van Uitert, I.; le Gac, Severine; van den Berg, Albert

    2010-01-01

    The lipid matrix of cell membranes contains phospholipids belonging to two main classes, glycero- and sphingolipids, as well as cholesterol. This matrix can exist in different phases, liquid disordered (l(d)), liquid ordered (l(o)) and possibly solid (s(o)), or even a combination of these. The

  9. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  10. Solid phase microextraction.

    Science.gov (United States)

    Pawliszyn, J

    2001-01-01

    Solid Phase Microextraction (SPME) uses a small volume of sorbent dispersed typically on the surface of small fibres, to isolate and concentrate analytes from sample matrix. After contact with sample, analytes are absorbed or adsorbed by the fibre phase (depending on the nature of the coating) until an equilibrium is reached in the system. The amount of an analyte extracted by the coating at equilibrium is determined by the magnitude of the partition coefficient of the analyte between the sample matrix and the coating material. After the extraction step, the fibres are transferred, with the help of a syringe-like handling device, to analytical instrument, for separation and quantitation of target analytes. This technique integrates sampling, extraction and sample introduction and is a simple way of facilitating on-site monitoring. Applications of this technique include environmental monitoring, industrial hygiene, process monitoring, clinical, forensic, food, flavour, fragrance and drug analyses, in laboratory and on-site analysis.

  11. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1981-01-01

    Progress in Surface and Membrane Science, Volume 14 covers the advances in the study of surface and membrane science. The book discusses statistical thermodynamics of monolayer adsorption from gas and liquid mixtures on homogeneous and heterogeneous solid surfaces; and the structure of the boundary layers of liquids and its influence on the mass transfer in fine pores. The text then describes the coupling of ionic and non-electrolyte fluxes in ion selective membranes; the electrocatalytic properties of matalloporphins at the interface; and the adsorption from binary gas and liquid phases. Phas

  12. Simulation of the catalyst layer in PEMFC based on a novel two-phase lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiejing; Yang Wei; Xu Li [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Yuxin, E-mail: yxwang@tju.edu.cn [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2011-08-01

    Highlights: > We propose a novel two phase lattice model of catalyst layer in PEMFC. > The model features a catalyst phase and a mixed ionomer and pores phase. > Transport and electrochemical reaction in the lattice are simulated. > The model enables more accurate results than pore-solid two phase model. > Profiles of oxygen level and reaction rate across catalyst layer vary with cell current. - Abstract: A lattice model of catalyst layer in proton exchange membrane fuel cells (PEMFCs), consisting of randomly distributed catalyst phase (C phase) and mixed ionomer-pore phase (IP phase), was established by means of Monte Carlo method. Transport and electrochemical reactions in the model catalyst layer were calculated. The newly proposed C-IP model was compared with previously established pore-solid two phase model. The variation of oxygen level and reaction rate along the thickness of catalyst layer with cell current was discussed. The effect of ionomer distribution across catalyst layer was studied by comparing profiles of oxygen level, reaction rate and overpotential, as well as corresponding polarization curves.

  13. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  14. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  15. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    Science.gov (United States)

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-06-01

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  16. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  17. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    OpenAIRE

    Afrida Kurnia Putri; Wang-Hsien Ding; Han-Wen Kuo

    2012-01-01

    A characterization of activated carbon (ACs) prepared from rice husks (RHs) under base treated condition as a new sorbent for solid-phase extraction (SPE) to extract 4-nonylphenol isomers (4-NPs) in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance inte...

  18. Membranes as separators of dispersed emulsion phases

    NARCIS (Netherlands)

    Lefferts, A.G.

    1997-01-01

    The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the

  19. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity

    DEFF Research Database (Denmark)

    Wadsäter, Maria Helena; Barker, Robert; Mortensen, Kell

    2013-01-01

    of the cell membrane and can act as a nanometer-sized container for functional single membrane proteins. In this study, we present a general nanodisc-based system, intended for structural and functional studies of membrane proteins. In this method, the nanodiscs are aligned at a solid surface, providing...... the ability to determine the average structure of the film along an axis perpendicular to the interface as measured by neutron reflectivity. The nanodisc film was optimized in terms of nanodisc coverage, reduced film roughness, and stability for time-consuming studies. This was achieved by a systematic...

  20. Bis(trifluoromethylsulfonyl)imide-based frozen ionic liquid for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites.

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi

    2017-08-01

    1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Herrero Latorre, C.; Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.

    2012-01-01

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  2. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  3. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  4. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  5. The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds.

    Science.gov (United States)

    Soler, J J; Peralta-Sánchez, J M; Martín-Platero, A M; Martín-Vivaldi, M; Martínez-Bueno, M; Møller, A P

    2012-09-01

    Potentially, pathogenic bacteria are one of the main infective agents against which a battery of chemical and physical barriers has evolved in animals. Among these are the secretions by the exocrine uropygial gland in birds. The antimicrobial properties of uropygial secretions may prevent colonization and growth of microorganisms on feathers, skin and eggshells. However, uropygial gland secretions also favour the proliferation of feather mites that feed on secretions and microorganisms living on feathers that would otherwise reach eggshells during incubation if not consumed by feather mites. Therefore, at the interspecific level, uropygial gland size (as an index of volume of uropygial secretion) should be positively related to eggshell bacterial load (i.e. the risk of egg infection), whereas eggshell bacterial loads may be negatively related to abundance of feather mites eating bacteria. Here, we explore these previously untested predictions in a comparative framework using information on eggshell bacterial loads, uropygial gland size, diversity and abundance of feather mites and hatching success of 22 species of birds. The size of the uropygial gland was positively related to eggshell bacterial loads (mesophilic bacteria and Enterobacteriaceae), and bird species with higher diversity and abundance of feather mites harboured lower bacterial density on their eggshells (Enterococcus and Staphylococcus), in accordance with the hypothesis. Importantly, eggshell bacterial loads of mesophilic bacteria, Enterococcus and Enterobacteriaceae were negatively associated with hatching success, allowing us to interpret these interspecific relationships in a functional scenario, where both uropygial glands and mutualistic feather mites independently reduce the negative effects of pathogenic bacteria on avian fitness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  6. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    International Nuclear Information System (INIS)

    Ferreira, J.R.M.; Louro, L.H.L.; Costa, A.M.; Silva, M.H. Prado da; Campos, J.B. de

    2016-01-01

    In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite. (author)

  7. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, J.R.M.; Louro, L.H.L.; Costa, A.M.; Silva, M.H. Prado da [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Campos, J.B. de, E-mail: josericardo@r-crio.com, E-mail: louro@ime.eb.br, E-mail: andrea@r-crio.com, E-mail: brantjose@gmail.com, E-mail: marceloprado@ime.eb.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2016-10-15

    In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite. (author)

  8. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    Science.gov (United States)

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different

  9. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    exchange was characterized with solid state 13C NMR spectroscopy, FTIR spectroscopy, TGA, elemental analysis, and titration. The results indicate the extent of ion exchange was ~ 70-80%. Due to the mass of QAA, the remaining QAA reduced the IEC of the nanoparticles to < 2.2 meq/g. In fabricating the composite membranes, the nanoparticles and polystyrene were solution cast in a continuous process with and without electric field. The electric field had no effect on the water uptake. Based on the morphology and the proton conductivity, it appears orientation of the nanoparticles did not occur. We hypothesize the lack of orientation was caused by swelling of the particles with the solvent. The solvent inside the particle minimized polarizability, and thus prevented orientation. The composite membranes were limited to low proton conductivity of ~ 10-5 S/cm due to low IEC of the nanoparticles, but good dispersion of the nanoparticles was achieved. Future work should look into eliminating the QAA during synthesis and developing a rigid core for the nanoparticles.

  10. Biogasification of solid wastes by two-phase anaerobic fermentation

    International Nuclear Information System (INIS)

    Ghosh, S.; Vieitez, E.R.; Liu, T.; Kato, Y.

    1997-01-01

    Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m 3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)

  11. Double-antibody solid-phase radioimmunoassay: a simplified phase-separation procedure applied to various ligands

    International Nuclear Information System (INIS)

    Tevaarwerk, G.J.M.; Boyle, D.A.; Hurst, C.J.; Anguish, I.; Uksik, P.

    1980-01-01

    The purpose was to develop a simplified and reliable method of separating free from antibody-bound ligand using a precipitating antibody linked to a cellulose derivative. Dose-response curves and control sera were set up in parallel for various pituitary and placental polypeptides, steroid hormones, insulin, glucagon, triiodothyronine, thyroxine, angiotensin I, calcitonin, gastrin, cyclic AMP, and digoxin. After first-antibody reactions had reached equilibrium, free and bound ligand were separated using a double-antibody solid-phase system in parallel with conventional methods, including dextran-coated charcoal, double-antibody precipitation, single-antibody solid phase, organic solvents, salt precipitation, and anion-exchange resins. The effect of variations in temperature, incubation time, protein content, pH, and amount of separating material added were studied. The results showed that separation was complete within 1 hr for small ligand molecules and within 2 hr for larger ones. Dose-response curves and control-sera results closely paralleled those obtained with conventional methods. The method was not affected by moderate variations in incubation variables. Nonspecific binding was less than 3% in all assays, while intra-assay and interassay coefficients of variation were similar to those obtained with conventional phase-separation methods. It is concluded that the method is a simple and rapid alternative phase-separation system. It has the advantage of being free from common nonspecific intersample variations, and can be applied to any assay system based on rabbit or guinea pig antibodies without preliminay time- or reagent-consuming titration or adjustments to establish optimum phase-separating conditions

  12. solid phase extraction method for selective determination

    African Journals Online (AJOL)

    FATOKI

    determination of phthalate ester plasticizers in rivers and marine water samples. Of the ... samples that receive effluent from industries that use phthalate esters. ... Keywords Phthalates, Plasticizers, Solid Phase Gas Chromatography.

  13. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Liquid-phase and solid-phase radioimmunoassay with herpes simplex virus type 1 nucleocapsids

    International Nuclear Information System (INIS)

    Bystricka, M.; Rajcani, J.; Libikova, H.; Sabo, A.; Foeldes, O.; Sadlon, J.

    1985-01-01

    Liquid-phase radioimmunoassay and solid-phase radioimmunoassay are described using 125 I-labelled or immobilized nucleocapsids (NC) of herpes simplex virus (HSV) type1. These techniques appeared sensitive and specific for quantitation of HSV-NC antigens and corresponding antibodies. (author)

  15. Preparation of peptide thioesters through fmoc-based solid-phase peptide synthesis by using amino thioesters

    DEFF Research Database (Denmark)

    Stuhr-Hansen, N.; Wilbek, T.S.; Strømgaard, K.

    2013-01-01

    protected peptide thioester, which was globally deprotected to afford the desired unprotected peptide thioester. The method is compatible with labile groups such as phosphoryl and glycosyl moieties. The synthesis of peptide alkyl thioesters by 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis...

  16. Characteristics of Skeletal Musculature of Pheasants Hatched from Eggs of Different Eggshell Colour

    Directory of Open Access Journals (Sweden)

    Dragan Zikic

    2016-05-01

    Full Text Available The aim of this paper was to examine morphodinamics of development of skeletal musculature of pheasants hatched from eggs of different eggshell colour. Four groups of pheasant eggs (dark brown, light brown, brown/green and blue/green were incubated. Samples of skeletal musculature of leg and breast were taken during the embryonic and neonatal period of development. From taken samples histological preparations were made. In pheasants hatched from blue/green eggs the smaller diameter of leg and breast muscle cells and the higher volume density of connective tissue in leg and breast muscles were recorded. It was concluded that pheasants hatched from blue/green eggs had the weakest development of skeletal musculature, which can be related to structural differences of eggshell of various colour.

  17. Fossil struthionid eggshells from Laetoli, Tanzania: Taxonomic and biostratigraphic significance

    Science.gov (United States)

    Harrison, Terry; Msuya, Charles P.

    2005-04-01

    Recent paleontological investigations at Laetoli and neighboring localities in northern Tanzania have produced a large collection of fossil ostrich eggshells from the Pliocene-aged Laetolil Beds (˜3.5-4.5 Ma) and Ndolanya Beds (˜2.6-2.7 Ma). A detailed analysis of the morphology of the eggshells and their taxonomic affinities indicates that two different species of Struthio are represented. In the Lower Laetolil Beds and in the Upper Laetolil Beds below Tuff 3 a new species is recognized— Struthio kakesiensis. This is replaced in the Upper Laetolil Beds by Struthio camelus, the modern species of ostrich. Since radiometric age determinations are available for the stratigraphic sequence at Laetoli, it is possible to precisely date the first appearance of S. camelus at ˜3.6-3.8 Ma. Comparisons of the Laetoli material with specimens from the well-dated sequences at Lothagam and Kanapoi in northern Kenya, allow the taxonomic and biochronological analysis to be extended back in time to the late Miocene. At about 6.5 Ma, Diamantornis and elephant birds were replaced in East Africa by ostriches belonging to the genus Struthio. Three time-successive species of ostriches are identified in the fossil record of East Africa, beginning with Struthio. cf. karingarabensis (˜6.5-4.2 Ma), followed by S. kakesiensis (˜4.5-3.6 Ma) and then S. camelus (˜3.8 Ma onwards). A similar sequence of taxa has previously been recorded from localities in Namibia, but at these sites there is no possibility to precisely calibrate the ages of the different species using radiometric dating. Nevertheless, the broadly similar evolutionary sequence and the close correspondence in inferred ages for the succession of species in East Africa and Namibia suggest that ostrich eggshells are a very useful tool for biochronological correlation of paleontological sites in sub-Saharan Africa.

  18. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  19. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    gel phase and at high temperatures in the disordered fluid phase of the phospholipid membrane vesicles. The long saturated acyl chains of the lysolipids and fatty acids varied from 10 to 16 carbon atoms and all titrations were performed below the critical micellar concentrations (cmc...... of magnitude higher when the saturated acyl chain of the detergents increases by two carbon atoms. The obtained partition coefficients are of importance in relation to a deeper understanding of the interplay between global aqueous and local membrane concentrations of the detergents and the functional influence...

  20. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    Science.gov (United States)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  1. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  2. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  3. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    Science.gov (United States)

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  5. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  6. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  7. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-01-01

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  8. The Pictet-Spengler reaction in solid-phase combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, Thomas E; Diness, Frederik; Meldal, Morten

    2003-01-01

    The Pictet-Spengler reaction is an important reaction for the generation of tetrahydro-beta-carbolines and tetrahydroisoquinoline ring systems, which exhibit a range of biological and pharmacological properties. This review covers the solid-phase Pictet-Spengler reaction, as employed in solid...

  9. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland.

    Science.gov (United States)

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-08-15

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (ruralsoil environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Phase 2, Solid waste retrieval strategy

    International Nuclear Information System (INIS)

    Johnson, D.M.

    1994-01-01

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve

  11. Phase 2, Solid waste retrieval strategy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  12. Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    M. Fathy

    2016-06-01

    Full Text Available Polymethylacrylate (PMA nanofibers membranes are fabricated by electrospinning technique and applied to the polymer matrix in quasi-solid-state electrolytes for dye sensitized solar cells (DSSCs. There is no previous studies reporting the production of PMA nanofibers. The electrospinning parameters such as polymer concentration, applied voltage, feed rate, tip to collector distance and solvent were optimized. Electrospun PMA fibrous membrane with average fiber diameter of 350 nm was prepared from a 10 wt% solution of PMA in a mixture of acetone/N,N-dimethylacetamide (6:4 v/v at an applied voltage of 20 kV. It was then activated by immersing it in 0.5 M LiI, 0.05 M I2, and 0.5 M 4-tert-butylpyridine in 3-methoxyproponitrile to obtain the corresponding membrane electrolyte with an ionic conductivity of 2.4 × 10−3 S cm−1 at 25 °C. Dye sensitized solar cells (DSSCs employing the quasi solid-state electrolyte have an open-circuit voltage (Voc of 0.65 V and a short circuit current (Jsc of 6.5 mA cm−2 and photoelectric energy conversion efficiency (η of 1.4% at an incident light intensity of 100 mW cm−2.

  13. Characteristics of Solid-State Calcium Ion Sensors Based on Photocurable and Selfplasticising Polyacrylate Matrices

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2017-11-01

    Full Text Available New membrane materials based on cross-linked poly(n-butyl acrylate (nBA, have been used successfully as calcium ion-selective membranes. These membrane materials possess selfplasticising property and hence do not require plasticisers. The photocurability and good adhesion characteristics of these polymer matrices enable workable solid-state calcium ion sensors to be fabricated by simple photocure procedures employing the calcium ionophore ETH5234 and a lipophilic additive as ion sensing components. The calcium ion-selectivity of the sensors can be controlled by varying the chemical composition of the photocured  membrane. An optimum amount of the cross-linker 2,2-hexanedioldiacrylate (HDDA and the incorporation of n-heptyl acrylate (nHA led to improvement in the calcium ion-selectivity. The best calcium ion-selectivity was obtained from a copolymer membrane with composition: nBA = 74 wt-%, nHA = 20 wt-% and HDDA = 0.1 wt-%. The selectivity coefficients of calcium over major cations were: LogKCaPot,Na= -4.4,  LogKCaPot,K = -3.6, LogKCa,PotLi = -5.9, LogKCaPot,Mg= -4.4 with a Nernstian slope (29.1 ± 0.8 mV/decade under buffered conditions. This potentiometric performance is comparable to other solid-state calcium ion sensors with various plasticised polymer membranes.

  14. The role of solid-solid phase transitions in mantle convection

    Science.gov (United States)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  15. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  16. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  17. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  18. Rapid, specific determination of iodine and iodide by combined solid-phase extraction/diffuse reflectance spectroscopy

    Science.gov (United States)

    Arena, Matteo P.; Porter, Marc D.; Fritz, James S.

    2002-01-01

    A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene-divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine-PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka-Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1-5.0 ppm range can be determined with a total workup time of approximately 60 s with a RSD of approximately 6%.

  19. Stir-bar supported micro-solid-phase extraction for the determination of polychlorinated biphenyl congeners in serum samples.

    Science.gov (United States)

    Sajid, Muhammad; Basheer, Chanbasha

    2016-07-15

    In present work, a new configuration of micro-solid phase extraction was introduced and termed as stir-bar supported micro-solid-phase extraction (SB-μ-SPE). A tiny stir-bar was packed inside the porous polypropylene membrane along with sorbent material and the edges of membrane sheet were heat sealed to secure the contents. The packing of stir-bar inside the μ-SPE device does not allow the device to stick with the wall or any corner of the sample vial during extraction, which is, however, a frequent observation in routine μ-SPE. Moreover, it enhances effective surface area of the sorbent exposed to sample solution through continuous agitation (motion and rotation). It also completely immerses the SB-μ-SPE device in the sample solution even for non-polar sorbents. Polychlorinated biphenyls (PCBs) were selected as model compounds and the method performance was evaluated in human serum samples. After extraction, samples were analyzed by gas chromatography mass spectrometry (GC-MS). The factors that affect extraction efficiency of SB-μ-SPE were optimized. Under optimum conditions, a good linearity (0.1-100ngmL(-1)) with coefficients of determinations ranging from 0.9868 to 0.9992 was obtained. Limits of detections were ranged between 0.003 and 0.047ngmL(-1). Acceptable values for inter-day (3.2-9.1%) and intra-day (3.1-7.2%) relative standard deviations were obtained. The optimized method was successfully applied to determine the concentration of PCB congeners in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  1. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    Science.gov (United States)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  2. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    Science.gov (United States)

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy

    Science.gov (United States)

    Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.

    2003-01-01

    We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.

  4. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    Science.gov (United States)

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  5. Solid-phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier.

    Science.gov (United States)

    Kagaya, Shigehiro; Cattrall, Robert W; Kolev, Spas D

    2011-01-01

    The extraction of cobalt(II) from solutions containing various concentrations of lithium chloride, hydrochloric acid, and mixtures of lithium chloride plus hydrochloric acid is reported using a poly(vinyl chloride) (PVC)-based polymer inclusion membrane (PIM) containing 40% (w/w) Aliquat 336 as a carrier. The extraction from lithium chloride solutions and mixtures with hydrochloric acid is shown to be more effective than extraction from hydrochloric acid solutions alone. The solution concentrations giving the highest amounts of extraction are 7 mol L(-1) for lithium chloride and 8 mol L(-1) lithium chloride plus 1 mol L(-1) hydrochloric acid for mixed solutions. Cobalt(II) is easily stripped from the membrane using deionized water. The cobalt(II) species extracted into the membrane are CoCl(4)(2-) for lithium chloride solutions and HCoCl(4)(-) for mixed solutions; these form ion-pairs with Aliquat 336. It is also shown that both lithium chloride and hydrochloric acid are extracted by the PIM and suppress the extraction of cobalt(II) by forming ion-pairs in the membrane (i.e. R(3)MeN(+)·HCl(2)(-) for hydrochloric acid and R(3)MeN(+)·LiCl(2)(-) for lithium chloride). 2011 © The Japan Society for Analytical Chemistry

  6. Transport of Eu3+ through a Bis(2-ethylhexyl)-phosphoric acid, n-dodecane solid supported liquid membrane

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.

    1982-01-01

    The coupled transpot of Eu 3 + and H + ions througn a solid supported liquid membrane consisting of a porous polypropylene film immobilizing an HDEHP solution in n-dodecane has been studied as a function of the membrane area, stirring speed of the aqueous solutions, membrane composition, and acidity of the feed solution. The experimental results are in agreement with predictions derived from a theoretical permeability coefficient equation which assumes that membrane diffusion and aqueous film diffusion are the only rate-controlling factors

  7. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  8. Eggshell Powder as an Adsorbent for Removal of Fluoride from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    R. Bhaumik

    2012-01-01

    Full Text Available A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Ea was found to be 45.98 kJmol-1 by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0 value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.

  9. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  10. Nesting behaviour influences species-specific gas exchange across avian eggshells.

    Science.gov (United States)

    Portugal, Steven J; Maurer, Golo; Thomas, Gavin H; Hauber, Mark E; Grim, Tomáš; Cassey, Phillip

    2014-09-15

    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still

  11. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  12. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  13. Solid Phase Extraction and Spectrophotometric Determination of ...

    African Journals Online (AJOL)

    NJD

    2005-04-15

    Apr 15, 2005 ... to the economy and has significant industrial applications. The development of a ... Waters Solid Phase Extraction (SPE) device (the device can carry out twenty ... HPLC grade dimethyl formamide (DMF) (Fisher. Corporation ...

  14. Isostructural solid-solid transition of (colloidal) simple fluids

    International Nuclear Information System (INIS)

    Tejero, C.F.; Daanoun, A.; Lakkerkerker, H.N.W.; Baus, M.

    1995-01-01

    A variational approach based on the Gibbs-Bogoliubov inequality is used in order to evaluate the free energy of simple fluids described by a double-Yukawa pair potential. A hard-sphere reference fluid is used to describe the fluid phases, and an Einstein reference crystal to describe the solid phases. Apart from the usual type of phase diagram, typical of atomic simple fluids with long-ranged attractions, we find two types of phase diagrams, specific to colloidal systems with intermediate and short-ranged attractions. One of the latter phase diagrams exhibits an isostructural solid-solid transition, which has not yet been observed experimentally

  15. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    Science.gov (United States)

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    Directory of Open Access Journals (Sweden)

    J. R. M. Ferreira

    Full Text Available Abstract In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite.

  17. Automated solid-phase subcloning based on beads brought into proximity by magnetic force.

    Science.gov (United States)

    Hudson, Elton P; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan

    2012-01-01

    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.

  18. Solid phase extraction method for determination of mitragynine in ...

    African Journals Online (AJOL)

    All rights reserved. ... 1Department of Pharmacology, 2Department of Applied Science, 3Police Forensic Science Center 10, Yala 95000, 4Natural ... Purpose: To develop a solid phase extraction (SPE) method that utilizes reverse-phase high.

  19. A multi-phase equation of state for solid and liquid lead

    International Nuclear Information System (INIS)

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  20. Transport Properties, Mechanical Behavior, Thermal and Chemical Resistance of Asymmetric Flat Sheet Membrane Prepared from PSf/PVDF Blended Membrane on Gauze Supporting Layer

    Directory of Open Access Journals (Sweden)

    Nita Kusumawati

    2018-05-01

    Full Text Available Asymmetric polysulfone (PSf membrane is prepared using phase inversion method and blending with polyvinylidene fluoride (PVDF on the gauze solid support. Casting solution composition optimization has been done to get PSf/PVDF membrane with best characteristics and permeability. The result shows that blending on PSf with PVDF polymer using phase inversion method has been very helpful in creating an asymmetric porous membrane. Increased level of PVDF in casting solution has increased the formation of asymmetry structure and corresponding flux membrane. The result from thermal test using Differential Scanning Calorimetry (DSC-Thermal Gravimetric Analysis (TGA shows the resistance of the membrane to temperature 460 °C. Membrane resistance against acid looks from undetectable changes on infrared spectra after immersion process in H2SO4 6–98 v/v%. While membrane color changes from white to brownish and black is detected after the immersion process in sodium hydroxide (NaOH 0.15–80 w/v%.

  1. Solid-phase equilibria on Pluto's surface

    Science.gov (United States)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  2. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  3. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  4. Early life stress shapes female reproductive strategy through eggshell pigmentation in Japanese quail

    Czech Academy of Sciences Publication Activity Database

    Duval, C.; Zimmer, C.; Mikšík, Ivan; Cassey, P.; Spencer, K.A.

    2014-01-01

    Roč. 208, Nov 1 (2014), s. 146-153 ISSN 0016-6480 Institutional support: RVO:67985823 Keywords : breeding conditions * early-life stress * eggshell pigmentation * Japanese quail Subject RIV: ED - Physiology Impact factor: 2.470, year: 2014

  5. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    DEFF Research Database (Denmark)

    Nielsen, Thomas Eiland

    2009-01-01

    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...... with significant structural complexity and diversity. This review describes some of the most systematic solid-phase approaches that are potentially suited for pharmaceutical applications, that is, the methods described are useful for the synthesis of compound collections, and exhibit tunable stereochemistry...

  6. Phase relations and Gibbs energies of spinel phases and solid solutions in the system Mg-Rh-O

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Prusty, Debadutta [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Kale, G.M. [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Refinement of phase diagram for the system Mg-Rh-O and thermodynamic data for spinel compounds MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} is presented. Black-Right-Pointing-Pointer A solid-state electrochemical cell is used for thermodynamic measurement. Black-Right-Pointing-Pointer An advanced design of the solid-state electrochemical cell incorporating buffer electrodes is deployed to minimize polarization of working electrode. Black-Right-Pointing-Pointer Regular solution model for the spinel solid solution MgRh{sub 2}O{sub 4} - Mg{sub 2}RhO{sub 4} based on ideal mixing of cations on the octahedral site is proposed. Black-Right-Pointing-Pointer Factors responsible for stabilization of tetravalent rhodium in spinel compounds are identified. - Abstract: Pure stoichiometric MgRh{sub 2}O{sub 4} could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh{sub 2}O{sub 3} in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh{sub 2}O{sub 3}. The spinel phase can be considered as a solid solution of Mg{sub 2}RhO{sub 4} in MgRh{sub 2}O{sub 4}. The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg{sub 1+x}Rh{sub 2-x}O{sub 4} was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured

  7. Synthesis and characterization of biomorphic CeO2 obtained by using egg shell membrane as template

    Directory of Open Access Journals (Sweden)

    Marija Prekajski

    2014-06-01

    Full Text Available A new technology based on bio-templating approach was proposed in this paper. Egg-shell membrane (ESM has been employed as a natural biotemplate. Fibrous oxide ceramics was prepared by wet impregnation of biological template with water solution of cerium nitrate. The template was derived from membranes of fresh chicken eggs. Repeated impregnation, pyrolysis and final calcination in the range of 600 to 1200 °C in air resulted in template burnout and consolidation of the oxide layers. At low temperatures, the obtained products had structure which corresponded to the negative replication of biological templates. Unique bio-morphic CeO2 microstructures with interwoven networks were synthesized and characterized by scanning electron microscope (SEM and X-ray diffraction (XRD, whereas low-temperature nitrogen adsorption (BET method was used in order to characterize porous properties.

  8. Mass and Heat Transfer in Ion-Exchange Membranes Applicable to Solid Polymer Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Otteroey, M

    1996-04-01

    In this doctoral thesis, an improved emf method for determination of transference numbers of two counter ions in ion-exchange membranes is presented. Transference numbers were obtained as a continuous function of the composition. The method avoids problems with diffusion by using a stack of membranes. Water transference coefficients in ion-exchange membranes is discussed and reversible and irreversible water transfer is studied by emf methods. Efforts were made to get data relevant to the solid polymer fuel cell. The results support the findings of other researchers that the reversible water transfer is lower than earlier predicted. A chapter on the conductivity of ion-exchange membranes establishes a method to separate the very thin liquid layers surrounding the membranes in a stack. Using the method it was found that the conductivity is obtained with high accuracy and that the liquid layer in a membrane stack can contribute significantly to the total measured resistance. A four point impedance method was tested to measure the conductivity of membranes under fuel cell conditions. Finally, there is a discussion of reversible heat effects and heat transfer in ion-exchange membranes. 155 refs., 45 figs., 13 tabs.

  9. The extraction of uranium from wet process phosphoric acid using a liquid surfactant membrane system

    International Nuclear Information System (INIS)

    Dickens, N.; Davies, G.A.

    1984-01-01

    A liquid membrane extraction process is examined for the extraction of uranium from wet process phosphoric acid. Uranium is present in the acid in concentrations up to 100 ppm which in principle makes it ideal for treatment with a membrane process. The membrane system studied is based on extraction using DEHPA-TOPO reagents which are contained within the organic phase of a water in oil emulsion. Formulations of the emulsion membrane system have been studied, the limitations of acid temperature, P 2 O 5 concentration and solid dispersed impurities in the acid have been studied in laboratory batch experiments and in a continuous pilot plant unit capable of treating 5l of concentrated acid per minute. Data from the pilot plant work has been used to develop a flowsheet for a commercial unit based on this process. (author)

  10. Investigation of hydrodynamic behaviour of membranes using radiotracer techniques

    Directory of Open Access Journals (Sweden)

    Zakrzewska-Trznadel G.

    2013-05-01

    Full Text Available The aim of the work was to study membrane devices using short-lived radioisotopes like Ba-137m and Ga-68 as tracers. These radioisotopes were obtained from radionuclide generators: Cs-137/Ba-137m and Ge-68/Ga-68. The first radionuclide, namely Ba-137m with a half-life of 2.55 minutes was applied as a liquid phase tracer for studying hydrodynamic conditions inside the membrane apparatus. The membrane module with ceramic membranes was tested by using Ba-137m. The experiments showed that this radionuclide with a short half-life is a perfect tracer for liquid phase, whereas Ga-68 with longer half-life equal to 68 minutes was considered as a solid phase (bentonite tracer. Ga-68 was used to gain more knowledge about the phenomena occurring in the membrane boundary layer. After kinetic studies of isotope adsorption into the carrier material, the growth rate of the deposit layer as well as deposit's thickness on the flat-sheet membrane were studied. The influence of such process parameters like pressure, linear velocity of liquid and feed concentration on formation of the bentonite layer on the membrane surface was studied.

  11. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    Science.gov (United States)

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    Science.gov (United States)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  13. Effect of H3PO4 Concentration and Particle Size of the Eggshell Used in Laying Hens Fed on Bone and Blood

    Directory of Open Access Journals (Sweden)

    S. Kismiati

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 The objective of this research was to evaluate the effect of H3 PO4 concentrations and particle size of eggshell used in the feed of laying hens on bone and blood profiles. Ninety-six laying hens (Isa Brown strain age 25 weeks were kept in individual battery cage and divided into 8 groups randomly. Group 1 was fed using eggshell with out H3PO4 and particle size of <1 mm (feed 1 , group 2 was fed using eggshell that has been soaked in H3PO4 3% and particle size of <1 mm (feed 2, group 3 were fed using eggshell that has been soaked in H3PO4 4% and particle size of <1 mm (feed 3, group 4 was fed using eggshell that has been soaked in H3PO4 5% and particle size of <1 mm (feed 4, group 5 was fed using eggshell that has been soaked in H3PO4 and particle size of <3 mm (feed 5 , group of 6 was fed using eggshell that has been soaked in H3PO4 3% and particle size of <3 mm (feed 6, group 7 was fed using eggshell that has been soaked in H3PO4 4 % and particle size of <3 mm (feed 7 and a group of 8 was fed using eggshell that has been soaked in H3PO4 5% and particle size of <3 mm (feed 8. A Completely Randomized Design patterns factorial 4 x 2 x 3 was used in this research. Result of this research showed that had no interaction effect (P>0.05 between the H3PO4 concentration and particle size of eggshell on weight, volume, diameter of tibia bone and calcium and phosphorus content of the blood. The concentration of H3PO4 or particles size also had no effect (P>0.05 on all variables. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font

  14. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  15. Periodical low eggshell temperatures during incubation and post hatch dietary arginine supplementation

    NARCIS (Netherlands)

    Afsarian, O.; Shahir, M.H.; Akhlaghi, A.; Lotfolahian, H.; Hoseini, A.; Lourens, A.

    2016-01-01

    An experiment was conducted to evaluate the effects of a periodically low eggshell temperature exposure during incubation and dietary supplementation of arginine on performance, ascites incidence, and cold tolerance acquisition in broilers. A total of 2,400 hatching eggs were randomly assigned to

  16. On the study of the solid-solid phase transformation of TlBiTe2

    International Nuclear Information System (INIS)

    Chrissafis, K.; Vinga, E.S.; Paraskevopoulos, K.M.; Polychroniadis, E.K.

    2003-01-01

    The narrow gap semiconductor TlBiTe 2 undergoes a solid-solid phase transformation from the rhombohedral (D 3d ) to the cubic (O h ) phase. The present paper deals with the study of this phase transformation combining the results of Differential Scanning Calorimetry (DSC) and Transmission Electron Microscopy (TEM). It has been found that during heating the transformation is an athermal activated process, which can be described only by a combination of more than one processes while during cooling it exhibits an expectable thermal hysteresis due to the volume difference. The results of the kinetic analysis combined with the electron microscopy findings, supported also by the Fourier Transform Infrared (FTIR) spectroscopy ones, lead to the conclusion that TlBiTe 2 undergoes a multiple-step, displacive, martensitic type transformation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  17. Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996

    International Nuclear Information System (INIS)

    Stepan, D.J.; Moe, T.A.; Collings, M.E.

    1997-01-01

    This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-μm TiO 2 /Al 2 O 3 membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit with a surrogate tank waste solution. The performance of the unit was evaluated with a statistical test design that determined the effect of temperature, pressure, membrane rotational speed, and solids loading on permeate flux. All four variables were found to be statistically significant, with the magnitude of the effect in the order of temperature, solids loading, rotor speed, and pressure. Temperature, rotor speed, and pressure had an increasing effect on flux with increasing value, while increases in solids loading showed a decrease in permeate flux. Significant interactions between rotor speed and solids loading and pressure and solids loading were also observed. The regression equation derived from test data had a correlation coefficient of 0.934, which represents a useful predictive capability for integrating the technology into DOE cleanup efforts. An extended test run performed on surrogate waste showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance

  18. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2

    Science.gov (United States)

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2018-03-01

    Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.

  19. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2.

    Science.gov (United States)

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2018-03-14

    Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.

  20. Visual monitoring of solid-phase extraction using chromogenic fluorous synthesis supports.

    Science.gov (United States)

    Blackburn, Christopher

    2012-03-12

    Reductive aminations and further transformations of an azo dye and fluorous tagged aldehyde are described. The intensely colored 2,4-dialkoxybenzyl protected amines undergo Fmoc-based peptide coupling, Suzuki reactions, and sulfonamide formation with product isolation facilitated by visual monitoring of fluorous solid phase extraction. Target compounds are released from the supports in high yields and purities by treatment with trifluoroacetic acid (TFA).

  1. Solid phase radioimmunoassays for human C-reactive protein

    International Nuclear Information System (INIS)

    Shine, B.; Beer, F.C. de; Pepys, M.B.

    1981-01-01

    Two new, rapid and sensitive radioimmunoassays for human C-reactive protein (CRP) have been established using antiserum coupled to magnetizable cellulose particles, which facilitate phase separation. A single antibody method, using solid phase anti-CRP, provides a sensitivity of 50 μg/l with a 1-h incubation time and intra- and inter-assay coefficients of variation of 10%. A double antibody method, using fluid phase rabbit anti-CRP serum and solid phase sheep anti-rabbit IgG serum, provides a sensitivity of 3 μg/l with an overnight incubation and intra- and inter-assay coefficients of variation of 10%. Among 468 sera from normal adult volunteer blood donors the median CRP concentration was 800 μg/l, interquartile range 340-1700 μg/l and range 70-29,000 μg/l. Ninety percent of samples contained less than 3 mg/l and 99% less than 10 mg/l. Low levels (14-650 μg/l) of CRP were detected both in amniotic fluids and in cerebrospinal fluids. (Auth.)

  2. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Science.gov (United States)

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. SOLID-PHASE PEPTIDE SYNTHESIS OF ISOTOCIN WITH AMIDE ...

    African Journals Online (AJOL)

    SOLID-PHASE PEPTIDE SYNTHESIS OF ISOTOCIN WITH AMIDE OF ASPARAGINE PROTECTED WITH 1-TETRALINYL. TRIFLUOROMETHANESULPHONIC ACID (TFMSA) DEPROTECTION, CLEAVAGE AND AIR OXIDATION OF MERCAPTO GROUPS TO DISULPHIDE.

  4. Automated Solid-Phase Radiofluorination Using Polymer-Supported Phosphazenes

    DEFF Research Database (Denmark)

    Mathiessen, Bente; Zhuravlev, Fedor

    2013-01-01

    of [18F]FDG. The combination of compact form factor, simplicity of [18F]F− recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.......The polymer supported phosphazene bases PS-P2tBu and the novel PS-P2PEG allowed for efficient extraction of [18F]F− from proton irradiated [18O]H2O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic...

  5. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    Science.gov (United States)

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  6. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  8. Development of solid phase radioimmunoassay using antibody coupled magnetizable particles for measurement of progesterone in human serum

    International Nuclear Information System (INIS)

    Mehany, N.L.

    2007-01-01

    The aim of the present study was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase magnetic particles for the measurement of progesterone in human serum are described. The production of polyclonal antibodies was carried out by immunizing five white New-Zealand rabbits subcutaneously. Low density magnetizable cellulose iron oxide particles have been used to couple covalently to the IgG fraction of polyclonal anti-progesterone using carbonyl diimidazole activation method and applied as a solid phase separating agent for RIA of serum progesterone. 125 I-progesterone tracer was prepared using chloramine-T and iodogen oxidation methods and purified using high performance liquid chromatography. The progesterone standards were prepared using highly purified progesterone powder with hormone free serum as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of progesterone based on magnetizable solid phase separation. This may be extremely helpful in diagnosis and proper management of ovulation during childbearing years

  9. Synthesis of CdS hollow/solid nanospheres and their chain-structures by membrane technique

    International Nuclear Information System (INIS)

    Duan Shumin; Wu Qingsheng; Jia Runping; Liu Xinbo

    2008-01-01

    CdS hollow/solid nanospheres and their chain-structures were successfully synthesized through supporting liquid membrane (SLM) system with bio-membrane. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, and photoluminescence (PL) spectroscopy have been used for the characterization of the products. The average diameters of CdS solid/hollow spheres are about 10, 40 nm, respectively. The wall of the hollow spheres is about 5 nm. CdS products are all cubic face-centered structure with the cell constant a = 5.830 A. We also explore the morphology, structure and possible synthesis mechanism. A possible template mechanism has been proposed for the production of the hollow CdS nanocrystals, that is, CdS nanoparticles grow along the non-soakage interface between CHCl3 and reactant solution. During this process, the organic functional groups were crucial to the control of crystal morphologies

  10. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  11. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  12. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Directory of Open Access Journals (Sweden)

    Andreas Beyer

    2015-10-01

    Full Text Available To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD, followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  13. Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase

    Science.gov (United States)

    Masum, Shah Md.; Li, Shu Jie; Tamba, Yukihiro; Yamashita, Yuko; Yamazaki, Masahito

    2004-04-01

    Elucidation of the mechanisms of transitions between cubic phase and liquid-crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide-1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L-lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.

  14. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.

    Science.gov (United States)

    Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F

    2013-09-01

    The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the

  15. Solid-phase route to Fmoc-protected cationic amino acid building blocks

    DEFF Research Database (Denmark)

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck

    2012-01-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity...... was developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto...... of simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility....

  16. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis

    Science.gov (United States)

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  17. Unitized solid phase immunoassay kit and method

    International Nuclear Information System (INIS)

    1975-01-01

    A unitized solid phase kit for radioimmunoassay is disclosed. All of the necessary assay reagents are incorporated into a single tube wherein all phases of the assay procedure are performed, requiring only the addition of the patient's sample. Antibody is bound to the tube surface while labelled antigen is also present but unbound. Storage in the absence of air and water results in the stabilization of the reagents such that the system can be stored for long periods

  18. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    International Nuclear Information System (INIS)

    Kolari, K; Havia, T; Stuns, I; Hjort, K

    2014-01-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min −1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems. (paper)

  19. A FTIR study water in membrane of nitrocellulose prepared by phase inversion

    International Nuclear Information System (INIS)

    Benosmane, N.; Boutemeur, B.; Hamdi, M.

    2004-01-01

    Full text.Cellulose derivates were the first biopolymers used to produce synthesis membranes for technical applications, in this study the state of water in asymmetric membrane of nitrocellulose, prepared by the phase inversion process, was investigated using infrared spectroscopy (FTIR), after membrane preparation by the wet inversion process in acetone, the spectre FTIR of wet asymmetric membrane of nitrocellulose after immersion in water (after one week) is compared to the spectre of dried asymmetric membrane of nitrocellulose, the difference in spectre of dried and wet membrane indicate a weakly hydrogen-bonded to the polymer hydroxyl groups between water and hydroxyl groups in surface of membrane, the results demonstrate the amount of water species present in the surface of asymmetric membrane and heterogeneous of surface

  20. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland

    International Nuclear Information System (INIS)

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D.

    2014-01-01

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (= intensive agriculture) and eastern (= extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations = 5.21–9.40 Cr ppm), Ni (3.5-fold; 1.15–4.07 Ni ppm), and Cd (2.6-fold; 0.34–0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71–11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural < urban), and that Cd levels are probably regulated physiologically, even though these were relatively high, which could be treated as an overall proxy of a heavy Cd load in the soil environment. - Highlights: • Concentrations of Cr, Ni, Cd and Pb are reported for Rook eggshells from 43 rookeries. • Cr, Ni and Pb levels were significantly higher in urban than in rural areas. • Bioaccumulation of Cr, Ni and Pb suggests a pollution gradient (urban > rural areas). • Females rapidly bioaccumulate Cr, Ni and Pb in breeding areas. • No difference found for Cd levels, which are probably regulated physiologically