WorldWideScience

Sample records for egfr signaling pathway

  1. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  2. Combined EGFR and VEGFR versus single EGFR signaling pathways inhibition therapy for NSCLC: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xinji Zhang

    Full Text Available BACKGROUND: Lung cancer is a heterogeneous disease with multiple signaling pathways influencing tumor cell survival and proliferation, and it is likely that blocking only one of these pathways allows others to act as salvage or escape mechanisms for cancer cells. Whether combined inhibition therapy has greater anti-tumor activity than single inhibition therapy is a matter of debate. Hence, a meta-analysis comparing therapy inhibiting both VEGFR and EGFR signaling pathways with that inhibiting EGFR signaling pathway alone was performed. METHODOLOGY AND PRINCIPAL FINDINGS: We searched PubMed, EMBASE database and the proceedings of major conferences for relevant clinical trials. Outcomes analyzed were objective tumor response rate (ORR, progression-free survival (PFS, overall survival (OS and toxicity. Besides, subgroup analyses were performed to investigate whether the combined inhibition therapy is best performed using combination of selective agents or a single agent with multiple targets. Six trials recruiting 3,302 patients were included in the analysis. Combined inhibition therapy was associated with a 3% improvement in OS as compared with single-targeted therapy, but this difference was not statistically significant (HR, 0.97; 95% CI, 0.89-1.05; P=0.472. Patients receiving combined inhibition therapy had significant longer PFS than the group with single-targeted therapy (HR, 0.80; 95% CI, 0.67-0.95; P=0.011. There was no difference in the ORR between the groups (OR, 1.44; 95% CI, 0.95-2.18; P=0.085. Subgroup analysis revealed that combined inhibition therapy using combination regimens was associated with statistically significant improvement in both ORR and PFS. Toxicity was greater in combined inhibition therapy. CONCLUSIONS: There is no evidence to support the use of combined inhibition therapy in unselected patients with advanced NSCLC. However, given the significant advantage in ORR and PFS, combined inhibition therapy using combination

  3. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression

    Science.gov (United States)

    He, Chunbo; Mao, Dagan; Hua, Guohua; Lv, Xiangmin; Chen, Xingcheng; Angeletti, Peter C; Dong, Jixin; Remmenga, Steven W; Rodabaugh, Kerry J; Zhou, Jin; Lambert, Paul F; Yang, Peixin; Davis, John S; Wang, Cheng

    2015-01-01

    The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer. PMID:26417066

  4. Genetic link between Cabeza, a Drosophila homologue of Fused in Sarcoma (FUS), and the EGFR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Mai; Kyotani, Akane [Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Azuma, Yumiko [Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566 (Japan); Yoshida, Hideki; Binh Nguyen, Thanh [Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Mizuta, Ikuko; Yoshida, Tomokatsu; Mizuno, Toshiki [Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566 (Japan); Nakagawa, Masanori [North Medical Center, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566 (Japan); Tokuda, Takahiko, E-mail: ttokuda@koto.kpu-m.ac.jp [Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho,Kamigyo-ku, Kyoto 602-8566 (Japan); Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2014-08-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila. - Highlights: • Knockdown of Cabeza induced rough eye phenotype. • Knockdown of Cabeza induced fusion of cone cells in pupal retinae. • Knockdown of Cabeza induced apoptosis in pupal retinae. • Mutation in EGFR pathway-related genes suppressed the rough eye phenotype. • Cabeza may negatively regulate the EGFR pathway.

  5. [Study on the correlation between EGFR-STAT3 signal pathway and laryngeal papilloma].

    Science.gov (United States)

    Wang, Xinhua; Sun, Jingwu

    2009-09-01

    To explore the relationship between the expression of EGFR and STAT3 in human laryngeal papilloma and its biological behavior. Reverse transcription polymerase chain reaction(RT-PCR), immunohistochemical staining and Western blot were used to evaluate the mRNA and protein expression of EGFR and STAT3 (p-STAT3) in 42 laryngeal papilloma tissues and 15 samples of normal laryngeal tissue, and the relationship between the protein expression of them and clinic pathological parameters was also analyzed. The mRNA expression levels of EGFR and STAT3 in laryngeal papilloma tissue were significantly higher than that in normal laryngeal tissue (P papilloma than normal laryngeal tissue by immunohistochemistry and western blot (P papilloma (P papilloma (P papilloma,, and the persistent activation of STAT3 gene plays an important role in the recurrence and canceration of laryngeal papilloma.

  6. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  7. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    Science.gov (United States)

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    Science.gov (United States)

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  9. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    Science.gov (United States)

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  10. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    Science.gov (United States)

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  11. Reovirus exerts potent oncolytic effects in head and neck cancer cell lines that are independent of signalling in the EGFR pathway

    International Nuclear Information System (INIS)

    Twigger, Katie; Coffey, Matt; Thompson, Brad; Jebar, Adel; Errington, Fiona; Melcher, Alan A; Vile, Richard G; Pandha, Hardev S; Harrington, Kevin J; Roulstone, Victoria; Kyula, Joan; Karapanagiotou, Eleni M; Syrigos, Konstantinos N; Morgan, Richard; White, Christine; Bhide, Shreerang; Nuovo, Gerard

    2012-01-01

    Reovirus exploits aberrant signalling downstream of Ras to mediate tumor-specific oncolysis. Since ~90% squamous cell carcinomas of the head and neck (SCCHN) over-express EGFR and SCCHN cell lines are sensitive to oncolytic reovirus, we conducted a detailed analysis of the effects of reovirus in 15 head and neck cancer cell lines. Both pre- and post-entry events were studied in an attempt to define biomarkers predictive of sensitivity/resistance to reovirus. In particular, we analysed the role of EGFR/Ras signalling in determining virus-mediated cytotoxicity in SCCHN. To test whether EGFR pathway activity was predictive of increased sensitivity to reovirus, correlative analyses between reoviral IC50 by MTT assay and EGFR levels by western blot and FACS were conducted. Inhibition or stimulation of EGFR signalling were analysed for their effect on reoviral oncolysis by MTT assay, and viral growth by TCID50 assay. We next analysed the effects of inhibiting signalling downstream of Ras, by specific inhibitors of p38MAPK, PI3-K or MEK, on reoviral killing examined by MTT assay. The role of PKR in reoviral killing was also determined by blockade of PKR using 2-aminopurine and assaying for cell survival by MTT assay. The apoptotic response of SCCHN to reovirus was examined by western blot analysis of caspase 3 cleavage. Correlative analyses between reoviral sensitivity and EGFR levels revealed no association. Intermediate sub-viral and core particles showed the same infectivity/cytotoxicity as intact reovirus. Therefore, sensitivity was not determined by cell entry. In 4 cell lines, oncolysis and viral growth were both unaffected by inhibition or stimulation of EGFR signalling. Inhibition of signalling downstream of Ras did not abrogate reoviral oncolysis and, in addition, modulation of PKR using 2-aminopurine did not alter reovirus sensitivity in resistant cell lines. Caspase 3 cleavage was not detected in infected cells and oncolysis was observed in pan

  12. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  13. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  14. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Science.gov (United States)

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  15. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    OpenAIRE

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelli...

  17. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways....... Our results indicate that amplification and/or overexpression of EGFR is an unsatisfactory predictor for response to cetuximab....

  18. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    Science.gov (United States)

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  19. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines

    International Nuclear Information System (INIS)

    Mihatsch, Julia

    2014-01-01

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  20. MITF Modulates Therapeutic Resistance through EGFR Signaling.

    Science.gov (United States)

    Ji, Zhenyu; Erin Chen, Yiyin; Kumar, Raj; Taylor, Michael; Jenny Njauw, Ching-Ni; Miao, Benchun; Frederick, Dennie T; Wargo, Jennifer A; Flaherty, Keith T; Jönsson, Göran; Tsao, Hensin

    2015-07-01

    Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition.

  1. EGFR signaling in colorectal cancer: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Saletti P

    2015-01-01

    Full Text Available Piercarlo Saletti,1 Francesca Molinari,2 Sara De Dosso,1 Milo Frattini2 1Oncology Institute of Southern Switzerland, Bellinzona, 2Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland Abstract: Colorectal cancer (CRC remains a formidable health burden worldwide, with up to 50% of patients developing metastases during the course of their disease. This group of CRC patients, characterized by the worst prognosis, has been extensively investigated to improve their life expectancy. Main efforts, focused on the epidermal growth-factor receptor (EGFR, which plays a pivotal role in CRC pathogenesis, have led to the development and introduction in clinical practice of specific targeted therapies (ie, monoclonal antibodies. Subsequently, the scientific community has tried to identify molecular predictors of the efficacy of such therapies. However, it has become clear that EGFR alterations occurring in CRC are difficult to investigate, and therefore their predictive role is unclear. In contrast, the clinical role of two downstream members (KRAS and NRAS has been clearly demonstrated. Currently, EGFR-targeted therapies can be administered only to patients with wild-type KRAS and NRAS genes. Our review addresses the medical management of metastatic CRC. Specifically, we describe in detail the molecular biology of metastatic CRC, focusing on the EGFR signaling pathway, and we discuss the role of current and emerging related biomarkers and therapies in this field. We also summarize the clinical evidence regarding anti-EGFR monoclonal antibodies and examine potential future perspectives. Keywords: colorectal cancer, EGFR, gene mutations, cetuximab, panitumumab

  2. The anti-epidermal growth factor receptor (EGFR) monoclonal antibody, C225, enhances radiation-induced apoptosis in primary glioma cell lines through mediation of MAPK/JNK/p38 signaling pathways

    International Nuclear Information System (INIS)

    Chakravarti, A.; Noll, E.; Black, P.M.; Loeffler, J.S.

    2001-01-01

    Purpose: Increasing evidence suggests that signaling mediated by the epidermal growth factor receptor (EGFR) pathway contributes to radiation resistance. The anti-EGFR monoclonal antibody, C225, has been shown to enhance radiation response for several tumor types in preclinical models. Malignant gliomas are known to express, and quite frequently overexpress, EGFR. Our objectives in this study were to 1) Evaluate the efficacy of C225 as a radiation response modifier in EGFR-expressing glioma cell lines and to 2) Investigate the underlying molecular mechanisms mediating C225-induced enhancement of radiation response. Materials and Methods: Twelve EGFR-expressing glioma cells lines, established from patient tumors, were used for this study. Cells were incubated with C225, irradiated, and then evaluated for radiation response. Assays used to evaluate efficacy of C225-mediated radiosensitization included time-course apoptosis assays (Annexin V and TUNEL), viability assays (MTT), and clonogenic survival assays. The changes along MAPK (p44/p42)/JNK/p38-MAPK signal transduction pathways were then investigated using quantitative Western analysis with phospho-specific antibodies to determine the molecular mechanisms by which C225 mediates a given response. Results: C225 clearly enhanced radiation response for 7 of the 12 primary glioma cell lines studied. Enhancement of both immediate and delayed apoptotic responses was evident in these 7 responsive cell lines after C225 administration. The average apoptosis index at 6 hours post-RT+C225 for the 7 responsive lines was 9.5%, compared to 1.2% for the RT-only controls. A pattern of delayed apoptosis was evident in these 7 lines, with secondary apoptotic peaks (∼ 8.0%) occurring at 24 hours post-RT+C225. Time course viability measurements revealed a steady decrease in viable tumor cells in these responsive cell lines from 75% at 6 hours post-RT+C225 to 20% at 7 days. Clonogenic survival was also diminished in these 7 lines

  3. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Directory of Open Access Journals (Sweden)

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  4. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Jason T Fong

    Full Text Available The use of tyrosine kinase inhibitors (TKIs against EGFR/c-Met in non-small cell lung cancer (NSCLC has been shown to be effective in increasing patient progression free survival (PFS, but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4-5 and 11-22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2-4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39% by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.

  5. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sung Yun Kim

    Full Text Available In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum, an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE-like sequences in their 3'UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.

  6. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Saghir Akhtar

    Full Text Available Cationic polyamidoamine (PAMAM dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented generation (G 6 PAMAM dendrimer, Superfect (SF, stimulated epidermal growth factor receptor (EGFR tyrosine kinase signaling-an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293 cells. Here, we firstly studied the in vitro effects of Polyfect (PF, a non-activated (intact G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM

  7. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shi, T.; Niepel, M.; McDermott, J. E.; Gao, Y.; Nicora, C. D.; Chrisler, W. B.; Markillie, L. M.; Petyuk, V. A.; Smith, R. D.; Rodland, K. D.; Sorger, P. K.; Qian, W. -J.; Wiley, H. S.

    2016-07-12

    It is not known whether cancer cells generally show quantitative differences in the expression of signaling pathway proteins that could dysregulate signal transduction. To explore this issue, we first defined the primary components of the EGF-MAPK pathway in normal human mammary epithelial cells, identifying 16 core proteins and 10 feedback regulators. We then quantified their absolute abundance across a panel of normal and cancer cell lines. We found that core pathway proteins were expressed at very similar levels across all cell types. In contrast, the EGFR and transcriptionally controlled feedback regulators were expressed at highly variable levels. The absolute abundance of most core pathway proteins was between 50,000- 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower levels (2,000-5,000 per cell). MAPK signaling showed saturation in all cells between 3,000-10,000 occupied EGFR, consistent with the idea that low adaptor levels limit signaling. Our results suggest that the core MAPK pathway is essentially invariant across different cell types, with cell- specific differences in signaling likely due to variable levels of feedback regulators. The low abundance of adaptors relative to the EGFR could be responsible for previous observation of saturable signaling, endocytosis, and high affinity EGFR.

  8. Targeting the EGFR pathway for cancer therapy

    DEFF Research Database (Denmark)

    Johnston, JB; Navaratnam, S; Pitz, MW

    2006-01-01

    .g.: Trastuzumab/Herceptin, Pertuzumab/Omnitarg/rhuMab-2C4, Cetuximab/Erbitux/IMC-C225, Panitumumab/Abenix/ABX-EGF, and also ZD6474). In addition, we summarize, both current therapy development driven by antibody-based targeting of the EGFR-dependent signaling pathways, and furthermore, we provide a background...

  9. The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling.

    Science.gov (United States)

    Hahn, Ines; Fuss, Bernhard; Peters, Annika; Werner, Tamara; Sieberg, Andrea; Gosejacob, Dominic; Hoch, Michael

    2013-06-01

    Guanine nucleotide exchange factors (GEFs) of the cytohesin protein family are regulators of GDP/GTP exchange for members of the ADP ribosylation factor (Arf) of small GTPases. They have been identified as modulators of various receptor tyrosine kinase signaling pathways including the insulin, the vascular epidermal growth factor (VEGF) and the epidermal growth factor (EGF) pathways. These pathways control many cellular functions, including cell proliferation and differentiation, and their misregulation is often associated with cancerogenesis. In vivo studies on cytohesins using genetic loss of function alleles are lacking, however, since knockout mouse models are not available yet. We have recently identified mutants for the single cytohesin Steppke (Step) in Drosophila and we could demonstrate an essential role of Step in the insulin signaling cascade. In the present study, we provide in vivo evidence for a role of Step in EGFR signaling during wing and eye development. By analyzing step mutants, transgenic RNA interference (RNAi) and overexpression lines for tissue specific as well as clonal analysis, we found that Step acts downstream of the EGFR and is required for the activation of mitogen-activated protein kinase (MAPK) and the induction of EGFR target genes. We further demonstrate that step transcription is induced by EGFR signaling whereas it is negatively regulated by insulin signaling. Furthermore, genetic studies and biochemical analysis show that Step interacts with the Connector Enhancer of KSR (CNK). We propose that Step may be part of a larger signaling scaffold coordinating receptor tyrosine kinase-dependent MAPK activation.

  10. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  11. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  12. EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway.

    Directory of Open Access Journals (Sweden)

    Dominic Chih-Cheng Voon

    Full Text Available Recent studies have revealed that differentiated epithelial cells would acquire stem cell-like and tumorigenic properties following an Epithelial-Mesenchymal Transition (EMT. However, the signaling pathways that participate in this novel mechanism of tumorigenesis have not been fully characterized. In Runx3 (-/- p53 (-/- murine gastric epithelial (GIF-14 cells, EMT-induced plasticity is reflected in the expression of the embryonal proto-oncogene Hmga2 and Lgr5, an exclusive gastrointestinal stem cell marker. Here, we report the concurrent activation of an EGFR/Ras gene expression signature during TGF-β1-induced EMT in GIF-14 cells. Amongst the altered genes was the induction of Egfr, which corresponded with a delayed sensitization to EGF treatment in GIF-14. Co-treatment with TGF-β1 and EGF or the expression of exogenous KRas led to increased Hmga2 or Lgr5 expression, sphere initiation and colony formation in soft agar assay. Interestingly, the gain in cellular plasticity/tumorigenicity was not accompanied by increased EMT. This uncoupling of EMT and the induction of plasticity reveals an involvement of distinct signaling cues, whereby the EGFR/Ras pathway specifically promotes stemness and tumorigenicity in EMT-altered GIF-14 cells. These data show that the EGFR/Ras pathway requisite for the sustenance of gastric stem cells in vivo and in vitro is involved in the genesis and promotion of EMT-induced tumor-initiating cells.

  13. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines; Der Einfluss des Stammzellmarkers ALDH und des EGFR-PI3 Kinase-Akt Signalwegs auf die Strahlenresistenz humaner Tumorzelllinien

    Energy Technology Data Exchange (ETDEWEB)

    Mihatsch, Julia

    2014-07-14

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  14. Modulation of gene expression and cell-cycle signaling pathways by the EGFR inhibitor gefitinib (Iressa) in rat urinary bladder cancer.

    Science.gov (United States)

    Lu, Yan; Liu, Pengyuan; Van den Bergh, Francoise; Zellmer, Victoria; James, Michael; Wen, Weidong; Grubbs, Clinton J; Lubet, Ronald A; You, Ming

    2012-02-01

    The epidermal growth factor receptor inhibitor Iressa has shown strong preventive efficacy in the N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN) model of bladder cancer in the rat. To explore its antitumor mechanism, we implemented a systems biology approach to characterize gene expression and signaling pathways in rat urinary bladder cancers treated with Iressa. Eleven bladder tumors from control rats, seven tumors from rats treated with Iressa, and seven normal bladder epithelia were profiled by the Affymetrix Rat Exon 1.0 ST Arrays. We identified 713 downregulated and 641 upregulated genes in comparing bladder tumors versus normal bladder epithelia. In addition, 178 genes were downregulated and 96 genes were upregulated when comparing control tumors versus Iressa-treated tumors. Two coexpression modules that were significantly correlated with tumor status and treatment status were identified [r = 0.70, P = 2.80 × 10(-15) (bladder tumor vs. normal bladder epithelium) and r = 0.63, P = 2.00 × 10(-42) (Iressa-treated tumor vs. control tumor), respectively]. Both tumor module and treatment module were enriched for genes involved in cell-cycle processes. Twenty-four and twenty-one highly connected hub genes likely to be key drivers in cell cycle were identified in the tumor module and treatment module, respectively. Analysis of microRNA genes on the array chips showed that tumor module and treatment module were significantly associated with expression levels of let-7c (r = 0.54, P = 3.70 × 10(-8) and r = 0.73, P = 1.50 × 10(-65), respectively). These results suggest that let-7c downregulation and its regulated cell-cycle pathway may play an integral role in governing bladder tumor suppression or collaborative oncogenesis and that Iressa exhibits its preventive efficacy on bladder tumorigenesis by upregulating let-7 and inhibiting the cell cycle. Cell culture study confirmed that the increased expression of let-7c decreases Iressa-treated bladder tumor cell

  15. iRhom2 promotes lupus nephritis through TNF-α and EGFR signaling.

    Science.gov (United States)

    Qing, Xiaoping; Chinenov, Yurii; Redecha, Patricia; Madaio, Michael; Roelofs, Joris Jth; Farber, Gregory; Issuree, Priya D; Donlin, Laura; Mcllwain, David R; Mak, Tak W; Blobel, Carl P; Salmon, Jane E

    2018-04-02

    Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.

  16. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Science.gov (United States)

    Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike

    2015-01-01

    Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  17. Inhibition of tumor growth by targeted anti-EGFR/IGF-1R Nanobullets depends on efficient blocking of cell survival pathways

    NARCIS (Netherlands)

    van der Meel, Roy; Oliveira, Sabrina; Altintas, Isil; Heukers, R.; Pieters, Ebel H.E.; van Bergen en Henegouwen, Paul M.P.; Storm, Gerrit; Hennink, Wim E.; Kok, Robbert J.; Schiffelers, Raymond M.

    2013-01-01

    The clinical efficacy of epidermal growth factor receptor (EGFR)-targeted inhibitors is limited due to resistance mechanisms of the tumor such as activation of compensatory pathways. Crosstalk between EGFR and insulin-like growth factor 1 (IGF-1R) signaling has been frequently described to be

  18. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-01-01

    Highlights: ► EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. ► Degradation of IκB and activation of NF-κB are observed in 3D-cultured cells. ► Inhibiting NF-κB enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  19. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy.

    Directory of Open Access Journals (Sweden)

    Elina Hakonen

    Full Text Available Placental lactogen (PL induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN, stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5 when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5. PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5 mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.

  20. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  1. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer.

    Science.gov (United States)

    Centuori, Sara M; Martinez, Jesse D

    2014-10-01

    A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.

  2. ADCC responses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR antibodies imgatuzumab and cetuximab in NSCLC cells

    NARCIS (Netherlands)

    Kol, Arjan; Terwisscha van Scheltinga, Anton; Pool, Martin; Gerdes, Christian; de Vries, Elisabeth; de Jong, Steven

    2017-01-01

    Imgatuzumab is a novel glycoengineered anti-epidermal growth factor receptor (EGFR) monoclonal antibody optimized to induce both antibody-dependent cellular cytotoxicity (ADCC) and EGFR signal transduction inhibition. We investigated antiEGFR monoclonal antibodies imgatuzumab and cetuximab-induced

  3. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Directory of Open Access Journals (Sweden)

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  4. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    Science.gov (United States)

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    Science.gov (United States)

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Prevention of Bronchial Hyperplasia by EGFR Pathway Inhibitors in an Organotypic Culture Model

    Science.gov (United States)

    Lee, Jangsoon; Ryu, Seung-Hee; Kang, Shin Myung; Chung, Wen-Cheng; Gold, Kathryn Ann; Kim, Edward S.; Hittelman, Walter N.; Hong, Waun Ki; Koo, Ja Seok

    2011-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection or prevention strategies are urgently needed to increase survival. Hyperplasia is the first morphologic change that occurs in the bronchial epithelium during lung cancer development, followed by squamous metaplasia, dysplasia, carcinoma in situ, and invasive tumor. The current study was designed to determine the molecular mechanisms that control bronchial epithelium hyperplasia. Using primary normal human tracheobronchial epithelial (NHTBE) cells cultured using the 3-dimensional organotypic method, we found that the epidermal growth factor receptor (EGFR) ligands EGF, transforming growth factor-alpha, and amphiregulin induced hyperplasia, as determined by cell proliferation and multilayered epithelium formation. We also found that EGF induced increased cyclin D1 expression, which plays a critical role in bronchial hyperplasia; this overexpression was mediated by activating the mitogen-activated protein kinase pathway but not the phosphoinositide 3-kinase/Akt signaling pathway. Erlotinib, an EGFR tyrosine kinase inhibitor, and U0126, a MEK inhibitor, completely inhibited EGF-induced hyperplasia. Furthermore, a promoter analysis revealed that the activator protein-1 transcription factor regulates EGF-induced cyclin D1 overexpression. Activator protein-1 depletion using siRNA targeting its c-Jun component completely abrogated EGF-induced cyclin D1 expression. In conclusion, we demonstrated that bronchial hyperplasia can be modeled in vitro using primary NHTBE cells maintained in a 3-dimensional (3-D) organotypic culture. EGFR and MEK inhibitors completely blocked EGF-induced bronchial hyperplasia, suggesting that they have a chemopreventive role. PMID:21505178

  7. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    Science.gov (United States)

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  8. Antiproliferative effect of growth hormone-releasing hormone (GHRH antagonist on ovarian cancer cells through the EGFR-Akt pathway

    Directory of Open Access Journals (Sweden)

    Varga Jozsef

    2010-05-01

    Full Text Available Abstract Background Antagonists of growth hormone-releasing hormone (GHRH are being developed for the treatment of various human cancers. Methods MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. Results In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR level and the phosphorylation of Akt (p-Akt, suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. Conclusions The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.

  9. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    Science.gov (United States)

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  10. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas

    International Nuclear Information System (INIS)

    Pignochino, Ymera; Bardelli, Alberto; Aglietta, Massimo; Leone, Francesco; Sarotto, Ivana; Peraldo-Neia, Caterina; Penachioni, Junia Y; Cavalloni, Giuliana; Migliardi, Giorgia; Casorzo, Laura; Chiorino, Giovanna; Risio, Mauro

    2010-01-01

    Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC. Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs. EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are

  11. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    International Nuclear Information System (INIS)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang; Yuan, Ye; Zhu, Ben-Zhan

    2013-01-01

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg 2+ . Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg 2+ inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg 2+ . These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via the β1

  13. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Huang, Wei [Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 1000191 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  14. EVIDENCE FOR EGFR PATHWAY MEDIATION OF CLEFT PALATE INDUCTION BY TCDD

    Science.gov (United States)

    EVIDENCE FOR EGFR PATHWAY MEDIATION OF CLEFT PALATE INDUCTION BY TCDD. B D Abbott, A R Buckalew, and K E Leffler. RTD, NHEERL, ORD,US EPA, RTP, NC, USA.2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in C57BL/6J mice, producing cleft palate (CP) after exposure...

  15. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    International Nuclear Information System (INIS)

    Brunetto de Farias, Caroline; Heinen, Tiago Elias; Pereira dos Santos, Rafael; Abujamra, Ana Lucia; Schwartsmann, Gilberto

    2012-01-01

    Highlights: ► BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. ► TrkB inhibition potentiated the antitumor effect of cetuximab. ► BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  16. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  17. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...... using insulin signalling as a model system....

  18. Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC

    DEFF Research Database (Denmark)

    Chaib, Imane; Karachaliou, Niki; Pilotto, Sara

    2017-01-01

    Background: The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC) is limited by adaptive activation of cell survival signals. We hypothesized that both signal transducer and activator of transcription 3 (STAT3) ...

  19. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling.

    Science.gov (United States)

    Xu, Bao-Qing; Fu, Zhi-Guang; Meng, Yao; Wu, Xiao-Qing; Wu, Bo; Xu, Liang; Jiang, Jian-Li; Li, Ling; Chen, Zhi-Nan

    2016-09-20

    Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.

  20. Non-Smad signaling pathways.

    Science.gov (United States)

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  1. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes.

    Directory of Open Access Journals (Sweden)

    Yinhua Jin

    2015-12-01

    Full Text Available Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs. Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic, mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25, Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt. pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.

  2. SKLB188 inhibits the growth of head and neck squamous cell carcinoma by suppressing EGFR signalling.

    Science.gov (United States)

    Barzegar, Mansoureh; Ma, Shuang; Zhang, Chao; Chen, Xin; Gu, Ying; Shang, Chaowei; Jiang, Xiaojuan; Yang, Jiao; Nathan, Cherie-Ann; Yang, Shengyong; Huang, Shile

    2017-10-10

    Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. SKLB188 inhibited HNSCC cell proliferation by inducing G 1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21 Cip1 and p27 Kip1 ), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC 50 =5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose

  3. Retroactive signaling in short signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jacques-Alexandre Sepulchre

    Full Text Available In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.

  4. Inhibition of MHC-I by Brucella abortus is an early event during infection and involves EGFR pathway.

    Science.gov (United States)

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Mercogliano, M Florencia; Pozner, Roberto G; Schillaci, Roxana; Elizalde, Patricia V; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-04-01

    Brucella abortus is able to persist inside the host despite the development of potent CD8 + T-cell responses. We have recently reported the ability of B. abortus to inhibit the interferon-γ-induced major histocompatibility complex (MHC)-I cell surface expression on human monocytes. This phenomenon was due to the B. abortus-mediated retention of MHC-I molecules within the Golgi apparatus and was dependent on bacterial viability. However, the implications of bacterial virulence or replicative capacity and the signaling pathways remained unknown. Here we demonstrated that the B. abortus mutant strains RB51 and virB10 - are able to inhibit MHC-I expression in the same manner as wild-type B. abortus, even though they are unable to persist inside human monocytes for a long period of time. Consistent with this, the phenomenon was triggered early in time and could be observed at 8 h postinfection. At 24 and 48 h, it was even stronger. Regarding the signaling pathway, targeting epidermal growth factor (EGF) receptor (EGFR), ErbB2 (HER2) or inhibition of tumor necrosis factor-α-converting enzyme, one of the enzymes which generates soluble EGF-like ligands, resulted in partial recovery of MHC-I surface expression. Moreover, recombinant EGF and transforming growth factor-α as well as the combination of both were also able to reproduce the B. abortus-induced MHC-I downmodulation. Finally, when infection was performed in the presence of an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, MHC-I surface expression was significantly recovered. Overall, these results describe how B. abortus evades CD8 + T-cell responses early during infection and exploits the EGFR-ERK signaling pathway to escape from the immune system and favor chronicity.

  5. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  6. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling.

    Science.gov (United States)

    Kedzierski, Lukasz; Tate, Michelle D; Hsu, Alan C; Kolesnik, Tatiana B; Linossi, Edmond M; Dagley, Laura; Dong, Zhaoguang; Freeman, Sarah; Infusini, Giuseppe; Starkey, Malcolm R; Bird, Nicola L; Chatfield, Simon M; Babon, Jeffrey J; Huntington, Nicholas; Belz, Gabrielle; Webb, Andrew; Wark, Peter Ab; Nicola, Nicos A; Xu, Jianqing; Kedzierska, Katherine; Hansbro, Philip M; Nicholson, Sandra E

    2017-02-14

    Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5 -deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.

  7. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhan [School of Public Health, Xinxiang Medical University, 453003 (China); The Fifth Affiliated Hospital, Zhengzhou University, 450052 (China); Bu, Yongjun [School of Public Health, Xinxiang Medical University, 453003 (China); Liu, Xiaozhuan [Medical College, Henan University of Science & Technology, 471023 (China); Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling [School of Public Health, Xinxiang Medical University, 453003 (China); Li, Qiaoyun; Fu, Jianhong [The Fifth Affiliated Hospital, Zhengzhou University, 450052 (China); Yu, Zengli, E-mail: zly@zzu.edu.cn [School of Public Health, Xinxiang Medical University, 453003 (China); School of Public Health, Zhengzhou University, 450001 (China)

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  8. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    International Nuclear Information System (INIS)

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-01-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  9. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    International Nuclear Information System (INIS)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-01

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  10. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Gongming [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Shen, Nan [Department of Clinical Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Jiang, Xuefeng; Sun, Huiqing [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Xu, Nanwei; Zhou, Dong [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Nong, Luming, E-mail: lumingnong@hotmail.com [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Ren, Kewei, E-mail: keweiren@hotmail.com [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China)

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  11. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity

    DEFF Research Database (Denmark)

    Löf-Öhlin, Zarah M; Nyeng, Pia; Bechard, Matthew E

    2017-01-01

    Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce...

  12. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  13. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    International Nuclear Information System (INIS)

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-01-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM TGF , FCM PDGF ) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM B ). FCM TGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM TGF ≫FCM PDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM TGF >FCM PDGF ) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify

  14. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  15. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Changhua, E-mail: chkoukou@hotmail.com [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Zhou, Tian [Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Han, Xilin; Zhuang, Huijie [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Qian, Haixin, E-mail: qianhaixin@hotmail.com [The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000 (China)

    2015-08-21

    Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling. - Highlights: • Promoter methylation of LRIG1 occurred in colorectal cancer cells and tumors. • Restoration of LRIG1 inhibits tumor growth in vitro and in vivo. • Overexpression or knockdown of LRIG1 regulates EGFR/AKT and downstream apoptosis. • Methylation of LRIG1 correlates with its mRNA and protein downregulation. • LRIG1 was firstly identified as an epigenetic target in cancer.

  16. Icotinib inhibits EGFR signaling and alleviates psoriasis-like symptoms in animal models.

    Science.gov (United States)

    Tan, Fenlai; Yang, Guiqun; Wang, Yanping; Chen, Haibo; Yu, Bo; Li, He; Guo, Jing; Huang, Xiaoling; Deng, Yifang; Yu, Pengxia; Ding, Lieming

    2018-02-01

    To investigate the effects of icotinib hydrochloride and a derivative cream on epidermal growth factor receptor (EGFR) signaling and within animal psoriasis models, respectively. The effect of icotinib on EGFR signaling was examined in HaCaT cells, while its effect on angiogenesis was tested in chick embryo chorioallantoic membranes (CAM). The effectiveness of icotinib in treating psoriasis was tested in three psoriasis models, including diethylstilbestrol-treated mouse vaginal epithelial cells, mouse tail granular cell layer formation, and propranolol-induced psoriasis-like features in guinea pig ear skin. Icotinib treatment blocked EGFR signaling and reduced HaCaT cell viability as well as suppressed CAM angiogenesis. Topical application of icotinib ameliorated psoriasis-like histological characteristics in mouse and guinea pig psoriasis models. Icotinib also significantly inhibited mouse vaginal epithelium mitosis, promoted mouse tail squamous epidermal granular layer formation, and reduced the thickness of the horny layer in propranolol treated auricular dorsal surface of guinea pig. We conclude that icotinib can effectively inhibit psoriasis in animal models. Future clinical studies should be conducted to explore the therapeutic effects of icotinb in humans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.

    Science.gov (United States)

    Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping

    2018-04-01

    Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  19. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    International Nuclear Information System (INIS)

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke; Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-01-01

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer

  20. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    Science.gov (United States)

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  1. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal inte...gration between IFNgamma and TLR signalling pathways in

  2. EGFR targeting monoclonal antibody combines with an mTOR inhibitor and potentiates tumor inhibition by acting on complementary signaling hubs

    International Nuclear Information System (INIS)

    James, Roshan; Vishwakarma, Siddharth; Chivukula, Indira V; Basavaraj, Chetana; Melarkode, Ramakrishnan; Montero, Enrique; Nair, Pradip

    2012-01-01

    Nimotuzumab, an anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody, has been used extensively in many solid tumors and confers significant survival advantage. The antibody has limited skin toxicity and is generally well tolerated. Similar to other anti-EGFR therapies, patients may relapse a few months after treatment. In this study we show for the first time, the use of Nimotuzumab along with Sirolimus has synergistic effect on tumor inhibition as compared with the drugs used individually, in Nimotuzumab responsive and nonresponsive cell lines. In vitro studies prove that while Sirolimus (25 nmol/L) affects the signal downstream to mammalian target of rapamycin (mTOR), Nimotuzumab (83 nmol/L) downregulates pTYR, pMAPK and pSTAT3 by 40%, 20% and 30%, respectively. The combination, targeting these two different signaling hubs, may be associated with the synergistic inhibition observed. In vivo, the use of half human therapeutic equivalent doses for both the drugs substantially reduces tumors established in nude as well as severe combined immunodeficiency (SCID) mice by EGFR overexpressing A-431 cells. The drug combination reduces cell proliferation and the expression of signal transduction molecules. Treated tumors are better differentiated as compared with those established in the control mice. Tumor microarray demonstrates that Nimotuzumab and the combination groups segregate independently to the Sirolimus and the control treatment. The combination uniquely downregulated 55% of the altered tumor genes, extending beyond the typical pathways associated with Nimotuzumab and Sirolimus downstream pathways inhibition. These results would suggest that this nontoxic drug combination improves therapeutic benefit even in patients with low-EGFR expression and severely immunocompromised because of their current medication

  3. Icotinib hydrochloride enhances chemo- and radiosensitivity by inhibiting EGFR signaling and attenuating RAD51 expression and function in Hela S3 cells

    Directory of Open Access Journals (Sweden)

    Wang X

    2018-03-01

    Full Text Available Xuanxuan Wang, Yanjun Gu, Hai Liu, Liming Shi, Xiaonan Sun Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China Background: Radiotherapy and cisplatin-based chemotherapy are currently considered as standard treatments employed for advanced cervical cancer (CC. However, patients with local recurrence or distant metastasis continue to have poor outcomes. EGFR overexpression correlated with chemo/radioresistance, and disease failure has been well proved in the previous studies. Hence, the aim of this study was to explore the therapeutic efficacy and underlying mechanism of the sensitization to radiation or cisplatin of icotinib hydrochloride (IH, a high-selective EGFR tyrosine kinase inhibitor (TKI, in the Hela S3 human CC cell line.Methods: Cell proliferation was measured with cell counting kit-8 (CCK-8 assay. Flow cytometry analysis was performed to examine cell cycle distribution and apoptosis. The phosphorylation of EGFR and its downstream signaling molecules were measured by Western blot analysis. γ-H2AX foci and RAD51 foci in the cellular nucleus were visualized using immunofluoresence staining. Expression levels of RAD51 in the whole cells and subceullar fractions were detected to demonstrate the impact of IH on DNA repair. Results: IH can significantly inhibit cell proliferation, redistribute cell cycle, enhance apoptosis and impair DNA damage response of Hela S3 cells following radiation or cisplatin treatment through suppressing the activation of the EGFR signaling pathway and attenuating the expression and function of homologous recombination (HR protein RAD51.Conclusion: This study suggests that IH is a potential sensitizer in radiotherapy and cisplatin-based chemotherapy for CC and RAD51 may serve as a prognosis biomarker for this combination treatment. Keywords: icotinib hydrochloride, cervical cancer, EGFR, radiotherapy, chemotherapy

  4. Inhibition of EGFR or IGF-1R signaling enhances radiation response in head and neck cancer models but concurrent inhibition has no added benefit

    International Nuclear Information System (INIS)

    Raju, Uma; Molkentine, David P; Valdecanas, David R; Deorukhkar, Amit; Mason, Kathryn A; Buchholz, Thomas A; Meyn, Raymond E; Ang, Kie-Kian; Skinner, Heath

    2015-01-01

    Interaction between the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGF-1R) has been well established in many cancer types. We investigated the effects of cetuximab (EGFR antibody) and IMC-A12 (IGF-1R antibody) on the response of head and neck squamous cell carcinoma (HNSCC) to radiation therapy (RT). The effects of cetuximab and IMC-A12 on cell viability and radiosensitivity were determined by clonogenic cell survival assay. Formation of nuclear γ-H2AX and 53BP1 foci was monitored by immunofluorescence. Alterations in target signaling were analyzed by Western blots. In vivo tumor growth delay assay was performed to determine the efficacy of triple therapy with IMC-A12, cetuximab, and RT. In vitro data showed that cetuximab differentially affected the survival and the radiosensitivity of HNSCC cells. Cetuximab suppressed DNA repair that was evident by the prolonged presence of nuclear γ-H2AX and 53BP1 foci. IMC-A12 did not have any effect on the cell survival. However, it increased the radiosensitivity of one of the cell lines. EGFR inhibition increased IGF-1R expression levels and also the association between EGFR and IGF-1R. Addition of IMC-A12 to cetuximab did not increase the radiosensitivity of these cells. Tumor xenografts exhibited enhanced response to RT in the presence of either cetuximab or IMC-A12. Concurrent treatment regimen failed to further enhance the tumor response to cetuximab and/or RT. Taken together our data suggest that concomitant inhibition of both EGFR and IGF-1R pathways did not yield additional therapeutic benefit in overcoming resistance to RT

  5. Antitumor Efficacy of Dual Blockade of EGFR Signaling by Osimertinib in Combination With Selumetinib or Cetuximab in Activated EGFR Human NCLC Tumor Models.

    Science.gov (United States)

    Della Corte, Carminia Maria; Ciaramella, Vincenza; Cardone, Claudia; La Monica, Silvia; Alfieri, Roberta; Petronini, Pier Giorgio; Malapelle, Umberto; Vigliar, Elena; Pepe, Francesco; Troncone, Giancarlo; Castellone, Maria Domenica; Troiani, Teresa; Martinelli, Erika; Ciardiello, Fortunato; Morgillo, Floriana

    2018-03-08

    Osimertinib showed great clinical efficacy for activated-EGFR NCLC patient treatment. The aim of this work was to test the efficacy of a complete EGFR-inhibition by osimertinib plus the monoclonal antibody cetuximab or the MEK1/2-inhibitor selumetinib in EGFR-mutated NCLC in vivo models. We evaluated combinations of osimertinib plus selumetinib/cetuximab in HCC827 (E746-A759del/T790M-), H1975 (L858R/T790M+), and PC9-T790M (E746-A759del /T790M+) xenografts in second-line therapy after the development of resistance to osimertinib, and in first-line therapy, and we explored mechanisms of resistance to these treatments. The addition of selumetinib or cetuximab to osimertinib in second-line therapy reverted the sensibility to osimertinib in the majority of mice, with a response rate (RR) of 50% to 80%, and a median progression-free survival (mPFS) of first- plus second-line of therapy of 28 weeks. The early use of combinations in first-line therapy increased the RR to 90%, with an mPFS not reached in all combination arms in the three xenografts models, with a statistically significant superiority (p < 0.005) as compared to osimertinib, achieving in first-line therapy an mPFS time of 17 to 18 weeks. Moreover, in ex vivo primary cell cultures obtained from osimertinib plus selumetinib-resistant tumors, we found Hedgehog pathway activation and we showed that therapy with an SMO inhibitor plus osimertinib and selumetinib inhibited proliferation and migratory and invasive properties of resistant cells. We showed that a dual vertical EGFR blockade with osimertinib plus selumetinib/cetuximab is a novel effective therapeutic option in EGFR-mutated NCLC and that hedgehog pathway activation and its interplay with MAPK is involved in resistance to these combination treatments. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  6. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    Science.gov (United States)

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  7. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    Science.gov (United States)

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  8. Decoding resistant hypertension signalling pathways.

    Science.gov (United States)

    Parreira, Ricardo Cambraia; Lacerda, Leandro Heleno Guimarães; Vasconcellos, Rebecca; Lima, Swiany Silveira; Santos, Anderson Kenedy; Fontana, Vanessa; Sandrim, Valéria Cristina; Resende, Rodrigo Ribeiro

    2017-12-01

    Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival.

    Science.gov (United States)

    Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2016-01-01

    In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti

  10. Integrated ligand-receptor bioinformatic and in vitro functional analysis identifies active TGFA/EGFR signaling loop in papillary thyroid carcinomas.

    Directory of Open Access Journals (Sweden)

    Debora Degl'Innocenti

    Full Text Available BACKGROUND: Papillary thyroid carcinoma (PTCs, the most frequent thyroid cancer, is usually not life threatening, but may recur or progress to aggressive forms resistant to conventional therapies. A more detailed understanding of the signaling pathways activated in PTCs may help to identify novel therapeutic approaches against these tumors. The aim of this study is to identify signaling pathways activated in PTCs. METHODOLOGY/PRINCIPAL FINDINGS: We examined coordinated gene expression patterns of ligand/receptor (L/R pairs using the L/R database DRLP-rev1 and five publicly available thyroid cancer datasets of gene expression on a total of 41 paired PTC/normal thyroid tissues. We identified 26 (up and 13 (down L/R pairs coordinately and differentially expressed. The relevance of these L/R pairs was confirmed by performing the same analysis on REarranged during Transfection (RET/PTC1-infected thyrocytes with respect to normal thyrocytes. TGFA/EGFR emerged as one of the most tightly regulated L/R pair. Furthermore, PTC clinical samples analyzed by real-time RT-PCR expressed EGFR transcript levels similar to those of 5 normal thyroid tissues from patients with pathologies other than thyroid cancer, whereas significantly elevated levels of TGFA transcripts were only present in PTCs. Biochemical analysis of PTC cell lines demonstrated the presence of EGFR on the cell membrane and TGFA in conditioned media. Moreover, conditioned medium of the PTC cell line NIM-1 activated EGFR expressed on HeLa cells, culminating in both ERK and AKT phosphorylation. In NIM-1 cells harboring BRAF mutation, TGFA stimulated proliferation, contributing to PI3K/AKT activation independent of MEK/ERK signaling. CONCLUSIONS/SIGNIFICANCE: We compiled a reliable list of L/R pairs associated with PTC and validated the biological role of one of the emerged L/R pair, the TGFA/EGFR, in this cancer, in vitro. These data provide a better understanding of the factors involved in the

  11. Lead acetate induces EGFR activation upstream of SFK and PKCα linkage to the Ras/Raf-1/ERK signaling

    International Nuclear Information System (INIS)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-01-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC → ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1 S338 and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKCα using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKCα, Ras-GTP, phospho-Raf-1 S338 and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKCα activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKCα activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKCα and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade

  12. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  13. Modularized Smad-regulated TGFβ signaling pathway.

    Science.gov (United States)

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  14. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    Science.gov (United States)

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  15. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT.

    Directory of Open Access Journals (Sweden)

    Hongbo Huan

    Full Text Available Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA to enhance expression of C/EBPα. Intravenous injection of C/EBPα-saRNA in a nude mouse liver orthotopic xenograft tumor model inhibited intrahepatic and distant metastasis. C/EBPα-saRNA-treated mice showed increased serum levels of albumin and decreased alanine aminotransferase (ALT, glutamic-oxalacetic transaminase (AST, indicating a role of C/EBPα in improving liver function. Migration and invasion were inhibited in hepatoma cell lines transfected with C/EBPα-saRNA. We also observed an inhibition of epithelial-mesenchymal transition (EMT and suppression of epidermal growth factor receptor (EGFR, EGFR phosphorylation, and β-catenin in C/EBPa-saRNA-transfected cells. Our results suggested that C/EBPα-saRNA successfully inhibited HCC metastasis by inhibiting EGFR/β-catenin signaling pathway mediated EMT in vitro and in vivo.

  16. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  17. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    Science.gov (United States)

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  19. Modularized TGFbeta-Smad Signaling Pathway

    Science.gov (United States)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  20. Targeting Signal Transducers and Activators of Transcription-3 (Stat3) As a Novel Strategy In Sensitizing Breast Cancer To Egfr-Targeted Therapy

    National Research Council Canada - National Science Library

    Lo, Hui-Wen

    2008-01-01

    We have performed proposed studies to test the hypothesis that deregulated EGFR and STAT3 pathways synergistically contribute to the malignant biology of breast cancer and that combined uses of anti...

  1. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    Glioblastoma Multiforme (GBM) is the most common and aggressive brain tumor in adults with a median survival for newly diagnosed GBM patients at less than 1.5 year. Despite intense treatment efforts the vast majority of patients will experience relapse and much research today is therefore searching...... for new molecular and cellular targets that can improve the prognosis for GBM patients. One such target is the brain cancer stem-like cells (bCSC) that are believed to be responsible for tumor initiation, progression, treatment resistance and ultimately relapse. bCSC are identified based...... on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...

  2. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  3. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Steven N Steinway

    Full Text Available c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF, plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.We utilized the human MHCC97-H c-Met positive (c-Met+ HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that

  4. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone, E-mail: simone.fulda@kgu.de [Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt (Germany)

    2011-08-29

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  5. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  6. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    International Nuclear Information System (INIS)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-01-01

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  7. Targeting Signaling Pathways in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Johannes Haybaeck

    2013-05-01

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Response to platinum-based chemotherapy is poor in some patients and, thus, current research is focusing on new therapy options. The various histological types of OC are characterized by distinctive molecular genetic alterations that are relevant for ovarian tumorigenesis. The understanding of these molecular pathways is essential for the development of novel therapeutic strategies. Purpose: We want to give an overview on the molecular genetic changes of the histopathological types of OC and their role as putative therapeutic targets. In Depth Review of Existing Data: In 2012, the vascular endothelial growth factor (VEGF inhibitor, bevacizumab, was approved for OC treatment. Bevacizumab has shown promising results as single agent and in combination with conventional chemotherapy, but its target is not distinctive when analyzed before treatment. At present, mammalian target of rapamycin (mTOR inhibitors, poly-ADP-ribose polymerase (PARP inhibitors and components of the EGFR pathway are in the focus of clinical research. Interestingly, some phytochemical substances show good synergistic effects when used in combination with chemotherapy. Conclusion: Ongoing studies of targeted agents in conjunction with chemotherapy will show whether there are alternative options to bevacizumab available for OC patients. Novel targets which can be assessed before therapy to predict efficacy are needed. The assessment of therapeutic targets is continuously improved by molecular pathological analyses on tumor tissue. A careful selection of patients for personalized treatment will help to reduce putative side effects and toxicity.

  8. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway.

    Directory of Open Access Journals (Sweden)

    Irina Gradinaru

    Full Text Available α1a Adrenergic receptors (α1aARs are the predominant AR subtype in human vascular smooth muscle cells (SMCs. α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant, different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.

  9. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    LENUS (Irish Health Repository)

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  10. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    Science.gov (United States)

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (PSMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  11. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer.

    Science.gov (United States)

    Singh, Sandeep; Trevino, Jose; Bora-Singhal, Namrata; Coppola, Domenico; Haura, Eric; Altiok, Soner; Chellappan, Srikumar P

    2012-09-25

    Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the

  12. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  13. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  14. Hedgehog signaling pathway in neuroblastoma differentiation.

    Science.gov (United States)

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. The Fog signaling pathway: Insights into signaling in morphogenesis

    Science.gov (United States)

    Manning, Alyssa J.; Rogers, Stephen L.

    2014-01-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  16. Signaling Pathways in Cardiac Myocyte Apoptosis

    Science.gov (United States)

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  17. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice.

    Science.gov (United States)

    Carrillo-García, Carmen; Prochnow, Sebastian; Simeonova, Ina K; Strelau, Jens; Hölzl-Wenig, Gabriele; Mandl, Claudia; Unsicker, Klaus; von Bohlen Und Halbach, Oliver; Ciccolini, Francesca

    2014-02-01

    The activation of epidermal growth factor receptor (EGFR) affects multiple aspects of neural precursor behaviour, including proliferation and migration. Telencephalic precursors acquire EGF responsiveness and upregulate EGFR expression at late stages of development. The events regulating this process and its significance are still unclear. We here show that in the developing and postnatal hippocampus (HP), growth/differentiation factor (GDF) 15 and EGFR are co-expressed in primitive precursors as well as in more differentiated cells. We also provide evidence that GDF15 promotes responsiveness to EGF and EGFR expression in hippocampal precursors through a mechanism that requires active CXC chemokine receptor (CXCR) 4. Besides EGFR expression, GDF15 ablation also leads to decreased proliferation and migration. In particular, lack of GDF15 impairs both processes in the cornu ammonis (CA) 1 and only proliferation in the dentate gyrus (DG). Importantly, migration and proliferation in the mutant HP were altered only perinatally, when EGFR expression was also affected. These data suggest that GDF15 regulates migration and proliferation by promoting EGFR signalling in the perinatal HP and represent a first description of a functional role for GDF15 in the developing telencephalon.

  18. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  19. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration.

  20. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    International Nuclear Information System (INIS)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk

    2016-01-01

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration

  1. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  2. Purinergic Signaling Pathways in Endocrine System

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  3. Peiminine serves as an adriamycin chemosensitizer in gastric cancer by modulating the EGFR/FAK pathway.

    Science.gov (United States)

    Tang, Qianqian; Wang, Yunfei; Ma, Lanjing; Ding, Meiling; Li, Tingyu; Nie, Yongzhan; Gu, Zhengyi

    2018-03-01

    Gastric cancer (GC) is one of the most common malignancies of the digestive tract. Adriamycin (ADR) has been widely utilized in various chemotherapy regimens for treating GC, yet its long-term application may increase drug resistance resulting in treatment failure. Increasing evidence shows that bioactive natural products can be used as chemotherapeutic sensitizers that can significantly improve chemotherapy sensitivity. Peiminine (PMI) is a biologically active component extracted from Fritillaria walujewii Regel. Thus, in the present study, we aimed to investigate whether peiminine (PMI) alters the chemosensitivity of GC to adriamycin (ADR). GC cells were treated with ADR with or without PMI. MTT assay, flow cytometry and a nude mouse tumor xenograft model of SGC7901 cells were used to evaluate the chemosensitization activity of PMI combined with ADR. Western blotting was used to examine the expression of cyclin D1 and cleaved PARP. The RayBio® Human RTK phosphorylation antibody array kit was used to test the differential protein expression. Compared with the ADR group, PMI combined with ADR significantly suppressed cell proliferation and induced cell apoptosis in vitro. The growth curve and tumor weight of the tumor xenografts were significantly decreased in mice treated with the combination of PMI and ADR. However, the organs showed no obvious abnormality after treatment with PMI plus ADR. The expression of cyclin D1 was decreased and the level of cleaved PARP was increased after treatment with PMI and ADR. The expression of p-EGFR and p-FAK was downregulated in cells treated with PMI and ADR, and the validation of p-EGFR and p-FAK was in accordance with the result of the phosphorylation antibody array kit. PMI may serve as a new chemosensitizer by inhibiting the proliferation and inducing the apoptosis to enhance the chemotherapeutic drug sensitivity of ADR in GC.

  4. EGFR Activation and Ultraviolet Light‐Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Taghrid B. El-Abaseri

    2007-01-01

    Full Text Available The epidermal growth factor receptor (EGFR regulates the proliferation of keratinocytes through multiple mechanisms that differ depending on the localization of the cell within the skin. Ultraviolet (UV irradiation, the main etiologic factor in the development of skin cancer, also activates the receptor. In this review, we discuss how the UV-induced activation of EGFR regulates the response of the skin to UV. UV-induced EGFR activation increases keratinocyte proliferation, suppresses apoptosis, and augments and accelerates epidermal hyperplasia in response to UV. Pharmacological inhibition of the UV-induced activation of EGFR in a genetically initiated mouse skin tumorigenesis model suppresses tumorigenesis and the activation of mitogen-activated protein (MAP kinases and phosphatidyl inositol-3-kinase (PI3K/AKT signaling pathways. EGFR has pleiotropic, complex, and cell-type-specific functions in cutaneous keratinocytes; suggesting that the receptor is an appropriate target for the development of molecularly targeted therapies for skin cancer and other pathologies.

  5. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  6. Interleukin 4 signals through two related pathways.

    Science.gov (United States)

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  7. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  8. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  9. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  10. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  11. Non-Smad pathways in TGF-β signaling

    OpenAIRE

    Zhang, Ying E

    2009-01-01

    Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focu...

  12. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling.

    Science.gov (United States)

    Hu, Wen-Jian; Liu, Jing; Zhong, Lun-Kun; Wang, Jian

    2018-06-01

    Nasopharyngeal carcinoma (NPC) is a type of head and neck cancers with poor prognosis. Despite that platinum-based chemotherapy concurrent with radiotherapy have made great achievements for the treatment of NPC, the therapeutic reaction and toxicity varies dramatically among individuals. Apigenin (API), a naturally occurring plant flavone, is considered to have anti-cancer effect. Cetuximab (CET), a well known epidermal growth factor receptor (EGFR) inhibitor, is widely used in various cancers, especially head and neck cancers. The aim of our study was to measure the combination of API and CET for the treatment of NPC in vitro and in vivo. Results demonstrated that combining API and CET could better suppress the viability of the human nasopharyngeal carcinoma cell lines (HONE1 and CNE2) and inhibit the growth of NPC than API or CET used alone. Besides, the combination of API with CET produced greater pro-apoptosis effect. Moreover, the increased G2/M phase arrest caused by CET could be remarkably enhanced by adding API in HONE1 and CNE2 cells. Although, both API and CET could decrease the expressions of p-EGFR, p-Akt, p-STAT3 and Cyclin D1. Combining them produced greater inhibition effect. These results suggested that the combination of API and CET may be a promising therapeutic approach for the treatment of NPC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, Steven M. [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (United States); Han, Chunhua [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Pan, Li; Douglas Kinghorn, A. [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Ding, Haiming, E-mail: ding.29@osu.edu [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not

  14. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    International Nuclear Information System (INIS)

    D'Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Douglas Kinghorn, A.; Ding, Haiming

    2011-01-01

    Highlights: → The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). → Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). → Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. → The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. → Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF

  15. Agmatine modulates melanogenesis via MITF signaling pathway.

    Science.gov (United States)

    Kwon, Eun-Jeong; Kim, Moon-Moo

    2017-01-01

    Agmatine contained in soybean is also found in Manaca, an anti-aging plant, inhabited in Amazon and induces vasodilation by the promotion of NO synthesis in blood vessel. However, the research of agmatine on melanin synthesis related to hair greying is lacking. The aim of this study was to investigate the melanogenic effect of agmatine via regulation of MITF signaling pathway in B16F1 cells. It was determined whether agmatine regulates melanin synthesis at cellular level in addition to the effect of agmatine on mushroom tyrosinase in vitro in the presence of different concentrations of agmatine. Furthermore, the effect of agmatine on the protein expressions of tyrosinase, TRP-1, TRP-2, BMP-4, BMP-6, C-KIT, p-p38, MITF and C-FOS were examined by western blot analysis. In addition, immunofluorescence staining was carried out to visualize the location of MITF expression in cell. Agmatine at 256μM or more increased melanin synthesis as well as tyrosinase activity. Moreover, whereas agmatine increased the expression levels of TRP-1, BMP-6, p-p38 and MITF, it reduced the expression level of BMP-4. It was also found that agmatine enhanced the expression level of MITF in nucleus. These results suggest that agmatine could induce melanin synthesis though the regulation of MITF transcription factor via BMP-6/p38 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  17. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    International Nuclear Information System (INIS)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-01-01

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-κB in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS

  18. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  19. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  20. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  1. Targeting embryonic signaling pathways in cancer therapy.

    Science.gov (United States)

    Harris, Pamela Jo; Speranza, Giovanna; Dansky Ullmann, Claudio

    2012-01-01

    The embryonic signaling pathways (ESP), Hedgehog, Notch and Wnt, are critical for the regulation of normal stem cells and cellular development processes. They are also activated in the majority of cancers. ESP are operational in putative cancer stem cells (CSC), which drive initial tumorigenesis and sustain cancer progression and recurrence in non-CSC bulk subpopulations. ESP represent novel therapeutic targets. A variety of inhibitors and targeting strategies are being developed. This review discusses the rationale for targeting ESP for cancer treatment, as well as specific inhibitors under development; mainly focusing on those approaching clinical use and the challenges that lie ahead. The data sources utilized are several database search engines (PubMed, Google, Clinicaltrials.gov), and the authors' involvement in the field. CSC research is rapidly evolving. Expectations regarding their therapeutic targeting are rising quickly. Further definition of what constitutes a true CSC, proper validation of CSC markers, a better understanding of cross-talk among ESP and other pathways, and interactions with tumor non-CSC and the tumor microenvironment are needed. The appropriate patient population, the right clinical setting and combination strategies to test these therapies, as well as the proper pharmacodynamic markers to measure, need to be further established.

  2. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  3. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  4. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  6. Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells.

    Science.gov (United States)

    Wittig, Anja; Gehrke, Helge; Del Favero, Giorgia; Fritz, Eva-Maria; Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten; Sami, Haider; Ogris, Manfred; Marko, Doris

    2017-01-13

    Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) signaling pathways-both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs) were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the concentration

  7. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Science.gov (United States)

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  8. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  9. A role for HB-EGF/EGFR and MAPK signaling in the development of intestinal serrated polyps in mice

    NARCIS (Netherlands)

    Bongers, G.M.; Muniz, L. R.; Pacer, M.; Thirunarayanan, N.; Smit, M.J.; Reddy, E.P.; Mayer, L.; Furtado, G.C.; Harpaz, N.; Lira, SA

    2012-01-01

    BACKGROUND & AIMS: Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth

  10. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Science.gov (United States)

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  11. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chin-Rang [National Inst. of Health (NIH), Bethesda, MD (United States). National Heart, Lung and Blood Inst.

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  12. Research advances in Hedgehog signaling pathway in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    LIU Jia

    2015-02-01

    Full Text Available Hedgehog (Hh signaling pathway is present in many animals and plays an important role in regulating embryonic development and differentiation. Aberrant activation of Hh signaling contributes to the pathogenesis of many malignancies. Recent studies have shown that dysregulated Hh signaling pathway participates in the tumorigenesis, tumor invasion, and metastasis of hepatocellular carcinoma (HCC. Investigation of the relationship between Hh signaling pathway and HCC will help elucidate the molecular mechanism of pathogenesis of HCC and provide a new insight into the development of novel anticancer therapy and therapeutic target.

  13. Inhibitors of EGFR and PI3K/Akt/mtor pathways for the treatment of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Palomares, E. M.

    2015-07-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and although new therapeutic approaches have been recently evaluated, improvement in overall patient survival is still poor. For this reason, new effective and selective clinical treatments are urgently needed. Genomic analysis allowing the identification of differences between normal and tumor cells provides new therapeutic options identifying novel targets or drugs that have shown efficacy in other tumor types. In this sense, EGFR amplification and/or overexpression are frequent events in HNSCC; in fact, the only targeted therapy approved to treat HNSCC is the anti-EFGR antibody Cetuximab. Based on cell line drug screening studies we identified Bosutinib (SKI-606), a Src/Abl inhibitor, as a candidate drug to treat HNSCC. Using a panel of HNSCC cell lines we found that the treatment with Bosutinib was able to reduce cell proliferation and to induce apoptosis at higher doses. We verified that the drug rapidly inhibited EGFR phosphorylation, and sensitivity to Bosutinib correlated with the activation of EGFR in tumor-derived cell lines. Moreover, Bosutinib showed a synergistic effect on cell viability with the PI3K? inhibitor BYL719 only in those cell lines with mutations in PIK3CA. These results suggest that Bosutinib could be a new effective drug in the treatment of HNSCC cancer, especially in tumors with high activity of EGFR, and its combination with BYL719 could especially benefit those patients bearing activating mutations of PIK3CA. (Author)

  14. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    Science.gov (United States)

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  15. Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Anja Wittig

    2017-01-01

    Full Text Available Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR and mitogen-activated protein kinases (MAPK signaling pathways—both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the

  16. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Guo Ya; Zhu Xiaodong; Qu Song; Su Fang; Wang Qi; Zhang Wei

    2011-01-01

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60 Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  17. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  18. B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway

    Science.gov (United States)

    Milillo, M. Ayelén; Velásquez, Lis N.; Trotta, Aldana; Delpino, M. Victoria; Balboa, Luciana; Vermeulen, Mónica; Espindola, Sonia L.; Rodriguez-Rodrigues, Nahuel; Fernández, Gabriela C.; Oliveira, Sergio Costa; Giambartolomei, Guillermo H.

    2017-01-01

    Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR) pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP). Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and avoid the

  19. B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway.

    Directory of Open Access Journals (Sweden)

    M Ayelén Milillo

    2017-08-01

    Full Text Available Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP. Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and

  20. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    International Nuclear Information System (INIS)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar; Patra, Samir Kumar

    2012-01-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  1. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  2. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    Science.gov (United States)

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  3. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    Science.gov (United States)

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy

    2008-01-01

    spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC......The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full...

  5. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL INVESTIGATOR: KATHLEEN M...SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT: Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital

  6. Modelling and Analysis of Biochemical Signalling Pathway Cross-talk

    Directory of Open Access Journals (Sweden)

    Robin Donaldson

    2010-02-01

    Full Text Available Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising parallel composition of instances of generic modules (with internal and external labels. Pathways are then composed by (synchronising parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways.

  7. Oncogenic Signaling Pathways in The Cancer Genome Atlas

    NARCIS (Netherlands)

    Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua; Chatila, Walid K.; Luna, Augustin; La, Konnor C.; Dimitriadoy, Sofia; Liu, David L.; Kantheti, Havish S.; Saghafinia, Sadegh; Chakravarty, Debyani; Daian, Foysal; Gao, Qingsong; Bailey, Matthew H.; Liang, Wen Wei; Foltz, Steven M.; Shmulevich, Ilya; Ding, Li; Heins, Zachary J.; Ochoa, Angelica; Gross, Benjamin E.; Gao, Jianjiong; Zhang, Hongxin; Kundra, Ritika; Kandoth, Cyriac; Bahceci, Istemi; Dervishi, Leonard; Dogrusoz, Ugur; Zhou, Wanding; Shen, Hui; Laird, Peter W.; Way, Gregory P.; Greene, Casey S.; Liang, Han; Xiao, Yonghong; Wang, Chen; Iavarone, Antonio; Berger, Alice H.; Bivona, Trever G.; Lazar, Alexander J.; Hammer, Gary D.; Giordano, Thomas; Kwong, Lawrence N.; McArthur, Grant; Huang, Chenfei; Tward, Aaron D.; Frederick, Mitchell J.; McCormick, Frank; Meyerson, Matthew; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Van Allen, Eliezer M.; Cherniack, Andrew D.; Ciriello, Giovanni; Sander, Chris; Schultz, Nikolaus

    2018-01-01

    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number

  8. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  9. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Aaron W. James

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSC are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor-γ (PPARγ and Runt-related transcription factor 2 (Runx2. These two transcription factors, PPARγ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β-catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP signaling and insulin growth factor (IGF signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.

  10. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  11. Bio markers and Anti-EGFR therapies for Krads wild-type tumors in metastatic colorectal cancer patients; Biomarcadores y terapeutica ANTI-EGFR en el cancer colorrectal metastasico en pacientes con K-Ras no mutado

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rubio Garcia, E

    2009-07-01

    The natural history of metastasis colorectal cancer has being clearly modified in terms of response rate, time to progression and overall survival, once the anti-EGFR monoclonal antibodies (cetuximab and panitumumab) have emerged in combination with the standard cytotoxic chemotherapy (FOLFOX and FOLFIRI). However, the benefit from cetuximab and panitumumab is only confined to KRAS-wild type (KRAS-wt) colorectal tumors, while KRAS mutated tumors do not respond to these drugs. The 65 % of colorectal tumors are KRAS-wt tumors, but efficacy of antiEGFR therapies is detected only in 60-70 % of these KRAS-wt tumors. Other biomarkers and molecular pathways must be involved in the response of the antiEGFR therapies for the KRAS-wt colorectal tumors, such as the EGFR ligands, the EGFR-phosphorilated levels, the number of EGFR copies, the status of the KRAS effected B-RAF and the alternative intracellular signaling pathways PIK3CA/PTEN/AKT and JAK/STAT. A battery of these biomarkers is needed to select the most sensitive patients to the antiEGFR therapies. This pattern may represent a novel favorable cost-effectiveness tool to develop tailored treatments. A review of these biomarkers and molecular pathways, involved in the antiEGFR therapies response, is performed. (Author) 68 refs.

  12. Linking proteins to signaling pathways for experiment design and evaluation.

    Directory of Open Access Journals (Sweden)

    Illés J Farkas

    Full Text Available Biomedical experimental work often focuses on altering the functions of selected proteins. These changes can hit signaling pathways, and can therefore unexpectedly and non-specifically affect cellular processes. We propose PathwayLinker, an online tool that can provide a first estimate of the possible signaling effects of such changes, e.g., drug or microRNA treatments. PathwayLinker minimizes the users' efforts by integrating protein-protein interaction and signaling pathway data from several sources with statistical significance tests and clear visualization. We demonstrate through three case studies that the developed tool can point out unexpected signaling bias in normal laboratory experiments and identify likely novel signaling proteins among the interactors of known drug targets. In our first case study we show that knockdown of the Caenorhabditis elegans gene cdc-25.1 (meant to avoid progeny may globally affect the signaling system and unexpectedly bias experiments. In the second case study we evaluate the loss-of-function phenotypes of a less known C. elegans gene to predict its function. In the third case study we analyze GJA1, an anti-cancer drug target protein in human, and predict for this protein novel signaling pathway memberships, which may be sources of side effects. Compared to similar services, a major advantage of PathwayLinker is that it drastically reduces the necessary amount of manual literature searches and can be used without a computational background. PathwayLinker is available at http://PathwayLinker.org. Detailed documentation and source code are available at the website.

  13. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    African Journals Online (AJOL)

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  14. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 2007 Feb 1. (.png) (.svg) (.html) (.csml) Show TLR signaling. PubmedID 17275323 Title TLR signaling. Author...s Kawai T, Akira S. Publication Semin Immunol. 2007 Feb;19(1):24-32. Epub 2007 Feb 1. Pathway - PNG File (.png) SVG File (.svg) HTML... File (.html) CSML File (.csml) Open .csml file with CIOP

  15. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  16. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  17. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  18. Bio markers and Anti-EGFR therapies for Krads wild-type tumors in metastatic colorectal cancer patients

    International Nuclear Information System (INIS)

    Diaz Rubio Garcia, E.

    2009-01-01

    The natural history of metastasis colorectal cancer has being clearly modified in terms of response rate, time to progression and overall survival, once the antiEGFR monoclonal antibodies (cetuximab and panitumumab) have emerged in combination with the standard cytotoxic chemotherapy (FOLFOX and FOLFIRI). However, the benefit from cetuximab and panitumumab is only confined to KRAS-wild type (KRAS-wt) colorectal tumors, while KRAS mutated tumors do not respond to these drugs. The 65 % of colorectal tumors are KRAS-wt tumors, but efficacy of antiEGFR therapies is detected only in 60-70 % of these KRAS-wt tumors. Other biomarkers and molecular pathways must be involved in the response of the antiEGFR therapies for the KRAS-wt colorectal tumors, such as the EGFR ligands, the EGFR-phosphorilated levels, the number of EGFR copies, the status of the KRAS effected B-RAF and the alternative intracellular signaling pathways PIK3CA/PTEN/AKT and JAK/STAT. A battery of these biomarkers is needed to select the most sensitive patients to the antiEGFR therapies. This pattern may represent a novel favorable cost-effectiveness tool to develop tailored treatments. A review of these biomarkers and molecular pathways, involved in the antiEGFR therapies response, is performed. (Author) 68 refs.

  19. Epilepsy and the Wnt Signaling Pathway

    Science.gov (United States)

    2015-06-01

    forebrain development. The primary target is Wnt 8b, which is elevated in this period 4. Fox G1 is also genetically associated with infantile spasms 8...the Warburg effect’s role in non- cancerous tissues is largely unexplored. Second, in other diseases such as diabetes , Wnt signaling has emerged as...epilepsy and infantile spasms, we found that both mechanisms appeared to contribute. Two of the three genes came from our observation that several genes

  20. CCR7 signaling pathway and retinal neovascularization

    Directory of Open Access Journals (Sweden)

    Lin-Hui Yuan

    2015-11-01

    Full Text Available Retinal neovascularization diseases are the major causes of blindness. C-C chemokine receptor type 7(CCR7can promote the expression of vascular endothelial growth factor(VEGFthrough the extracellular signal regulated kinase(ERKpathway, leading to vascular leakage, proliferation of vascular endothelial cell, neovascularization and etc. The detection of CCR7 can guide the diagnosis and treatments of retinal neovascularization diseases.

  1. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Science.gov (United States)

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24.

  2. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  3. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  4. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available Chewing of betel quid (BQ increases the risk of oral cancer and oral submucous fibrosis (OSF, possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa.Primary gingival keratinocytes (GK cells were exposed to areca nut (AN components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays.Areca nut extract (ANE stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2, cytochrome P450 1A1 (CYP1A1 and hemeoxygenase-1 (HO-1, but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR, Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α-naphthoflavone (a CYP 1A1/1A2 inhibitor, PD153035 (EGFR inhibitor, pp2 (Src inhibitor, and manumycin A (a Ras inhibitor. ANE-induced PGE2 production was suppressed by piper betle leaf (PBL extract and hydroxychavicol (two major BQ components, dicoumarol (aQuinone Oxidoreductase--NQO1 inhibitor and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2α production.CYP4501A1, reactive oxygen species (ROS, EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response.

  5. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  6. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  7. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-01-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  8. Autophagy and the nutritional signaling pathway

    Directory of Open Access Journals (Sweden)

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  9. Egfr Amplification Specific Gene Expression in Phyllodes Tumours of the Breast

    Directory of Open Access Journals (Sweden)

    Konstantin Agelopoulos

    2007-01-01

    Full Text Available Background: Recently, we were able to show that amplifications of the epidermal growth factor receptor (egfr gene and the overexpression of EGFR were associated with the initiation and progression of phyllodes tumours. Methods: In order to gain further insights into regulation mechanisms associated with egfr amplifications and EGFR expression in phyllodes tumours, we performed global gene expression analysis (Affymetrix A133.2 on a series of 10 phyllodes tumours, of these three with and seven without amplifications of an important regulatory repeat in intron 1 of egfr (CA-SSR I. The results were verified and extended by means of immunohistochemistry using the tissue microarray method on an extensively characterized series of 58 phyllodes tumours with antibodies against caveolin-1, eps15, EGF, TGF-α, pErk, pAkt and mdm2. Results: We were able to show that the presence of egfr CA-SSR I amplifications in phyllodes tumours was associated with 230 differentially expressed genes. Caveolin-1 and eps15, involved in EGFR turnover and signalling, were regulated differentially on the RNA and protein level proportionally to egfr gene dosage. Further immunohistochemical analysis revealed that the expression of caveolin-1 and eps15 were also significantly correlated with the expression of pAkt (p < 0.05, pERK (p < 0.05, mdm2 (p < 0.01 and EGF (p < 0.001 for caveolin-1. Eps15 and pERK were further associated with tumour grade (p < 0.01 and p < 0.001, respectively. Conclusion: Our results show that amplifications within regulatory sequences of egfr are associated with the expression of eps15 and caveolin-1, indicating an increased turnover of EGFR. The interplay between EGFR and caveolin-1, eps15, pAkt, mdm2 and pERK therefore seems to present a major molecular pathway in carcinogenesis and progression of breast phyllodes tumours.

  10. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  11. Interaction of TGFβ and BMP signaling pathways during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Bettina Keller

    2011-01-01

    Full Text Available TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.

  12. Signaling flux redistribution at toll-like receptor pathway junctions.

    Directory of Open Access Journals (Sweden)

    Kumar Selvarajoo

    Full Text Available Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.

  13. Using Proteomics To Elucidate Critical Signaling Pathways

    KAUST Repository

    Ahmed, Heba

    2012-11-01

    Despite important advances in the therapy of acute myeloid leukemia (AML) the majority of patients will die from their disease (Appelbaum, Rowe, Radich, & Dick, 2001). Characterization of the aberrant molecular pathways responsible for this malignancy provides a platform to discover alternative treatments to help alter the fate of patients. AML is characterized by a blockage in the differentiation of myeloid cells resulting in the accumulation of highly proliferating immature hematopoietic cells. Since treatments such as chemotherapy rarely destroy the leukemic cells entirely, differentiation induction therapy has become a very attractive treatment option. Interestingly, previous experiments have shown that ligation of CD44, a cell surface glycoprotein strongly expressed on all AML cells, with anti-CD44 monoclonal antibodies (mAbs) could reverse this block in differentiation of leukemic blasts regardless of the AML subtype. To expand the understanding of the cellular regulation and circuitry involved, we aim to apply quantitative phosphoproteomics to monitor dynamic changes in phosphorylation state in response to anti-CD44 treatment. Protein phosphorylation and dephosphorylation is a highly controlled biochemical process that responds to various intracellular and extracellular stimuli. As phosphorylation is a dynamic process, quantification of these phosphorylation events would be vastly insightful. The main objective of this project is to determine the differentiation-dependent phosphoproteome of AML cells upon treatment of cells with the anti-CD44 mAb.In these experiments, optimization of protein extraction, phosphopeptide enrichment and data processing and analysis has been achieved. The primary results show successful phosphoproteome extraction complemented with efficient phosphopeptide enrichment and informative data processing. Further quantification with stable isotope labeling techniques is anticipated to provide candidates for targeted therapy.

  14. Computational identification of signalling pathways in Plasmodium falciparum.

    Science.gov (United States)

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  15. SPV: a JavaScript Signaling Pathway Visualizer.

    Science.gov (United States)

    Calderone, Alberto; Cesareni, Gianni

    2018-03-24

    The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.

  16. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468

    International Nuclear Information System (INIS)

    Agelopoulos, Konstantin; Buerger, Horst; Brandt, Burkhard; Greve, Burkhard; Schmidt, Hartmut; Pospisil, Heike; Kurtz, Stefan; Bartkowiak, Kai; Andreas, Antje; Wieczorek, Marek; Korsching, Eberhard

    2010-01-01

    in the CD44 + /CD24 -/low subpopulation of the breast cancer cell line MDA-MB-468 leads to different coexisting subclones. In isolated low-copy cells asymmetric chromosomal segregation leads to new cells with regained solely egfr gene copies. Furthermore, egfr regain resulted in enhanced signal transduction of the MAP-kinase and PI3-kinase pathway. We show here for the first time a dynamic copy number regain in basal-like/stemness cell type breast cancer subpopulations which might explain genetic heterogeneity. Moreover, this process might also be involved in adaptive growth factor receptor intracellular signaling which support survival and migration during cancer development and progression

  17. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  18. Microfluidic generated EGF-gradients induce chemokinesis of transplantable retinal progenitor cells via the JAK/STAT and PI3kinase signaling pathways.

    Directory of Open Access Journals (Sweden)

    Uchenna J Unachukwu

    Full Text Available A growing number of studies are evaluating retinal progenitor cell (RPC transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR and evaluated whether exposure to epidermal growth factor (EGF can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400 ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.

  19. Clinical Implications of Hedgehog Pathway Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Daniel L. Suzman

    2015-09-01

    Full Text Available Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonstrated clinical responses leading to the approval of the Smoothened inhibitor, vismodegib, for the treatment of advanced basal cell carcinoma. Aberrant Hedgehog pathway signaling has also been noted in prostate cancer with evidence suggesting that it may render prostate epithelial cells tumorigenic, drive the epithelial-to-mesenchymal transition, and contribute towards the development of castration-resistance through autocrine and paracrine signaling within the tumor microenvironment and cross-talk with the androgen pathway. In addition, there are emerging clinical data suggesting that inhibition of the Hedgehog pathway may be effective in the treatment of recurrent and metastatic prostate cancer. Here we will review these data and highlight areas of active clinical research as they relate to Hedgehog pathway inhibition in prostate cancer.

  20. Phylogenetic diversity of stress signalling pathways in fungi

    Directory of Open Access Journals (Sweden)

    Stansfield Ian

    2009-02-01

    Full Text Available Abstract Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol, oxidative (H2O2 and menadione and cell wall stresses (Calcofluor White and Congo Red. There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our

  1. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    Science.gov (United States)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Utility of chromogenic in situ hybridization (CISH) for detection of EGFR amplification in glioblastoma: comparison with fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Fischer, Ingeborg; de la Cruz, Clarissa; Rivera, Andreana L; Aldape, Kenneth

    2008-12-01

    In this study, we test the reliability of chromogenic in situ hybridization (CISH) for the detection of epidermal growth factor receptor (EGFR) gene amplification in glioblastoma. Earlier reports have described EGFR CISH in glioblastoma multiforme, but a comparison of CISH with a "gold standard" testing method, such as fluorescence in situ hybridization (FISH), has not been described. Therapies targeting the EGFR-signaling pathway might increase the importance of assessment of EGFR-amplification status. CISH is a potential alternative to FISH as a testing method. To test its reliability, EGFR-amplification status by CISH was assessed in 89 cases of glioblastoma and compared with FISH results, and correlated with the protein expression using immunohistochemistry (IHC) for EGFR. FISH was scored as being EGFR-amplified in 47/89 tumors, CISH as being amplified in 43/89 tumors. The CISH and FISH results were in agreement in 83/89 cases (93%). Four glioblastomas were scored as being amplified by FISH, but not by CISH; whereas amplification was detected in 2 tumors by CISH that were not amplified using FISH. Forty-eight of the 89 cases were positive for EGFR expression by IHC. EGFR amplification was highly correlated with protein expression by IHC, as 40/48 (83%) EGFR IHC-positive cases were found to be EGFR-amplified. The high concordance of CISH and FISH for the assessment of EGFR gene-amplification status indicates that CISH is a viable alternative to FISH for the detection of EGFR gene amplification in glioblastoma. Detectable EGFR expression by IHC can occur in the absence of gene amplification, but is uncommon.

  3. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    International Nuclear Information System (INIS)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-01-01

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: ► YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. ► YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. ► Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. ► Knockdown of Gli2 rescues the Yap

  4. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  5. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  6. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy

    Science.gov (United States)

    Borahay, Mostafa A; Al-Hendy, Ayman; Kilic, Gokhan S; Boehning, Darren

    2015-01-01

    Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics. PMID:25879625

  7. Network features and pathway analyses of a signal transduction cascade

    Directory of Open Access Journals (Sweden)

    Ryoji Yanashima

    2009-05-01

    Full Text Available The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.

  8. HPV infection and EGFR activation/alteration in HIV-infected East African patients with conjunctival carcinoma.

    Directory of Open Access Journals (Sweden)

    Jing Jie Yu

    2010-05-01

    Full Text Available There has been substantial growth in the numbers of patients with conjunctival squamous cell carcinoma infected with HIV in East Africa. The natural history of the conjunctival squamous cell carcinoma appears to be unique in this region of the world, but the etiologic mechanism unclear and therapeutic options limited. This research was carried out to determine if conjunctival squamous cell carcinoma harbors human papillomavirus DNA and is associated with activation of the EGFR signaling pathway. Positive findings would identify etiologic causes and provide clinical guidance to improve treatment.Expression of p-MAPK/MAPK, p-Akt/Akt and p-EGFR/EGFR in cell nuclei and cytoplasm of 38 FFPE specimens were assessed by immunohistochemistry; HPV genotype was detected by qPCR assay; EGFR mutation was assessed by DNA sequencing analysis; and EGFR mRNA expression was measured using relative qPCR. Statistical analyses included two-sided Fisher exact test or chi-square test, Spearman correlation coefficient and ANOVA. HPV 18 was found in 61% of samples, with HPV 16 double-genotype in 6 patients (16%. Immunohistochemistry and qPCR data suggest that activation and expression of the EGFR signaling pathway is related to disease progression of conjunctival cancer. The associations between cytoplasmic p-MAPK, cytoplasmic p-Akt and tumor invasiveness were significant (p = 0.05 or 0.028. Nuclear p-EGFR appeared only in invasive tumors. A significant positive association between EGFR expression and disease invasiveness was observed (p = 0.01. A SNP in 10 patients and one missense mutation were found within EGFR tyrosine kinase domain. Statistical analysis indicates that patients with measurable EGFR expression more likely harbor EGFR mutations, compared to those with negative EGFR expression (35.3% vs. 0%.We conclude that HPV types 16/18 infection is frequent in East African patients with AIDS-associated squamous cell carcinoma of the conjunctiva. EGFR activation

  9. Interaction Dynamics Determine Signaling and Output Pathway Responses

    Directory of Open Access Journals (Sweden)

    Klement Stojanovski

    2017-04-01

    Full Text Available The understanding of interaction dynamics in signaling pathways can shed light on pathway architecture and provide insights into targets for intervention. Here, we explored the relevance of kinetic rate constants of a key upstream osmosensor in the yeast high-osmolarity glycerol-mitogen-activated protein kinase (HOG-MAPK pathway to signaling output responses. We created mutant pairs of the Sln1-Ypd1 complex interface that caused major compensating changes in the association (kon and dissociation (koff rate constants (kinetic perturbations but only moderate changes in the overall complex affinity (Kd. Yeast cells carrying a Sln1-Ypd1 mutant pair with moderate increases in kon and koff displayed a lower threshold of HOG pathway activation than wild-type cells. Mutants with higher kon and koff rates gave rise to higher basal signaling and gene expression but impaired osmoadaptation. Thus, the kon and koff rates of the components in the Sln1 osmosensor determine proper signaling dynamics and osmoadaptation.

  10. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available kira S. Publication Cell Death Differ. 2006 May;13(5):816-25. Pathway - PNG File (.png) SVG File (.svg) HTML File (.html...16410796 TLR signaling. Kawai T, Akira S. Cell Death Differ. 2006 May;13(5):816-25. (.png) (.svg) (.html

  11. Regulation of insect behavior via the insulin-signaling pathway

    Directory of Open Access Journals (Sweden)

    Renske eErion

    2013-12-01

    Full Text Available The insulin/insulin-like growth factor signaling (IIS pathway is well established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs, the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.

  12. Expression of EGFR and Molecules Downstream to PI3K/Akt, Raf-1-MEK-1-MAP (Erk1/2, and JAK (STAT3 Pathways in Invasive Lung Adenocarcinomas Resected at a Single Institution

    Directory of Open Access Journals (Sweden)

    Alba Fabiola Torres

    2014-01-01

    Full Text Available Therapies targeting EGFR are effective in treating tumors that harbor molecular alterations; however, there is heterogeneity in long-term response to these therapies. We retrospectively analyzed protein expression of EGFR, Stat3, phospho-Akt, and phospho-Erk1/2 by immunohistochemistry in a series of resected cases from a single institution, correlated with clinicopathological variables. There were 96 patients, with the majority of cases being of low stage tumors (17 pT1a, 23 pT1b, 30 pT2a, and 18 pT2b. Histologic subtypes were 45 acinar predominant, 2 cribriform, 25 solid, 7 papillary, 11 lepidic, and 4 mucinous tumors. The EGFR score was higher in tumors with vascular invasion (P=0.013, in solid and cribriform acinar histology, and in high stage tumors (P=0.006 and P=0.01. EGFR was more likely overexpressed in solid compared to lepidic tumors (P=0.02. Acinar tumors had the highest rate of ERK1/2 positivity (19%. There was a strong correlation among positivity for ERCC1 and other markers, including STAT3 (P=0.003, Akt (P=0.02, and ERK1/ERK2 (P=0.0005. Expression of molecules downstream to EGFR varied from 12% to 31% of tumors; however, the expression did not directly correlate to EGFR expression, which may suggest activation of the cascades through different pathways. The correlation of protein expression and the new lung adenocarcinoma classification may help in the understanding of activated pathways of each tumor type, which may act in the oncogenesis and drug resistance of these tumors.

  13. Role of Notch signalling pathway in cancer and its association with ...

    Indian Academy of Sciences (India)

    The Notch signalling pathway is an evolutionarily conserved cell signalling pathway involved in the development of organ- ... Abnormal Notch signalling is seen in many cancers like T-cell acute ...... Morgan T. H. 1917 The theory of the gene.

  14. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  15. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    Science.gov (United States)

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  16. Long-term treatment with EGFR inhibitor erlotinib attenuates renal inflammatory cytokines but not nephropathy in Alport syndrome mouse model.

    Science.gov (United States)

    Omachi, Kohei; Miyakita, Rui; Fukuda, Ryosuke; Kai, Yukari; Suico, Mary Ann; Yokota, Tsubasa; Kamura, Misato; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-12-01

    Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1β and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.

  17. EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model?

    Directory of Open Access Journals (Sweden)

    Rossella Terragni

    Full Text Available Epidermal growth factor receptor (EGFR or HER-1 and its analog c-erbB-2 (HER-2 are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7% carcinomas were classified as intestinal-type and 9 (64.3% as diffuse-type. EGFR was overexpressed (≥ 1+ in 8 (42.1% cases and HER-2 (3+ in 11 (57.9% cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80% than in the diffuse-type (11.1%, p = 0.023. KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R. EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.

  18. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  19. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    Science.gov (United States)

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  20. Frequent activation of EGFR in advanced chordomas

    Directory of Open Access Journals (Sweden)

    Dewaele Barbara

    2011-07-01

    Full Text Available Abstract Background Chordomas are rare neoplasms, arising from notochordal remnants in the midline skeletal axis, for which the current treatment is limited to surgery and radiotherapy. Recent reports suggest that receptor tyrosine kinases (RTK might be essential for the survival or proliferation of chordoma cells, providing a rationale for RTK targeted therapy. Nevertheless, the reported data are conflicting, most likely due to the assorted tumor specimens used for the studies and the heterogeneous methodological approaches. In the present study, we performed a comprehensive characterization of this rare entity using a wide range of assays in search for relevant therapeutic targets. Methods Histopathological features of 42 chordoma specimens, 21 primary and 21 advanced, were assessed by immunohistochemistry and fluorescent in situ hybridization (FISH using PDGFRB, CSF1R, and EGFR probes. Twenty-two of these cases, for which frozen material was available (nine primary and 13 advanced tumors, were selectively analyzed using the whole-genome 4.3 K TK-CGH-array, phospho-kinase antibody array or Western immunoblotting. The study was supplemented by direct sequencing of KIT, PDGFRB, CSF1R and EGFR. Results We demonstrated that EGFR is frequently and the most significantly activated RTK in chordomas. Furthermore, concurrent to EGFR activation, the tumors commonly reveal co-activation of alternative RTK. The consistent activation of AKT, the frequent loss of the tumor suppressor PTEN allele, the recurrent activation of upstream RTK and of downstream effectors like p70S6K and mTOR, all indicate the PI3K/AKT pathway as an important mediator of transformation in chordomas. Conclusions Given the complexity of the signaling in chordomas, combined treatment regimens targeting multiple RTK and downstream effectors are likely to be the most effective in these tumors. Personalized therapy with careful selection of the patients, based on the molecular profile of

  1. Signal transduction pathways involved in mechanotransduction in bone cells

    International Nuclear Information System (INIS)

    Liedert, Astrid; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-01-01

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca 2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus

  2. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  3. Probing the canonicity of the Wnt/Wingless signaling pathway.

    Directory of Open Access Journals (Sweden)

    Alexandra Franz

    2017-04-01

    Full Text Available The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin and Pangolin (Pan, Drosophila TCF in the Wnt/Wingless(Wg-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system.

  4. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Bongiovanni, Deborah; Saccomani, Valentina

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614

  5. GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis.

    Science.gov (United States)

    Law, Luke A; Graham, Douglas K; Di Paola, Jorge; Branchford, Brian R

    2018-01-01

    The GAS6/TYRO3-AXL-MERTK (TAM) signaling pathway is essential for full and sustained platelet activation, as well as thrombus stabilization. Inhibition of this pathway decreases platelet aggregation, shape change, clot retraction, aggregate formation under flow conditions, and surface expression of activation markers. Transgenic mice deficient in GAS6, or any of the TAM family of receptors that engage this ligand, exhibit in vivo protection against arterial and venous thrombosis but do not demonstrate either spontaneous or prolonged bleeding compared to their wild-type counterparts. Comparable results are observed in wild-type mice treated with pharmacological inhibitors of the GAS6-TAM pathway. Thus, GAS6/TAM inhibition offers an attractive novel therapeutic option that may allow for a moderate reduction in platelet activation and decreased thrombosis while still permitting the primary hemostatic function of platelet plug formation.

  6. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells

    OpenAIRE

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-01-01

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-γ rece...

  7. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway

    International Nuclear Information System (INIS)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Yoo, Sun-Mi; Choi, Kyung-Il; Song, Ji-Hong; Jang, Jeong-Hoon; Oh, Sei-Ryang; Ryu, Hyung-Won; Lee, Hye-Suk; Surh, Young-Joon; Cho, Yong-Yeon

    2015-01-01

    Magnolin is a natural compound abundantly found in Magnolia flos, which has been traditionally used in oriental medicine to treat headaches, nasal congestion and anti-inflammatory reactions. Our recent results have demonstrated that magnolin targets the active pockets of ERK1 and ERK2, which are important signaling molecules in cancer cell metastasis. The aim of this study is to evaluate the effects of magnolin on cell migration and to further explore the molecular mechanisms involved. Magnolin-mediated signaling inhibition was confirmed by Western blotting using RSK2 +/+ and RSK2 −/− MEFs, A549 and NCI-H1975 lung cancer cells, and by NF-κB and Cox-2 promoter luciferase reporter assays. Inhibition of cell migration by magnolin was examined by wound healing and/or Boyden Chamber assays using JB6 Cl41 and A549 human lung cancer cells. The molecular mechanisms involved in cell migration and epithelial-to-mesenchymal transition were determined by zymography, Western blotting, real-time PCR and immunocytofluorescence. Magnolin inhibited NF-κB transactivation activity by suppressing the ERKs/RSK2 signaling pathway. Moreover, magnolin abrogated the increase in EGF-induced COX-2 protein levels and wound healing. In human lung cancer cells such as A549 and NCI-H1975, which harbor constitutive active Ras and EGFR mutants, respectively, magnolin suppressed wound healing and cell invasion as seen by a Boyden chamber assay. In addition, it was observed that magnolin inhibited MMP-2 and −9 gene expression and activity. The knockdown or knockout of RSK2 in A549 lung cancer cells or MEFs revealed that magnolin targeting ERKs/RSK2 signaling suppressed epithelial-to-mesenchymal transition by modulating EMT marker proteins such as N-cadherin, E-cadherin, Snail, Vimentin and MMPs. These results demonstrate that magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. The online version of this article (doi:10.1186/s12885-015-1580-7) contains

  8. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  9. Interleukins and their signaling pathways in the Reactome biological pathway database.

    Science.gov (United States)

    Jupe, Steve; Ray, Keith; Roca, Corina Duenas; Varusai, Thawfeek; Shamovsky, Veronica; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    much molecular detail as possible and are linked to literature citations that contain supporting experimental details. All newly created events undergo a peer-review process before they are added to the database and made available on the associated Web site. New content is added quarterly. The 63rd release of Reactome in December 2017 contains 10,996 human proteins participating in 11,426 events in 2,179 pathways. In addition, analytic tools allow data set submission for the identification and visualization of pathway enrichment and representation of expression profiles as an overlay on Reactome pathways. Protein-protein and compound-protein interactions from several sources, including custom user data sets, can be added to extend pathways. Pathway diagrams and analytic result displays can be downloaded as editable images, human-readable reports, and files in several standard formats that are suitable for computational reuse. Reactome content is available programmatically through a REpresentational State Transfer (REST)-based content service and as a Neo4J graph database. Signaling pathways for IL-1 to IL-38 are hierarchically classified within the pathway "signaling by interleukins." The classification used is largely derived from Akdis et al. The addition to Reactome of a complete set of the known human interleukins, their receptors, and established signaling pathways linked to annotations of relevant aspects of immune function provides a significant computationally accessible resource of information about this important family. This information can be extended easily as new discoveries become accepted as the consensus in the field. A key aim for the future is to increase coverage of gene expression changes induced by interleukin signaling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Signal interaction of Hedgehog/GLI and epidermal growth factor receptor signaling in cancer development

    International Nuclear Information System (INIS)

    Eberl, M.

    2012-01-01

    The subject of this PhD thesis is based on the cooperation of Hedgehog (HH)/GLI with epidermal growth factor receptor (EGFR) signaling synergistically promoting oncogenic transformation and cancer growth. In previous studies we have demonstrated that the HH/GLI and EGFR signaling pathways interact synergistically resulting not only in selective induction of HH/GLI-EGFR target genes, but also in the onset of oncogenic transformation and tumor formation (Kasper, Schnidar et al. 2006; Schnidar, Eberl et al. 2009). However, the molecular key mediators acting downstream of HH/GLI and EGFR signal cooperation were largely unknown and the in vivo evidence for the therapeutic relevance of HH/GLI and EGFR signal cooperation in HH-associated cancers was lacking. During my PhD thesis I could demonstrate that the integration of EGFR and HH/GLI signaling involves activation of RAS/MEK/ERK and JUN/AP1 signaling in response to EGFR activation. Furthermore I succeeded in identifying genes, including stem cell- (SOX2, SOX9), tumor growth- (JUN, TGFA, FGF19) and metastasis-associated genes (SPP1/osteopontin, CXCR4) that showed synergistic transcriptional activation by HH/GLI-EGFR signal integration. Importantly, I could demonstrate that these genes arrange themselves within a stable interdependent signaling network, which is required for in vivo growth of basal cell carcinoma (BCC) and tumor-initiating pancreatic cancer cells. These data validate EGFR signaling as additional drug target in HH/GLI driven cancers and provide new therapeutic strategies based on combined targeting of cooperative HH/GLI-EGFR signaling and selected downstream target genes (Eberl, Klingler et al. 2012). (author) [de

  11. Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

    Directory of Open Access Journals (Sweden)

    Warut Tulalamba

    2012-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.

  12. Pentagone internalises glypicans to fine-tune multiple signalling pathways

    Science.gov (United States)

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. DOI: http://dx.doi.org/10.7554/eLife.13301.001 PMID:27269283

  13. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Science.gov (United States)

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  14. Romidepsin targets multiple survival signaling pathways in malignant T cells

    International Nuclear Information System (INIS)

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC 50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies

  15. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.

    Science.gov (United States)

    Guan, S-M; Fu, S-M; He, J-J; Zhang, M

    2011-01-01

    Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.

  16. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wuwu Xu

    2017-11-01

    Full Text Available Calcium-dependent protein kinases (CPKs/CDPKs are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.

  17. Notch pathway signaling in the skin antagonizes Merkel cell development.

    Science.gov (United States)

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  19. Radiation-induced adaptive response and intracellular signal transduction pathways

    International Nuclear Information System (INIS)

    Tachibana, Akira

    2009-01-01

    As an essential biological function, cells can sense the radiation even at low dose and respond to it, and which is one of bases of the radiation-induced adaptive response (AR) where effects caused by high dose radiation are reduced by prior exposure to low dose radiation (LDR). Here described are studies of AR in well established m5S cells on the intracellular signal transduction that involves sensing of LDR and transmitting of its signal within the cell network. The first signal for AR yielded by LDR on the cell membrane is exactly unknown though hydrogen peroxide and phorbol ester (PMA) can reportedly cause AR. As PMA activates protein kinase C (PKC) and its inhibitors suppress AR, participation of PKC in AR has been suggested and supported by studies showing PKCα activation by LDR. In addition, p38 mitogen-activated protein kinase (MAPK) is shown to participate in AR by those facts that the enzyme is activated by LDR, a p38 MAPK inhibitor suppresses AR, and PKC inhibitors suppress the enzyme activation, which also suggesting that the signaling from PKC to p38 MAPK can become operative by LDR. However, the possible reverse signaling is also suggested, and thus the activation of positive feedback mechanism is postulated in PKC/p38 MAPK/phospholipase δ1/ PKC pathway. Cells introduced with siRNA against Prkca gene (coding PKCs) produce reduced amount of the enzyme, particularly, of PKCα. In those cells, AR by 5 Gy X-ray is not observed and thereby PKCα is involved in AR. The signaling in AR is only partly elucidated at present as above, and more detailed studies including identification of more PKC subtypes and signaling to DNA repair system are considered necessary. (K.T.)

  20. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces

  1. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis

  2. Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Osinalde, Nerea; Moss, Helle; Arrizabalaga, Onetsine

    2011-01-01

    among which 79 were found with increased abundance in the tyrosine-phosphorylated complexes, including several previously not reported IL-2 downstream effectors. Combinatorial site-specific phosphoproteomic analysis resulted in identification of 99 phosphorylated sites mapping to the identified proteins...... with increased abundance in the tyrosine-phosphorylated complexes, of which 34 were not previously described. In addition, chemical inhibition of the identified IL-2-mediated JAK, PI3K and MAPK signaling pathways, resulted in distinct alteration on the IL-2 dependent proliferation....

  3. Understanding Resolvin Signaling Pathways to Improve Oral Health

    Directory of Open Access Journals (Sweden)

    Laura De Oleo

    2013-03-01

    Full Text Available The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity.

  4. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    Directory of Open Access Journals (Sweden)

    Debby D Wang

    Full Text Available EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib. Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met. Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The

  5. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  6. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells.

    Science.gov (United States)

    Benoit, G R; Flexor, M; Besançon, F; Altucci, L; Rossin, A; Hillion, J; Balajthy, Z; Legres, L; Ségal-Bendirdjian, E; Gronemeyer, H; Lanotte, M

    2001-07-01

    On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.

  7. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  9. A SNP uncoupling Mina expression from the TGFβ signaling pathway.

    Science.gov (United States)

    Lian, Shang L; Mihi, Belgacem; Koyanagi, Madoka; Nakayama, Toshinori; Bix, Mark

    2018-03-01

    Mina is a JmjC family 2-oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell-type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1-region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated. Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1-region SNPs perturbs a Mina cis-regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus-spanning 26-kilobase genomic interval. We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c-but not C57Bl/6 allele-abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness. Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  10. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  11. Modulation of neurotrophic signaling pathways by polyphenols

    Directory of Open Access Journals (Sweden)

    Moosavi F

    2015-12-01

    Full Text Available Fatemeh Moosavi,1,2 Razieh Hosseini,1,2 Luciano Saso,3 Omidreza Firuzi1 1Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 3Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy Abstract: Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK and phosphoinositide 3-kinase (PI3K/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate

  12. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    Science.gov (United States)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  13. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  14. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    Science.gov (United States)

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  15. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    Science.gov (United States)

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  16. PSFC: a Pathway Signal Flow Calculator App for Cytoscape [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lilit Nersisyan

    2017-04-01

    Full Text Available Cell signaling pathways are sequences of biochemical reactions that propagate an input signal, such as a hormone binding to a cell-surface receptor, into the cell to trigger a reactive process. Assessment of pathway activities is crucial for determining which pathways play roles in disease versus normal conditions. To date various pathway flow/perturbation assessment tools are available, however they are constrained to specific algorithms and specific data types. There are no accepted standards for evaluation of pathway activities or simulation of flow propagation events in pathways, and the results of different software are difficult to compare. Here we present Pathway Signal Flow Calculator (PSFC, a Cytoscape app for calculation of a pathway signal flow based on the pathway topology and node input data. The app provides a rich framework for customization of different signal flow algorithms to allow users to apply various approaches within a single computational framework.

  17. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  18. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  19. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1

    Science.gov (United States)

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198

  20. Nonmuscle Myosin II Is Required for Internalization of the Epidermal Growth Factor Receptor and Modulation of Downstream Signaling*

    Science.gov (United States)

    Kim, Jong Hyun; Wang, Aibing; Conti, Mary Anne; Adelstein, Robert S.

    2012-01-01

    Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. PMID:22718763

  1. In vitro reconstitution of an abscisic acid signalling pathway

    KAUST Repository

    Fujii, Hiroaki; Chinnusamy, Viswanathan; Rodrigues, Americo; Rubio, Silvia; Antoni, Regina; Park, Sang-Youl; Cutler, Sean R.; Sheen, Jen; Rodriguez, Pedro L.; Zhu, Jian-Kang

    2009-01-01

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  2. In vitro reconstitution of an abscisic acid signalling pathway

    KAUST Repository

    Fujii, Hiroaki

    2009-11-18

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  3. Apoptosis induced by knockdown of uPAR and MMP-9 is mediated by inactivation of EGFR/STAT3 signaling in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Ramaprasada Rao Kotipatruni

    Full Text Available Medulloblastoma is a highly invasive cancer of central nervous system diagnosed mainly in children. Matrix metalloproteinase-9 (MMP-9 and urokinase plasminogen activator receptor (uPAR are over expressed in several cancers and well established for their roles in tumor progression. The present study is aimed to determine the consequences of targeting these molecules on medulloblastoma progression.Radiation is one of the foremost methods applied for treating cancer and considerable evidence showed that radiation elevated uPAR and MMP-9 expression in medulloblastoma cell. Therefore efforts are made to target these molecules in non-irradiated and irradiated medulloblastoma cells. Our results showed that siRNA-mediated knockdown of uPAR and MMP-9, either alone or in combination with radiation modulated a series of events leading to apoptosis. Down regulation of uPAR and MMP-9 inhibited the expression of anti-apoptotic molecules like Bcl-2, Bcl-xL, survivin, XIAP and cIAPI; activated BID cleavage, enhanced the expression of Bak and translocated cyctochrome C to cytosol. Capsase-3 and -9 activities were also increased in uPAR- and MMP-9-downregulated cells. The apoptosis induced by targeting MMP-9 and uPAR was initiated by inhibiting epidermal growth factor receptor (EGFR mediated activation of STAT3 and NF-κB related signaling molecules. Silencing uPAR and MMP-9 inhibited DNA binding activity of STAT3 and also reduced the recruitment of STAT3 protein at the promoter region of Bcl-2 and survivin genes. Our results suggest that inhibiting uPAR and MMP-9 reduced the expression of anti-apoptotic molecules by inactivating the transcriptional activity of STAT3. In addition, treating pre-established medulloblastoma with siRNAs against uPAR and MMP-9 both alone or in combination with radiation suppressed uPAR, MMP-9, EGFR, STAT3 expression and induced Bak activation leading to apoptosis.Taken together, our results illustrated that RNAi mediated targeting of

  4. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    Science.gov (United States)

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. Moreover, T3 was found to up-modulate the level of cell sensitivity to parvovirus attack. These data suggest an interconnection between T3 signalling and NS cytotoxic pathways. Images PMID:8230488

  5. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Science.gov (United States)

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  6. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  7. Signal transduction in mitogenesis: Further evidence for multiple pathways

    International Nuclear Information System (INIS)

    Rozengurt, E.; Erusalimsky, J.; Mehmet, H.; Morris, C.; Nanberg, E.; Sinnett-Smith, J.

    1988-01-01

    Growth factors are implicated in a wide variety of physiological and pathological processes, including embryogenesis, hematopoiesis, would healing, immune responses, atherosclerosis, and neoplasia. An important link between growth factors and their receptors and oncogene products has also been established. Thus, the elucidation of the mechanism of action of growth factors has emerged as one of the fundamental problems in biology and may prove crucial for understanding the unrestrained proliferation of cancer cells. A new and intriguing development is the discovery that neuropeptides localized in neural and neuroendocrine cells of mammalian tissue can also act as growth factors for cells in culture. Furthermore, indirect evidence is accumulating that the mitogenic effects of neuropeptides may be relevant for a variety of long-term biological processes, including development and oncogenesis. In this context, the peptides of the bombesin family are of particular significance. These peptides are potent mitogens for Swiss 3T3 cells and may act as autocrine growth factors for small cell lung cancer. Here, the authors summarize their recent studies using bombesin-like peptides for elucidating the signal transduction pathways leading to mitogenesis and compare these pathways with those elicited by other growth factors

  8. Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Colquhoun, AJ; Mchugh, LA; Tulchinsky, E.; Kriajevska, M.; Mellon, JK

    2007-01-01

    External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours. We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo. IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p=0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p=0.04). Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial. (author)

  9. Increased Epidermal Growth Factor Receptor (EGFR Associated with Hepatocyte Growth Factor (HGF and Symptom Severity in Children with Autism Spectrum Disorders (ASDs

    Directory of Open Access Journals (Sweden)

    Anthony J. Russo

    2014-01-01

    Full Text Available Background One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs. ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF, the ligand for MET (MNNG HOS transforming gene receptor, as well as the symptom severity of 19 different behavioral symptoms. Subjects and Methods Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. Results We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1 levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. Conclusions These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.

  10. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); Hristozova, Tsvetana; Stromberger, Carmen [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); KeilhoIz, Ulrich [Department of Hematology and Oncology, Campus Benjamin Franklin, Charite Universitaetsmedizin Berlin, Berlin (Germany); Budach, Volker [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylated form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.

  11. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    Science.gov (United States)

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Fang He

    2018-01-01

    Full Text Available Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD, irritable bowel syndrome (IBS, and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs, conditionally essential amino acids (CEAAs, and nonessential amino acids (NEAAs, improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR, inducible nitric oxide synthase (iNOS, calcium-sensing receptor (CaSR, nuclear factor-kappa-B (NF-κB, mitogen-activated protein kinase (MAPK, nuclear erythroid-related factor 2 (Nrf2, general controlled nonrepressed kinase 2 (GCN2, and angiotensin-converting enzyme 2 (ACE2.

  13. The Transcriptional Landscape of p53 Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2017-06-01

    Full Text Available Although recent cancer genomics studies have identified a large number of genes that were mutated in human cancers, p53 remains as the most frequently mutated gene. To further elucidate the p53-signalling network, we performed transcriptome analysis on 24 tissues in p53+/+ or p53−/− mice after whole-body X-ray irradiation. Here we found transactivation of a total of 3551 genes in one or more of the 24 tissues only in p53+/+ mice, while 2576 genes were downregulated. p53 mRNA expression level in each tissue was significantly associated with the number of genes upregulated by irradiation. Annotation using TCGA (The Cancer Genome Atlas database revealed that p53 negatively regulated mRNA expression of several cancer therapeutic targets or pathways such as BTK, SYK, and CTLA4 in breast cancer tissues. In addition, stomach exhibited the induction of Krt6, Krt16, and Krt17 as well as loricrin, an epidermal differentiation marker, after the X-ray irradiation only in p53+/+ mice, implying a mechanism to protect damaged tissues by rapid induction of differentiation. Our comprehensive transcriptome analysis elucidated tissue specific roles of p53 and its signalling networks in DNA-damage response that will enhance our understanding of cancer biology.

  14. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    Science.gov (United States)

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  15. Systems Biomedicine of Rabies Delineates the Affected Signaling pathways

    Directory of Open Access Journals (Sweden)

    Sayed Hamid Reza Mozhgani

    2016-11-01

    Full Text Available The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN of infected cells to elucidate the rabies-implicated signal transduction network (RISN. To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  16. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    Science.gov (United States)

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  17. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    Science.gov (United States)

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  18. Clinical Characteristics and Outcomes of Lung Cancer Patients 
with EGFR Mutations in Exons 19 and 21

    Directory of Open Access Journals (Sweden)

    Renwang LIU

    2014-11-01

    Full Text Available Background and objective Studies on the epidermal growth factor receptor (EGFR signaling pathways and the therapeutic effects of EGFR-tyrosine kinase inhibitors (EGFR-TKIs have recently proven that targeted therapy has a major role in the treatment of lung cancer. However, the therapeutic effects of EGFR-TKIs on lung cancers with different EGFR mutation subtypes remain unclear. And if there is a significant difference in the effects of EGFR-TKIs, the mechanisms for the difference remain unclear. The aim of this study was to investigate the clinical importance of EGFR mutations in exons 19 and 21 of lung cancer patients and to compare the outcomes of these patients. Methods The study recruited 113 patients who had non-small cell lung cancer (NSCLC with EGFR mutations. EGFR mutations were detected for 47 patients using Real-time PCR or DNA sequencinag. The mutations of the remaining patients were determined using xTag-EGFR liquid chip technology. All stages I-III patients underwent radical resection followed by 4 cycles of postoperative chemotherapy. Patients with pleural metastases underwent pleural biopsy, pleurodesis, and chemotherapy only. Patients with distant metastases underwent biopsy and chemotherapy only. Collected clinical data were analyzed using SPSS 19.0 software. Results EGFR exon mutations 19 and 21 were found in 56 and 57 patients, respectively. The mean age of patients with exon 19 mutations was lower than the age of the patients with exon 21 mutations (57.02±11.31 years vs 62.25±7.76 years, respectively; P0.05 between the patients with exon 19 and 21 mutations; and survival analysis of 91 (80.5% patients with complete clinical data found no differences in overall survival. Stratification analysis found out that patients with exon 19 mutations had longer overall survival associated with age>61 years, male gender, ever smoking, and stage IV disease; although the differences were not significant. Conclusion Compared to the lung

  19. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  1. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  2. In Vivo Characterization of Intracellular Signaling Pathways Activated by the Nerve Agent Sarin

    National Research Council Canada - National Science Library

    Shih, Tsung-Ming A; Snyder, Gretchen L; Hendrick, Joseph P; Fienberg, Allen A; McDonough, John H

    2004-01-01

    ..., an excessive stimulation of nicotinic and muscarinic receptors. Preliminary evidence using diverse OPs indicates that the DARPP-32/PP-1 signaling pathway is activated by nicotinic receptor stimulation...

  3. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Rafiei, Shahrzad; Komarova, Svetlana V

    2013-01-01

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  4. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    Science.gov (United States)

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  5. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer.

    Science.gov (United States)

    Gong, Ke; Guo, Gao; Gerber, David E; Gao, Boning; Peyton, Michael; Huang, Chun; Minna, John D; Hatanpaa, Kimmo J; Kernstine, Kemp; Cai, Ling; Xie, Yang; Zhu, Hong; Fattah, Farjana J; Zhang, Shanrong; Takahashi, Masaya; Mukherjee, Bipasha; Burma, Sandeep; Dowell, Jonathan; Dao, Kathryn; Papadimitrakopoulou, Vassiliki A; Olivas, Victor; Bivona, Trever G; Zhao, Dawen; Habib, Amyn A

    2018-06-01

    Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.

  6. ent-Steroids: novel tools for studies of signaling pathways.

    Science.gov (United States)

    Covey, Douglas F

    2009-07-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.

  7. Functional comparison of innate immune signaling pathways in primates.

    Directory of Open Access Journals (Sweden)

    Luis B Barreiro

    2010-12-01

    Full Text Available Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host-virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV-interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.

  8. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  9. EGFR and EGFRvIII Promote Angiogenesis and Cell Invasion in Glioblastoma: Combination Therapies for an Effective Treatment

    Directory of Open Access Journals (Sweden)

    Stefanie Keller

    2017-06-01

    Full Text Available Epidermal growth factor receptor (EGFR and the mutant EGFRvIII are major focal points in current concepts of targeted cancer therapy for glioblastoma multiforme (GBM, the most malignant primary brain tumor. The receptors participate in the key processes of tumor cell invasion and tumor-related angiogenesis and their upregulation correlates with the poor prognosis of glioma patients. Glioma cell invasion and increased angiogenesis share mechanisms of the degradation of the extracellular matrix (ECM through upregulation of ECM-degrading proteases as well as the activation of aberrant signaling pathways. This review describes the role of EGFR and EGFRvIII in those mechanisms which might offer new combined therapeutic approaches targeting EGFR or EGFRvIII together with drug treatments against proteases of the ECM or downstream signaling to increase the inhibitory effects of mono-therapies.

  10. The Wnt signaling pathway in familial exudative vitreoretinopathy and Norrie disease.

    Science.gov (United States)

    Warden, Scott M; Andreoli, Christopher M; Mukai, Shizuo

    2007-01-01

    The Wnt signaling pathway is highly conserved among species and has an important role in many cell biological processes throughout the body. This signaling cascade is involved in regulating ocular growth and development, and recent findings indicate that this is particularly true in the retina. Mutations involving different aspects of the Wnt signaling pathway are being linked to several diseases of retinal development. The aim of this article is to first review the Wnt signaling pathway. We will then describe two conditions, familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND), which have been shown to be caused in part by defects in the Wnt signaling cascade.

  11. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  12. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  13. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  14. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms

    Science.gov (United States)

    Novellasdemunt, Laura; Antas, Pedro

    2015-01-01

    The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery. PMID:26289750

  15. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  16. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1

    Science.gov (United States)

    Pirazzoli, Valentina; Nebhan, Caroline; Song, Xiaoling; Wurtz, Anna; Walther, Zenta; Cai, Guoping; Zhao, Zhongming; Jia, Peilin; de Stanchina, Elisa; Shapiro, Erik M.; Gale, Molly; Yin, Ruonan; Horn, Leora; Carbone, David P.; Stephens, Philip J; Miller, Vincent; Gettinger, Scott; Pao, William; Politi, Katerina

    2014-01-01

    SUMMARY Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. Addition of rapamycin reversed resistance in vivo. Analysis of afatinib+cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib+cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs. PMID:24813888

  17. Wnt and the Wnt signaling pathway in bone development and disease

    Science.gov (United States)

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  18. BLM promotes the activation of Fanconi Anemia signaling pathway.

    Science.gov (United States)

    Panneerselvam, Jayabal; Wang, Hong; Zhang, Jun; Che, Raymond; Yu, Herbert; Fei, Peiwen

    2016-05-31

    Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability.

  19. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  20. Oncogenic signalling pathways in benign odontogenic cysts and tumours.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; de Sousa, Sílvia Ferreira; Xavier, Guilherme Machado; Gomez, Ricardo Santiago

    2017-09-01

    The first step towards the prevention of cancer is to develop an in-depth understanding of tumourigenesis and the molecular basis of malignant transformation. What drives tumour initiation? Why do most benign tumours fail to metastasize? Oncogenic mutations, previously considered to be the hallmark drivers of cancers, are reported in benign cysts and tumours, including those that have an odontogenic origin. Despite the presence of such alterations, the vast majority of odontogenic lesions are benign and never progress to the stage of malignant transformation. As these lesions are likely to develop due to developmental defects, it is possible that they harbour quiet genomes. Now the question arises - do they result from DNA replication errors? Specific candidate genes have been sequenced in odontogenic lesions, revealing recurrent BRAF mutation in the case of ameloblastoma, KRAS mutation in adenomatoid odontogenic tumours, PTCH1 mutation in odontogenic keratocysts, and CTNNB1 (Beta-catenin) mutation in calcifying odontogenic cysts. Studies on these benign and rare entities might reveal important information about the tumorigenic process and the mechanisms that hinder/halt neoplastic progression. This is because the role of relatively common oncogenic mutations seems to be context dependent. In this review, each mutation signature of the odontogenic lesion and the affected signalling pathways are discussed in the context of tooth development and tumorigenesis. Furthermore, behavioural differences between different types of odontogenic lesions are explored and discussed based on the molecular alteration described. This review also includes the employment of molecular results for guiding therapeutic approaches towards odontogenic lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  2. Mast cell chemotaxis – Chemoattractants and signaling pathways

    Directory of Open Access Journals (Sweden)

    Ivana eHalova

    2012-05-01

    Full Text Available Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE anchored to the high affinity IgE receptor (FcRI, highly cytokinergic IgE recognized by FcRI, lipid mediator sphingosine-1-phosphate (S1P, which binds to G-protein-coupled receptors (GPCRs. Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT B4, LTD4 and LTC4, and others] and chemokines (CC, CXC, C and CX3X, which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF , which are sensitively recognized by TGF- serine/threonine type I and II  receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, interleukin-6, tumor necrosis factor- and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.

  3. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro.

    Science.gov (United States)

    Zhu, Xuejiao; Wen, Libin; Sheng, Shaoyang; Wang, Wei; Xiao, Qi; Qu, Meng; Hu, Yiyi; Liu, Chuanmin; He, Kongwang

    2018-01-01

    Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro . Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro , elucidated the mechanism of P1's inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS), laying a foundation for elucidating the pathogenesis of P1.

  4. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Xuejiao Zhu

    2018-03-01

    Full Text Available Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro. Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro, elucidated the mechanism of P1’s inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS, laying a foundation for elucidating the pathogenesis of P1.

  5. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy.

    Science.gov (United States)

    Blom, Jan J; Giove, Thomas J; Favazza, Tara L; Akula, James D; Eldred, William D

    2011-06-01

    The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.

  6. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  7. Detection of EGFR and COX-2 Expression by Immunohistochemical Method on a Tissue Microarray Section in Lung Cancer and Biological Significance

    Directory of Open Access Journals (Sweden)

    Xinyun WANG

    2010-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR and cyclooxygenase-2 (COX-2, which can regulate growth, invasion and metastasis of tumor through relevant signaling pathway, have been detected in a variety of solid tumors. The aim of this study is to investigate the biological significance of EGFR and COX-2 expression in lung cancer and the relationship between them. Methods The expression of EGFR and COX-2 was detected in 89 primary lung cancer tissues, 12 premaliganant lesions, 12 lymph node metastases, and 10 normal lung tissues as the control by immunohistochemical method on a tissue microarray section. Results EGFR protein was detectable in 59.6%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively; COX-2 protein was detectable in 52.8%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively, which were significantly higher than those of the control (P 0.05. COX-2 expression was related to gross type (P < 0.05. A highly positive correlation was observed between EGFR and COX-2 expression (P < 0.01. Conclusion Overexpression of EGFR and COX-2 may play an important role in the tumorgenesis, progression and malignancy of lung cancer. Detection of EGFR and COX-2 expression might be helpful to diagnosis and prognosis of lung cancer.

  8. The role of the Hedgehog signaling pathway in cancer: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Ana Marija Skoda

    2018-02-01

    Full Text Available The Hedgehog (Hh signaling pathway was first identified in the common fruit fly. It is a highly conserved evolutionary pathway of signal transmission from the cell membrane to the nucleus. The Hh signaling pathway plays an important role in the embryonic development. It exerts its biological effects through a signaling cascade that culminates in a change of balance between activator and repressor forms of glioma-associated oncogene (Gli transcription factors. The components of the Hh signaling pathway involved in the signaling transfer to the Gli transcription factors include Hedgehog ligands (Sonic Hh [SHh], Indian Hh [IHh], and Desert Hh [DHh], Patched receptor (Ptch1, Ptch2, Smoothened receptor (Smo, Suppressor of fused homolog (Sufu, kinesin protein Kif7, protein kinase A (PKA, and cyclic adenosine monophosphate (cAMP. The activator form of Gli travels to the nucleus and stimulates the transcription of the target genes by binding to their promoters. The main target genes of the Hh signaling pathway are PTCH1, PTCH2, and GLI1. Deregulation of the Hh signaling pathway is associated with developmental anomalies and cancer, including Gorlin syndrome, and sporadic cancers, such as basal cell carcinoma, medulloblastoma, pancreatic, breast, colon, ovarian, and small-cell lung carcinomas. The aberrant activation of the Hh signaling pathway is caused by mutations in the related genes (ligand-independent signaling or by the excessive expression of the Hh signaling molecules (ligand-dependent signaling – autocrine or paracrine. Several Hh signaling pathway inhibitors, such as vismodegib and sonidegib, have been developed for cancer treatment. These drugs are regarded as promising cancer therapies, especially for patients with refractory/advanced cancers.

  9. Signaling pathways activation profiles make better markers of cancer than expression of individual genes

    OpenAIRE

    Borisov, Nikolay M.; Terekhanova, Nadezhda V.; Aliper, Alexander M.; Venkova, Larisa S.; Smirnov, Philip Yu; Roumiantsev, Sergey; Korzinkin, Mikhail B.; Zhavoronkov, Alex A.; Buzdin, Anton A.

    2014-01-01

    Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for...

  10. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  11. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  12. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  13. The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib.

    Science.gov (United States)

    Zhang, Yuping; Meng, Xia; Shi, Hongyang; Li, Wei; Ming, Zongjuan; Zhong, Yujie; Deng, Wenjing; Zhang, Qiuhong; Fan, Na; Niu, Zequn; Chen, Guo'an; Yang, Shuanying

    2016-01-01

    The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 μMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different concentrations of icotinib (0, 0.1, 1 and 10 μMol/L) for 48 h were evaluated by TUNEL assay; JAK2, STAT3, Bcl-2, Bax mRNA expressions were evaluated by Real-time PCR assay; The protein levels of P-STAT3 and IL-6 were evaluated by Western-blot assay. Human lung adenocarcinoma cell line PC-9 had an exon 19 deletion mutation in EGFR gene; Followed by treatment of icotinib, the proliferation of PC-9 cells were all inhibited significantly, especially in 48 and 72 h (Picotinib. The most likely mechanism is icotinib inhibited the gene expression levels of JAK2, STAT3 and Bcl-2, so with the P-STAT3 and IL-6 protein levels, and mediated gene Bax overexpression.

  14. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  15. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  16. Lung cancer, intracellular signaling pathways, and preclinical models

    International Nuclear Information System (INIS)

    Mordant, P.

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced anti-tumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the anti-tumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing anti-tumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein. We then focus on animal models. Preclinical models of NSCLC require better clinical relevance to study disease mechanisms and innovative

  17. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    DEFF Research Database (Denmark)

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente

    2015-01-01

    alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase...... on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions...

  18. The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.

    Science.gov (United States)

    Sun, Yahui; Ma, Chenkai; Halgamuge, Saman

    2017-12-28

    Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.

  19. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  20. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  1. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C

    2012-01-01

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  2. Optimal structural inference of signaling pathways from unordered and overlapping gene sets.

    Science.gov (United States)

    Acharya, Lipi R; Judeh, Thair; Wang, Guangdi; Zhu, Dongxiao

    2012-02-15

    A plethora of bioinformatics analysis has led to the discovery of numerous gene sets, which can be interpreted as discrete measurements emitted from latent signaling pathways. Their potential to infer signaling pathway structures, however, has not been sufficiently exploited. Existing methods accommodating discrete data do not explicitly consider signal cascading mechanisms that characterize a signaling pathway. Novel computational methods are thus needed to fully utilize gene sets and broaden the scope from focusing only on pairwise interactions to the more general cascading events in the inference of signaling pathway structures. We propose a gene set based simulated annealing (SA) algorithm for the reconstruction of signaling pathway structures. A signaling pathway structure is a directed graph containing up to a few hundred nodes and many overlapping signal cascades, where each cascade represents a chain of molecular interactions from the cell surface to the nucleus. Gene sets in our context refer to discrete sets of genes participating in signal cascades, the basic building blocks of a signaling pathway, with no prior information about gene orderings in the cascades. From a compendium of gene sets related to a pathway, SA aims to search for signal cascades that characterize the optimal signaling pathway structure. In the search process, the extent of overlap among signal cascades is used to measure the optimality of a structure. Throughout, we treat gene sets as random samples from a first-order Markov chain model. We evaluated the performance of SA in three case studies. In the first study conducted on 83 KEGG pathways, SA demonstrated a significantly better performance than Bayesian network methods. Since both SA and Bayesian network methods accommodate discrete data, use a 'search and score' network learning strategy and output a directed network, they can be compared in terms of performance and computational time. In the second study, we compared SA and

  3. Reverse resistance to radiation in KYSE-150R esophageal carcinoma cell after epidermal growth factor receptor signal pathway inhibition by cetuximab

    International Nuclear Information System (INIS)

    Jing Zhao; Gong Ling; Xie Congying; Zhang Li; Su Huafang; Deng Xia; Wu Shixiu

    2009-01-01

    Background and purpose: The purpose of our study is to examine the capacity of cetuximab to reverse radiation resistance and investigate molecular mechanisms in human radiation-resistant esophageal carcinoma cell line KYSE-150R. Materials and methods: The radioresistant cell line KYSE-150R was established by using fractionated irradiation (FIR). The KYSE-150R cell line was exposed to radiation, treatment with cetuximab, and combined treatment. Cell cycle distribution and apoptosis were analyzed using flow cytometry. Radiation survival was analyzed using clonogenic assays. RT 2 profiler TM PCR array was performed to analyze EGF/PDGF signaling pathway genes. Results: The established esophageal carcinoma cell line KYSE-150R showed higher radioresistance than parental cell line. Cetuximab could reverse the radiation resistance of KYSE-150R cells. Cell cycle analysis showed that combination with radiation and cetuximab resulted in the accumulation of cells in G1 and G2/M phases, with the reduction of cells within the S phase. Cetuximab enhanced the apoptosis induced by radiation. RT 2 profiler TM array showed that some intracellular signaling genes deriving from EGF/PDGF signaling pathway regulated by cetuximab. Conclusions: Irradiation combined with EGFR blocked by cetuximab may reverse the resistance to radiation in radioresistant esophageal carcinoma cell. The mechanisms may include cell cycle perturbation and enhancement of radiation-induced apoptosis. Further studies are needed to evaluate the role of cetuximab in combination with radiotherapy in the management of esophageal carcinoma.

  4. Sensitivity analysis of intracellular signaling pathway kinetics predicts targets for stem cell fate control.

    Directory of Open Access Journals (Sweden)

    Alborz Mahdavi

    2007-07-01

    Full Text Available Directing stem cell fate requires knowledge of how signaling networks integrate temporally and spatially segregated stimuli. We developed and validated a computational model of signal transducer and activator of transcription-3 (Stat3 pathway kinetics, a signaling network involved in embryonic stem cell (ESC self-renewal. Our analysis identified novel pathway responses; for example, overexpression of the receptor glycoprotein-130 results in reduced pathway activation and increased ESC differentiation. We used a systematic in silico screen to identify novel targets and protein interactions involved in Stat3 activation. Our analysis demonstrates that signaling activation and desensitization (the inability to respond to ligand restimulation is regulated by balancing the activation state of a distributed set of parameters including nuclear export of Stat3, nuclear phosphatase activity, inhibition by suppressor of cytokine signaling, and receptor trafficking. This knowledge was used to devise a temporally modulated ligand delivery strategy that maximizes signaling activation and leads to enhanced ESC self-renewal.

  5. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    Science.gov (United States)

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  6. Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle

    Directory of Open Access Journals (Sweden)

    Ram Prahlad T

    2008-08-01

    Full Text Available Abstract Background In systems biology the experimentalist is presented with a selection of software for analyzing dynamic properties of signaling networks. These tools either assume that the network is in steady-state or require highly parameterized models of the network of interest. For biologists interested in assessing how signal propagates through a network under specific conditions, the first class of methods does not provide sufficiently detailed results and the second class requires models which may not be easily and accurately constructed. A tool that is able to characterize the dynamics of a signaling network using an unparameterized model of the network would allow biologists to quickly obtain insights into a signaling network's behavior. Results We introduce PathwayOracle, an integrated suite of software tools for computationally inferring and analyzing structural and dynamic properties of a signaling network. The feature which differentiates PathwayOracle from other tools is a method that can predict the response of a signaling network to various experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal flows under different experimental conditions. In addition, PathwayOracle includes tools for the enumeration and visualization of coherent and incoherent signaling paths between proteins, and for experimental analysis – loading and superimposing experimental data, such as microarray intensities, on the network model. Conclusion PathwayOracle provides an integrated environment in which both structural and dynamic analysis of a signaling network can be quickly conducted and visualized along side experimental results. By using the signaling network connectivity, analyses and predictions can be performed quickly using relatively easily constructed signaling network models

  7. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    Science.gov (United States)

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  8. A comparative study of the molecular evolution of signalling pathway ...

    Indian Academy of Sciences (India)

    2013-08-05

    Aug 5, 2013 ... formed using DnaSP ver. 5 (Librado and Rozas 2009) from ... a context of global divergence within each phylum we exam- ined genomewide ... suggests that the overall conserved sensory signalling cas- cade members are ...

  9. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  10. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.

    Science.gov (United States)

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J

    2018-04-01

    This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.

  11. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  12. Characterization of Heregulin-Stimulated Signal Transduction Pathways to the Nucleus

    National Research Council Canada - National Science Library

    Wilson, Kristin

    2000-01-01

    ... 40% of breast cancers and correlates with a poor prognosis for women with breast cancer. Mapping the molecular determinants of the heregulin/ErbB2 signaling pathway will be important in determining viable cellular targets for therapeutic intervention...

  13. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway

    International Nuclear Information System (INIS)

    Babini, G.; Ugolini, M.; Morini, J.; Baiocco, G.; Ottolenghi, A.; Mariotti, L.; Tabarelli de Fatis, P.; Liotta, M.

    2015-01-01

    Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring nonirradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0 -2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations. (authors)

  14. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    NARCIS (Netherlands)

    Smeets, Ruben L.; Fleuren, Wilco W. M.; He, Xuehui; Vink, Paul M.; Wijnands, Frank; Gorecka, Monika; Klop, Henri; Bauerschmidt, Sussane; Garritsen, Anja; Koenen, Hans J. P. M.; Joosten, Irma; Boots, Annemieke M. H.; Alkema, Wynand

    2012-01-01

    Background: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  15. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

    NARCIS (Netherlands)

    Smeets, R.L.; Fleuren, W.W.M.; He, X.; Vink, P.M.; Wijnands, F.; Gorecka, M.; Klop, H.; Bauerschmidt, S.; Garritsen, A.; Koenen, H.J.P.M.; Joosten, I.; Boots, A.M.H.; Alkema, W.

    2012-01-01

    BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  16. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    OpenAIRE

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the ...

  17. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.

    Science.gov (United States)

    Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

    2015-04-01

    Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.

  18. Inferring the functional effect of gene expression changes in signaling pathways

    Science.gov (United States)

    Sebastián-León, Patricia; Carbonell, José; Salavert, Francisco; Sanchez, Rubén; Medina, Ignacio; Dopazo, Joaquín

    2013-01-01

    Signaling pathways constitute a valuable source of information that allows interpreting the way in which alterations in gene activities affect to particular cell functionalities. There are web tools available that allow viewing and editing pathways, as well as representing experimental data on them. However, few methods aimed to identify the signaling circuits, within a pathway, associated to the biological problem studied exist and none of them provide a convenient graphical web interface. We present PATHiWAYS, a web-based signaling pathway visualization system that infers changes in signaling that affect cell functionality from the measurements of gene expression values in typical expression microarray case–control experiments. A simple probabilistic model of the pathway is used to estimate the probabilities for signal transmission from any receptor to any final effector molecule (taking into account the pathway topology) using for this the individual probabilities of gene product presence/absence inferred from gene expression values. Significant changes in these probabilities allow linking different cell functionalities triggered by the pathway to the biological problem studied. PATHiWAYS is available at: http://pathiways.babelomics.org/. PMID:23748960

  19. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways

    DEFF Research Database (Denmark)

    Zhang, Ziguo; Feechan, Angela; Pedersen, Carsten

    2007-01-01

    Penetration resistance is often the first line of defence against fungal pathogens. Subsequently induced defences are mediated by the programmed cell death (PCD) reaction pathway and the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways. We previously demonstrated...

  20. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  1. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway.

    Directory of Open Access Journals (Sweden)

    Mathilde Guzzo

    2015-08-01

    Full Text Available Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz coordinates the activity of two separate motility systems (the A- and S-motility systems, promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.

  2. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Wolff, Roger K

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate cellular functions including cell proliferation, differentiation, migration, and apoptosis. Associations between genes in the DUSP, ERK1/2, JNK, and p38 MAPK-signaling pathways and dietary factors associated with growth factors, inflammation, and oxidative stress and risk of colon and rectal cancer were evaluated. Data include colon cases (n = 1555) and controls (n = 1956) and rectal cases (n = 754) and controls (n = 959). Statistically significant interactions were observed for the MAPK-signaling pathways after adjustment for multiple comparisons. DUSP genes interacted with carbohydrates, mutagen index, calories, calcium, vitamin D, lycopene, dietary fats, folic acid, and selenium. MAPK1, MAPK3, MAPK1, and RAF1 within the ERK1/2 MAPK-signaling pathway interacted with dietary fats and cruciferous vegetables. Within the JNK MAPK-signaling pathway, interactions between MAP3K7 and protein, vitamin C, iron, folic acid, carbohydrates, and cruciferous vegetables; MAP3K10 and folic acid; MAP3K9 and lutein/zeaxanthin; MAPK8 and calcium; MAP3K3 and calcium and lutein; MAP3K1 and cruciferous vegetables. Interaction within the p38-signaling pathway included MAPK14 with calories, carbohydrates saturated fat, selenium, vitamin C; MAP3K2 and carbohydrates, and folic acid. These data suggest that dietary factors involved in inflammation and oxidative stress interact with MAPK-signaling genes to alter risk of colorectal cancer.

  3. Regulation of PCP by the Fat signaling pathway

    Science.gov (United States)

    Matis, Maja; Axelrod, Jeffrey D.

    2013-01-01

    Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873

  4. [The function of transcription factor P63 and its signaling pathway during limb development].

    Science.gov (United States)

    Ma, Wei; Tian, Wen

    2014-08-01

    The development of human limb is controlled by several transcription factors and signaling pathways, which are organized in precise time- and space-restricted manners. Recent studies showed that P63 and its signaling pathway play important roles in this process. Transcription factor P63, one member of the P53 family, is characterized by a similar amino acid domain, plays a crucial role in the development of limb and ectoderm differentiation, especially with its DNA binding domain, and sterile alpha motif domains. Mutated P63 gene may produce abnormal transcription factor P63 which can affect the signaling pathway. Furthermore, defective signaling protein in structure and/or quantity is synthesized though the pathway. Eventually, members of the signaling protein family are involved in the regulation of differentiation and development of stem cell, which causes deformity of limbs. In brief, three signaling pathways are related to the digit formation along three axes, including SHH-ZPA, FGFs-AER and Lmx1B-Wnt7a-En1. Each contains numerous signaling molecules which are integrated in self-regulatory modules that assure the acquisition or the correct digit complements. These finding has brought new clues for deciphering the etiology of congenital limb malformation and may provide alternatives for both prevention and treatment.

  5. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2009-03-01

    Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.

  6. Signaling pathways and stem cells in uterus and fallopian tubes

    NARCIS (Netherlands)

    Y. Wang (Yongqian)

    2012-01-01

    textabstractDuring her fertile years, the endometrium of fertile women undergoes regular cycles of regeneration, differentiation and shedding, driven by changing concentrations of the steroid hormones estradiol and progesterone. In the present study, the role of Wnt/β-catenin signaling in relation

  7. Signaling pathways regulated by Brassicaceae extract inhibit the ...

    African Journals Online (AJOL)

    Background: The goal of this study was identification signaling molecules mediated the formation of AGEs in brain of rats injected with CdCl2 and the role of camel whey proteins and Brassicaceae extract on formation of AGEs in brain. Methods: Ninety male rats were randomly grouped into five groups; Normal control (GpI) ...

  8. cGMP signalling : different ways to create a pathway

    NARCIS (Netherlands)

    Roelofs, Jeroen; Smith, Janet L.; Haastert, Peter J.M. van

    Recently, a novel cGMP signalling cascade was uncovered in Dictyostelium, a eukaryote that diverged from the lineage leading to metazoa after plants and before yeast. In both Dictyostelium and metazoa, the ancient cAMP-binding (cNB) motif of bacterial CAP has been modified and assembled with other

  9. Responses of the insulin signaling pathways in the brown adipose tissue of rats following cold exposure.

    Science.gov (United States)

    Wang, Xiaofei; Wahl, Richard

    2014-01-01

    The insulin signaling pathway is critical for the control of blood glucose levels. Brown adipose tissue (BAT) has also been implicated as important in glucose homeostasis. The effect of short-term cold exposure on this pathway in BAT has not been explored. We evaluated the effect of 4 hours of cold exposure on the insulin pathway in the BAT of rats. Whole genomic microarray chips were used to examine the transcripts of the pathway in BAT of rats exposed to 4°C and 22°C for 4 hours. The 4 most significantly altered pathways following 4 hours of cold exposure were the insulin signaling pathway, protein kinase A, PI3K/AKT and ERK/MAPK signaling. The insulin signaling pathway was the most affected. In the documented 142 genes of the insulin pathway, 42 transcripts (29.6%) responded significantly to this cold exposure with the least false discovery rate (Benjamini-Hochberg Multiple Testing: -log10 (p-value)  = 7.18). Twenty-seven genes (64%) were up-regulated, including the insulin receptor (Insr), insulin substrates 1 and 2 (Irs1 and Irs2). Fifteen transcripts (36%) were down-regulated. Multiple transcripts of the primary target and secondary effector targets for the insulin signaling were also up-regulated, including those for carbohydrate metabolism. Using western blotting, we demonstrated that the cold induced higher Irs2, Irs1, and Akt-p protein levels in the BAT than in the BAT of controls maintained at room temperature, and higher Akt-p protein level in the muscle. this study demonstrated that 4 hours of cold exposure stimulated the insulin signaling pathway in the BAT and muscle of overnight fasted rats. This raises the possibility that acute cold stimulation may have potential to improve glucose clearance and insulin sensitivity.

  10. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    Directory of Open Access Journals (Sweden)

    Chaonan Sun

    Full Text Available The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER homeostatic state and result in ER stress (ERS, subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05. Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  11. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  12. Pan-cancer analysis of TCGA data reveals notable signaling pathways

    International Nuclear Information System (INIS)

    Neapolitan, Richard; Horvath, Curt M.; Jiang, Xia

    2015-01-01

    A signal transduction pathway (STP) is a network of intercellular information flow initiated when extracellular signaling molecules bind to cell-surface receptors. Many aberrant STPs have been associated with various cancers. To develop optimal treatments for cancer patients, it is important to discover which STPs are implicated in a cancer or cancer-subtype. The Cancer Genome Atlas (TCGA) makes available gene expression level data on cases and controls in ten different types of cancer including breast cancer, colon adenocarcinoma, glioblastoma, kidney renal papillary cell carcinoma, low grade glioma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian carcinoma, rectum adenocarcinoma, and uterine corpus endometriod carcinoma. Signaling Pathway Impact Analysis (SPIA) is a software package that analyzes gene expression data to identify whether a pathway is relevant in a given condition. We present the results of a study that uses SPIA to investigate all 157 signaling pathways in the KEGG PATHWAY database. We analyzed each of the ten cancer types mentioned above separately, and we perform a pan-cancer analysis by grouping the data for all the cancer types. In each analysis several pathways were found to be markedly more significant than all the other pathways. We call them notable. Research has already established a connection between many of these pathways and the corresponding cancer type. However, some of our discovered pathways appear to be new findings. Altogether there were 37 notable findings in the separate analyses, 26 of them occurred in 7 pathways. These 7 pathways included the 4 notable pathways discovered in the pan-cancer analysis. So, our results suggest that these 7 pathways account for much of the mechanisms of cancer. Furthermore, by looking at the overlap among pathways, we identified possible regions on the pathways where the aberrant activity is occurring. We obtained 37 notable findings concerning 18 pathways. Some of them appear to be

  13. The cAMP Signaling and MAP Kinase Pathways in Plant Pathogenic Fungi

    NARCIS (Netherlands)

    Mehrabi, R.; Zhao, X.; Kim, Y.; Xu, J.R.

    2009-01-01

    The key components of the well conserved cyclic AMP signaling and MAP kinase pathways have been functionally characterized in the corn smut Ustilago maydis, rice blast fungus Magnaporthe grisea, and a few other fungal pathogens. In general, the cAMP signaling and the MAP kinase cascade homologous to

  14. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    The ability to control cell volume is fundamental for proper cell function. This review highlights recent advances in the understanding of the complex sequences of events by which acute cell volume perturbation alters the activity of osmolyte transport proteins in cells from vertebrate organisms...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  15. The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis

    Science.gov (United States)

    2005-07-01

    breast cancer cells, I tested whether ErbB2 overexpression will cooperate with Notch in HMLE cells. While overexpression of activated Notch1 failed to...tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers , also failed to transform HMLE cells. These observations suggested...cooperation between Notch1IC and ErbB2 signaling in transforming HMLE cells. Breast cancers typically do not harbor oncogenic Ras mutations; nevertheless

  16. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    Science.gov (United States)

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  17. Non Linear Programming (NLP formulation for quantitative modeling of protein signal transduction pathways.

    Directory of Open Access Journals (Sweden)

    Alexander Mitsos

    Full Text Available Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i excessive CPU time requirements and ii loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  18. Balancing act: matching growth with environment by the TOR signalling pathway.

    Science.gov (United States)

    Henriques, Rossana; Bögre, László; Horváth, Beátrix; Magyar, Zoltán

    2014-06-01

    One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation

    Directory of Open Access Journals (Sweden)

    Jianmei Li

    2016-01-01

    Full Text Available Chondrocytes communicate with each other mainly via diffusible signals rather than direct cell-to-cell contact. The chondrogenic differentiation of mesenchymal stem cells (MSCs is well regulated by the interactions of varieties of growth factors, cytokines, and signaling molecules. A number of critical signaling molecules have been identified to regulate the differentiation of chondrocyte from mesenchymal progenitor cells to their terminal maturation of hypertrophic chondrocytes, including bone morphogenetic proteins (BMPs, SRY-related high-mobility group-box gene 9 (Sox9, parathyroid hormone-related peptide (PTHrP, Indian hedgehog (Ihh, fibroblast growth factor receptor 3 (FGFR3, and β-catenin. Except for these molecules, other factors such as adenosine, O2 tension, and reactive oxygen species (ROS also have a vital role in cartilage formation and chondrocyte maturation. Here, we outlined the complex transcriptional network and the function of key factors in this network that determine and regulate the genetic program of chondrogenesis and chondrocyte differentiation.

  20. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor......Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling...... signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand...

  1. Construction of large signaling pathways using an adaptive perturbation approach with phosphoproteomic data.

    Science.gov (United States)

    Melas, Ioannis N; Mitsos, Alexander; Messinis, Dimitris E; Weiss, Thomas S; Rodriguez, Julio-Saez; Alexopoulos, Leonidas G

    2012-04-01

    Construction of large and cell-specific signaling pathways is essential to understand information processing under normal and pathological conditions. On this front, gene-based approaches offer the advantage of large pathway exploration whereas phosphoproteomic approaches offer a more reliable view of pathway activities but are applicable to small pathway sizes. In this paper, we demonstrate an experimentally adaptive approach to construct large signaling pathways from phosphoproteomic data within a 3-day time frame. Our approach--taking advantage of the fast turnaround time of the xMAP technology--is carried out in four steps: (i) screen optimal pathway inducers, (ii) select the responsive ones, (iii) combine them in a combinatorial fashion to construct a phosphoproteomic dataset, and (iv) optimize a reduced generic pathway via an Integer Linear Programming formulation. As a case study, we uncover novel players and their corresponding pathways in primary human hepatocytes by interrogating the signal transduction downstream of 81 receptors of interest and constructing a detailed model for the responsive part of the network comprising 177 species (of which 14 are measured) and 365 interactions.

  2. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation

    International Nuclear Information System (INIS)

    Conconi, A.; Smerdon, M.J.; Howe, G.A.; Ryan, C.A.

    1996-01-01

    Many plant genes that respond to environmental and developmental changes are regulated by jasmonic acid, which is derived from linolenic acid via the octadecanoid pathway. Linolenic acid is an important fatty-acid constituent of membranes in most plant species and its intracellular levels increase in response to certain signals. Here we report that irradiation of tomato leaves with ultraviolet light induces the expression of several plant defensive genes that are normally activated through the octadecanoid pathway after wounding. The response to ultraviolet light is blocked by an inhibitor of the octadecanoid pathway and it does not occur in a tomato mutant defective in this pathway. The ultraviolet irradiation maximally induces the defence genes at levels where cyclobutane pyrimidine dimer formation, an indicator of DNA damage, is less than 0.2 dimers per gene. Our evidence indicates that this plant defence response to certain wavelengths of ultraviolet radiation requires the activation of the octadecanoid defence signalling pathway. (author)

  3. UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana

    2014-01-01

    Osteocytes reside as a cellular network throughout the mineralised matrix of bone and are considered the primary mechanosensors of this tissue. They sense mechanical stimulation such as fluid flow and are able to regulate osteoblast and osteoclast functions on the bone surface. Previously, we fou...... signals may be propagated by P2 receptor activation and further ATP release in the osteocyte network and implicate purinergic signalling as a central signalling pathway in osteocyte mechanotransduction....

  4. Discovery and characterization of a potent Wnt and hedgehog signaling pathways dual inhibitor.

    Science.gov (United States)

    Ma, Haikuo; Chen, Qin; Zhu, Fang; Zheng, Jiyue; Li, Jiajun; Zhang, Hongjian; Chen, Shuaishuai; Xing, Haimei; Luo, Lusong; Zheng, Long Tai; He, Sudan; Zhang, Xiaohu

    2018-04-10

    Embryonic stem cell pathways such as hedgehog and Wnt pathways are central to the tumorigenic properties of cancer stem cells (CSC). Since CSCs are characterized by their ability to self-renew, form differentiated progeny, and develop resistance to anticancer therapies, targeting the Wnt and hedgehog signaling pathways has been an important strategy for cancer treatment. Although molecules targeting either Wnt or hedgehog are common, to the best of our knowledge, those targeting both pathways have not been documented. Here we report a small molecule (compound 1) that inhibits both Wnt (IC 50  = 0.5 nM) and hedgehog (IC 50  = 71 nM) pathways based on reporter gene assays. We further identified that the molecular target of 1 for Wnt pathway inhibition was porcupine (a member of the membrane-bound O-acyltransferase family of proteins), a post-translational modification node in Wnt signaling; while the target of 1 mitigating hedgehog pathway was Smoothened, a key G protein coupled receptor (GPCR) mediating hedgehog signal transduction. Preliminary analysis of structure-activity-relationship identified key functional elements for hedgehog/Wnt inhibition. In in vivo studies, compound 1 demonstrated good oral exposure and bioavailability while eliciting no overt toxicity in mice. An important consideration in cancer treatment is the potential therapeutic escape through compensatory activation of an interconnected pathway when only one signaling pathway is inhibited. Toward this end, compound 1 may not only lead to the development of new therapeutics for Wnt and hedgehog related cancers, but may also help to develop potential cancer treatment which needs to target Wnt and hedgehog signaling simultaneously. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Encoding of temporal signals by the TGF-β pathway and implications for embryonic patterning

    Science.gov (United States)

    Sorre, Benoit; Warmflash, Aryeh; Brivanlou, Ali H.; Siggia, Eric D.

    2014-01-01

    Summary Genetics and biochemistry have defined the components and wiring of the signaling pathways that pattern the embryo. Among them, the TGF-β pathway has the potential to behave as a morphogen: invitro experiments have clearly established that it can dictate cell fate in a concentration dependent manner. How morphogens convey positional information in a developing embryo, where signal levels are changing with time, is less understood. Using integrated microfluidic cell culture and time-lapse microscopy, we demonstrate here that the speed of ligand presentation has a key and previously unexpected influence on TGF-β signaling outcomes. The response to a TGF-β concentration step is transient and adaptive, slowly increasing the ligand concentration diminishes the response and well-spaced pulses of ligand combine additively resulting in greater pathway output than with constant stimulation. Our results suggest that in an embryonic context, the speed of change of ligand concentration is an instructive signal for patterning. PMID:25065773

  6. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  7. Hypoxia signaling pathways: modulators of oxygen-related organelles

    Science.gov (United States)

    Schönenberger, Miriam J.; Kovacs, Werner J.

    2015-01-01

    Oxygen (O2) is an essential substrate in cellular metabolism, bioenergetics, and signaling and as such linked to the survival and normal function of all metazoans. Low O2 tension (hypoxia) is a fundamental feature of physiological processes as well as pathophysiological conditions such as cancer and ischemic diseases. Central to the molecular mechanisms underlying O2 homeostasis are the hypoxia-inducible factors-1 and -2 alpha (HIF-1α and EPAS1/HIF-2α) that function as master regulators of the adaptive response to hypoxia. HIF-induced genes promote characteristic tumor behaviors, including angiogenesis and metabolic reprogramming. The aim of this review is to critically explore current knowledge of how HIF-α signaling regulates the abundance and function of major O2-consuming organelles. Abundant evidence suggests key roles for HIF-1α in the regulation of mitochondrial homeostasis. An essential adaptation to sustained hypoxia is repression of mitochondrial respiration and induction of glycolysis. HIF-1α activates several genes that trigger mitophagy and represses regulators of mitochondrial biogenesis. Several lines of evidence point to a strong relationship between hypoxia, the accumulation of misfolded proteins in the endoplasmic reticulum, and activation of the unfolded protein response. Surprisingly, although peroxisomes depend highly on molecular O2 for their function, there has been no evidence linking HIF signaling to peroxisomes. We discuss our recent findings that establish HIF-2α as a negative regulator of peroxisome abundance and suggest a mechanism by which cells attune peroxisomal function with O2 availability. HIF-2α activation augments peroxisome turnover by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We discuss potential mechanisms by which HIF-2α might trigger pexophagy and place special emphasis on the potential pathological implications of HIF-2α-mediated pexophagy for human health. PMID:26258123

  8. Xtalk: a path-based approach for identifying crosstalk between signaling pathways

    Science.gov (United States)

    Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.

    2016-01-01

    Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040

  9. Combined EGFR- and notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Olsen, Louise Stobbe

    2016-01-01

    BACKGROUND: For Glioblastoma (GBM) patients, a number of anti-neoplastic strategies using specifically targeting drugs have been tested; however, the effects on survival have been limited. One explanation could be treatment resistance due to redundant signaling pathways, which substantiates...... the need for combination therapies. In GBM, both the epidermal growth factor receptor (EGFR) and the notch signaling pathways are often deregulated and linked to cellular growth, invasion and angiogenesis. Several studies have confirmed cross-talk and co-dependence of these pathways. Therefore, this study....... In order to determine angiogenic processes, we used an endothelial spheroid sprouting assay. For assessment of secreted VEGF from GBM cells we performed a VEGF-quantikine ELISA. RESULTS: GBM cells were confirmed to express EGFR and Notch and to have the capacity to induce endothelial cell sprouting...

  10. Signaling pathways and immune evasion mechanisms in classical Hodgkin lymphoma.

    Science.gov (United States)

    Liu, W Robert; Shipp, Margaret A

    2017-11-23

    Classical Hodgkin lymphoma (cHL) is an unusual B-cell-derived malignancy in which rare malignant Hodgkin and Reed-Sternberg (HRS) cells are surrounded by an extensive but ineffective inflammatory/immune cell infiltrate. This striking feature suggests that malignant HRS cells escape immunosurveillance and interact with immune cells in the cancer microenvironment for survival and growth. We previously found that cHLs have a genetic basis for immune evasion: near-uniform copy number alterations of chromosome 9p24.1 and the associated PD-1 ligand loci, CD274/PD-L1 and PDCD1LG2/PD-L2, and copy number-dependent increased expression of these ligands. HRS cells expressing PD-1 ligands are thought to engage PD-1 receptor-positive immune effectors in the tumor microenvironment and induce PD-1 signaling and associated immune evasion. The genetic bases of enhanced PD-1 signaling in cHL make these tumors uniquely sensitive to PD-1 blockade. © 2017 by The American Society of Hematology.

  11. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  13. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    International Nuclear Information System (INIS)

    Ebi, Masahide; Kataoka, Hiromi; Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2010-01-01

    Research highlights: → TGFβ induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. → TGFβ induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. → TGFβ enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. → Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGFβ. → ADAM17 may play a crucial role in this TGFβ-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF

  14. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  15. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    Science.gov (United States)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  16. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  17. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    International Nuclear Information System (INIS)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-01-01

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  18. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  19. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    Science.gov (United States)

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  20. Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhike Zi

    Full Text Available BACKGROUND: Investigation of dynamics and regulation of the TGF-beta signaling pathway is central to the understanding of complex cellular processes such as growth, apoptosis, and differentiation. In this study, we aim at using systems biology approach to provide dynamic analysis on this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We proposed a constraint-based modeling method to build a comprehensive mathematical model for the Smad dependent TGF-beta signaling pathway by fitting the experimental data and incorporating the qualitative constraints from the experimental analysis. The performance of the model generated by constraint-based modeling method is significantly improved compared to the model obtained by only fitting the quantitative data. The model agrees well with the experimental analysis of TGF-beta pathway, such as the time course of nuclear phosphorylated Smad, the subcellular location of Smad and signal response of Smad phosphorylation to different doses of TGF-beta. CONCLUSIONS/SIGNIFICANCE: The simulation results indicate that the signal response to TGF-beta is regulated by the balance between clathrin dependent endocytosis and non-clathrin mediated endocytosis. This model is useful to be built upon as new precise experimental data are emerging. The constraint-based modeling method can also be applied to quantitative modeling of other signaling pathways.

  1. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas.

    Science.gov (United States)

    Lhermitte, B; Blandin, A F; Coca, A; Guerin, E; Durand, A; Entz-Werlé, N

    2018-05-15

    Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. An interplay between 2 signaling pathways: Melatonin-cAMP and IP3–Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Furuyama, Wakako; Enomoto, Masahiro; Mossaad, Ehab; Kawai, Satoru; Mikoshiba, Katsuhiko; Kawazu, Shin-ichiro

    2014-01-01

    Highlights: • A melatonin receptor antagonist blocked Ca 2+ oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca 2+ - and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca 2+ ) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca 2+ imaging showed that LZ treatment completely abolished Ca 2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP 3 –Ca 2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum

  3. CD147 regulates extrinsic apoptosis in spermatocytes by modulating NFκB signaling pathways.

    Science.gov (United States)

    Wang, Chaoqun; Fok, Kin Lam; Cai, Zhiming; Chen, Hao; Chan, Hsiao Chang

    2017-01-10

    CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway.

  4. Novel lipid signaling pathways in Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Giannopoulos, Phillip F; Joshi, Yash B; Praticò, Domenico

    2014-04-15

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With an increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. In addition to the presence of abundant intra- and extra-cellular neurotoxic amyloid β (Aβ) peptides, which form the amyloid plaques, and intracellular hyperphosphorylated tau protein, the main component of neurofibrillary tangles, consistent evidence indicates that the AD brain is characterized by extensive neuroinflammatory processes. The 5-lipoxygenase (5LO) is a pro-inflammatory enzymatic pathway widely distributed within the central nervous system and is up-regulated in AD. In the last five years our group has been involved in unraveling the neurobiology of this protein and investigating its relationship with cellular and molecular events of functional importance in AD pathogenesis. By using a combination of in vitro and in vivo experimental tools and implementing genetic as well as pharmacological approaches today we know that 5LO is likely an endogenous regulator of Aβ formation via the modulation of the γ-secretase complex, and tau metabolism by modulating its phosphorylation state at specific epitopes via the cyclin-dependent kinase-5 (cdk-5). In addition, 5LO influences synaptic function and integrity and by doing so significantly affects learning and memory in the Tg2576 and 3xTg AD transgenic mouse models. Taken together our data establish this protein as a pleiotropic contributor to the development of the full spectrum of the AD-like phenotype in these mouse models of the disease, making it a viable therapeutic target for the treatment of AD in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Downstream reporter gene imaging for signal transduction pathway of dopamine type 2 receptor

    International Nuclear Information System (INIS)

    Le, Uyenchi N.; Min, Jung Joon; Moon, Sung Min; Bom, Hee Seung

    2004-01-01

    The Dopamine 2 receptor (D2R) signal pathway regulates gene expression by phosphorylation of proteins including cAMP reponse element-binding protein (CREB), a transcription factor. In this study, we developed a reporter strategy using the GAL4 fusion CREB to assess the phosphorylation of CREB, one of the targets of the D2R signal transduction pathway. We used three plasmids: GAL4 fusion transactivator (pCMV-CREB), firefly luciferase reporter with GAL4 binding sites (pG5-FLUC), and D2R plasmid (pCMV-D2R). Group 1 293T cells were transiently transfected with pCMV-CREB and pG5-FLUC, and group 2 cells were transfected with all three plasmids. Transfected cells were stimulated with different concentrations of dopamine (0-200 M). For animal studies, group 1 and 2 cells (1x10 6 ) were subcutaneously injected on the left and right thigh of six nude mice, respectively. Dopamine stimiulation was performed with intraperitoneal injection of L-DOPA incombination with carbidopa, a peripheral DOPA decarboxylase inhibitor. Bioluminescence optical imaging studies were performed before and after L-DOPA injection. In cell culture studies, group 1 cells showed strong luciferase activity which implies direct activation of the signaling pathway due to growth factors contained in culture medium. Group 2 cells showed strong luciferase activity and a further increase after administration of dopamine. In animal studies, group 1 and 2 cells showed bioluminescence signal before L-DOPA injection, but signal from group 2 cells significantly increased 12 h after L-DOPA injection. The signal from group 1 cells disappeared thereafter, but group 2 cells continued to show signal until 36 h of L-DOPA injection. This study demonstrates imaging of the D2R signal transduction pathway and should be useful for noninvasive imaging of downstream effects of G-coupled protein pathways

  6. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors.

    Directory of Open Access Journals (Sweden)

    Yun Zhu

    Full Text Available Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81 with that of estrogen (17β-estradiol or E2. Significant correlations were observed among lignans (R values: 0.77 to 0.97, and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1 secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level.

  7. Signaling Pathways in Exosomes Biogenesis, Secretion and Fate

    Directory of Open Access Journals (Sweden)

    Carla Emiliani

    2013-03-01

    Full Text Available Exosomes are small extracellular vesicles (30–100 nm derived from the endosomal system, which have raised considerable interest in the last decade. Several studies have shown that they mediate cell-to-cell communication in a variety of biological processes. Thus, in addition to cell-to-cell direct interaction or secretion of active molecules, they are now considered another class of signal mediators. Exosomes can be secreted by several cell types and retrieved in many body fluids, such as blood, urine, saliva and cerebrospinal fluid. In addition to proteins and lipids, they also contain nucleic acids, namely mRNA and miRNA. These features have prompted extensive research to exploit them as a source of biomarkers for several pathologies, such as cancer and neurodegenerative disorders. In this context, exosomes also appear attractive as gene delivery vehicles. Furthermore, exosome immunomodulatory and regenerative properties are also encouraging their application for further therapeutic purposes. Nevertheless, several issues remain to be addressed: exosome biogenesis and secretion mechanisms have not been clearly understood, and physiological functions, as well as pathological roles, are far from being satisfactorily elucidated.

  8. Primary cilia and coordination of signaling pathways in heart development and tissue Homeostasis

    DEFF Research Database (Denmark)

    Clement, Christian Alexandro

    of primary cilia in coordinating Hh signaling in human pancreatic development and postnatal tissue homeostasis. In cultures of human pancreatic duct adenocarcinoma cell lines PANC-1 and CFPAC-1, Ptc in addition to Gli2 and Smo localize to primary cilia. These findings are consistent with the idea...... that the primary cilium continues to coordinate Hh signaling in cells derived from the mature pancreas. The fact that the Hh signaling pathway is active in the CFPAC-1 and PANC-1 cell lines without Hh stimulation suggests that ciliary Hh signaling plays a potential role in tumorigenesis. In conclusion, this thesis...

  9. The regulation of ras-raf signaling pathway on G1 phase of the irradiated cells

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Liu Nongle; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    Objective: To investigate the way of ras-raf signaling pathway which regulate the G 1 phase in irradiated KG-1 cells. Methods: Blocked the GM-CSF signaling pathway by transfected DN-ras and then momentary transfected cyclin D1 into irradiated KG-1 cells, the effects of cyclin D1 on G 1 phase was examined. Results: The irradiated KG-1 cells transfected DN-ras can't recover form G 1 phase arrest even though the GM-CSF was given,momentary transfected cyclin D1 promote the irradiated KG-1 cells from G 1 arrest. Conclusion: Activation of ras-raf signaling pathway regulate the cell cycle of the irradiated KG-1 cells through promotion the expression of the cyclin D1

  10. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Stem cell maintenance by manipulating signaling pathways: past, current and future

    Science.gov (United States)

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  12. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Himaya, S.W.A. [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Dewapriya, Pradeep [Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of)

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  13. Radiotracers For Lipid Signaling Pathways In Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S. J. [Northeastern Univ., Boston, MA (United States)

    2016-09-26

    The primary focus of this project continues to be the development of radiotracers and radiotracer methodology for studying physiology and biochemistry. The compounds that have been labeled areacylethanolamines and acylglycerols that are, as classes, represented in both in plants and in animals. In the latter, some of these act as ligands for cannabinoid receptors and they are therefore known as endocannabinoids. Cannabinoid receptors are not found in plant genomes so that plants must contain other receptors and signaling systems that use acylethanolamines. Relatively little work has been done on that issue, though acylethanolamines do modulate plant growth and stress resistance, thus possessing obvious relevance to agriculture and energy production. Progress has been described in five peer-reviewed papers and seven meeting abstracts. Preparation of 2-acylglycerol lipid messengers in high purity. A novel enzymatic synthesis was developedthat gave pure 2-acylglycerols free of any rearrrangement to the thermodynamically more stable 1(3)-acylglycerol byproducts. The method utilized 1,3-dibutyryl-2-acylglycerol substrate ethanolysis by a resinimobilized lipase. Thus, pure radiolabeled 2-acylglycerols can now be conveniently prepared just prior to their utilization. These synthetic studies were published in the Journal of Medicinal Chemistry, 2011. Diacylglycerol lipase assay methodology. Diacylglycerol lipases (DAGLs) generate 2- acylglycerols, and are thus potential targets for disease- or growth-modifying agents, by means of reducing formation of 2-acylglycerols. A radioTLC assay of the hydrolysis of radiolabeled diglyceride substrate [1''-carbon-14]2-arachidonoyl-1-stearoyl-sn-glycerol has been implemented, and used to validate a novel, potentially highthroughput fluorescence resonance energy transfer (FRET) based assay. A number of new DAGL inhibitors that have selectivity for DAGLs were synthesized and screened. This work was very recently published in

  14. Genital Sensory Stimulation Shifts Estradiol Intraoviductal Signaling from Nongenomic to Genomic Pathways, Independently from Prolactin Surges

    Directory of Open Access Journals (Sweden)

    C PEÑARROJA-MATUTAN0

    2007-01-01

    Full Text Available Estradiol (E2 accelerates oviductal egg transport through nongenomic pathways involving oviductal protein phosphorylation in non-mated rats, and through genomic pathways in mated rats. Here we investigated the ability of cervico-vaginal stimulation (CVS to switch the mode of action of E2 in the absence of other male-associated components. Pro-estrous rats were subjected to CVS with a glass rod and 12 hours later were injected subcutaneously with E2 and intrabursally with the RNA synthesis inhibitor Actinomycin D or the protein phosphorylation inhibitor H-89. The number of eggs in the oviduct, assessed 24 h later, showed that Actinomycin D, but not H-89 blocked the E2-induced egg transport acceleration. This clearly indicates that CVS alone, without other mating-associated signals, is able to shift E2 signaling from nongenomic to genomic pathways. Since mating and CVS activate a neuroendocrine reflex that causes iterative prolactin (PRL surges, the involvement of PRL pathway in this phenomenon was evaluated. Prolactin receptor mRNA and protein expression in the rat oviduct was demonstrated by RT-PCR and Western blot, but their levels were not different on day 2 of the cycle (C2 or pregnancy (P2. Activated ST AT 5a/b (phosphorylated was detected by Western blot on P2 in the ovary, but not in the oviduct, showing that mating does not stimulate this PRL signalling pathway in the oviduct. Other rats subjected to CVS in the evening of pro-estrus were treated with bromoergocriptine to suppress PRL surges. In these rats, H-89 did not block the E2-induced acceleration of egg transport suggesting that PRL surges are not essential to shift E2 signaling pathways in the oviduct. We conclude that CVS is one of the components of mating that shifts E2 signaling in the oviduct from nongenomic to genomic pathways, and this effect is independent of PRL surges elicited by mating

  15. Modeling the Intra- and Extracellular Cytokine Signaling Pathway under Heat Stroke in the Liver

    Science.gov (United States)

    2013-09-05

    to be construed as official or as reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names...commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or...pathway. Nature Medicine 6: 422–428. 93. Murray PJ (2007) The jak-stat signaling pathway: Input and output intergration . Journal of Immunology 178

  16. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    International Nuclear Information System (INIS)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  17. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  18. The Notch Signaling Pathway Is Balancing Type 1 Innate Lymphoid Cell Immune Functions

    Directory of Open Access Journals (Sweden)

    Thibaut Perchet

    2018-06-01

    Full Text Available The Notch pathway is one of the canonical signaling pathways implicated in the development of various solid tumors. During carcinogenesis, the Notch pathway dysregulation induces tumor expression of Notch receptor ligands participating to escape the immune surveillance. The Notch pathway conditions both the development and the functional regulation of lymphoid subsets. Its importance on T cell subset polarization has been documented contrary to its action on innate lymphoid cells (ILC. We aim to analyze the effect of the Notch pathway on type 1 ILC polarization and functions after disruption of the RBPJk-dependent Notch signaling cascade. Indeed, type 1 ILC comprises conventional NK (cNK cells and type 1 helper innate lymphoid cells (ILC1 that share Notch-related functional characteristics such as the IFNg secretion downstream of T-bet expression. cNK cells have strong antitumor properties. However, data are controversial concerning ILC1 functions during carcinogenesis with models showing antitumoral capacities and others reporting ILC1 inability to control tumor growth. Using various mouse models of Notch signaling pathway depletion, we analyze the effects of its absence on type 1 ILC differentiation and cytotoxic functions. We also provide clues into its role in the maintenance of immune homeostasis in tissues. We show that modulating the Notch pathway is not only acting on tumor-specific T cell activity but also on ILC immune subset functions. Hence, our study uncovers the intrinsic Notch signaling pathway in ILC1/cNK populations and their response in case of abnormal Notch ligand expression. This study help evaluating the possible side effects mediated by immune cells different from T cells, in case of multivalent forms of the Notch receptor ligand delta 1 treatments. In definitive, it should help determining the best novel combination of therapeutic strategies in case of solid tumors.

  19. Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.

    Science.gov (United States)

    Brunkard, Jacob O; Burch-Smith, Tessa M

    2018-04-13

    Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  1. Dual targeting of EGFR and focal adhesion kinase in 3D grown HNSCC cell cultures

    International Nuclear Information System (INIS)

    Eke, Iris; Cordes, Nils

    2011-01-01

    Purpose: Epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK) show frequent overexpression and hyperactivity in various human malignancies including head and neck squamous cell carcinomas (HNSCC). To examine effects of dual EGFR/FAK inhibition on cellular radiosensitivity of HNSCC cells in a more physiological environment, we employed a previously established laminin-rich extracellular matrix (lrECM) based three-dimensional (3D) cell culture model. Materials and methods: UTSCC15 and SAS HNSCC cell lines stably transfected with EGFR-CFP or CFP were used. Single or combined EGFR (Cetuximab, siRNA) and FAK (TAE226, siRNA) inhibition were accomplished prior to measuring clonogenic survival and protein expression and phosphorylation. Immunofluorescence enabled visualization of EGFR-CFP and FAK. Results: Cetuximab resulted in higher radiosensitization in EGFR-CFP overexpressing cell lines than CFP controls. Single EGFR or FAK inhibition mediated radiosensitization, while dual EGFR/FAK targeting further augmented this effect. Despite signaling alterations upon Cetuximab and siRNA knockdown, analysis of protein expression and phosphorylation indicates EGFR and FAK signaling coexistence without obvious overlap. Conclusions: Combined EGFR/FAK targeting yielded stronger radiosensitization than either approach alone, which might be based on non-overlapping downstream signaling. Whether dual targeting of EGFR and FAK can reasonably be combined with radiotherapy and chemotherapy needs clarification.

  2. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer?

    International Nuclear Information System (INIS)

    Musgrove, Elizabeth A

    2004-01-01

    Recent data have suggested the epidermal-growth-factor receptor (EGFR) as a point of convergence for several different classes of receptor. Civenni and colleagues have now demonstrated crosstalk between Wnt signalling and the EGFR, showing that in breast epithelial cells Wnts activate downstream targets of the EGFR, including cyclin D1. Given the role of members of these pathways in the aetiology of breast cancer and as markers of outcome and potential therapeutic targets in breast cancer, this observation has a number of potential implications important for both the basic biology of breast cancer and the clinical management of the disease

  3. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.

    Science.gov (United States)

    Arkun, Yaman; Yasemi, Mohammadreza

    2018-01-01

    Cell signaling is the process by which extracellular information is transmitted into the cell to perform useful biological functions. The ERK (extracellular-signal-regulated kinase) signaling controls several cellular processes such as cell growth, proliferation, differentiation and apoptosis. The ERK signaling pathway considered in this work starts with an extracellular stimulus and ends with activated (double phosphorylated) ERK which gets translocated into the nucleus. We model and analyze this complex pathway by decomposing it into three functional subsystems. The first subsystem spans the initial part of the pathway from the extracellular growth factor to the formation of the SOS complex, ShC-Grb2-SOS. The second subsystem includes the activation of Ras which is mediated by the SOS complex. This is followed by the MAPK subsystem (or the Raf-MEK-ERK pathway) which produces the double phosphorylated ERK upon being activated by Ras. Although separate models exist in the literature at the subsystems level, a comprehensive model for the complete system including the important regulatory feedback loops is missing. Our dynamic model combines the existing subsystem models and studies their steady-state and dynamic interactions under feedback. We establish conditions under which bistability and oscillations exist for this important pathway. In particular, we show how the negative and positive feedback loops affect the dynamic characteristics that determine the cellular outcome.

  4. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  5. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.

    Science.gov (United States)

    Poot-Poot, Wilberth; Hernandez-Sotomayor, Soledad M Teresa

    2011-10-01

    An early response of plants to environmental signals or abiotic stress suggests that the phospholipid signaling pathway plays a pivotal role in these mechanisms. The phospholipid signaling cascade is one of the main systems of cellular transduction and is related to other signal transduction mechanisms. These other mechanisms include the generation of second messengers and their interactions with various proteins, such as ion channels. This phospholipid signaling cascade is activated by changes in the environment, such as phosphate starvation, water, metals, saline stres, and plant-pathogen interactions. One important factor that impacts agricultural crops is metal-induced stress. Because aluminum has been considered to be a major toxic factor for agriculture conducted in acidic soils, many researchers have focused on understanding the mechanisms of aluminum toxicity in plants. We have contributed the last fifteen years in this field by studying the effects of aluminum on phospholipid signaling in coffee, one of the Mexico's primary crops. We have focused our research on aluminum toxicity mechanisms in Coffea arabica suspension cells as a model for developing future contributions to the biotechnological transformation of coffee crops such that they can be made resistant to aluminum toxicity. We conclude that aluminum is able to not only generate a signal cascade in plants but also modulate other signal cascades generated by other types of stress in plants. The aim of this review is to discuss possible involvement of the phospholipid signaling pathway in the aluminum toxicity response of plant cells. Copyright © 2011 Wiley Periodicals, Inc.

  6. Advances in cell proliferation and apoptosis signal pathway and therapies of polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Xiao-ying LIAN

    2016-12-01

    Full Text Available Polycystic kidney disease (PKD is one of the monogenic inherited diseases. In PKD, excessive cell proliferation and fluid secretion, and disruption of the mechanisms controlling tubular diameter may all lead to cyst formation. Current evidence has demonstrated that intracellular calcium ion and cAMP imbalance drive both abnormal cell proliferation and apoptosis signal pathway. The present paper summarized the evidence implicating calcium ion and cAMP as central players in the signaling pathway of cell proliferation and apoptosis in PKD, and considered the potential therapeutic approaches targeted to slow cyst growth in PKD. DOI: 10.11855/j.issn.0577-7402.2016.11.13

  7. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    Directory of Open Access Journals (Sweden)

    Hua Su

    2015-01-01

    Full Text Available The glomerular parietal epithelial cells (PECs have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.

  8. The self-renewal signaling pathways utilized by gastric cancer stem cells.

    Science.gov (United States)

    Fu, Ying; Li, Hui; Hao, Xishan

    2017-04-01

    Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.

  9. Wnt/β-catenin signalling pathway mediated aberrant hippocampal neurogenesis in kainic acid-induced epilepsy.

    Science.gov (United States)

    Qu, Zhengyi; Su, Fang; Qi, Xueting; Sun, Jianbo; Wang, Hongcai; Qiao, Zhenkui; Zhao, Hong; Zhu, Yulan

    2017-10-01

    Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid-induced rat epilepsy model to investigate whether Wnt/β-catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β-catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up-regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid-induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β-catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β-catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β-catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Graphene-induced apoptosis in lung epithelial cells through EGFR

    Science.gov (United States)

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  11. Bipolar cell gap junctions serve major signaling pathways in the human retina.

    Science.gov (United States)

    Kántor, Orsolya; Varga, Alexandra; Nitschke, Roland; Naumann, Angela; Énzsöly, Anna; Lukáts, Ákos; Szabó, Arnold; Németh, János; Völgyi, Béla

    2017-08-01

    Connexin36 (Cx36) constituent gap junctions (GJ) throughout the brain connect neurons into functional syncytia. In the retina they underlie the transmission, averaging and correlation of signals prior conveying visual information to the brain. This is the first study that describes retinal bipolar cell (BC) GJs in the human inner retina, whose function is enigmatic even in the examined animal models. Furthermore, a number of unique features (e.g. fovea, trichromacy, midget system) necessitate a reexamination of the animal model results in the human retina. Well-preserved postmortem human samples of this study are allowed to identify Cx36 expressing BCs neurochemically. Results reveal that both rod and cone pathway interneurons display strong Cx36 expression. Rod BC inputs to AII amacrine cells (AC) appear in juxtaposition to AII GJs, thus suggesting a strategic AII cell targeting by rod BCs. Cone BCs serving midget, parasol or koniocellular signaling pathways display a wealth of Cx36 expression to form homologously coupled arrays. In addition, they also establish heterologous GJ contacts to serve an exchange of information between parallel signaling streams. Interestingly, a prominent Cx36 expression was exhibited by midget system BCs that appear to maintain intimate contacts with bistratified BCs serving other pathways. These findings suggest that BC GJs in parallel signaling streams serve both an intra- and inter-pathway exchange of signals in the human retina.

  12. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  13. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    Science.gov (United States)

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  14. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR.

    Science.gov (United States)

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-04-07

    Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.

  15. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Shampa Chatterjee

    2018-06-01

    Full Text Available The endothelium that lines the interior of blood vessels is directly exposed to blood flow. The shear stress arising from blood flow is “sensed” by the endothelium and is “transduced” into biochemical signals that eventually control vascular tone and homeostasis. Sensing and transduction of physical forces occur via signaling processes whereby the forces associated with blood flow are “sensed” by a mechanotransduction machinery comprising of several endothelial cell elements. Endothelial “sensing” involves converting the physical cues into cellular signaling events such as altered membrane potential and activation of kinases, which are “transmission” signals that cause oxidant production. Oxidants produced are the “transducers” of the mechanical signals? What is the function of these oxidants/redox signals? Extensive data from various studies indicate that redox signals initiate inflammation signaling pathways which in turn can compromise vascular health. Thus, inflammation, a major response to infection or endotoxins, can also be initiated by the endothelium in response to various flow patterns ranging from aberrant flow to alteration of flow such as cessation or sudden increase in blood flow. Indeed, our work has shown that endothelial mechanotransduction signaling pathways participate in generation of redox signals that affect the oxidant and inflammation status of cells. Our goal in this review article is to summarize the endothelial mechanotransduction pathways that are activated with stop of blood flow and with aberrant flow patterns; in doing so we focus on the complex link between mechanical forces and inflammation on the endothelium. Since this “inflammation susceptible” phenotype is emerging as a trigger for pathologies ranging from atherosclerosis to rejection post-organ transplant, an understanding of the endothelial machinery that triggers these processes is very crucial and timely.

  16. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    Science.gov (United States)

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  17. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    OpenAIRE

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL ass...

  18. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    Science.gov (United States)

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  19. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    Science.gov (United States)

    Shi, Juan; Chi, Shuhong; Xue, Jing; Yang, Jiali; Li, Feng; Liu, Xiaoming

    2016-01-01

    The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases. PMID:27110577

  20. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Juan Shi

    2016-01-01

    Full Text Available The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs, a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases.

  1. Proteomic analysis of the signaling pathway mediated by the heterotrimeric G? protein Pga1 of Penicillium chrysogenum

    OpenAIRE

    Carrasco-Navarro, Ulises; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Z??iga-Le?n, Eduardo; Reyes-Vivas, Horacio; Fern?ndez, Francisco J.; Fierro, Francisco

    2016-01-01

    Background The heterotrimeric G? protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Results Penicillium chrysogenum mutants with ...

  2. Autoimmunity and autoinflammation: A systems view on signaling pathway dysregulation profiles.

    Directory of Open Access Journals (Sweden)

    Arsen Arakelyan

    Full Text Available Autoinflammatory and autoimmune disorders are characterized by aberrant changes in innate and adaptive immunity that may lead from an initial inflammatory state to an organ specific damage. These disorders possess heterogeneity in terms of affected organs and clinical phenotypes. However, despite the differences in etiology and phenotypic variations, they share genetic associations, treatment responses and clinical manifestations. The mechanisms involved in their initiation and development remain poorly understood, however the existence of some clear similarities between autoimmune and autoinflammatory disorders indicates variable degrees of interaction between immune-related mechanisms.Our study aims at contributing to a holistic, pathway-centered view on the inflammatory condition of autoimmune and autoinflammatory diseases. We have evaluated similarities and specificities of pathway activity changes in twelve autoimmune and autoinflammatory disorders by performing meta-analysis of publicly available gene expression datasets generated from peripheral blood mononuclear cells, using a bioinformatics pipeline that integrates Self Organizing Maps and Pathway Signal Flow algorithms along with KEGG pathway topologies.The results reveal that clinically divergent disease groups share common pathway perturbation profiles. We identified pathways, similarly perturbed in all the studied diseases, such as PI3K-Akt, Toll-like receptor, and NF-kappa B signaling, that serve as integrators of signals guiding immune cell polarization, migration, growth, survival and differentiation. Further, two clusters of diseases were identified based on specifically dysregulated pathways: one gathering mostly autoimmune and the other mainly autoinflammatory diseases. Cluster separation was driven not only by apparent involvement of pathways implicated in adaptive immunity in one case, and inflammation in the other, but also by processes not explicitly related to immune

  3. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients.

    Science.gov (United States)

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.

  4. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in t