WorldWideScience

Sample records for egf receptor inhibitor

  1. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    International Nuclear Information System (INIS)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc

    2014-01-01

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors

  2. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc, E-mail: m.muller@ulg.ac.be

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.

  3. Icotinib, a selective EGF receptor tyrosine kinase inhibitor, for the treatment of non-small-cell lung cancer.

    Science.gov (United States)

    Tan, Fenlai; Shi, Yuankai; Wang, Yinxiang; Ding, Lieming; Yuan, Xiaobin; Sun, Yan

    2015-01-01

    Advanced non-small-cell lung cancer (NSCLC) is the main cause for cancer-related mortality. Treatments for advanced NSCLC are largely palliative and a benefit plateau appears to have reached with the platinum-based chemotherapy regimens. EGF receptor (EGFR) tyrosine kinase inhibitors gefitinib, erlotinib and afatinib came up with prolonged progression-free survival and improved quality of life, especially in EGFR-mutated patients. Icotinib is an oral selective EGFR tyrosine kinase, which was approved by China Food and Drug administration in June 2011 for treating advanced NSCLC. Its approval was based on the registered Phase III trial (ICOGEN), which showed icotinib is noninferior to gefitinib. This review will discuss the role of icotinib in NSCLC, and its potential application and ongoing investigations.

  4. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    Science.gov (United States)

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only

  5. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  6. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.

    Science.gov (United States)

    Fenton, Tim R; Nathanson, David; Ponte de Albuquerque, Claudio; Kuga, Daisuke; Iwanami, Akio; Dang, Julie; Yang, Huijun; Tanaka, Kazuhiro; Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Inda, Maria del Mar; Wykosky, Jill; Bachoo, Robert M; James, C David; DePinho, Ronald A; Vandenberg, Scott R; Zhou, Huilin; Marie, Suely K N; Mischel, Paul S; Cavenee, Webster K; Furnari, Frank B

    2012-08-28

    Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

  7. EGF-induced stimualtion of EGF-receptor synthesis in human cytotrophoblasts and A431 cells

    International Nuclear Information System (INIS)

    DePalo, L.; Basu, A.; Das, M.

    1987-01-01

    EGF-receptor is a transmembrane glycoprotein whose intracellular degradation is known to be enhanced by EGF. The authors tested whether the receptor is replenished during this process by an enhanced rate of synthesis. Human A431 epidermoid carcinoma cells, and primary cultures of human placental cytotrophoblasts were used in these studies. Cells were labeled with 35 S-methionine, and EGF-receptor biosynthesis was quantitated by immunoprecipitation using a monoclonal anti-EGF-receptor antibody. EGF stimulated receptor biosynthesis at concentrations of 0.1-1 nM. The effect was seen within 2 h of EGF addition. The maximal stimulatory effect was modest in A431 (∼ 2-fold), but marked in the cytotrophoblasts (>5-fold). At EGF concentrations higher than 3 nM, the stimulatory effect was abolished. In contrast, the effect of EGF on receptor degradation is negligible at low subnanomolar concentrations, and is pronounced only at saturating concentrations. These results show that occupation of the cell surface EGF-receptor by its ligand can lead to production of more receptor protein, thus counterbalancing the negative effect on receptor degradation. At low subnanomolar (mitogenic) concentrations of EGF the stimulator effect on receptor synthesis is likely to predominate over the effect on receptor degradation

  8. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach

    DEFF Research Database (Denmark)

    Erba, Elisabetta Boeri; Matthiesen, Rune; Bunkenborg, Jakob

    2007-01-01

    Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium p...

  9. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Niluka Gunawardhana

    2018-01-01

    Full Text Available Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF receptor kinase inhibitor significantly blocked H. pylori-induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF, and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori-induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori-induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori-induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori-related hypergastrinemia and consequently gastric disease development, including gastric cancers.

  10. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway.

    Science.gov (United States)

    Gunawardhana, Niluka; Jang, Sungil; Choi, Yun Hui; Hong, Youngmin A; Jeon, Yeong-Eui; Kim, Aeryun; Su, Hanfu; Kim, Ji-Hye; Yoo, Yun-Jung; Merrell, D Scott; Kim, Jinmoon; Cha, Jeong-Heon

    2017-01-01

    Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF) receptor kinase inhibitor significantly blocked H. pylori -induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF), and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori -induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori -induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori -induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori -related hypergastrinemia and consequently gastric disease development, including gastric cancers.

  11. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    International Nuclear Information System (INIS)

    Semino, Carlos E.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-01-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures

  12. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  13. The modulation of radiosensitivity by combined treatment of selective COX-2 inhibitor, NS 398 and EGF receptor blocker AG 1478 in HeLa cell line

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Seon Min; Oh, Young Kee; Kim, Joo Heon; Park, Mi Ja; Seong, In Ock [Eulji University School of Medicine, Daejeon (Korea, Republic of); Kang, Ki Mun; Chai, Gyu Yong [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of)

    2005-03-15

    Selective inhibition of multiple molecular targets may improve the antitumor activity of radiation. Two specific inhibitors of selective cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) were combined with radiation on the HeLa cell line. To investigate cooperative mechanism with selective COX-2 inhibitor and EGFR blocker, in vitro experiments were done. Antitumor effect was obtained by growth inhibition and apoptosis analysis by annexin V-Flous method. Radiation modulation effects were determined by the clonogenic cell survival assay. Surviving fractions at 2 Gy (SF{sub 2}) and dose enhancement radio at a surviving fraction of 0.25 were evaluated. To investigate the mechanism of the modulation of radiosensitivity, the cell cycle analyses were done by flow cytometry. The bcl-2 and bax expressions were analyzed by western blot. A cooperative effect were observed on the apoptosis of the HeLa cell line when combination of the two drugs, AG 1478 and NS 398 with radiation at the lowest doses, apoptosis of 22.70% compare with combination of the one drug with radiation, apoptosis of 8.49%. In cell cycle analysis, accumulation of cell on G{sub 0}/G{sub 1} phase and decrement of S phase fraction was observed from 24 hours to 72 hours after treatment with radiation, AG 1478 and NS 398. The combination of NS 398 and AG 1478 enhanced radiosensitivity in a concentration-dependent manner in HeLa cells with dose enhancement ratios of 3.00 and SF{sub 2} of 0.12 but the combination of one drug with radiation was not enhanced radiosensitivity with dose enhancement ratios of 1.12 and SF2 of 0.68 ({rho} = 0.005). The expression levels of bcl-2 and bax were reduced when combined with AG 1478 and NS 398. Our results indicate that the selective COX-2 inhibitor and EGFR blocker combined with radiation have potential additive or cooperative effects on radiation treatment and may act through various mechanisms including direct inhibition of tumor cell proliferation

  14. The modulation of radiosensitivity by combined treatment of selective COX-2 inhibitor, NS 398 and EGF receptor blocker AG 1478 in HeLa cell line

    International Nuclear Information System (INIS)

    Youn, Seon Min; Oh, Young Kee; Kim, Joo Heon; Park, Mi Ja; Seong, In Ock; Kang, Ki Mun; Chai, Gyu Yong

    2005-01-01

    Selective inhibition of multiple molecular targets may improve the antitumor activity of radiation. Two specific inhibitors of selective cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) were combined with radiation on the HeLa cell line. To investigate cooperative mechanism with selective COX-2 inhibitor and EGFR blocker, in vitro experiments were done. Antitumor effect was obtained by growth inhibition and apoptosis analysis by annexin V-Flous method. Radiation modulation effects were determined by the clonogenic cell survival assay. Surviving fractions at 2 Gy (SF 2 ) and dose enhancement radio at a surviving fraction of 0.25 were evaluated. To investigate the mechanism of the modulation of radiosensitivity, the cell cycle analyses were done by flow cytometry. The bcl-2 and bax expressions were analyzed by western blot. A cooperative effect were observed on the apoptosis of the HeLa cell line when combination of the two drugs, AG 1478 and NS 398 with radiation at the lowest doses, apoptosis of 22.70% compare with combination of the one drug with radiation, apoptosis of 8.49%. In cell cycle analysis, accumulation of cell on G 0 /G 1 phase and decrement of S phase fraction was observed from 24 hours to 72 hours after treatment with radiation, AG 1478 and NS 398. The combination of NS 398 and AG 1478 enhanced radiosensitivity in a concentration-dependent manner in HeLa cells with dose enhancement ratios of 3.00 and SF 2 of 0.12 but the combination of one drug with radiation was not enhanced radiosensitivity with dose enhancement ratios of 1.12 and SF2 of 0.68 (ρ = 0.005). The expression levels of bcl-2 and bax were reduced when combined with AG 1478 and NS 398. Our results indicate that the selective COX-2 inhibitor and EGFR blocker combined with radiation have potential additive or cooperative effects on radiation treatment and may act through various mechanisms including direct inhibition of tumor cell proliferation, suppression of tumor cell

  15. Odin (ANKS1A modulates EGF receptor recycling and stability.

    Directory of Open Access Journals (Sweden)

    Jiefei Tong

    Full Text Available The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  16. Cell model for the study of receptor and regulatory functions of human proHB-EGF

    Directory of Open Access Journals (Sweden)

    N. V. Korotkevych

    2014-08-01

    Full Text Available Developing of new models and approaches, particularly with fluorescent techniques, for investigation of intracellular transport of proHB-EGF and its ligand-receptor complexes is strongly required. In order to create a model for studying proHB-EGF functions the genetic construction pEGFP-N1-proHB-EGF, encoding proHB-EGF-EGFP which is fluorescent-labeled form of proHB-EGF with enhanced green fluorescent protein EGFP in the cytoplasmic terminus of the molecule, was obtained. Eukaryotic cells expressing fusion protein proHB-EGF-EGFP on the cell surface were obtained by transfection with pEGFP-N1-proHB-EGF. Expressed in the Vero cells proHB-EGF-EGFP could bind fluorescent derivative of nontoxic receptor-binding subunit B of diphtheria toxin mCherry-SubB. After stimulation of transfected cells with TPA (12-O-Tetradecanoylphorbol-13-acetate, proHB-EGF-EGFP formed a fluorescentl-labeled C-terminal fragment of the molecule – CTF-EGFP. Thus, the obtained genetic construction pEGFP-N1-proHB-EGF could be helpful in visualization of molecules proHB-EGF and CTF in cells, may open new possibilities for the studying of their functions, such as receptor function of proHB-EGF for diphtheria toxin, intracellular translocation of CTF and provide possibilities for natural proHB-EGF ligands search.

  17. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing......Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map...... whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar...

  18. Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Ilowski, Maren; Putz, Christine [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Weiss, Thomas S. [Department of Surgery, University of Regensburg Hospital, Regensburg (Germany); Brand, Stephan [Department of Internal Medicine II, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Hengstler, Jan G. [Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund (Germany); Thasler, Wolfgang Erwin, E-mail: wolfgang.thasler@med.uni-muenchen.de [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany)

    2010-04-16

    Background/Aim: Augmenter of liver regeneration (ALR) is a potent growth factor which supports liver regeneration in experimental animals. The aim of this study was to compare proliferation as well as the kinetics of ERK1/2 and Akt/PKB phosphorylation by recombinant human ALR (rhALR) and EGF in human hepatocytes and extrahepatic cells. Methods: Kinetics of ERK1/2 and Akt/PKB phosphorylation were determined in primary human hepatocytes (phh) after stimulation with rhALR and EGF. Induction of proliferation was analyzed in phh and several cell lines of hepatic and extrahepatic origin by the MTT and [{sup 3}H]-thymidine assay. Results: The kinetics of ERK phosphorylation showed clear differences, whereby rhALR caused a transient and EGF a permanent increase during the observation period of 60 min. For both, Akt and ERK phosphorylation, EGF caused a faster effect with maximal levels observed already after 2 min, whereas rhALR caused maximal phosphorylation between 10 and 15 min. Using the EGF receptor inhibitor AG1478 we provide evidence of an EGF receptor independent induction of proliferation by rhALR. Furthermore, rhALR induced proliferation only in phh and the human liver derived cell lines HepG2 and Chang. In contrast, EGF enhanced proliferation in all analyzed cell types including cell lines of colon, bronchial, pancreatic and gastric origin (SW480, BC1, L36PL and GC1). Conclusion: rhALR and EGF induce different kinetics of ERK and Akt phosphorylation in human hepatocytes. The mitogenic effect of rhALR is liver specific and seems to be at least partially independent from EGF receptor mediated signaling.

  19. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  20. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    Science.gov (United States)

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Nitric oxide generated by ionizing radiation and EGF is implicated in EGF receptor phosphorylation in A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Park, In Chul; Lee, Hyung Chahn; Rhee, Chang Hun; Hong, Seok Il

    2004-01-01

    Although it has been demonstrated that ionizing radiation (IR) control various cell functions in a different cell types, the mechanisms of its action via NO are not well understood. NO may potentially affect every type of mammalian cells, owing to its ubiquitous production and participate in the control of cell proliferation in a great variety of cell types. The epidermal growth factor (EGF) receptor is a transmembrane glycoprotein of Mr 170,000. When EGF binds to its receptor, the receptor is dimerized and autophosphorylated at the carboxyl-terminal tyrosine 992, 1608, 1086, 1148 and 1173. This phosphorylated receptor initiates a series of signal tranduction events through interacting proteins of SH2 family including Shc, Grb2 and Sos, which in turn trigger ativation of MAPK cascades. Although the number of signaling events mediated by IR-induced NO is growing, it is still unclear how NO activate cellular signaling events. Thus, we examined the effect of NO on cellular phosphorylation and found that NO was produced by ionizing radiation in A549 lung adenocarcinoma cells and enhances the unique tyrosine phosphorylation on EGF receptor

  2. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways

    Science.gov (United States)

    Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.

    2008-01-01

    Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897

  4. PET imaging of EGF receptors using [{sup 18}F]FBEM-EGF in a head and neck squamous cell carcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weihua [Harbin Medical University, Department of Medical Imaging and Nuclear Medicine, Fourth Affiliated Hospital, Harbin (China); National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States); Niu, Gang; Lang, Lixin; Guo, Ning; Ma, Ying; Kiesewetter, Dale O.; Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States); Backer, Joseph M. [SibTech Inc., Brookfield, CT (United States); Shen, Baozhong [Harbin Medical University, Department of Medical Imaging and Nuclear Medicine, Fourth Affiliated Hospital, Harbin (China)

    2012-02-15

    To prepare and evaluate a new radiotracer for molecular imaging of cell surface receptors for epidermal growth factor (EGF). Cys-tagged EGF (cEGF) was labeled with {sup 18}F by coupling the free thiol group of the Cys tag with N-[2-(4-[{sup 18}F]fluorobenzamido)ethyl]maleimide ([{sup 18}F]FBEM) to form [{sup 18}F]FBEM-cEGF. Cell uptake, internalization and efflux of [{sup 18}F]FBEM-cEGF were tested in human head and neck squamous carcinoma UM-SCC1 cells. In vivo tumor targeting and pharmacokinetics of the radiotracers were evaluated in UM-SCC1 tumor-bearing athymic nude mice by static and dynamic microPET imaging. Ex vivo biodistribution assays were performed to confirm the noninvasive imaging results. The radiolabeling yield for [{sup 18}F]FBEM-cEGF was over 60%, based on starting [{sup 18}F]FBEM. [{sup 18}F]FBEM-cEGF exhibited rapid blood clearance through both hepatobiliary and renal excretion. UM-SCC1 tumors were clearly visualized and showed modest tracer uptake of 2.60 {+-} 0.59 %ID/g at 30 min after injection. Significantly higher tumor uptake of [{sup 18}F]FBEM-cEGF (5.99 {+-} 1.61%ID/g at 30 min after injection, p < 0.01) and tumor/nontumor ratio were achieved by coinjection of 50 {mu}g of unlabeled EGF. Decreased liver uptake of [{sup 18}F]FBEM-cEGF was observed when unlabeled EGF was coadministered. With optimized liver blocking, [{sup 18}F]FBEM-cEGF has the potential to be used in a noninvasive and quantitative manner for detection of malignant lesions and evaluation of EGFR activity. (orig.)

  5. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    Directory of Open Access Journals (Sweden)

    Capra Valérie

    2006-03-01

    Full Text Available Abstract Background Cysteine-containing leukotrienes (cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC proliferation. We used human ASMC (HASMC to identify the signal transduction pathway(s of the leukotriene D4 (LTD4-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS was estimated by measuring dichlorodihydrofluorescein (DCF oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX and phosphoinositide 3-kinase (PI3K inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF

  6. EGF receptor targeted tumor imaging with biotin-PEG-EGF linked to 99mTc-HYNIC labeled avidin and streptavidin

    International Nuclear Information System (INIS)

    Jung, Kyung-Ho; Park, Jin Won; Paik, Jin-Young; Quach, Cung Hoa Thien; Choe, Yearn Seong; Lee, Kyung-Han

    2012-01-01

    Introduction: As direct radiolabeled peptides suffer limitations for in vivo imaging, we investigated the usefulness of radioloabeled avidin and streptavidin as cores to link peptide ligands for targeted tumor imaging. Methods: Human epidermal growth factor (EGF) was site specifically conjugated with a single PEG-biotin molecule and linked to 99m Tc-HYNIC labeled avidin-FITC (Av) or streptavidin-Cy5.5 (Sav). Receptor targeting was verified in vitro, and in vivo pharmacokinetic and biodistribution profiles were studied in normal mice. Scintigraphic imaging was performed in MDA-MB-468 breast tumor xenografted nude mice. Results: Whereas both 99m Tc-Av-EGF and 99m Tc-Sav-EGF retained receptor-specific binding in vitro, the two probes substantially diverged in pharmacokinetic and biodistribution behavior in vivo. 99m Tc-Av-EGF was rapidly eliminated from the circulation with a T1/2 of 4.3 min, and showed intense hepatic accumulation but poor tumor uptake (0.6%ID/gm at 4 h). 99m Tc-Sav-EGF displayed favorable in vivo profiles of longer circulation (T1/2β, 51.5 min) and lower nonspecific uptake that resulted in higher tumor uptake (3.8 %ID/gm) and clear tumor visualization at 15 h. Conclusion: 99m Tc-HYNIC labeled streptavidin linked with growth factor peptides may be useful as a protein-ligand complex for targeted imaging of tumor receptors.

  7. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  8. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.

    Science.gov (United States)

    Zhang, Xu; Belkina, Natalya; Jacob, Harrys Kishore Charles; Maity, Tapan; Biswas, Romi; Venugopalan, Abhilash; Shaw, Patrick G; Kim, Min-Sik; Chaerkady, Raghothama; Pandey, Akhilesh; Guha, Udayan

    2015-01-01

    Mutations in the epidermal growth factor receptor (EGFR) kinase domain occur in 10-30% of lung adenocarcinoma and are associated with tyrosine kinase inhibitor (TKI) sensitivity. We sought to identify the immediate direct and indirect phosphorylation targets of mutant EGFRs in lung adenocarcinoma. We undertook SILAC strategy, phosphopeptide enrichment, and quantitative MS to identify dynamic changes of phosphorylation downstream of mutant EGFRs in lung adenocarcinoma cells harboring EGFR(L858R) and EGFR(L858R/T790M) , the TKI-sensitive, and TKI-resistant mutations, respectively. Top canonical pathways that were inhibited upon erlotinib treatment in sensitive cells, but not in the resistant cells include EGFR, insulin receptor, hepatocyte growth factor, mitogen-activated protein kinase, mechanistic target of rapamycin, ribosomal protein S6 kinase beta 1, and Janus kinase/signal transducer and activator of transcription signaling. We identified phosphosites in proteins of the autophagy network, such as ULK1 (S623) that is constitutively phosphorylated in these lung adenocarcinoma cells; phosphorylation is inhibited upon erlotinib treatment in sensitive cells, but not in resistant cells. Finally, kinase-substrate prediction analysis from our data indicated that substrates of basophilic kinases from, AGC and Calcium and calmodulin-dependent kinase groups, as well as STE group kinases were significantly enriched and those of proline-directed kinases from, CMGC and Casein kinase groups were significantly depleted among substrates that exhibited increased phosphorylation upon EGF stimulation and reduced phosphorylation upon TKI inhibition. This is the first study to date to examine global phosphorylation changes upon erlotinib treatment of lung adenocarcinoma cells and results from this study provide new insights into signaling downstream of mutant EGFRs in lung adenocarcinoma. All MS data have been deposited in the ProteomeXchange with identifier PXD001101 (http

  9. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8.

    Science.gov (United States)

    Jin, Caining; Ding, Peiguo; Wang, Ying; Ma, Dalong

    2005-11-21

    It is known that chemokine-like factor superfamily 8 (CKLFSF8), a member of the CKLF superfamily, has four putative transmembrane regions and a MARVEL domain. Its structure is similar to TM4SF11 (plasmolipin) and widely distributed in normal tissue. However, its function is not yet known. We show here that CKLFSF8 is associated with the epidermal growth factor receptor (EGFR) and that ectopic expression of CKLFSF8 in several cell lines suppresses EGF-induced cell proliferation, whereas knockdown of CKLFSF8 by siRNA promotes cell proliferation. In cells overexpressing CKLFSF8, the initial activation of EGFR was not affected, but subsequent desensitization of EGF-induced signaling occurred rapidly. This attenuation was correlated with an increased rate of receptor endocytosis. In contrast, knockdown of CKLFSF8 by siCKLFSF8 delayed EGFR endocytosis. These results identify CKLFSF8 as a novel regulator of EGF-induced signaling and indicate that the association of EGFR with four transmembrane proteins is critical for EGFR desensitization.

  10. In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    International Nuclear Information System (INIS)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan

    2013-01-01

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α 1 -adrenoceptor coupled via G q ), clonidine (α 2 via G i ) or CL316243 (β 3 via G s ) or via β 1 -receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC 50 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. •

  11. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways

    International Nuclear Information System (INIS)

    Pickhard, Anja C; Schlegel, Jürgen; Arnold, Wolfgang; Reiter, Rudolf; Margraf, Johanna; Knopf, Andreas; Stark, Thomas; Piontek, Guido; Beck, Carolin; Boulesteix, Anne-Laure; Scherer, Elias Q; Pigorsch, Steffi

    2011-01-01

    Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro. Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis. In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis. Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy

  12. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres.

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2010-02-01

    It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.

  13. Internalization of EGF receptor following lipid rafts disruption in keratinocytes is delayed and dependent on p38 MAPK activation

    DEFF Research Database (Denmark)

    Lambert, S.; Ameels, H.; Gniadecki, R.

    2008-01-01

    The receptor for epidermal growth factor (EGF) plays an important role in epidermal keratinocytes and is known to move out of lipid raft after cholesterol depletion, leading to ligand-independent activation. Accumulation of evidence indicates the ability of EGF receptor (EGFR) to undergo internal......The receptor for epidermal growth factor (EGF) plays an important role in epidermal keratinocytes and is known to move out of lipid raft after cholesterol depletion, leading to ligand-independent activation. Accumulation of evidence indicates the ability of EGF receptor (EGFR) to undergo...... internalization without participation of the ligand under the control of p38 MAPK during stress conditions. Since cholesterol depletion using methyl-beta-cyclodextrin is known to induce ligand-independent activation of EGFR in keratinocytes, we investigated by confocal microscopy and ligand-binding tests...... the process of internalization, which can be considered as a protective response to stress. Moreover, cholesterol-depleted keratinocytes recover their ability to proliferate during the recovery period that follows lipid raft disruption Udgivelsesdato: 2008/12...

  14. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    Science.gov (United States)

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  15. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei

    2015-11-16

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  16. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    Science.gov (United States)

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment. PMID:26571401

  17. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  18. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice.

    Directory of Open Access Journals (Sweden)

    Alexei Shir

    2006-01-01

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12-14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC], a strong activator of apoptosis, selectively to cancer cells. METHODS AND FINDINGS: Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI25-PEG-EGF. EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and "bystander killing" of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors. CONCLUSION: The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR.

  19. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR

  20. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression...... for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents...... agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates...

  1. Mechanisms of Inhibition of the Epidermal Growth Factor Receptor: Implications for Novel Anti-Cancer Therapies

    National Research Council Canada - National Science Library

    Klein, Daryl E

    2005-01-01

    .... No secreted or extracellular ErbB receptor inhibitors have been reported in mammals. However, two natural inhibitors of the highly homologous Drosophila EGF receptor are found in Drosophila melanogaster...

  2. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  3. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    International Nuclear Information System (INIS)

    Ebi, Masahide; Kataoka, Hiromi; Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2010-01-01

    Research highlights: → TGFβ induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. → TGFβ induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. → TGFβ enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. → Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGFβ. → ADAM17 may play a crucial role in this TGFβ-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF

  4. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  5. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  6. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    International Nuclear Information System (INIS)

    Kosheverova, Vera V.; Kamentseva, Rimma S.; Gonchar, Ilya V.; Kharchenko, Marianna V.; Kornilova, Elena S.

    2016-01-01

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  7. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Gonchar, Ilya V., E-mail: ample@mail.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kharchenko, Marianna V., E-mail: mariannakharchenko@gmail.com [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kornilova, Elena S., E-mail: lenkor@mail.cytspb.rssi.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, St.Petersburg, 195251 (Russian Federation)

    2016-04-22

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  8. IL-1beta signals through the EGF receptor and activates Egr-1 through MMP-ADAM.

    Directory of Open Access Journals (Sweden)

    Estella Sanchez-Guerrero

    Full Text Available The immediate-early gene Egr-1 controls the inducible expression of many genes implicated in the pathogenesis of a range of vascular disorders, yet our understanding of the mechanisms controlling the rapid expression of this prototypic zinc finger transcription factor is poor. Here we show that Egr-1 expression induced by IL-1beta is dependent on metalloproteinases (MMP and a disintegrin and a metalloproteinase (ADAM. Pharmacologic MMP/ADAM inhibitors and siRNA knockdown prevent IL-1beta induction of Egr-1. Further, IL-1beta activates Egr-1 via the epidermal growth factor receptor (EGFR. This is blocked by EGFR tyrosine kinase inhibition and EGFR knockdown. IL-1beta induction of Egr-1 expression is reduced in murine embryonic fibroblasts (mEFs deficient in ADAM17 despite unbiased expression of EGFR and IL-1RI in ADAM17-deficient and wild-type mEFs. Finally, we show that IL-1beta-inducible wound repair after mechanical injury requires both EGFR and MMP/ADAM. This study reports for the first time that Egr-1 induction by IL-1beta involves EGFR and MMP/ADAM-dependent EGFR phosphorylation.

  9. Bg1II polymorphism of the epidermal growth factor receptor (EGF-R) gene

    Energy Technology Data Exchange (ETDEWEB)

    Biunno, I; Pozzi, M R; Radice, P; Mondini, P; Pierotti, M A; Porta, G D [Istituto Nazionale Tumori, Milan (Italy); Haley, J; Waterfield, M D [Ludwig Institute for Cancer Research, London (England)

    1988-08-11

    A 770 bp cDNA fragment was derived from the cytoplasmic portion of the EGF-R (ref. Libermann et al., 1985). Bg1II identifies 4 invariant bands of 7.0, 5.0, 3.5 and 1.2 kb and a two allele polymorphism with a band of either 10.6 kb (lane 1) or 9.4 kb (lane 3). An heterozygote individual is represented. The frequency was analyzed in 78 unrelated European Caucasians. Its chromosomal location was determined. Co-dominant segregation was demonstrated in three families of 12 individuals. A rare variant of 8.3 kb was seen in one chromosome out of the 144 examined. This allelic form has not yet been fully characterized.

  10. EGF Prevents the Neuroendocrine Differentiation of LNCaP Cells Induced By Serum Deprivation: The Modulator Role of P13K/Akt

    Directory of Open Access Journals (Sweden)

    Rosa M. Martín-Orozco

    2007-08-01

    Full Text Available The primary focus of this investigation was to study the relationship between neuroendocrine (NE differentiation, epidermal growth factor (EGF because both have been implicated in the progression of prostate cancer. For this purpose, we used gefitinib, trastuzumab, which are inhibitors of EGF receptor (EGFR, ErbB2, respectively. EGF prevents NE differentiation induced by androgen depletion. This effect is prevented by gefitinib, which blocks the activation of EGFR, ErbB2, stimulation of mitogen-activated protein kinase (MAPK, cell proliferation induced by EGF. Conversely, trastuzumab does not inhibit the effect of EGF on EGFR phosphorylation, MAPK activity, cell proliferation, NE differentiation, although it reduces ErbB2 levels specifically, suggesting that ErbB2 is not necessary to inhibit NE differentiation. Prevention of NE differentiation by EGF is mediated by a MAPK-dependent mechanism, requires constitutive Akt activation. The abrogation of the PI3K/Akt pathway changes the role of EGF from inhibitor to inductor of NE differentiation. We show that EGFR tyrosine kinase, MAPK, PI3K inhibitors inhibit the cell proliferation stimulated by EGF but induce the acquisition of NE phenotype. Altogether, the present data should be borne in mind when designing new clinical schedules for the treatment of prostate cancer, including the use of ErbB receptors, associated signaling pathway inhibitors.

  11. Regulation of EGF Receptor Signaling by Histone Deacetylase 6 (HDAC6)-Mediated Reversible Acetylation

    National Research Council Canada - National Science Library

    Kovacs, Jeffrey J

    2005-01-01

    One of the hallmarks of cancer is uncontrolled cell growth and proliferation. In cells, a group of proteins called growth factor receptors are responsible for responding to the signals that trigger proliferation...

  12. Use of SLAM and PVRL4 and identification of pro-HB-EGF as cell entry receptors for wild type phocine distemper virus.

    Directory of Open Access Journals (Sweden)

    Mary M Melia

    Full Text Available Signalling lymphocyte activation molecule (SLAM has been identified as an immune cell receptor for the morbilliviruses, measles (MV, canine distemper (CDV, rinderpest and peste des petits ruminants (PPRV viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4, also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF,for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.

  13. A basic peptide within the juxtamembrane region is required for EGF receptor dimerization.

    Science.gov (United States)

    Aifa, Sami; Aydin, Jan; Nordvall, Gunnar; Lundström, Ingemar; Svensson, Samuel P S; Hermanson, Ola

    2005-01-01

    The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (DeltaTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function.

  14. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits

    DEFF Research Database (Denmark)

    Kazazic, Maja; Bertelsen, Vibeke; Pedersen, Ketil Winther

    2008-01-01

    . Furthermore, RNAi-mediated knock down of epsin 1 was found to inhibit internalization of the EGFR, while having no effect on endocytosis of the transferrin receptor. Additionally, upon knock down of epsin 1, translocation of the EGFR to central parts of clathrin-coated pits was inhibited. This supports...

  15. Both Autocrine Signaling and Paracrine Signaling of HB-EGF Enhance Ocular Neovascularization.

    Science.gov (United States)

    Inoue, Yuki; Shimazawa, Masamitsu; Nakamura, Shinsuke; Takata, Shinsuke; Hashimoto, Yuhei; Izawa, Hiroshi; Masuda, Tomomi; Tsuruma, Kazuhiro; Sakaue, Tomohisa; Nakayama, Hironao; Higashiyama, Shigeki; Hara, Hideaki

    2018-01-01

    The incidence of blindness is increasing because of the increase in abnormal ocular neovascularization. Anti-VEGF (vascular endothelial growth factor) therapies have led to good results, although they are not a cure for the blindness. The purpose of this study was to determine what role HB-EGF (heparin-binding epidermal growth factor-like growth factor) plays in ocular angiogenesis. We examined the role played by HB-EGF in ocular neovascularization in 2 animal models of neovascularization: laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy. We also studied human retinal microvascular endothelial cells in culture. Our results showed that the neovascularization was decreased in both the CNV and oxygen-induced retinopathy models in HB-EGF conditional knockout mice compared with that in wild-type mice. Moreover, the expressions of HB-EGF and VEGF were increased after laser-induced CNV and oxygen-induced retinopathy, and their expression sites were located around the neovascular areas. Exposure of human retinal microvascular endothelial cells to HB-EGF and VEGF increased their proliferation and migration, and CRM-197 (cross-reactive material-197), an HB-EGF inhibitor, decreased the HB-EGF-induced and VEGF-induced cell proliferation and migration. VEGF increased the expression of HB-EGF mRNA. VEGF-dependent activation of EGFR (epidermal growth factor receptor)/ERK1/2 (extracellular signal-regulated kinase 1/2) signaling and cell proliferation of endothelial cells required stimulation of the ADAM17 (a disintegrin and metalloprotease) and ADAM12. CRM-197 decreased the grades of the fluorescein angiograms and size of the CNV areas in marmoset monkeys. These findings suggest that HB-EGF plays an important role in the development of CNV. Therefore, further investigations of HB-EGF are needed as a potential therapeutic target in the treatment of exudative age-related macular degeneration. © 2017 American Heart Association, Inc.

  16. Direct visualization of epidermal growth factor receptors (EGFR) in A431 and placental cell membrane by western blot with 125I-EGF

    International Nuclear Information System (INIS)

    Lin, P.H.; Selinfreund, R.; Wharton, W.

    1986-01-01

    Using the western blot technique, they have devised a new procedure that allowed the direct visualization of both the 150KD and the 170KD forms of EGFR by its natural ligand, 125 I-EGF. A431, and placental plasmalemma were purified and solubilized in either SDS-PAGE buffer (without DTT, EDTA) or Triton X-100 (0.5%), resolved on PAGE and electrophoretically transferred onto nitrocellulose (NC) paper. In the absence of boiling, SDS did not denature the EGFR. Although EGER band can be detected after hybridization with 125 I-EGF, the receptor signal was considerably improved with the addition of 0.1% Tween-20. The binding of 125 I-EGF to the both the 150KD and the 170KD bands of the EGFR was specific, reversible and increased with the amount of membrane protein present. The direct visualization of the EGFR using its natural ligand eliminated the necessity for the time consuming antibody preparation. Presently, they are using this technique to identify specific receptors for other ligands

  17. Effects of the EGFR Inhibitor Erlotinib on Magnesium Handling

    NARCIS (Netherlands)

    Dimke, Henrik; van der Wijst, Jenny; Alexander, Todd R.; Meijer, Inez M. J.; Mulder, Gemma M.; van Goor, Harry; Tejpar, Sabine; Hoenderop, Joost G.; Bindels, Rene J.

    A mutation in pro-EGF causes isolated hypomagnesemia, and monoclonal antibodies targeting the extracellular domain of the EGF receptor (EGFR) affect epithelial Mg2+ transport. The effect of the EGFR tyrosine kinase inhibitor erlotinib on Mg2+ homeostasis, however, remains unknown. Here, we injected

  18. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    International Nuclear Information System (INIS)

    Berger, Christian; Madshus, Inger Helene; Stang, Espen

    2012-01-01

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: ► Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. ► Antibody combination causes internalization of EGFR by macropinocytosis. ► Antibody-induced internalization of EGFR is independent of EGFR kinase activity. ► Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  19. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene [Institute of Pathology, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Stang, Espen, E-mail: espsta@rr-research.no [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway)

    2012-12-10

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  20. Wingless, decapentaplegic and EGF receptor signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila.

    Science.gov (United States)

    Kopp, A; Blackman, R K; Duncan, I

    1999-08-01

    Adult abdominal segments of Drosophila are subdivided along the dorso-ventral axis into a dorsal tergite, a ventral sternite and ventro-lateral pleural cuticle. We report that this pattern is largely specified during the pupal stage by Wingless (Wg), Decapentaplegic (Dpp) and Drosophila EGF Receptor (DER) signaling. Expression of wg and dpp is activated at the posterior edge of the anterior compartment by Hedgehog signaling. Within this region, wg and dpp are expressed in domains that are mutually exclusive along the dorso-ventral axis: wg is expressed in the sternite and medio-lateral tergite, whereas dpp expression is confined to the pleura and the dorsal midline. Neither gene is expressed in the lateral tergite. Shirras and Couso (1996, Dev. Biol. 175, 24-36) have shown that tergite and sternite cell fates are specified by Wg signaling. We find that DER acts synergistically with Wg to promote tergite and sternite identities, and that Wg and DER activities are opposed by Dpp signaling, which promotes pleural identity. Wg and Dpp interact antagonistically at two levels. First, their expression is confined to complementary domains by mutual transcriptional repression. Second, Wg and Dpp compete directly with one another by exerting opposite effects on cell fate. DER signaling does not affect the expression of wg or dpp, indicating that it interacts with Wg and Dpp at the level of cell fate determination. Within the tergite, the requirements for Wg and DER function are roughly complementary: Wg is required mainly in the medial region, whereas DER is most important laterally. Finally, we show that Dpp signaling at the dorsal midline controls dorso-ventral patterning within the tergite by promoting pigmentation in the medial region.

  1. Autocrine production of TGF-β confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: Role of EGF receptor ligands

    International Nuclear Information System (INIS)

    Castillo, Gaelle del; Murillo, Miguel M.; Alvarez-Barrientos, Alberto; Bertran, Esther; Fernandez, Margarita; Sanchez, Aranzazu; Fabregat, Isabel

    2006-01-01

    Transforming growth factor-beta (TGF-β) induces apoptosis in fetal rat hepatocytes. However, a subpopulation of these cells survives, concomitant with changes in phenotype, reminiscent of an epithelial-mesenchymal transition (EMT). We have previously suggested that EMT might confer cell resistance to apoptosis (Valdes et al., Mol. Cancer Res., 1: 68-78, 2002). However, the molecular mechanisms responsible for this resistance are not explored yet. In this work, we have isolated and subcultured the population of hepatocytes that suffered the EMT process and are resistant to apoptosis (TGF-β-treated fetal hepatocytes: TβT-FH). We prove that they secrete mitogenic and survival factors, as analyzed by the proliferative and survival capacity of conditioned medium. Inhibition of the epidermal growth factor receptor (EGFR) sensitizes TβT-FH to die after serum withdrawal. TβT-FH expresses high levels of transforming growth factor-alpha (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) and shows constitutive activation of the EGFR pathway. A blocking anti-TGF-α antibody restores the capacity of cells to die. TGF-β, which is expressed by TβT-FH, mediates up-regulation of TGF-α and HB-EGF expression in those cells. In summary, results suggest that an autocrine loop of TGF-β confers resistance to apoptosis after an EMT process in hepatocytes, through the increase in the expression of EGFR ligands

  2. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  3. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis.

    Science.gov (United States)

    Vehlow, Anne; Soong, Daniel; Vizcay-Barrena, Gema; Bodo, Cristian; Law, Ah-Lai; Perera, Upamali; Krause, Matthias

    2013-10-16

    The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.

  4. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling.

    Science.gov (United States)

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-03-29

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.

  5. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  6. Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition

    DEFF Research Database (Denmark)

    Feng, Yongjia; Demehri, Farok R; Xiao, Weidong

    2017-01-01

    BACKGROUND & AIMS: Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal...... deprived of enteral nutrition. METHODS: Adult C57BL/6J, IEC-Egfr(knock out (KO)) and IEC-pik3r1(KO) mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC...

  7. Coordinated Regulation Among Progesterone, Prostaglandins, and EGF-Like Factors in Human Ovulatory Follicles.

    Science.gov (United States)

    Choi, Yohan; Wilson, Kalin; Hannon, Patrick R; Rosewell, Katherine L; Brännström, Mats; Akin, James W; Curry, Thomas E; Jo, Misung

    2017-06-01

    In animal models, the luteinizing hormone surge increases progesterone (P4) and progesterone receptor (PGR), prostaglandins (PTGs), and epidermal growth factor (EGF)-like factors that play essential roles in ovulation. However, little is known about the expression, regulation, and function of these key ovulatory mediators in humans. To determine when and how these key ovulatory mediators are induced after the luteinizing hormone surge in human ovaries. Timed periovulatory follicles were obtained from cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. The in vivo and in vitro expression of PGR, PTG synthases and transporters, and EGF-like factors were examined at the level of messenger RNA and protein. PGR binding to specific genes was assessed. P4 and PTGs in conditioned media were measured. PGR, PTGS2, and AREG expressions dramatically increased in ovulatory follicles at 12 to 18 hours after human chorionic gonadotropin (hCG). In human granulosa/lutein cell cultures, hCG increased P4 and PTG production and the expression of PGR, specific PTG synthases and transporters, and EGF-like factors, mimicking in vivo expression patterns. Inhibitors for P4/PGR and EGF-signaling pathways reduced hCG-induced increases in PTG production and the expression of EGF-like factors. PGR bound to the PTGS2, PTGES, and SLCO2A1 genes. This report demonstrated the time-dependent induction of PGR, AREG, and PTGS2 in human periovulatory follicles. In vitro studies indicated that collaborative actions of P4/PGR and EGF signaling are required for hCG-induced increases in PTG production and potentiation of EGF signaling in human periovulatory granulosa cells. Copyright © 2017 Endocrine Society

  8. Epidermal growth factor (EGF) A61G polymorphism and EGF gene expression in normal colon tissue from patients with colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise G; Nielsen, Jens N; Ornskov, Dorthe

    2007-01-01

    Introduction. EGF/EGFR interactions are important mechanisms behind colorectal tumour development and growth. Recently a single nucleotide polymorphism in the EGF gene has been identified (EGF A61G). It may be a potential predictor for survival of patients receiving EGFR-inhibitor cetuximab...

  9. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    International Nuclear Information System (INIS)

    Shimura, Takaya; Higashiyama, Shigeki; Joh, Takashi; Yoshida, Michihiro; Fukuda, Shinji; Ebi, Masahide; Hirata, Yoshikazu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi

    2012-01-01

    Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P < 0.01). The growth of wt-HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Both the function of HB-EGF as an EGFR ligand and a novel signal for

  10. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  11. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Auf, Gregor; Vajkoczy, Peter; Seno, Masaharu; Bikfalvi, Andreas; Minchenko, Dmitri; Minchenko, Oleksandr; Moenner, Michel; Jabouille, Arnaud; Delugin, Maylis; Guérit, Sylvaine; Pineau, Raphael; North, Sophie; Platonova, Natalia; Maitre, Marlène; Favereaux, Alexandre

    2013-01-01

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  12. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers.

    Science.gov (United States)

    Iwamoto, Ryo; Takagi, Mika; Akatsuka, Jun-Ichi; Ono, Ken-Ichiro; Kishi, Yoshiro; Mekada, Eisuke

    2016-04-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that bind to and activate the EGF receptor (EGFR/ErbB1) and ErbB4. HB-EGF plays pivotal roles in pathophysiological processes, including cancer. Thus, monoclonal antibodies (mAbs) for HB-EGF detection could be an important tool in the therapeutic diagnosis of HB-EGF-related cancers and other diseases. However, few mAbs, especially those applicable for immunohistochemistry (IHC), have been established to date. In this study, we generated a clone of hybridoma-derived mAb 2-108 by immunizing mice with recombinant human HB-EGF protein expressed by human cells. The mAb 2-108 specifically bound to human HB-EGF but not to mouse HB-EGF and was successful in immunoblotting, even under reducing conditions, immunoprecipitation, and immunofluorescence for unfixed as well as paraformaldehyde-fixed cells. Notably, this mAb was effective in IHC of paraffin-embedded tumor specimens. Epitope mapping analysis showed that mAb 2-108 recognized the N-terminal prodomain in HB-EGF. These results indicate that this new anti-HB-EGF mAb 2-108 would be useful in the diagnosis of HB-EGF-related cancers and would be a strong tool in both basic and clinical research on HB-EGF.

  13. Exploring in vivo cholesterol-mediated interactions between activated EGF receptors in plasma membrane with single-molecule optical tracking

    International Nuclear Information System (INIS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2016-01-01

    The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear. In this study, we measured single-molecule optical trajectories of epidermal growth factor receptors moving in the plasma membranes of two cancerous cell lines and one normal endothelial cell line. A stochastic model was developed and applied to identify critical information from single-molecule trajectories. We discovered that unliganded epidermal growth factor receptors may reside nearby cholesterol-riched regions of the plasma membrane and can move into these lipid domains when subjected to ligand binding. The amount of membrane cholesterol considerably affects the stability of correlated motion of activated epidermal growth factor receptors. Our results provide single-molecule evidence of membrane cholesterol in regulating signaling receptors. Because the three cell lines used for this study are quite diverse, our results may be useful to shed light on the mechanism of cholesterol-mediated interaction between activated receptors in live cells

  14. SRC-mediated EGF Receptor Activation Regulates Ozone-induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    Science.gov (United States)

    BACKGROUND: Human exposure to ozone (03) results in pulmonary function decrements and airway inflammation. The mechanisms underlying these adverse effects remain unclear. Epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of lung inflammation. ...

  15. Inhibition of EGF processing in responsive and nonresponsive human fibroblasts

    International Nuclear Information System (INIS)

    Schaudies, R.P.; Wray, H.L.

    1988-01-01

    We have examined the proteolytic processing of radiolabeled epidermal growth factor (EGF) in EGF growth-responsive human foreskin fibroblasts (HFF) versus EGF nonresponsive human fetal lung fibroblasts (HFL). Previous studies have shown that both cell lines demonstrate similar binding affinities and numbers of binding sites, as well as similar rates of internalization and degradation of the bound, radiolabeled hormone. We have used nondenaturing electrophoresis to compare how these two cell lines process EGF at its carboxy terminus. EGF lacking either one [des-(53)-EGF] or six [des (48-53)-EGF] carboxy terminal amino acids could be distinguished by this method. Chloroquine or leupeptin were added to the incubation system in an attempt to accentuate potential differences in hormonal processing between the responsive and nonresponsive cell lines. In the absence of inhibitors, the responsive and nonresponsive cells generated similar distributions of processed forms of EGF after 30-minutes incubation. However, after 4-hours incubation in the constant presence of 125I-EGF, the electrophoretic profiles of extracted hormone were substantially different. The radiolabel within the responsive cells, as well as that released from them, migrated predominantly at the dye front, indicating complete degradation of EGF. In contrast, the majority of the radiolabel within the nonresponsive cells migrated as partially processed forms of hormone, while the released radiolabel migrated at the dye front. Addition of chloroquine to either cell line inhibited processing of EGF beyond removal of the carboxyl terminal arginine residue. Both intact 125I-EGF, and 125I-EGF lacking the carboxyl terminal arginine were released from chloroquine-treated cells in a ratio equal to that present in the intact cells

  16. Age-related loss of EGF-receptor related protein (ERRP) in the aging colon is a potential risk factor for colon cancer.

    Science.gov (United States)

    Schmelz, Eva M; Levi, Edi; Du, Jianhua; Xu, Hu; Majumdar, Adhip P N

    2004-12-01

    Although in Fischer-344 rats, aging is associated with increased activation of EGF-receptor (EGFR) in mucosa of much of the gastrointestinal tract, including the colon, regulation of this process is poorly understood. We hypothesize that loss of suppressor of EGFR may partly be responsible for this process. To test this hypothesis, we examined the expression of EGFR related protein (ERRP), a recently identified negative regulator of EGFR, in the colonic mucosa during aging and following administration of the colonic carcinogen dimethylhydrazine (DMH) that resulted in the formation of aberrant crypt foci (ACF), which are considered to be precursor of adenoma and carcinoma. In Fischer-344 rats, aging is associated with increased activation of EGFR in the colonic mucosa, as evidenced by 30-35% increase in the levels of tyrosine phosphorylated EGFR in the proximal and distal colon of aged (20-22 months old) than in young (4-6 months old) rats. In contrast, the levels of ERRP in both regions of the colon of aged rats were decreased by 50-60%, compared to their younger counterparts. Administration of DMH, which induced a greater number of ACF in the colon of aged rats than in young animals, resulted in a corresponding reduction in ERRP in the colon. These results suggest that loss of ERRP expression is a common event during aging and early stages of chemically induced colon cancer. We also suggest that loss of ERRP could be a risk factor for developing colorectal cancer in the older population.

  17. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion.

    Science.gov (United States)

    Shimura, Takaya; Yoshida, Michihiro; Fukuda, Shinji; Ebi, Masahide; Hirata, Yoshikazu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2012-05-30

    Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation

  18. Improved expression of recombinant plant-made hEGF.

    Science.gov (United States)

    Thomas, David Rhys; Walmsley, Amanda Maree

    2014-11-01

    The yield of recombinant hEGF was increased approximately tenfold through a range of optimisations. Further, the recombinant protein was found to have biological activity comparable to commercial hEGF. Human epidermal growth factor (hEGF) is a powerful mitogen that can enhance the healing of a wide range of injuries, including burns, cuts, diabetic ulcers and gastric ulcers. However, despite its clinical value, hEGF is only consistently used for the treatment of chronic diabetic ulcers due to its high cost. In this study, hEGF was transiently expressed in Nicotiana benthamiana plants and targeted to the apoplast, ER and vacuole. Several other approaches were also included in a stepwise fashion to identify the optimal conditions for the expression of recombinant hEGF. Expression was found to be highest in the vacuole, while targeting hEGF to the ER caused a decrease in total soluble protein (TSP). Using a codon optimised sequence was found to increase vacuolar targeted hEGF yield by ~34 %, while it was unable to increase the yield of ER targeted hEGF. The use of the P19 silencing inhibitor was able to further increase expression by over threefold, and using 5-week-old plants significantly increased expression compared to 4- or 6-week-old-plants. The combined effect of these optimisations increased expression tenfold over the initial apoplast targeted construct to an average yield of 6.24 % of TSP. The plant-made hEGF was then shown to be equivalent to commercial E. coli derived hEGF in its ability to promote the proliferation of mouse keratinocytes. This study supports the potential for plants to be used for the commercial production of hEGF, and identifies a potential limitation for the further improvement of recombinant protein yields.

  19. Heparin-Binding EGF-like Growth Factor (HB-EGF) stimulates the proliferation of Müller glia-derived progenitor cells in avian and murine retinas

    Science.gov (United States)

    Todd, Levi; Volkov, Leo I.; Zelinka, Chris; Squires, Natalie; Fischer, Andy J.

    2015-01-01

    Müller glia can be stimulated to de-differentiate, proliferate and form Müller glia-derived progenitor cells (MGPCs) that regenerate retinal neurons. In the zebrafish retina, Heparin-Binding EGF-like Growth Factor (HB-EGF) may be one of the key factors that stimulate the formation of proliferating MGPCs. Currently nothing is known about the influence of HB-EGF on the proliferative potential of Müller glia in retinas of birds and rodents. In the chick retina, we found that levels of both hb-egf and egf-receptor are rapidly and transiently up-regulated following NMDA-induced damage. Although intraocular injections of HB-EGF failed to stimulate cell-signaling or proliferation of Müller glia in normal retinas, HB-EGF stimulated proliferation of MGPCs in damaged retinas. By comparison, inhibition of the EGF-receptor (EGFR) decreased the proliferation of MGPCs in damaged retinas. HB-EGF failed to act synergistically with FGF2 to stimulate the formation of MGPCs in the undamaged retina and inhibition of EGF-receptor did not suppress FGF2-mediated formation of MGPCs. In the mouse retina, HB-EGF stimulated the proliferation of Müller glia following NMDA-induced damage. Furthermore, HB-EGF stimulated not only MAPK-signaling in Müller glia/MGPCs, but also activated mTor- and Jak/Stat-signaling. We propose that levels of expression of EGFR are rate-limiting to the responses of Müller glia to HB-EGF and the expression of EGFR can be induced by retinal damage, but not by FGF2-treatment. We conclude that HB-EGF is mitogenic to Müller glia in both chick and mouse retinas, and HB-EGF is an important player in the formation of MGPCs in damaged retinas. PMID:26500021

  20. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    Science.gov (United States)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  1. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  2. The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development.

    Science.gov (United States)

    Kumar, J P; Moses, K

    2001-07-01

    The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.

  3. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies

    NARCIS (Netherlands)

    Róg, T.; Murzyn, K.; Karttunen, M.E.J.; Pasenkiewicz-Gierula, M.

    2008-01-01

    A molecular dynamics simulation study of four lipid bilayers with inserted trans-membrane helical fragment of epithelial growth factor (EGF) receptor (EGF peptide) was performed. The lipid bilayers differ in their lipid composition and consist of (i) unsaturated phosphatidylcholine

  4. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  5. Biodistribution of 99mTc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Morales-Morales, Alejo; Duconge, Jorge; Caballero-Torres, Idania; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Iznaga-Escobar, Normando

    1999-01-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody (MAb) h-R3 is an (IgG 1 ), which binds to an extracellular domain of EGF-R. It was used to evaluate the biodistribution on nude mice xenografted with H-125 human lung adenocarcinoma cell line. Results were compared with its murine version of the MAb ior-egf/r3. Twenty-one athymic female 4NMRI nu/nu mice were injected intraperitoneally with 10 μg/100 μCi of 99m Tc-labeled MAbs. Immunoreactivity of 99m Tc-labeled MAbs were measured by enzyme-linked immunosorbent assay (ELISA) on H-125 cell line and the immunoreactive fractions was determined by the Lindmo method. Among all organs, significant accumulation was found in serum (27.05 ± 2.08 %ID/g) and tumor (3.903 ± 0.89 %ID/g) at 4 h after injection. These values decreased to 5.03 ± 0.50 %ID/g and 2.19 ± 0.56 %ID/g for serum and tumor, respectively. The immunoreactive fraction was found to be 0.70, with a correlation coefficient r=0.9984. With the good biodistribution and tumor uptake of the 99m Tc-labeled humanized antibody h-R3, a phase I diagnostic clinical trial of tumor with epithelial origin should be pursued

  6. Biodistribution of {sup 99m}Tc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Morales, Alejo; Duconge, Jorge; Caballero-Torres, Idania; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Iznaga-Escobar, Normando E-mail: normando@ict.cim.sld.cu

    1999-04-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody (MAb) h-R3 is an (IgG{sub 1}), which binds to an extracellular domain of EGF-R. It was used to evaluate the biodistribution on nude mice xenografted with H-125 human lung adenocarcinoma cell line. Results were compared with its murine version of the MAb ior-egf/r3. Twenty-one athymic female 4NMRI nu/nu mice were injected intraperitoneally with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled MAbs. Immunoreactivity of {sup 99m}Tc-labeled MAbs were measured by enzyme-linked immunosorbent assay (ELISA) on H-125 cell line and the immunoreactive fractions was determined by the Lindmo method. Among all organs, significant accumulation was found in serum (27.05 {+-} 2.08 %ID/g) and tumor (3.903 {+-} 0.89 %ID/g) at 4 h after injection. These values decreased to 5.03 {+-} 0.50 %ID/g and 2.19 {+-} 0.56 %ID/g for serum and tumor, respectively. The immunoreactive fraction was found to be 0.70, with a correlation coefficient r=0.9984. With the good biodistribution and tumor uptake of the {sup 99m}Tc-labeled humanized antibody h-R3, a phase I diagnostic clinical trial of tumor with epithelial origin should be pursued.

  7. Neutron capture therapy of an Egf receptor positive glioma using boronated cetuximab alone or in combination with boronophenylalanine

    International Nuclear Information System (INIS)

    Wu, Gong; Yang, Weilian; Barth, Rolf F.

    2006-01-01

    The purpose of the present study was to evaluate the monoclonal antibody cetuximab (IMC-C225), which is directed against EGFR, as a boron delivery agent for NCT of a human EGFR gene transfected rat glioma, designated F98 EGFR . A heavily boronated polyamidoamine (PAMAM) dendrimer (BD) was chemically linked to cetuximab by means of heterobifunctional reagents. In vitro, the bioconjugate (BD-C225) was specifically taken up by F98 EGFR glioma cells (41.8 μg/g) compared to receptor (-) F98 WT cells (9.1 μg/g). Glioma cells were stereotactically implanted into the brains of Fischer rats and biodistribution studies were initiated 14 d later. The amount of boron retained by F98 EGFR gliomas 24 h following either convection enhanced delivery (CED) or intratumoral (i.t.) injection were 77.2 and 50.8 μg/g, respectively, and normal brain and blood values were 180 d) compared to 40 d for i.v. BPA alone and 31 d and 26 d for irradiated and untreated controls, respectively. Our data convincingly demonstrate the therapeutic efficacy of molecular targeting of EGFR using either boronated cetuximab alone or in combination with BPA and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors. (author)

  8. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    International Nuclear Information System (INIS)

    Dai, Guodong; Peng, Tao; Zhou, Xuhong; Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi; Yuan, Yulin

    2013-01-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  9. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guodong [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Peng, Tao; Zhou, Xuhong [Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Yuan, Yulin, E-mail: yuanyulin19620120@126.com [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China)

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  10. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation

    International Nuclear Information System (INIS)

    Refsnes, Magne; Skuland, Tonje; Schwarze, Per E.; Ovrevik, Johan; Lag, Marit

    2008-01-01

    Exposure of human epithelial lung cells to fluorides is known to induce a marked increase in the release of interleukin (IL)-8, a chemokine involved in neutrophil recruitment. In the present study, the involvement of mitogen-activating protein kinases (MAPKs), the role of upstream activation of Src family kinases (SFKs), epidermal growth factor receptor (EGFR) activation and the interrelationships between these pathways in fluoride-induced IL-8 were examined in a human epithelial lung cell line (A549). Sodium fluoride strongly activated MAPK, in particular JNK1/2 and p38. The ERK1/2-inhibitor PD98059, the p38-inhibitor SB202190 and the JNK1/2-inhibitor SP600125 partially inhibited the fluoride-induced IL-8 response. Combinations of these inhibitors reduced the responses nearly to basal levels. Treatment with siRNA against JNK2 also reduced the IL-8 response to fluoride. Furthermore, fluoride activated SFKs, which was abolished by the SFK-inhibitor PP2. PP2 substantially inhibited the increased levels of IL-8, and partially reduced the fluoride-induced activation of ERK1/2, p38 and JNK1/2. Fluoride exposure also led to a phosphorylation of the EGFR, that was partially inhibited by PP2. AG1478, an EGFR-inhibitor, partially reduced the fluoride-induced IL-8 response and the phosphorylation of JNK1/2 and ERK1/2, but less the phosphorylation of p38. The effects of AG1478 were less than that of PP2. In conclusion, our findings suggest that the fluoride-induced IL-8 release involves the combined activation of ERK1/2, JNK1/2 and p38, and that the phosphorylation of these kinases, and in particular JNK1/2 and ERK1/2, partly, is mediated via a SFK-dependent EGFR-linked pathway. SFK-dependent, but EGFR-independent mechanisms seem important, and especially for phosphorylation of p38

  11. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Directory of Open Access Journals (Sweden)

    Shimura Takaya

    2012-05-01

    Full Text Available Abstract Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C, translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF and mutated HB-EGF (HB-EGF-mC, which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 % and in the cytoplasm only in 25 cases (26.0 %. The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P  Conclusions Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation might be crucial in gastric cancer invasion. HB-EGF-C nuclear translocation may offer a prognostic marker and a new molecular target for gastric cancer therapy.

  12. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  13. A targetable HB-EGF-CITED4 axis controls oncogenesis in lung cancer.

    Science.gov (United States)

    Hsieh, C-H; Chou, Y-T; Kuo, M-H; Tsai, H-P; Chang, J-L; Wu, C-W

    2017-05-25

    Aberrant epidermal growth factor (EGF) receptor (EGFR) signaling contributes to neoplastic initiation and progression in lung. Mutated EGFR has become as an important therapeutic target in lung cancer, whereas targeted treatment is not available for wild-type EGFR or its ligands. In this study, we found that heparin-binding (HB)-EGF, a member of the EGF family, was highly expressed in a subset of lung cancer, proliferation of which was dependent on HB-EGF signaling. Silencing of HB-EGF with RNA interference inhibited cell cycle progression in lung cancer cells. We observed that, upon HB-EGF induction, CITED4 was induced through a signal transducer and activator of transcription 3 (STAT3)-dependent pathway, regulating cell proliferation. CITED4 interacted with MYC and potentiated MYC-mediated transactivation of the CCND1 promoter, leading to cell cycle progression. Correlation analysis revealed that HB-EGF and CITED4 were significantly positively associated in primary lung tumors, and expression of HB-EGF predicted a poor survival outcome in patients. In vitro and in vivo experiments revealed that pharmacological inhibition of HB-EGF with CRM197 significantly attenuated tumor cell growth. Thus, CITED4 functions as a molecular switch in HB-EGF-induced growth control, and HB-EGF provides a novel therapeutic target for lung cancer intervention.

  14. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Science.gov (United States)

    2012-01-01

    Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Conclusions Both the function of HB-EGF as an EGFR ligand

  15. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  16. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira Silva

    Full Text Available The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm showed a plasmon absorption band located within the near-infrared range (650-900 nm, optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%. Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  18. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    Science.gov (United States)

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  19. Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran

    International Nuclear Information System (INIS)

    Sundberg, Aasa Liljegren; Blomquist, Erik; Carlsson, Joergen; Steffen, Ann-Charlott; Gedda, Lars

    2003-01-01

    Targeting of tumor cells with radiolabeled biomolecules is a possible approach to inactivate disseminated tumor cells. However, rapid degradation of the biomolecules after cellular internalization and subsequent excretion of the radioactivity is a problem. We studied the possibility of using dextran as a carrier of radionuclides to improve the intracellular retention. An EGF-dextran conjugate, aimed for targeting of tumor cells overexpressing the EGF-receptor, was used as model. Retention tests were performed with 125 I on different parts: [ 125 I]-EGF-dextran-[ 125 I], [ 125 I]-EGF-dextran and EGF-dextran-[ 125 I]. Comparisons were made with [ 125 I]-EGF. The radiolabeled compounds were incubated with cultured glioma cells for different times. The cellular retention of radioactivity was then measured for up to 24 h. Expected radiation doses at the cellular level were calculated assuming that 131 I, instead of 125 I, was coupled to EGF and EGF-dextran. The results indicated that the EGF-part of the conjugate was degraded and the EGF-attached radioactivity was rapidly excreted, whereas radioactivity on dextran was retained intracellularly to a high degree, i.e. 70-80% of the radioactivity bound to dextran was still cell-associated after 24 h. The retention after 24 h was significantly higher (p < 0.001) when the radioactivity was on the dextran instead of the EGF-part. The radiolabeled EGF-dextran had a notably high specific radioactivity; up to 11 MBq/μg. There was potential for at least hundred times increased radiation dose per receptor interaction when the radioactivity was on the dextran part. The advantage with radioactivity on the dextran part was the high cellular retention and the high specific radioactivity (higher than previously reported for other residualizing labels) without severe loss of receptor specific binding. Thus, dextran seems suitable as a carrier of radionuclides aimed for therapy and gives potential for a highly increased radiation dose

  20. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF.

    Science.gov (United States)

    Suzuki, Keisuke; Mizushima, Hiroto; Abe, Hiroyuki; Iwamoto, Ryo; Nakamura, Haruki; Mekada, Eisuke

    2015-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a ligand of EGF receptor, is involved in the growth and malignant progression of cancers. Cross-reacting material 197, CRM197, a non-toxic mutant of diphtheria toxin (DT), specifically binds to the EGF-like domain of HB-EGF and inhibits its mitogenic activity, thus CRM197 is currently under evaluation in clinical trials for cancer therapy. To develop more potent DT mutants than CRM197, we screened various mutant proteins of R domain of DT, the binding site for HB-EGF. A variety of R-domain mutant proteins fused with maltose-binding protein were produced and their inhibitory activity was evaluated in vitro. We found four R domain mutants that showed much higher inhibitory activity against HB-EGF than wild-type (WT) R domain. These R domain mutants suppressed HB-EGF-dependent cell proliferation more effectively than WT R domain. Surface plasmon resonance revealed their higher affinity to HB-EGF than WT R domain. CRM197(R460H) carrying the newly identified mutation showed increased cell proliferation inhibitory activity and affinity to HB-EGF. These results suggest that CRM197(R460H) or other recombinant proteins carrying newly identified mutation(s) in the R domain are potential therapeutics targeting HB-EGF. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development.

    Science.gov (United States)

    Kim, Seonwook; Yang, Lihua; Kim, Seongu; Lee, Richard G; Graham, Mark J; Berliner, Judith A; Lusis, Aldons J; Cai, Lei; Temel, Ryan E; Rateri, Debra L; Lee, Sangderk

    2017-01-01

    The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.

  2. Human pregnane X receptor is activated by dibenzazepine carbamate-based inhibitors of constitutive androstane receptor.

    Science.gov (United States)

    Jeske, Judith; Windshügel, Björn; Thasler, Wolfgang E; Schwab, Matthias; Burk, Oliver

    2017-06-01

    Unintentional activation of xenosensing nuclear receptors pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR) by clinical drug use is known to produce severe side effects in patients, which may be overcome by co-administering antagonists. However, especially antagonizing CAR is hampered by the lack of specific inhibitors, which do not activate PXR. Recently, compounds based on a dibenzazepine carbamate scaffold were identified as potent CAR inhibitors. However, their potential to activate PXR was not thoroughly investigated, even if the lead compound was named "CAR inhibitor not PXR activator 1" (CINPA1). Thus, we performed a comprehensive analysis of the interaction of CINPA1 and four analogs with PXR. Cellular assays were used to investigate intra- and intermolecular interactions and transactivation activity of PXR as a function of the compounds. Modulation of PXR target gene expression was analyzed in primary human hepatocytes. Ligand binding to PXR was investigated by molecular docking and limited proteolytic digestion. We show here that CINPA1 induced the assembly of the PXR ligand-binding domain, released co-repressors from and recruited co-activators to the receptor. CINPA1 and its analogs induced the PXR-dependent activation of a CYP3A4 reporter gene and CINPA1 induced the expression of endogenous cytochrome P450 genes in primary hepatocytes, while not consistently inhibiting CAR-mediated induction. Molecular docking revealed favorable binding of CINPA1 and analogs to the PXR ligand-binding pocket, which was confirmed in vitro. Altogether, our data provide consistent evidence that compounds with a dibenzazepine carbamate scaffold, such as CINPA1 and its four analogs, bind to and activate PXR.

  3. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  4. Changes in proHB-EGF expression after functional activation of the immune system cells

    Directory of Open Access Journals (Sweden)

    T. O. Chudina

    2017-12-01

    Full Text Available The level of proHB-EGF expression on J774, Raji, KG-1 cells derived from different types of human and mouse immune system cells under the standard in vitro culture conditions and during functional activation of these cells was investigated. Changes in the proHB-EGF expression on the cell surface were found to depend on the density of cell population, the content of fetal bovine serum in the culture medium, the effect of mitogenic factors – bacterial lipopolysaccharide, an inactive full-size form of diphtheria toxin (CRM197 and recombinant soluble HB-EGF – rsHB-EGF. The results obtained are important for the understanding of the functional role of proHB-EGF receptor on the surface of macrophage-like cells and B lymphocytes and indicate the involvement of this receptor in immune response regulation in an organism.

  5. Differentiation of human keratinocytes: changes in lipid synthesis, plasma membrane lipid composition, and 125I-EGF binding upon administration of 25-hydroxycholesterol and mevinolin

    International Nuclear Information System (INIS)

    Ponec, M.; Kempenaar, J.; Weerheim, A.; Boonstra, J.

    1987-01-01

    We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14 C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression

  6. SMAD4 loss enables EGF, TGF?1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    OpenAIRE

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-01-01

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor ?1 (TGF?1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGF?1 and S100A8/A...

  7. The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release

    Energy Technology Data Exchange (ETDEWEB)

    Prince, Robin N.; Schreiter, Eric R.; Zou, Peng; Wiley, H. S.; Ting, Alice Y.; Lee, Richard T.; Lauffenburger, Douglas A.

    2010-07-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a ligand for EGF receptor (EGFR) and possesses the ability to signal in juxtacrine, autocrine and/or paracrine mode, with these alternatives being governed by the degree of proteolytic release of the ligand. Although the spatial range of diffusion of released HB-EGF is restricted by binding heparan-sulfate proteoglycans (HSPGs) in the extracellular matrix and/or cellular glycocalyx, ascertaining mechanisms governing non-released HB-EGF localization is also important for understanding its effects. We have employed a new method for independently tracking the localization of the extracellular EGFlike domain of HB-EGF and the cytoplasmic C-terminus. A striking observation was the absence of the HB-EGF transmembrane proform from the leading edge of COS-7 cells in a wound-closure assay; instead, this protein localized in regions of cell-cell contact. A battery of detailed experiments found that this localization derives from a trans interaction between extracellular HSPGs and the HBEGF heparin-binding domain, and that disruption of this interaction leads to increased release of soluble ligand and a switch in cell phenotype from juxtacrine-induced growth inhibition to autocrine-induced proliferation. Our results indicate that extracellular HSPGs serve to sequester the transmembrane pro-form of HB-EGF at the point of cell-cell contact, and that this plays a role in governing the balance between juxtacrine versus autocrine and paracrine signaling.

  8. Anti hyperglycaemic study of natural inhibitors for Insulin receptor.

    Science.gov (United States)

    Chatterjee, Subhojyoti; Narasimhaiah, Akshaya Lakshmi; Kundu, Sanjay; Anand, Santosh

    2012-01-01

    Diabetes is a metabolic disorder associated with either improper functioning of the beta-cells or wherein cells fail to use insulin properly. Insulin, the principal hormone regulates uptake of glucose from the blood into most of the cells except central nervous system. Therefore, deficiency of insulin or the insensitivity of its receptors plays a key role in all forms of diabetes. In the present work, attempt has been made to find out plant sources which show anti hyperglycaemic activity (AhG) (i.e. compounds that bring down the blood glucose level in the body). Ayurvedic plants showing AhG activity formed the basis of our study by using the platform of Computer Aided Drug Designing (CADD). Among 600 plants showing AhG activity, 500 compounds were selected and screened, out of which 243 compounds showed drug likeness property that can be used as therapeutic ligand/drug. Initial screening of such compounds was done based on their drug likeness or biochemical properties. Dynamic interaction of these molecules was captured through Protein-Ligand study. It also gave an insight of the binding pockets involved. Bench marking of all the parameters were done using the diabetic inhibitor drug, Glipizide. Pharmacokinetic studies of the compounds such as Aloins, Capparisine, Funiculosin and Rhein exhibited less toxicity on various levels of the body. As a conclusion these ligands can lay a foundation for a better anti-diabetic therapy. AhG - Anti hyperglycaemic, CADD - Computer Aided Drug Designing.

  9. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    Science.gov (United States)

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. © The Author(s) 2016.

  10. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    Science.gov (United States)

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  11. Lefty Blocks a Subset of TGFβ Signals by Antagonizing EGF-CFC Coreceptors

    Science.gov (United States)

    Cheng, Simon K; Olale, Felix; Brivanlou, Ali H

    2004-01-01

    Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFβ signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFβ signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFβ agonists and antagonists and suggest that subtle sequence variations in TGFβ signals result in greater ligand diversity. PMID:14966532

  12. Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors.

    Directory of Open Access Journals (Sweden)

    Simon K Cheng

    2004-02-01

    Full Text Available Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFbeta signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFbeta signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFbeta agonists and antagonists and suggest that subtle sequence variations in TGFbeta signals result in greater ligand diversity.

  13. Apoptosis inducer NGFI-B is degraded by the proteasome and stabilized by treatment with EGF

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Bjorn O. [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068 Blindern, N-0316 Oslo (Norway); Paulsen, Ragnhild E., E-mail: r.e.paulsen@farmasi.uio.no [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068 Blindern, N-0316 Oslo (Norway)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer NGFI-B is a molecular target for some anti-cancer drugs. Black-Right-Pointing-Pointer NGFI-B turnover may be important for their anti-cancer action. Black-Right-Pointing-Pointer NGFI-B is degraded by the proteasome. Black-Right-Pointing-Pointer NGFI-B is stabilized by treatment with EGF. Black-Right-Pointing-Pointer Mimicking the EGF-induced phosphorylation also stabilizes the protein. -- Abstract: NGFI-B is a nuclear receptor and immediate early gene that is upregulated in many different tumour cell lines. As it is involved in cell death and survival, it has been suggested as a target for anti-cancer drugs. The protein level of NGFI-B is important for its functions and may be regulated through induction or stabilization. NGFI-B protein stability was studied using the protein synthesis inhibitor cycloheximide in CV1 cells transiently transfected with NGFI-B. Inhibiting the proteasome with MG132 stabilized NGFI-B, indicating that the proteasome is responsible for break-down of NGFI-B, as it is for many nuclear receptors. In order to determine regions responsible for the break-down of NGFI-B two N-terminal regions with high PEST-scores were deleted. Deletion of amino acids 122-195 containing a PEST-sequence which includes an ERK2 phosphorylation target, gave a more stable protein. In addition, treatment of the cells with the ERK2 activator EGF increased the stability of wild type NGFI-B. We then tested whether a mutation at threonine 142 influenced the stability of NGFI-B. We found that the phosphorylation-mimicking mutant NGFI-B T142E had an increased stability, while the non-phosphorylable mutant (T142A) showed similar stability to the wild type. Thus, EGF-stimulation of cells may be a mechanism for priming the cells for effects of NGFI-B by increasing its stability.

  14. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  15. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR.

    Science.gov (United States)

    Thomas, J Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface.

  16. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines.

    DEFF Research Database (Denmark)

    Tørring, Niels; Sørensen, Boe Sandahl; Nexø, Ebba

    2000-01-01

    BACKGROUND: The proliferation of androgen-independent prostate cancer cell lines has previously been shown to be influenced by an autocrine loop of the epidermal growth factor (EGF) system. This observation has alerted us to study the expression of ligands and receptors from the EGF......-system in prostate cell lines. METHODS: The expression of the EGF system was determined by quantitative RT-PCR and ELISA in the normal prostate epithelial cell line (PNT1A), in the androgen sensitive-(LNCaP), and the androgen-independent (DU145 and PC3) prostate cancer cell lines. RESULTS: The expression of m...... which exhibit low expression of HER1. Similar results were obtained by ELISA. CONCLUSIONS: The data indicates a selective up-regulation of a subclass of ligands of the EGF-system in androgen-independent prostate cancer cell lines. We suggest this could be a mechanism to escape androgen dependence...

  17. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    Science.gov (United States)

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  18. Ticagrelor Improves Endothelial Function by Decreasing Circulating Epidermal Growth Factor (EGF

    Directory of Open Access Journals (Sweden)

    Francesco Vieceli Dalla Sega

    2018-04-01

    Full Text Available Ticagrelor is one of the most powerful P2Y12 inhibitor. We have recently reported that, in patients with concomitant Stable Coronary Artery Disease (SCAD and Chronic Obstructive Pulmonary Disease (COPD undergoing percutaneous coronary intervention (PCI, treatment with ticagrelor, as compared to clopidogrel, is associated with an improvement of the endothelial function (Clinical Trial NCT02519608. In the present study, we showed that, in the same population, after 1 month treatment with ticagrelor, but not with clopidogrel, there is a decrease of the circulating levels of epidermal growth factor (EGF and that these changes in circulating levels of EGF correlate with on-treatment platelet reactivity. Furthermore, in human umbilical vein endothelial cells (HUVEC incubated with sera of the patients treated with ticagrelor, but not with clopidogrel there is an increase of p-eNOS levels. Finally, analyzing the changes in EGF and p-eNOS levels after treatment, we observed an inverse correlation between p-eNOS and EGF changes only in the ticagrelor group. Causality between EGF and eNOS activation was assessed in vitro in HUVEC where we showed that EGF decreases eNOS activity in a dose dependent manner. Taken together our data indicate that ticagrelor improves endothelial function by lowering circulating EGF that results in the activation of eNOS in the vascular endothelium.

  19. Molecular mechanisms of the synergy between cysteinyl-leukotrienes and receptor tyrosine kinase growth factors on human bronchial fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Hajime Yoshisue

    2006-12-01

    Full Text Available We have reported that cysteinyl-leukotrienes (cys-LTs synergise not only with epidermal growth factor (EGF but also with platelet-derived growth factor (PDGF and fibroblast growth factor (FGF to induce mitogenesis in human bronchial fibroblasts. We now describe the molecular mechanisms underlying this synergism. Mitogenesis was assessed by incorporation of [3H]thymidine into DNA and changes in protein phosphorylation by Western blotting. Surprisingly, no CysLT receptor antagonists (MK-571, montelukast, BAY u9773 prevented the synergistic mitogenesis. LTD4 did not cause phosphorylation of EGFR nor did it augment EGF-induced phosphorylation of EGFR, and the synergy between LTD4 and EGF was not blocked by the metalloproteinase inhibitor GM6001 or by an HB-EGF neutralising antibody. The EGFR-selective kinase inhibitor, AG1478, suppressed the synergy by LTD4 and EGF, but had no effect on the synergy with PDGF and FGF. While inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C (PKC prevented the synergy, these drugs also inhibited mitogenesis elicited by EGF alone. In contrast, pertussis toxin (PTX efficiently inhibited the potentiating effect of LTD4 on EGF-induced mitogenesis, as well as that provoked by PDGF or FGF, but had no effect on mitogenesis elicited by the growth factors alone. Whereas LTD4 alone did not augment phosphorylation of extracellular signal-regulated kinase (Erk-1/2 and Akt, it increased phosphorylation of PKC in a Gi-dependent manner. Addition of LTD4 prolonged the duration of EGF-induced phosphorylation of Erk-1/2 and Akt, both of which were sensitive to PTX. The effect of cys-LTs involves a PTX-sensitive and PKC-mediated intracellular pathway leading to sustained growth factor-dependent phosphorylation of Erk-1/2 and Akt.

  20. Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors

    International Nuclear Information System (INIS)

    Wong, D.T.; Reid, L.R.; Bymaster, F.P.; Threlkeld, P.G.

    1985-01-01

    Fluoxetine administration to rats dose of 10mg/kg i.p. daily up to 12 or 24 days failed to change the concentration-dependent binding of [ 3 H]WB4101, [ 3 H]clonidine and [ 3 H]dihydroalprenolol to α 1 -, α 2 - and β-adrenergic receptors, respectively; [ 3 H]quinuclidinyl benzilate to muscarinic receptors; [ 3 H]pyrilamine to histamine H 1 receptors and [ 3 H]naloxone to opiate receptors. Persistent and significant decreases in receptor number (Bsub(max) value) without changes in the dissociation constant (Ksub(D) value) of [ 3 H]5-HT binding in cortical membranes were observed upon chronic treatment with fluoxetine administered either by intraperitoneal injection or incorporation in the diet. A detectable reduction of 5-HT 1 receptor number occured after once-daily injections of fluoxetine at 10mg/kg i.p. within 49 hours. After pretreatment for 3 days with p-chlorophenylalanine, an inhibitor of 5-HT synthesis, followed by repeated administration of fluoxetine, 5-HT 1 receptor numbers were higher than those of normal rats, suggesting a dependence on synaptic concentration of 5-HT for fluoxetine to affect a receptor down-regulation. These studies provide further evidence for the selectivity of fluoxetine as an inhibitor of 5-HT reuptake, resulting in a selective down-regulation of 5-HT 1 receptors in the cerebal cortex of rat brain. (Author)

  1. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9.

    Science.gov (United States)

    Ashok, Anushruti; Rai, Nagendra Kumar; Raza, Waseem; Pandey, Rukmani; Bandyopadhyay, Sanghamitra

    2016-11-01

    Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance

  2. Fragment-based lead discovery of small molecule inhibitors for the EPHA4 receptor tyrosine kinase

    NARCIS (Netherlands)

    van Linden, O.P.J.; Farenc, C; Zoutman, W.H.; Hameetman, L; Wijtmans, M.; Leurs, R.; Tensen, C.P.; Siegal, G.; de Esch, I.J.P.

    2011-01-01

    The in silico identification, optimization and crystallographic characterization of a 6,7,8,9-tetrahydro-3H-pyrazolo[3,4-c]isoquinolin-1-amine scaffold as an inhibitor for the EPHA4 receptor tyrosine kinase is described. A database containing commercially available compounds was subjected to an in

  3. Trends in co-prescribing of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in Ireland.

    LENUS (Irish Health Repository)

    Wan Md Adnan, Wan A H

    2011-03-01

    (i) To examine the trends in co-prescribing of angiotensin converting enzyme inhibitor (ACEI) and angiotensin-II receptor blocker (ARB) therapy and (ii) to examine the influence of major clinical trials (CALM, COOPERATE, VALIANT and ONTARGET) on co-prescribing.

  4. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor

    Czech Academy of Sciences Publication Activity Database

    Šepsová, V.; Krůšek, Jan; Zdarová Karasová, J.; Zemek, F.; Musílek, K.; Kuča, K.; Soukup, O.

    2014-01-01

    Roč. 63, č. 6 (2014), s. 771-777 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : acetylcholinesterase inhibitor * nicotin receptor Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  5. 9-Hydroxystearic acid interferes with EGF signalling in a human colon adenocarcinoma

    International Nuclear Information System (INIS)

    Calonghi, Natalia; Pagnotta, Eleonora; Parolin, Carola; Tognoli, Cristina; Boga, Carla; Masotti, Lanfranco

    2006-01-01

    The epidermal growth factor has long been known to be strictly correlated with the highly proliferating activities of cancer cells and primary tumors. Moreover, in the nucleus, the epidermal growth factor/epidermal growth factor receptor complex (EGF/EGFR) functions as a transcriptional regulator that activates the cyclin D1 gene. 9-hydroxystearic acid (9-HSA) induces cell proliferation arrest and differentiation in HT29 colon cancer cells by inhibiting histone deacetylase 1 (HDAC1). 9-HSA-treated HT29, when stimulated with EGF, are not responsive and surprisingly undergo a further arrest. In order to understand the mechanisms of this effect, we analyzed the degree of internalization of the EGF/EGFR complex and its interactions with HDAC1. It appears that HDAC1, as modified by 9-HSA, is unable to associate with cyclin D1, interfering with the cell proliferation program, and sequesters the EGF/EGFR complex interrupting the transduction of the mitogenic signal

  6. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis

    International Nuclear Information System (INIS)

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2015-01-01

    EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. This metaanalysis suggests that ‘combination therapies’ can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding

  7. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.

    Science.gov (United States)

    Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A

    2018-07-02

    We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.

  8. 1-Methyl-beta-carboline (harmane), a potent endogenous inhibitor of benzodiazepine receptor binding.

    Science.gov (United States)

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1980-10-01

    The interaction of several beta-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several fold higher affinity for the benzodiazepine receptor than inosine and hypoxanthine. Thus, we suggest that harmane or other related beta-carbolines could be potential candidates as endogenous ligands of the benzodiazepine receptor.

  9. Prevention of Bronchial Hyperplasia by EGFR Pathway Inhibitors in an Organotypic Culture Model

    Science.gov (United States)

    Lee, Jangsoon; Ryu, Seung-Hee; Kang, Shin Myung; Chung, Wen-Cheng; Gold, Kathryn Ann; Kim, Edward S.; Hittelman, Walter N.; Hong, Waun Ki; Koo, Ja Seok

    2011-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection or prevention strategies are urgently needed to increase survival. Hyperplasia is the first morphologic change that occurs in the bronchial epithelium during lung cancer development, followed by squamous metaplasia, dysplasia, carcinoma in situ, and invasive tumor. The current study was designed to determine the molecular mechanisms that control bronchial epithelium hyperplasia. Using primary normal human tracheobronchial epithelial (NHTBE) cells cultured using the 3-dimensional organotypic method, we found that the epidermal growth factor receptor (EGFR) ligands EGF, transforming growth factor-alpha, and amphiregulin induced hyperplasia, as determined by cell proliferation and multilayered epithelium formation. We also found that EGF induced increased cyclin D1 expression, which plays a critical role in bronchial hyperplasia; this overexpression was mediated by activating the mitogen-activated protein kinase pathway but not the phosphoinositide 3-kinase/Akt signaling pathway. Erlotinib, an EGFR tyrosine kinase inhibitor, and U0126, a MEK inhibitor, completely inhibited EGF-induced hyperplasia. Furthermore, a promoter analysis revealed that the activator protein-1 transcription factor regulates EGF-induced cyclin D1 overexpression. Activator protein-1 depletion using siRNA targeting its c-Jun component completely abrogated EGF-induced cyclin D1 expression. In conclusion, we demonstrated that bronchial hyperplasia can be modeled in vitro using primary NHTBE cells maintained in a 3-dimensional (3-D) organotypic culture. EGFR and MEK inhibitors completely blocked EGF-induced bronchial hyperplasia, suggesting that they have a chemopreventive role. PMID:21505178

  10. EGF-CFC proteins are essential coreceptors for the TGF-β signals Vg1 and GDF1

    Science.gov (United States)

    Cheng, Simon K.; Olale, Felix; Bennett, James T.; Brivanlou, Ali H.; Schier, Alexander F.

    2003-01-01

    The TGF-β signals Nodal, Activin, GDF1, and Vg1 have been implicated in mesoderm induction and left-right patterning. Nodal and Activin both activate Activin receptors, but only Nodal requires EGF-CFC coreceptors for signaling. We report that Vg1 and GDF1 signaling in zebrafish also depends on EGF-CFC proteins, but not on Nodal signals. Correspondingly, we find that in Xenopus Vg1 and GDF1 bind to and signal through Activin receptors only in the presence of EGF-CFC proteins. These results establish that multiple TGF-β signals converge on Activin receptor/EGF-CFC complexes and suggest a more widespread requirement for coreceptors in TGF-β signaling than anticipated previously. PMID:12514096

  11. Differential action of small molecule HER kinase inhibitors on receptor heterodimerization: therapeutic implications.

    Science.gov (United States)

    Sánchez-Martín, M; Pandiella, A

    2012-07-01

    Deregulation of ErbB/HER receptor tyrosine kinases has been linked to several types of cancer. The mechanism of activation of these receptors includes establishment of receptor dimers. Here, we have analyzed the action of different small molecule HER tyrosine kinase inhibitors (TKIs) on HER receptor dimerization. Breast cancer cell lines were treated with distinct TKIs and the formation of HER2-HER3 dimers was analyzed by coimmunoprecipitation and western blot or by Förster resonance energy transfer assays. Antibody-dependent cellular cytotoxicity was analyzed by measuring the release of lactate dehydrogenase and cell viability. Lapatinib and neratinib interfered with ligand-induced dimerization of HER receptors; while pelitinib, gefitinib, canertinib or erlotinib did not. Moreover, lapatinib and neratinib were able to disrupt previously formed receptor dimers. Structural analyses allowed the elucidation of the mechanism by which some TKIs prevent the formation of HER receptor dimers, while others do not. Experiments aimed at defining the functional importance of dimerization indicated that TKIs that impeded dimerization prevented down-regulation of HER2 receptors, and favored the action of trastuzumab. We postulate that TKIs that prevent dimerization and down-regulation of HER2 may augment the antitumoral action of trastuzumab, and this mechanism of action should be considered in the treatment of HER2 positive tumors which combine TKIs with antireceptor antibodies. Copyright © 2011 UICC.

  12. Diagnostic of tumours of epithelial origin with the monoclonal antibody IOR EGF/R3 murino

    International Nuclear Information System (INIS)

    Ramos, M.

    1997-01-01

    Despite of the advantages on anti tumoral therapy, the cancer of epithelial origin constitutes one of the first causes of death worldwide. That kind of tumors have a 10-30-fold overexpression of the epidermal growth factor receptor (EGFr). Monoclonal antibody ior egf/r3 is a lgG2a, which recognizes the epidermal growth factor receptor. The aim of the present work was the evaluate the diagnostic efficacy of the 99m Tc-labelled ior egf/r3 for the detection of epithelial derived tumors, its metastasis and its recurrences

  13. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G. [Michigan; (Oxford)

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  14. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    Energy Technology Data Exchange (ETDEWEB)

    Backer, Joseph M.

    2009-07-12

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at Stanford

  15. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    International Nuclear Information System (INIS)

    Backer, Joseph M.

    2009-01-01

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for (1) rational patient stratification, (2) rapid monitoring of responses to therapy, and (3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg's group at Stanford

  16. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells

    DEFF Research Database (Denmark)

    Chen, Yunhao; Low, Teck-Yew; Choong, Lee-Yee

    2007-01-01

    With the completion of the human genome project, analysis of enriched phosphotyrosyl proteins from epidermal growth factor (EGF)-induced phosphotyrosine proteome permits the identification of novel downstream substrates of the EGF receptor (EGFR). Using cICAT-based LC-MS/MS method, we identified...

  17. 15-Deoxy-Δ12,14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ichiki, Toshihiro; Tokunou, Tomotake; Fukuyama, Kae; Iino, Naoko; Masuda, Satoko; Takeshita, Akira

    2004-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) is induced by various mitogens through activation of extracellular signal-regulated protein kinase (ERK) pathway. We recently reported that peroxisome proliferator-activated receptor (PPAR)γ activators such as 15-deoxy-Δ 12,14 -prostaglandin J2 (15-d-PGJ2) and thiazolidinediones (TZDs) activated MEK/ERK pathway through phosphatidylinositol 3-kinase (PI3-K) and induced proliferation of VSMCs. However, the precise mechanisms of PPARγ activators-induced activation of PI3-K/ERK pathway have not been determined. We examined whether transactivation of growth factor receptor is involved in this process. Stimulation of VSMCs with 15-d-PGJ2 or TZDs for 15 min induced phosphorylation of ERK1/2 and Akt. 15-d-PGJ2- or TZDs-induced phosphorylation of ERK1/2 and Akt was inhibited by AG1478, an inhibitor of epidermal growth factor receptor (EGF-R) as well as AG1295, an inhibitor of platelet derived growth factor receptor (PDGF-R). 15-d-PGJ2-induced phosphorylation of both EGF-R and PDGF-R. GM6001, a matrix metalloproteinase inhibitor, and PP2, a Src family protein kinase inhibitor, suppressed 15-d-PGJ2- and TZDs-induced phosphorylation of EGF-R and PDGFβ-R as well as activation of ERK1/2 and Akt. PDGFβ-R was co-immunoprecipitated with EGF-R, regardless of the presence or absence of 15-d-PGJ2. These data suggest that 15-d-PGJ2 and TZDs activate PI3-K/ERK pathway through Src family kinase- and matrix metalloproteinase-dependent transactivation of EGF-R and PDGF-R. Both receptors seemed to associate constitutively. This novel signaling mechanisms may contribute to diverse biological functions of PPARγ activators

  18. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Murray, Iain A. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Seokwon; Hazlett, Haley F. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Perdew, Gary H. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Tomlinson, Craig R., E-mail: Craig.R.Tomlinson@Dartmouth.edu [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States)

    2017-05-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  19. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    Science.gov (United States)

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Murray, Iain A.; Lee, Seokwon; Hazlett, Haley F.; Perdew, Gary H.; Tomlinson, Craig R.

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  1. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    Science.gov (United States)

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  2. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    Science.gov (United States)

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B

  4. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    OpenAIRE

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug ...

  5. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus

    Science.gov (United States)

    Autio, Henri; Mätlik, Kert; Rantamäki, Tomi; Lindemann, Lothar; Hoener, Marius C; Chao, Moses; Arumäe, Urmas; Castrén, Eero

    2014-01-01

    Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD. PMID:21820453

  6. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond

    Directory of Open Access Journals (Sweden)

    Singh JSS

    2015-06-01

    Full Text Available Jagdeep SS Singh, Chim C Lang Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK Abstract: Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction. Keywords: heart failure, angiotensin receptor-neprilysin inhibitor, heart failure with preserved ejection fraction, nesiritide, candoxatril, omapatrilat, hypertension, renal impairment, myocardial infarction

  7. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G. (Sanofi); (Michigan)

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  8. Promiscuity and selectivity of small-molecule inhibitors across TAM receptor tyrosine kinases in pediatric leukemia.

    Science.gov (United States)

    Liu, Mao-Hua; Chen, Shi-Bing; Yu, Juan; Liu, Cheng-Jun; Zhang, Xiao-Jing

    2017-08-01

    The TAM receptor tyrosine kinase family member Mer has been recognized as an attractive therapeutic target for pediatric leukemia. Beside Mer the family contains other two kinases, namely, Tyro3 and Axl, which are highly homologues with Mer and thus most existing small-molecule inhibitors show moderate or high promiscuity across the three kinases. Here, the structural basis and energetic property of selective binding of small-molecule inhibitors to the three kinases were investigated at molecular level. It is found that the selectivity is primarily determined by the size, shape and configuration of kinase's ATP-binding site; the Mer and Axl possess a small, closed active pocket as compared to the bulky, open pocket of Tyro3. The location and conformation of active-site residues of Mer and Axl are highly consistent, suggesting that small-molecule inhibitors generally have a low Mer-over-Axl selectivity and a high Mer-over-Tyro3 selectivity. We demonstrated that the difference in ATP binding potency to the three kinases is also responsible for inhibitor selectivity. We also found that the long-range interactions and allosteric effect arising from rest of the kinase's active site can indirectly influence inhibitor binding and selectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Accessibility of receptor-bound urokinase to type-1 plasminogen activator inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Cubellis, M.V.; Andreasen, P.; Ragno, P.; Mayer, M.; Dano, K.; Blasi, F. (Univ. of Copenhagen (Denmark))

    1989-07-01

    Urokinase plasminogen activator (uPA) interacts with a surface receptor and with specific inhibitors, such as plasminogen activator inhibitor type 1 (PAI-1). These interactions are mediated by two functionally independent domains of the molecule: the catalytic domain (at the carboxyl terminus) and the growth factor domain (at the amino terminus). The authors have now investigated whether PAI-1 can bind and inhibit receptor-bound uPA. Binding of {sup 125}I-labeled ATF (amino-terminal fragment of uPA) to human U937 monocyte-like cells can be competed for by uPA-PAI-1 complexes, but not by PAI-1 alone. Preformed {sup 125}I-labeled uPA-PAI-1 complexes can bind to uPA receptor with the same binding specificity as uPA. PAI-1 also binds to, and inhibits the activity of, receptor-bound uPA in U937 cells, as shown in U937 cells by a caseinolytic plaque assay. Plasminogen activator activity of these cells is dependent on exogenous uPA, is competed for by receptor-binding diisopropyl fluorophosphate-treated uPA, and is inhibited by the addition of PAI-1. In conclusion, in U937 cells the binding to the receptor does not shield uPA from the action of PAI-1. The possibility that in adherent cells a different localization of PAI-1 and uPA leads to protection of uPA from PAI-1 is to be considered.

  10. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  11. Activation of PKA, p38 MAPK and ERK1/2 by gonadotropins in cumulus cells is critical for induction of EGF-like factor and TACE/ADAM17 gene expression during in vitro maturation of porcine COCs

    Directory of Open Access Journals (Sweden)

    Yamashita Yasuhisa

    2009-12-01

    Full Text Available Abstract Objectives During ovulation, it has been shown that LH stimulus induces the expression of numerous genes via PKA, p38 MAPK, PI3K and ERK1/2 in cumulus cells and granulosa cells. Our recent study showed that EGF-like factor and its protease (TACE/ADAM17 are required for the activation of EGF receptor (EGFR, cumulus expansion and oocyte maturation of porcine cumulus-oocyte complexes (COCs. In the present study, we investigated which signaling pathways are involved in the gene expression of EGF-like factor and in Tace/Adam17 expression in cumulus cells of porcine COC during in vitro maturation. Methods Areg, Ereg, Tace/Adam17, Has2, Tnfaip6 and Ptgs2 mRNA expressions were detected in cumulus cells of porcine COCs by RT-PCR. Protein level of ERK1/2 phosphorylation in cultured cumulus cells was analyzed by westernblotting. COCs were visualized using a phase-contrast microscope. Results When COCs were cultured with FSH and LH up to 2.5 h, Areg, Ereg and Tace/Adam17 mRNA were expressed in cumulus cells of COCs. Areg, Ereg and Tace/Adam17 gene expressions were not suppressed by PI3K inhibitor (LY294002, whereas PKA inhibitor (H89, p38 MAPK inhibitor (SB203580 and MEK inhibitor (U0126 significantly suppressed these gene expressions. Phosphorylation of ERK1/2, and the gene expression of Has2, Tnfaip6 and Ptgs2 were also suppressed by H89, SB203580 and U0126, however, these negative effects were overcome by the addition of EGF to the medium, but not in the U0126 treatment group. Conclusion The results showed that PKA, p38 MAPK and ERK1/2 positively controlled the expression of EGF-like factor and TACE/ADMA17, the latter of which impacts the cumulus expansion and oocyte maturation of porcine COCs via the EGFR-ERK1/2 pathway in cumulus cells.

  12. EFFECTS OF EPIDERMAL GROWTH FACTOR (EGF), TRANSFORMING GROWTH FACTOR- (TGF), AND 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN ON FUSION OF EMBRYONIC PALATES IN SERUM-FREE ORGAN CULTURE USING WILD-TYPE, EGF KNOCKOUT, AND TGF KNOCKOUT MOUSE STRAINS

    Science.gov (United States)

    Backround: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing cleft palate (CP). TCDD exposure disrupts expression of epidermal growth factor (EGF) receptor, EGF, and transforming growth factor- (TGF) in the palate and affects proliferation and different...

  13. Therapies based on inhibitors of the epidermal growth factor receptor: enclosing the future

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Lage, Agustin

    2007-01-01

    The Epidermal Growth Factor Receptor (EGFR) is considered an important target for rational drug design due to its key role in numerous tumors. Potential contribution of EGFR-related signaling pathways to promote tumorigenic processes, including cell proliferation, angiogenesis, and resistance to apoptosis has been well established. Two classes of anti-EGFR agents in late-stage clinical testing include monoclonal antibodies against extracellular EGFR domain (Cetuximab, Nimotuzumab) and small molecules tyrosine kinase inhibitors, which inhibit the receptor enzyme activity (Gefitinib, Erlotinib). A considerable body of evidence has emerged since its introduction in the treatment of cancer patients. However, important questions such as reliable surrogate markers to predict response to the treatment, or optimal sequence and combination of these agents with conventional therapies remain to be addressed. Identify and validate predictive factors to select patients likely to respond to EGFR inhibitors, such as mutations that confer resistance versus those associated with sensitivity is required. A better understanding of molecular mechanisms associated with antitumor activity will useful to predict the interaction of these agents with other therapies in order to avoid antagonisms or overlapping effects resulting in no adding effects. Finally, the benefits derived from EGFR inhibitors as first-line therapy in selected populations, and the optimal doses and ways to delivery to the tumor site resulting in optimal target modulation should be established by the ongoing investigation. (Author)

  14. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    Science.gov (United States)

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  15. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    Science.gov (United States)

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Pharmacological inhibition of heparin-binding EGF-like growth factor promotes peritoneal angiogenesis in a peritoneal dialysis rat model.

    Science.gov (United States)

    Li, Zhenyuan; Yan, Hao; Yuan, Jiangzi; Cao, Liou; Lin, Aiwu; Dai, Huili; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2018-04-01

    Molecular mechanisms of peritoneal dialysis (PD) ultrafiltration failure, peritoneal neo-angiogenesis, and fibrosis remain to be determined. We aimed to determine the role of heparin-binding EGF-like growth factor (HB-EGF) inhibition on angiogenesis of peritoneal membrane in a PD rat model. 32 male Wistar rats were assigned into (1) control group; (2) uremic non-PD group: subtotal nephrectomy-induced uremic rats without PD; (3) uremic rats subjected to PD: uremic rats that were dialyzed with Dianeal ® for 4 weeks; (4) CRM 197 group: dialyzed uremic rats were supplemented with CRM197, a specific HB-EGF inhibitor. Peritoneal transport function was examined by peritoneal equilibration test. Expression of HB-EGF and EGFR in peritoneal samples were examined by real-time PCR, immunohistochemical staining, and western blot. Progressive angiogenesis and fibrosis were observed in uremic PD rats, and there were associated with decreased net ultrafiltration (nUF), increased permeability of peritoneal membrane, and reduced expression of HB-EGF and EGFR protein and mRNA in uremic PD rats compared to uremic non-PD or control groups (both p CRM197 significantly induced peritoneal membrane permeability, decreased nUF, increased higher vessel density, and reduced pericyte count compared to that of uremic PD rats. The levels of HB-EGF and EGFR expression negatively correlated with vessel density in peritoneal membrane (both p < 0.001). PD therapy was associated with peritoneal angiogenesis, functional deterioration, and downregulation of HB-EGF/EGFR. Pharmacological inhibition of HB-EGF promoted PD-induced peritoneal angiogenesis and fibrosis and ultrafiltration decline, suggesting that HB-EGF downregulation contributes to peritoneal functional deterioration in the uremic PD rat model.

  17. Pregnenolone biosynthesis in C6-2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor.

    OpenAIRE

    Papadopoulos, V; Guarneri, P; Kreuger, K E; Guidotti, A; Costa, E

    1992-01-01

    The C6-2B glioma cell line, rich in mitochondrial receptors that bind with high affinity to benzodiazepines, imidazopyridines, and isoquinolinecarboxamides (previously called peripheral-type benzodiazepine receptors), was investigated as a model to study the significance of the polypeptide diazepam binding inhibitor (DBI) and the putative DBI processing products on mitochondrial receptor-regulated steroidogenesis. DBI and its naturally occurring fragments have been found to be present in high...

  18. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa

    2015-01-01

    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  19. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Directory of Open Access Journals (Sweden)

    Antonio Di Grazia

    Full Text Available One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells over a wide range of peptide concentrations (0.025-4 μM, and this notably more efficiently than human cathelicidin (LL-37. This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  20. Cyclooxygenase inhibitors potentiate receptor tyrosine kinase therapies in bladder cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Bourn J

    2018-06-01

    Full Text Available Jennifer Bourn,1,2 Maria Cekanova1,2 1Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA; 2UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, USA Purpose: Receptor tyrosine kinase inhibitors (RTKIs are used as targeted therapies for patients diagnosed with cancer with highly expressed receptor tyrosine kinases (RTKs, including the platelet-derived growth factor receptor (PDGFR and c-Kit receptor. Resistance to targeted therapies is partially due to the activation of alternative pro-survival signaling pathways, including cyclooxygenase (COX-2. In this study, we validated the effects of two RTKIs, axitinib and AB1010, in combination with COX inhibitors on the V-akt murine thymoma oncogene homolog 1 (Akt and COX-2 signaling pathways in bladder cancer cells.Methods: The expression of several RTKs and their downstream signaling targets was analyzed by Western blot (WB analysis in human and canine bladder transitional cell carcinoma (TCC cell lines. The effects of RTKIs and COX inhibitors in bladder TCC cells were assessed by MTS for cell viability, by Caspase-3/7 and Annexin V assay for apoptosis, by WB analysis for detection of COX-2 and Akt signaling pathways, and by enzyme-linked immunosorbent assay for detection of prostaglandin E2 (PGE2 levels.Results: All tested TCC cells expressed the c-Kit and PDGFRα receptors, except human 5637 cells that had low RTKs expression. In addition, all tested cells expressed COX-1, COX-2, Akt, extracellular signal regulated kinases 1/2, and nuclear factor kappa-light-chain-enhance of activated B cells proteins, except human UM-UC-3 cells, where no COX-2 expression was detected by WB analysis. Both RTKIs inhibited cell viability and increased apoptosis in a dose-dependent manner in tested bladder TCC cells, which positively correlated with their expression levels of the PDGFRα and c

  1. Gene expression response of A253 human salivary cell line to radiation, Cis-Pt, and EGF

    International Nuclear Information System (INIS)

    Woloschak, G.; Paunesku, T.; Mittal, B.; Dyck, P.; Pauloski, B.; Rademaker, A.; Logemann, J.; Quigg, R.

    2003-01-01

    We are interested in long and short term effects of head and neck cancers treatment, and prior to the studies of patient samples, experiments were designed to observe treatment effects in cultured cells, and examine gene expression profiles from A253 human salivary cells (derived from a head and neck tumor) following exposure to gamma-rays, cisplatin (cis-Pt), and a combination of either with epidermal growth factor (EGF) treatment. A253 cells were treated by: 2 Gy or 10 Gy of γ-rays (Cs137 source, 77 cGy/min), Cis-Pt at 50 μ/mL, and EGF at 40 ng/mL. RNAs were processed and hybridized with Affymetrix Hu95A arrays according to the manufacturer's instructions. Data were scanned and analyzed and we found significant differences in the expression patterns of numerous genes were observed. Some of the more interesting genes are: Requeim [a protein required for apoptosis]; Cyclin D1 (prad1/bcl1) [a cyclin that can function as an oncogene]; FK506 Binding Protein [which may be competing with TGF-beta type I receptor for binding with FK506 thus acting against this powerful immunosuppressant]; Thioredoxin (TXN) [an oxidoreductase with multiple in vitro substrates, including ribonuclease, choriogonadotropins, coagulation factors, glucocorticoid receptor, and insulin]; Glutathione Peroxidase (GPX) [whose role in protection against oxidative stress was long ago well documented]; Aquaporin 3 (AQP3) [protein with a water-channel function that was confirmed by functional expression in Xenopus oocytes]; Eukaryotic Initiation Factor 1A (EIF1A) [a translation factor, proposed as a candidate gene for Turner syndrome]; and finally Insulin-like Growth Factor-Binding Protein 6 (IGFBP6) [an autocrine growth inhibitor shown to inhibit growth of HaCat cells and other keratinocyte cell lines

  2. Rational design of an EGF-IL18 fusion protein: Implication for developing tumor therapeutics

    International Nuclear Information System (INIS)

    Lu Jianxin; Peng Ying; Meng Zhefeng; Jin Liqin; Lu Yongsui; Guan Minxin

    2005-01-01

    Interleukin-18 (IL-18) is a proinflammatory cytokine. This protein has a role in regulating immune responses and exhibits significant anti-tumor activities. Epidermal growth factor (EGF) is an important growth factor that plays a central role in the regulation of cell cycle and differentiation. It was proposed that a targeted delivery of IL-18 by generation of IL-18-EGF fusion protein might decrease adverse effects and result in enhancing cytotoxic and antitumor activities. In the present study, a fusion protein, consisting of EGFR binding domain fused to human IL-18 mature peptide via a linker peptide of (Gly 4 Ser) 3, was constructed and expressed in the insect cell line Sf9 using Bac-to-Bac baculovirus expression system. We showed that the purified recombinant fusion protein induced similar levels of IFN-γ to that of native IL-18 protein in human PBMC in the presence of ConA. Furthermore, EGF receptor competitive test in human epithelial cancer A431 cell line showed that EGF-IL18 fusion protein can specifically bind with EGFR by competing with native EGF protein. These suggest that this rationally designed protein can be further developed as novel tumor therapeutics

  3. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  4. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment.

  5. Growth of intestinal epithelium in organ culture is dependent on EGF signalling

    International Nuclear Information System (INIS)

    Abud, Helen E.; Watson, Nadine; Heath, Joan K.

    2005-01-01

    Differentiation of endoderm into intestinal epithelium is initiated at E13.5 of mouse development when there are significant changes in morphology resulting in the conversion of undifferentiated stratified epithelium into a mature epithelial monolayer. Here we demonstrate that monolayer formation is associated with the selective apoptosis of superficial cells lining the lumen while cell proliferation is progressively restricted to cells adjacent to the basement membrane. We describe an innovative embryonic gut culture system that maintains the three-dimensional architecture of gut and in which these processes are recapitulated in vitro. Explants taken from specific regions of the gut and placed into organ culture develop and express molecular markers (Cdx1, Cdx2 and A33 antigen) in the same spatial and temporal pattern observed in vivo indicating that regional specification is maintained. Inhibition of the epidermal growth factor receptor (EGFR) tyrosine kinase using the specific inhibitor AG1478 significantly reduced the proliferation and survival of cells within the epithelial cell layer of cultured gut explants. This demonstrates an essential role for the EGF signalling pathway during the early stages of intestinal development

  6. Gene Expression of the EGF System-a Prognostic Model in Non-Small Cell Lung Cancer Patients Without Activating EGFR Mutations

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, Birgitte; Folkersen, Birgitte Holst; Rasmussen, Torben Riis

    2016-01-01

    OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non-small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands is a l.......17-6.47], P model that takes the complexity of the EGF system into account and shows that this model is a strong prognostic marker in NSCLC patients.......OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non-small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands...... is a likely explanation. The aim of this study is to demonstrate that the combined network of receptors and ligands from the EGF system is a prognostic marker. MATERIAL AND METHODS: Gene expression of the receptors EGFR, HER2, HER3, HER4, and the ligands AREG, HB-EGF, EPI, TGF-α, and EGF was measured...

  7. Inhibitory effect of SPE-39 due to tyrosine phosphorylation and ubiquitination on the function of Vps33B in the EGF-stimulated cells.

    Science.gov (United States)

    Ishii, Ayumi; Kamimori, Kanae; Hiyoshi, Mineyoshi; Kido, Hiroshi; Ohta, Takeshi; Konishi, Hiroaki

    2012-07-30

    Although SPE-39 is a binding protein to Vps33B that is one of the subunit in the mammalian HOPS complex, the elements of SPE-39 function remain unknown. Here, we show that tyrosine phosphorylation of SPE-39 following EGF stimulation plays a role in the stability of SPE-39 itself. Ubiquitination of the C-terminal region of SPE-39 was also elevated in response to EGF stimulation, and this process was regulated by the phosphorylation of Tyr-11 in SPE-39. However, association of Vps33B with SPE-39 inhibited the elevation of ubiquitination of SPE-39 following EGF stimulation, which might be responsible for the stabilization of SPE-39. Furthermore, an opposing functional relationship between SPE-39 and Vps33B on the downregulation of the EGF receptor was observed in EGF-stimulated COS-7 cells. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E

    2006-02-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.

  9. Technetium-99m direct radiolabeling of monoclonal antibody ior egf/r3

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Crespo, Francisco Zayas; Gandolff, Gilda Nunez; Escobar, Normando Iznaga; Perez, Niuvis Perez; Hernandez, Juan C. Izquierdo

    1998-01-01

    Monoclonal antibodies (MAbs) are being widely used for imaging studies, coupled mainly with {sup 99m}Tc. The antibody ior egf/r3 is a MAb against human epidermal growth factor receptor (hEGF-r), and we have developed a method for optimum labeling of this MAb with {sup 99m}Tc. The reduction was performed with 2-mercaptoethanol (2-ME) at a molar ratio of 2000:1 (2-ME:MAb) and methylene diphosphonate as transchelant. The integrity of reduced MAb was checked by mean of native polyacrylamide gel electrophoresis (PAGE) and gel filtration chromatography on Superose 12 (purity >99%). Radio colloids remained lower than 2%, and the labeling efficiency was 98.5%. The number of sulfhydryl groups generated was quantified using Ellman's reagent and was found to be 6.65 {+-} 0.69 per antibody molecule. In vitro stability studies in several challenging conditions (DTPA, human serum albumin and human serum) were performed, and no significant loss in binding percentage was seen. Radio receptor assay was used to test immunoreactivity of the reduced MAb. Both labeled and unlabeled MAbs were able to compete for binding to the hEGF-r with radioiodinated EGF. Biodistribution studies in BALB/c mice are reported.

  10. Technetium-99m direct radiolabeling of monoclonal antibody ior egf/r3

    International Nuclear Information System (INIS)

    Morales, Alejo A. Morales; Crespo, Francisco Zayas; Gandolff, Gilda Nunez; Escobar, Normando Iznaga; Perez, Niuvis Perez; Hernandez, Juan C. Izquierdo

    1998-01-01

    Monoclonal antibodies (MAbs) are being widely used for imaging studies, coupled mainly with 99m Tc. The antibody ior egf/r3 is a MAb against human epidermal growth factor receptor (hEGF-r), and we have developed a method for optimum labeling of this MAb with 99m Tc. The reduction was performed with 2-mercaptoethanol (2-ME) at a molar ratio of 2000:1 (2-ME:MAb) and methylene diphosphonate as transchelant. The integrity of reduced MAb was checked by mean of native polyacrylamide gel electrophoresis (PAGE) and gel filtration chromatography on Superose 12 (purity >99%). Radio colloids remained lower than 2%, and the labeling efficiency was 98.5%. The number of sulfhydryl groups generated was quantified using Ellman's reagent and was found to be 6.65 ± 0.69 per antibody molecule. In vitro stability studies in several challenging conditions (DTPA, human serum albumin and human serum) were performed, and no significant loss in binding percentage was seen. Radio receptor assay was used to test immunoreactivity of the reduced MAb. Both labeled and unlabeled MAbs were able to compete for binding to the hEGF-r with radioiodinated EGF. Biodistribution studies in BALB/c mice are reported

  11. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    Science.gov (United States)

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xingqiang Wang, Shanshi Wang, Xiaolong Li, Shigang Jin, Feng Xiong, Xin Wang Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical University, Rizhao, China Abstract: To date, β-catenin has been reported to be implicated in mediating the epithelial-mesenchymal transition (EMT in a variety of human cancers, which can be triggered by EGF. However, the mechanisms underlying EGF-β-catenin pathway-induced EMT of glioblastoma multiforme (GBM have not been reported previously. In the present study, immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot were applied to investigate the effect of EGF-β-catenin pathway on EMT of GBM. Here, we identified that β-catenin mRNA and protein levels were up-regulated in GBM tissues and four kinds of glioblastoma cell lines, including T98G, A172, U87, and U251 cells, compared with normal brain tissue and astrocytes. In U87 cell line, inhibition of β-catenin by siRNA suppressed EGF-induced proliferation, migration, invasiveness, and the expression of EMT activators (Snail and Slug. In addition, the expression of epithelial markers (E-cadherin was up-regulated and the expression of mesenchymal markers (N-cadherin and MMP9 was down-regulated. Finally, inhibitor of PI3K/Akt signaling pathways inactivated the EGF-β-catenin-induced EMT. In conclusion, β-catenin-EMT pathway induced by EGF is important for GBM progression by the PI3K/Akt pathways. Inhibition of β-catenin leads to suppression of EGF pathway-induced EMT, which provides a new way to treat GBM patients. Keywords: EGF, β-catenin, EMT, GBM

  13. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells

    International Nuclear Information System (INIS)

    Soula-Rothhut, Mahdhia; Coissard, Cyrille; Sartelet, Herve; Boudot, Cedric; Bellon, Georges; Martiny, Laurent; Rothhut, Bernard

    2005-01-01

    Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF-but not TSP-1-stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development

  14. 131I-recombinant human EGF has antitumor effects against MCF-7 human breast cancer xenografts with low levels of EGFR

    International Nuclear Information System (INIS)

    Li Y.-C.; Xu, W.-Y.; Tan, T.-Z.; He Sheng

    2004-01-01

    This study investigated the inhibitory action of 131 I-recombinant human EGF ( 131 I-rhEGF) on MCF-7 human breast cancer tumor development in nude mice. The activity and tumor uptake of 131 I-rhEGF was measured by tissue distribution assay, and its effect on tumor growth was measured by monitoring tumor size after treatment with 131 I-rhEGF. Changes in tumor cell ultrastructure were observed by transmission electron microscopy (TEM), and pathological changes in tumor tissue were observed by light microscopy. The tissue distribution assay revealed that 131 I-rhEGF was markedly absorbed by the tumor and reached its maximal uptake rate (16.73%ID · g -1 ) at 120 hours at which point the drug concentration in the tumor was 11.1-fold, 8.1-fold, and 6.6-fold higher than that in blood, liver, and kidneys, respectively. Tumor size measurements showed that tumor development was significantly inhibited by intravenously and intratumorally injected 131 I-rhEGF. Tumor inhibition rates (82.0% and 80.7%, respectively) were significantly higher than those of tumors treated with 131 I (7.49%) and 131 I-HSA (6.91%; P 131 I-rhEGF could significantly damage and ultimately kill tumor cells. Our results suggest that 131 I-rhEGF suppresses development of xenografted breast cancer cells in nude mice, providing a novel candidate for receptor-mediated targeted radiotherapy

  15. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    Science.gov (United States)

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    Science.gov (United States)

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer's disease drugs.

  17. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    Science.gov (United States)

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  18. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  19. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.

    Science.gov (United States)

    Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino

    2016-12-21

    Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.

  20. Identification and Characterization of Amlexanox as a G Protein-Coupled Receptor Kinase 5 Inhibitor

    Directory of Open Access Journals (Sweden)

    Kristoff T. Homan

    2014-10-01

    Full Text Available G protein-coupled receptor kinases (GRKs have been implicated in human diseases ranging from heart failure to diabetes. Previous studies have identified several compounds that selectively inhibit GRK2, such as paroxetine and balanol. Far fewer selective inhibitors have been reported for GRK5, a target for the treatment of cardiac hypertrophy, and the mechanism of action of reported compounds is unknown. To identify novel scaffolds that selectively inhibit GRK5, a differential scanning fluorometry screen was used to probe a library of 4480 compounds. The best hit was amlexanox, an FDA-approved anti-inflammatory, anti-allergic immunomodulator. The crystal structure of amlexanox in complex with GRK1 demonstrates that its tricyclic aromatic ring system forms ATP-like interactions with the hinge of the kinase domain, which is likely similar to how this drug binds to IκB kinase ε (IKKε, another kinase known to be inhibited by this compound. Amlexanox was also able to inhibit myocyte enhancer factor 2 transcriptional activity in neonatal rat ventricular myocytes in a manner consistent with GRK5 inhibition. The GRK1 amlexanox structure thus serves as a springboard for the rational design of inhibitors with improved potency and selectivity for GRK5 and IKKε.

  1. Target Therapy Using a Small Molecule Inhibitor against Angiogenic Receptors in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2007-02-01

    Full Text Available PURPOSE: PD173074, a small molecule inhibitor of VEGF-RII and FGF-RI, targets neoangiogenesis and mitogenesis. This study aimed to analyze a singlecompound-driven inhibition of FGF and VEGF receptors in pancreatic cancer. EXPERIMENTAL DESIGN: RT-PCR and Western blots were performed to quantify protein expression and phosphorylation. Anchorage dependent and independent growth assays were used to study cell growth. With flow cytometry, cell cycle analysis and apoptosis were studied. In vivo HPAF-II and MIA PaCa-2 cells were xenografted. Animals were treated daily for 10 weeks. Immunohistochemistry was used to quantify microvessel density and apoptosis. RESULTS: Highest levels of FGF-RI were detectable in MIA PaCa-2 cells, lowest in HPAF-II cells. PD173074 inhibited cell growth most prominently in cells expressing high levels of FGF-RI. Cell cycle progression was inhibited by blocking transition in the G0/G1 phase, and consequently, apoptosis was increased. In vivo significant inhibition of orthotopic tumor growth was achieved by a combination effect of inhibition of mitogenesis, induction of apoptosis, and reduction of angiogenesis in PD173074-treated animals. CONCLUSIONS: These data highlight VEGF-RII and FGF-RI as therapeutic targets and suggest a potential role for the combined use of tyrosine kinase inhibitors in the management of inoperable pancreatic cancer patients.

  2. Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the thyroid hormone alpha 1-receptor protein

    NARCIS (Netherlands)

    van Beeren, H. C.; Bakker, O.; Wiersinga, W. M.

    1995-01-01

    Desethylamiodarone (DEA), the major metabolite of the potent antiarrythmic drug amiodarone, is a non-competitive inhibitor of the binding of thyroid hormone (T3) to the beta 1-thyroid hormone receptor (T3R). In the present study, we investigated whether DEA acts in a similar way with respect to the

  3. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  4. Early Cessation of Adenosine Diphosphate Receptor Inhibitors Among Acute Myocardial Infarction Patients Treated With Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Ju, Christine; Anstrom, Kevin J

    2016-01-01

    BACKGROUND: Guidelines recommend the use of adenosine diphosphate receptor inhibitor (ADPri) therapy for 1 year postacute myocardial infarction; yet, early cessation of therapy occurs frequently in clinical practice. METHODS AND RESULTS: We examined 11 858 acute myocardial infarction patients tre...

  5. Renal graft failure after addition of an angiotensin II receptor antagonist to an angiotensin-converting enzyme inhibitor

    DEFF Research Database (Denmark)

    Kamper, Anne-Lise; Nielsen, Arne Høj; Baekgaard, Niels

    2002-01-01

    Combined treatment with an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin II (Ang II) receptor blocker (ARB) has been suggested in order to achieve a more complete blockade of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. The present report descri...

  6. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.

    Science.gov (United States)

    Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio

    2005-11-01

    Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.

  7. Insulin-like growth factor receptor inhibitors: baby or the bathwater?

    Science.gov (United States)

    Yee, Douglas

    2012-07-03

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed.

  8. Recycling of epidermal growth factor-receptor complexes in A431 cells: Identification of dual pathways

    International Nuclear Information System (INIS)

    Sorkin, A.; Krolenko, S.; Kudrjavtceva, N.; Lazebnik, J.; Teslenko, L.; Soderquist, A.M.; Nikolsky, N.

    1991-01-01

    The intracellular sorting of EGF-receptor complexes (EGF-RC) has been studied in human epidermoid carcinoma A431 cells. Recycling of EGF was found to occur rapidly after internalization at 37 degrees C. The initial rate of EGF recycling was reduced at 18 degrees C. A significant pool of internalized EGF was incapable of recycling at 18 degrees C but began to recycle when cells were warmed to 37 degrees C. The relative rate of EGF outflow at 37 degrees C from cells exposed to an 18 degrees C temperature block was slower (t1/2 approximately 20 min) than the rate from cells not exposed to a temperature block (t1/2 approximately 5-7 min). These data suggest that there might be both short- and long-time cycles of EGF recycling in A431 cells. Examination of the intracellular EGF-RC dissociation and dynamics of short- and long-time recycling indicated that EGF recycled as EGF-RC. Moreover, EGF receptors that were covalently labeled with a photoactivatable derivative of 125 I-EGF recycled via the long-time pathway at a rate similar to that of 125 I-EGF. Since EGF-RC degradation was also blocked at 18 degrees C, we propose that sorting to the lysosomal and long-time recycling pathway may occur after a highly temperature-sensitive step, presumably in the late endosomes

  9. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities

    Science.gov (United States)

    Long, D.L.; Ulici, V.; Chubinskaya, S.; Loeser, R.F.

    2015-01-01

    Objective We determined if the epidermal growth factor receptor ligand HB-EGF is produced in cartilage and if it regulates chondrocyte anabolic or catabolic activity. Methods HB-EGF expression was measured by quantitative PCR using RNA isolated from mouse knee joint tissues and from normal and OA human chondrocytes. Immunohistochemistry was performed on normal and OA human cartilage and meniscus sections. Cultured chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus and osteogenic protein 1 (OP-1) as an anabolic stimulus. Effects of HB-EGF on cell signaling were analyzed by immunoblotting of selected signaling proteins. MMP-13 was measured in conditioned media, proteoglycan synthesis was measured by sulfate incorporation, and matrix gene expression by quantitative PCR. Results HB-EGF expression was increased in 12-month old mice at 8 weeks after surgery to induce OA and increased amounts of HB-EGF were noted in human articular cartilage from OA knees. FN-f stimulated chondrocyte HB-EGF expression and HB-EGF stimulated chondrocyte MMP-13 production. However, HB-EGF was not required for FN-f stimulation of MMP-13 production. HB-EGF activated the ERK and p38 MAP kinases and stimulated phosphorylation of Smad1 at an inhibitory serine site which was associated with inhibition of OP-1 mediated proteoglycan synthesis and reduced aggrecan (ACAN) but not COL2A1 expression. Conclusion HB-EGF is a new factor identified in OA cartilage that promotes chondrocyte catabolic activity while inhibiting anabolic activity suggesting it could contribute to the catabolic-anabolic imbalance seen in OA cartilage. PMID:25937027

  10. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    Science.gov (United States)

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  12. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  13. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  14. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    Science.gov (United States)

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  15. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation.

    Directory of Open Access Journals (Sweden)

    Nabil G Seidah

    Full Text Available Proprotein convertase subtilisin/kexin-9 (PCSK9 enhances the degradation of hepatic low-density lipoprotein receptor (LDLR. Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2 as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/- mice revealed: i a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/- tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.

  16. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  17. Palbociclib: A Novel Cyclin-Dependent Kinase Inhibitor for Hormone Receptor-Positive Advanced Breast Cancer.

    Science.gov (United States)

    Mangini, Neha S; Wesolowski, Robert; Ramaswamy, Bhuvaneswari; Lustberg, Maryam B; Berger, Michael J

    2015-11-01

    To review palbociclib, a novel small-molecule inhibitor of cyclin-dependent kinases 4 and 6, and its current place in therapy for the treatment of hormone receptor (HMR)-positive, human epidermal growth factor receptor 2 (Her2)-negative advanced breast cancer. Four phase I trials, 2 phase II trials, and 1 phase III trial were identified from May 2004 to May 2015 using PubMed, American Society of Clinical Oncology (ASCO) abstracts, and European Society of Medical Oncology (ESMO) abstracts. In the first-line setting, the phase II PALbociclib: Ongoing trials in the Management of breast cAncer (PALOMA)-1 trial randomized patients to receive letrozole alone or letrozole plus palbociclib 125 mg daily for 3 weeks, followed by 1 week off, as initial therapy for advanced breast cancer. The investigator-assessed median progression-free survival (PFS) was 20. 2 months for the combination versus 10.2 months for letrozole alone (hazard ratio [HR] = 0.488; 95% CI = 0.319-0.748; 1-sided P = 0.0004). The ensuing Food and Drug Administration approval of palbociclib was given a "breakthrough therapy" designation, where preliminary evidence suggests substantial improvement over existing therapies for a serious or life-threatening disease. A confirmatory phase III trial, PALOMA-2, is under way. In patients who were previously treated with endocrine therapy for advanced breast cancer, the phase III PALOMA-3 trial randomized patients to fulvestrant plus palbociclib versus fulvestrant plus placebo. The investigator-assessed median PFS at the time of a preplanned analysis was 9.2 months with palbociclib-fulvestrant compared with 3.8 months with placebo-fulvestrant (HR = 0.42; 95% CI = 0.32-0.56; P < 0.001). Palbociclib, the first-in-class CDK4/6 inhibitor, significantly extended PFS in combination with endocrine therapy in the first and subsequent lines of treatment for HMR-positive, Her2-negative advanced breast cancer. © The Author(s) 2015.

  18. Tyrosine kinase receptor inhibitor-targeted combined chemotherapy for metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Chia-Lun Wu

    2012-04-01

    Full Text Available Overexpression of hypoxia-inducible factor-1 alpha is noted during the invasive and metastatic process of transitional cell carcinoma. It will upregulate vascular endothelial growth factor (VEGF and drive proliferation, invasiveness, metastasis, and antiapoptotic ability of cancer cells. We proposed that tyrosine kinase receptor inhibitor, sunitinib malate—(Sutent; Pfizer Inc., Taiwan, combined with chemotherapeutic drug may present synergistic cytotoxic enhancement to transitional cell carcinoma cells with subsequent inhibition of their cellular behaviors, including proliferation, invasiveness, and metastatic activity. The contents of VEGF-A in mouse bladder tumor cells (MBT-2 and culture medium were detected by quantification-polymerase chain reaction and Western blot individually. The inhibitory concentrations of various chemotherapeutic drugs, sunitinib, and their combination treatment in MBT-2 were determined by 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay. Microchamber transmembrane migration assay was applied in evaluation of the inhibitory effects of different dosages of sunitinib and combination treatment on tumor cells. The cell cycle and apoptosis were analyzed after combination therapy by flow cytometry. Variation in apoptotic pathway was elucidated by Western blot using specific antibodies with cleaved PARP and caspase-3. Metastatic animal model mimicked by tail vein injection of MBT-2 cells was used to evaluate the treatment efficiency in tumor weight and survival rate. The mRNA and protein level of VEGF-A in MBT-2 cells increased by 70% at 48 hours interval under hypoxia stress condition. In MTT assay, MBT-2 cells had shown the highest sensitivity to epirubicin. Sunitinib combined with epirubicin had shown a synergistic cytotoxic effect to MBT-2 cells. Sunitinib and its combination with epirubicin showed significant inhibition on MBT-2 cells migration in microchambers. G2/M phase arrest and

  19. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Lui, Asona; New, Jacob; Ogony, Joshua; Thomas, Sufi; Lewis-Wambi, Joan

    2016-01-01

    mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as

  20. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis.

    Science.gov (United States)

    Jayne, David R W; Bruchfeld, Annette N; Harper, Lorraine; Schaier, Matthias; Venning, Michael C; Hamilton, Patrick; Burst, Volker; Grundmann, Franziska; Jadoul, Michel; Szombati, István; Tesař, Vladimír; Segelmark, Mårten; Potarca, Antonia; Schall, Thomas J; Bekker, Pirow

    2017-09-01

    Alternative C activation is involved in the pathogenesis of ANCA-associated vasculitis. However, glucocorticoids used as treatment contribute to the morbidity and mortality of vasculitis. We determined whether avacopan (CCX168), an orally administered, selective C5a receptor inhibitor, could replace oral glucocorticoids without compromising efficacy. In this randomized, placebo-controlled trial, adults with newly diagnosed or relapsing vasculitis received placebo plus prednisone starting at 60 mg daily (control group), avacopan (30 mg, twice daily) plus reduced-dose prednisone (20 mg daily), or avacopan (30 mg, twice daily) without prednisone. All patients received cyclophosphamide or rituximab. The primary efficacy measure was the proportion of patients achieving a ≥50% reduction in Birmingham Vasculitis Activity Score by week 12 and no worsening in any body system. We enrolled 67 patients, 23 in the control and 22 in each of the avacopan groups. Clinical response at week 12 was achieved in 14 of 20 (70.0%) control patients, 19 of 22 (86.4%) patients in the avacopan plus reduced-dose prednisone group (difference from control 16.4%; two-sided 90% confidence limit, -4.3% to 37.1%; P =0.002 for noninferiority), and 17 of 21 (81.0%) patients in the avacopan without prednisone group (difference from control 11.0%; two-sided 90% confidence limit, -11.0% to 32.9%; P =0.01 for noninferiority). Adverse events occurred in 21 of 23 (91%) control patients, 19 of 22 (86%) patients in the avacopan plus reduced-dose prednisone group, and 21 of 22 (96%) patients in the avacopan without prednisone group. In conclusion, C5a receptor inhibition with avacopan was effective in replacing high-dose glucocorticoids in treating vasculitis. Copyright © 2017 by the American Society of Nephrology.

  1. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    International Nuclear Information System (INIS)

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser 108/121 , HB-EGF-Cys/Ser 116/132 , and HB-EGF-Cys/Ser 134/143 ) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M r of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser 108/121 and HB-EGF-Cys/Ser 116/132 stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF 134/143 proteins competed with 125 I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser 108/121 and HB-EGF-Cys/Ser 116/132 failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser 134/143 antagonizes EGFRs

  2. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  3. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM/EGF

  4. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor olaparib

    NARCIS (Netherlands)

    J. Nonnekens (Julie); M. van Kranenburg (Melissa); C.E.M.T. Beerens (Cecile); M. Suker (Mustafa); M. Doukas (Michael); C.H.J. van Eijck (Casper); M. de Jong (Marcel); D.C. van Gent (Dik)

    2016-01-01

    textabstractMetastases expressing tumor-specific receptors can be targeted and treated by binding of radiolabeled peptides (peptide receptor radionuclide therapy or PRRT). For example, patients with metastasized somatostatin receptor-positive neuroendocrine tumors (NETs) can be treated with

  5. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  6. A comparative safety review between GLP-1 receptor agonists and SGLT2 inhibitors for diabetes treatment.

    Science.gov (United States)

    Consoli, Agostino; Formoso, Gloria; Baldassarre, Maria Pompea Antonia; Febo, Fabrizio

    2018-03-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium glucose cotransporter 2 inhibitors (SGLT2i) are of particular interest in type 2 diabetes treatment strategies, due to their efficacy in reducing HbA1c with a low risk of hypoglycaemia, to their positive effects on body weight and blood pressure and in light of their effects on cardiovascular risk and on nephroprotection emerged from the most recent cardiovascular outcome trials. Since it is therefore very likely that GLP-1RA and SGLT2i use will become more and more common, it is more and more important to gather and discuss information about their safety profile. Area Covered: adverse events and the safety concerns most often emerged in trials with GLP-1RA namely, exenatide long acting release (LAR), dulaglutide, liraglutide, semaglutide, lixisenatide or SGLT2i, namely empagliflozin, dapagliflozin, canagliflozin and SGLT2i with an attempt at comparing the safety profiles of molecules of these two classes. Expert opinion: GLP-1RA and SGLT2i, although each associated with different specific side effects, share a 'similar' safety profile and are both drugs relatively easy to handle. The potentially complementary mechanisms of action, the cardio and nephroprotective effects demonstrated by molecules of both classes, make these drugs potentially useful even in add on to each other.

  7. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    Science.gov (United States)

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  8. Proton pump inhibitor Lansoprazole is a nuclear Liver X Receptor agonist

    Science.gov (United States)

    Cronican, Andrea A.; Fitz, Nicholas F.; Pham, Tam; Fogg, Allison; Kifer, Brionna; Koldamova, Radosveta; Lefterov, Iliya

    2010-01-01

    The liver X receptors (LXRα and LXRβ) are transcription factors that control the expression of genes primarily involved in cholesterol metabolism. In brain, in addition to normal neuronal function, cholesterol metabolism is important for APP proteolytic cleavage, secretase activities, Aβ aggregation and clearance. Particularly significant in this respect is the LXR mediated transcriptional control of APOE, which is the only proven risk factor for late onset Alzheimer’s disease. Using a transactivation reporter assay for screening pharmacologically active compounds and off patent drugs we identified the Proton Pump Inhibitor Lansoprazole as an LXR agonist. In secondary screens and counter-screening assays, it was confirmed that Lansoprazole directly activates LXR, increases the expression of LXR target genes in brain-derived human cell lines, and increases Abca1 and Apo-E protein levels in primary astrocytes derived from wild type but not LXRα/β double knockout mice. Other PPIs activate LXR as well, but the efficiency of activation depends on their structural similarities to Lansoprazole. The identification of widely used, drug with LXR agonist-like activity opens the possibility for systematic preclinical testing in at least two diseases – Alzheimer’s disease and atherosclerosis. PMID:20060385

  9. Tc-99m direct radiolabeling of monoclonal antibody ior egf/r3: quality control and image studies in mice

    International Nuclear Information System (INIS)

    Dias, Carla Roberta; Marczewski, Barbara; Moraes, Vanessa; Barboza, Marycel Figols de; Osso Junior, Joao Alberto

    2005-01-01

    Monoclonal antibodies (Mabs) have been useful for immunoscintigraphic applications in clinical diagnosis since they were introduced in the practice of nuclear medicine. The ior egf/r3 (Centis, Cuba) is a murine monoclonal antibody against epidermal growth factor receptor (EGF-R) and has been widely used in the radioimmunodiagnosis of tumors of epithelial origin. Labeled with 99m Tc, its main application in Nuclear Medicine is the follow up, detection and evaluation of tumor recurrences. The objective of this work is to describe the preparation of a lyophilized formulation (kit) for radiolabeling the Mab ior egf/r3 with 99m Tc for immunoscintigraphic applications. Radiolabeling efficiency, effects on immunoreactivity, image studies and stability of the formulation are reported. The study demonstrated that the kit formulation can be labeled with 99m Tc at high yields and can be used to visualize in vivo human tumors of epithelial origin by immunoscintigraphy studies.(author)

  10. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  11. 131I-Recombinant human EGF has anti-tumor effects against MCF-7 human breast cancer xenografts with low levels of EGFR

    International Nuclear Information System (INIS)

    Li Yunchun; Tan Tianzhi; Xu Weiyun; He Sheng

    2004-01-01

    Purpose: This study investigated the inhibitory action of 131 I-recombinant human EGF ( 131 I-rhEGF) on MCF-7 human breast cancer tumor development in nude mice. Methods: The activity and tumor uptake of 131 I-rhEGF was measured by tissue distribution assay, and its effect on tumor growth was measured by monitoring tumor size after treatment with 131 I-rhEGF, Changes in tumor cell ultrastructure were observed by transmission electron microscopy (TEM), and pathological changes in tumor tissue were observed by light microscopy. Results: The tissue distribution assay revealed that 131 I-rhEGF was markedly absorbed by the tumor and reached its maximal uptake rate (16.73% ID·g-l) at 120 h, at which point the drug concentration in the tumor was 11.1-fold, 8.1-fold, 6.6-fold higher than that in blood, liver, kidneys, respectively. The tumor size measurements showed that tumor development was significantly inhibited by intravenously and intratumorally injected 131 I-rhEGF. The extent of tumor inhibition rates (82.0% and 80.7%, respectively) were significantly higher than those of tumors treated with 131 I (7.49%) and 131 I-HSA (6.91%; P 131 I-rhEGF could significantly damage and ultimately kill tumor cells. Conclusions: Our results suggest that 131 I-rhEGF suppresses development of xenografted breast cancer cells in nude mice, providing a novel candidate for receptor-mediated targeted radiotherapy. Key words. Iodine-131 rhEGF Breast cancer Therapy. (authors)

  12. Viability of D283 medulloblastoma cells treated with a histone deacetylase inhibitor combined with bombesin receptor antagonists.

    Science.gov (United States)

    Jaeger, Mariane; Ghisleni, Eduarda C; Fratini, Lívia; Brunetto, Algemir L; Gregianin, Lauro José; Brunetto, André T; Schwartsmann, Gilberto; de Farias, Caroline B; Roesler, Rafael

    2016-01-01

    Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists. D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting. NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number. Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.

  13. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  15. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  16. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  17. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    Science.gov (United States)

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  18. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  19. Comparison of MEK/ERK pathway inhibitors on the upregulation of vascular G-protein coupled receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Ansar, Saema; Edvinsson, Lars

    2010-01-01

    on translational level and increased respective contractions. The prostanoid TP receptor mediated contraction curve was left-wards shifted by organ culture. Organ culture was associated with elevated pERK1/2 in the vascular smooth muscle cells: the MEK1/2 inhibitor U0126 attenuated the endothelin ET(B) receptor...... mediated contraction at post-translational level or by changing the receptor affinities. The serotonin 5-HT(1B) receptor and prostanoid TP receptor mediated contractions were abolished by U0126. Administration of U0126 6h after start of incubation blocked the receptor upregulation. In conclusion, MEK...

  20. Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals.

    Science.gov (United States)

    Li, Yingxiao; Cheng, Kai Chun; Niu, Chiang-Shan; Lo, Shih-Hsiang; Cheng, Juei-Tang; Niu, Ho-Shan

    2017-01-01

    G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) has been shown to participate in glucose homeostasis. In animal models, a TGR5 agonist increases incretin secretion to reduce hyperglycemia. Many agonists have been developed for clinical use. However, the effects of TGR5 blockade have not been studied extensively, with the exception of studies using TGR5 knockout mice. Therefore, we investigated the potential effect of triamterene on TGR5. We transfected the TGR5 gene into cultured Chinese hamster ovary cells (CHO-K1 cells) to express TGR5. Then, we applied a fluorescent indicator to examine the glucose uptake of these transfected cells. In addition, NCI-H716 cells that secrete incretin were also evaluated. Fura-2, a fluorescence indicator, was applied to determine the changes in calcium concentrations. The levels of cyclic adenosine monophosphate (cAMP) and glucagon-like peptide (GLP-1) were estimated using enzyme-linked immunosorbent assay kits. Moreover, rats with streptozotocin (STZ)-induced type 1-like diabetes were used to investigate the effects in vivo. Triamterene dose dependently inhibits the increase in glucose uptake induced by TGR5 agonists in CHO-K1 cells expressing the TGR5 gene. In cultured NCI-H716 cells, TGR5 activation also increases GLP-1 secretion by increasing calcium levels. Triamterene inhibits the increased calcium levels by TGR5 activation through competitive antagonism. Moreover, the GLP-1 secretion and increased cAMP levels induced by TGR5 activation are both dose dependently reduced by triamterene. However, treatment with KB-R7943 at a dose sufficient to block the Na + /Ca 2+ exchanger (NCX) failed to modify the responses to TGR5 activation in NCI-H716 cells or CHO-K1 cells expressing TGR5. Therefore, the inhibitory effects of triamterene on TGR5 activation do not appear to be related to NCX inhibition. Blockade of TGR5 activation by triamterene was further characterized in vivo using the STZ-induced diabetic rats

  1. Comparison of MEK/ERK pathway inhibitors on the upregulation of vascular G-protein coupled receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Ansar, Saema; Edvinsson, Lars

    2010-01-01

    on translational level and increased respective contractions. The prostanoid TP receptor mediated contraction curve was left-wards shifted by organ culture. Organ culture was associated with elevated pERK1/2 in the vascular smooth muscle cells: the MEK1/2 inhibitor U0126 attenuated the endothelin ET(B) receptor......Organ culture is an in vitro method for investigating cellular mechanisms involved in upregulation of vasocontractile G-protein coupled receptors. We hypothesize that mitogen-activated-protein kinase (MEK) and/or extracellular-signal-regulated kinase (ERK) specific inhibitors will attenuate the G......), prostanoid TP receptor, and angiotensin II receptor type 1 and type 2 were investigated. Results were verified by measurement of mRNA with real time PCR and by protein immunohistochemistry. Organ culture induced transcriptional upregulation of endothelin ET(B) receptor and of serotonin 5-HT(1B) receptor...

  2. [Ala12]MCD peptide: a lead peptide to inhibitors of immunoglobulin E binding to mast cell receptors.

    Science.gov (United States)

    Buku, A; Condie, B A; Price, J A; Mezei, M

    2005-09-01

    An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.

  3. Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs)

    International Nuclear Information System (INIS)

    Schiff, Rachel; Chamness, Gary C; Brown, Powel H

    2003-01-01

    Intensive basic and clinical research over the past 20 years has yielded crucial molecular understanding into how estrogen and the estrogen receptor act to regulate breast cancer and has led to the development of more effective, less toxic, and safer hormonal therapy agents for breast cancer management and prevention. Selective potent aromatase inhibitors are now challenging the hitherto gold standard of hormonal therapy, the selective estrogen-receptor modulator tamoxifen. Furthermore, new selective estrogen-receptor modulators such as arzoxifene, currently under clinical development, offer the possibility of selecting one with a more ideal pharmacological profile for treatment and prevention of breast cancer. Two recent studies in preclinical model systems that evaluate mechanisms of action of these new drugs and suggestions about their optimal clinical use are discussed

  4. Potential role for epidermal growth factor receptor inhibitors in combined-modality therapy for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Choy, Hak

    2004-01-01

    There has been a surge of interest in the translation of discoveries in molecular biology into clinically relevant therapies in the field of hematology/oncology. The epidermal growth factor receptor (EGFR) has been a molecular target of significant interest and investigation, and preclinical and clinical studies support a role for targeted therapy in a variety of cancers, including non-small-cell lung cancer (NSCLC) via compounds that specifically inhibit EGFR. ZD1839, IMC-C225, and OSI-774 are the most clinically developed of these compounds. Interestingly, preclinical studies have demonstrated that EGFR inhibitors may have radiation-sensitizing properties, as well as increased cytotoxic activity in combination with chemotherapeutic agents, suggesting a potential role for EGFR inhibitors as an adjunct to the current combined-modality approach for therapy of Stage III NSCLC. Therefore, clinical trials have been proposed and initiated to address the issue of determining the impact of the addition of EGFR inhibitors to the standard combined-modality regimen (chemotherapy/radiation therapy ± surgery) for Stage III NSCLC. This article reviews preclinical and clinical data supporting the role for EGFR inhibitors alone or in combination with chemotherapy/radiation therapy for locally advanced NSCLC. Also, it will provide an overview of ongoing and proposed clinical studies investigating the potential role for EGFR inhibitors in Stage III NSCLC

  5. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy.

  6. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial

    DEFF Research Database (Denmark)

    NN, NN; Yusuf, S; Teo, K

    2008-01-01

    BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitors reduce major cardiovascular events, but are not tolerated by about 20% of patients. We therefore assessed whether the angiotensin-receptor blocker telmisartan would be effective in patients intolerant to ACE inhibitors with cardiovascular...

  7. Radioimmunoscintigraphy with monoclonal antibody Technetium-99m-Anti-EGF-Receptor (R3-MAB) for the detection of head and neck tumours, metastasis and recurrence. Final report for the period 15 April 1995 - 15 April 1997

    International Nuclear Information System (INIS)

    Oliva Gonzalez, J.P.

    1998-03-01

    A clinical study was carried out to determine the sensitivity of radioimmunoscintigraphy (RIS) using indigenously produced mouse monoclonal antibody (MAB) against epidermal growth factor receptor in the detection of primary, recurrent and metastatic malignant epithelial tumours of the head and neck region in 13 patients. The MAB was labelled with 99m Tc and imaging was carried out using gamma camera and SPECT. The results were correlated with histopathological findings. RIS gave a sensitivity of 76.9%. This study showed that the indigenously produced MAB can be used for the detection of malignant epithelial tumours in the head and neck region but the MAB will be further characterized to improve its sensitivity in the detection of the neoplasia. (author)

  8. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling

    Science.gov (United States)

    Bharatham, Kavitha; Bharatham, Nagakumar; Kwon, Yong Jung; Lee, Keun Woo

    2008-12-01

    Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1-282-allosteric inhibitor complex crystal structure lacks α7 (287-298) and moreover there is no available 3D structure of PTP1B1-298 in open form. As the interaction between α7 and α6-α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1-282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7-α6-α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.

  9. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  10. Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma

    International Nuclear Information System (INIS)

    Miyata, Kohei; Yotsumoto, Fusanori; Nam, Sung Ouk; Odawara, Takashi; Manabe, Sadao; Ishikawa, Toyokazu; Itamochi, Hiroaki; Kigawa, Junzo; Takada, Shuji; Asahara, Hiroshi; Kuroki, Masahide; Miyamoto, Shingo

    2014-01-01

    Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF–targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5′-deletion promoter constructs identified a GC-rich element between −125 and −178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells

  11. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  12. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    Science.gov (United States)

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  13. Microfluidic generated EGF-gradients induce chemokinesis of transplantable retinal progenitor cells via the JAK/STAT and PI3kinase signaling pathways.

    Directory of Open Access Journals (Sweden)

    Uchenna J Unachukwu

    Full Text Available A growing number of studies are evaluating retinal progenitor cell (RPC transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR and evaluated whether exposure to epidermal growth factor (EGF can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400 ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.

  14. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  15. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  16. Clinical Pharmacokinetics of Sacubitril/Valsartan (LCZ696): A Novel Angiotensin Receptor-Neprilysin Inhibitor.

    Science.gov (United States)

    Ayalasomayajula, Surya; Langenickel, Thomas; Pal, Parasar; Boggarapu, Sreedevi; Sunkara, Gangadhar

    2017-12-01

    Sacubitril/valsartan (LCZ696) is indicated for the treatment of heart failure with reduced ejection fraction. Absorption of sacubitril/valsartan and conversion of sacubitril (prodrug) to sacubitrilat (neprilysin inhibitor) was rapid with maximum plasma concentrations of sacubitril, sacubitrilat, and valsartan (angiotensin receptor blocker) reaching within 0.5, 1.5-2.0, and 2.0-3.0 h, respectively. With a two-fold increase in dose, an increase in the area under the plasma concentration-time curve was proportional for sacubitril, ~1.9-fold for sacubitrilat, and ~1.7-fold for valsartan in healthy subjects. Following multiple twice-daily administration, steady-state maximum plasma concentration was reached within 3 days, showing no accumulation for sacubitril and valsartan, while ~1.6-fold accumulation for sacubitrilat. Sacubitril is eliminated predominantly as sacubitrilat through the kidney; valsartan is eliminated mainly by biliary route. Drug-drug interactions of sacubitril/valsartan were evaluated with medications commonly used in patients with heart failure including furosemide, warfarin, digoxin, carvedilol, levonorgestrel/ethinyl estradiol combination, amlodipine, omeprazole, hydrochlorothiazide, intravenous nitrates, metformin, statins, and sildenafil. Co-administration with sacubitril/valsartan increased the maximum plasma concentration (~2.0-fold) and area under the plasma concentration-time curve (1.3-fold) of atorvastatin; however, it did not affect the pharmacokinetics of simvastatin. Age, sex, or ethnicity did not affect the pharmacokinetics of sacubitril/valsartan. In patients with heart failure vs. healthy subjects, area under the plasma concentration-time curves of sacubitril, sacubitrilat, and valsartan were higher by approximately 1.6-, 2.1-, and 2.3-fold, respectively. Renal impairment had no significant impact on sacubitril and valsartan area under the plasma concentration-time curves, while the area under the plasma concentration-time curve of

  17. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    with receptors in which 1, 2, or all 3 tyrosines were changed to phenylalanines. The triple point mutant EGF-R, expressed in NIH-3T3, exhibited low autophosphorylation in vivo, low biological and reduced kinase activities. Single and double point mutants were down-regulated, as well as wild type EGF......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  18. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    cell lines. Gefitinib, erlotinib and NVP-AEE788 caused a significant growth inhibition in vitro; however, there was a significant difference in efficacy (NVP-AEE788>erlotinib>gefitinib). After 14 days of in-vivo treatment, using the chimeric mouse model, tumors had a significantly reduced volume and mass after NVP-AEE788, but not after erlotinib treatment, as compared with placebo. Reduction of proliferation (signalling via the mitogen-activated protein kinase pathway), induction of apoptosis and inhibition of angiogenesis were the main mechanisms of drug action. No significant reduction of anti-apoptotic AKT phosphorylation, however, occurred, which may be a possible counter mechanism of the tumor. Epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 expression was detectable in biliary tract cancer, and receptor inhibition exerts marked effects on tumor growth in vitro and in vivo, which was strongest for the dual EGFR/ErbB-2 inhibitor NVP-AEE788. Therefore, further clinical evaluation of this new drug for the treatment of biliary tract cancer is recommended.

  19. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-10-25

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.

  20. Increase in tumour permeability following TGF-? type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI

    OpenAIRE

    Minowa, T; Kawano, K; Kuribayashi, H; Shiraishi, K; Sugino, T; Hattori, Y; Yokoyama, M; Maitani, Y

    2009-01-01

    Background: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent. Methods: To apply transforming growth factor (TGF)-? type I receptor (T?R-I) inhibitor, A-83-01, to combined therapy, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium ...

  1. Treatment of type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2004-01-01

    in the treatment of Type 2 diabetes, causing marked improvements in glycaemic profile, insulin sensitivity and beta-cell performance, as well as weight reduction. The hormone is metabolised rapidly by the enzyme dipeptidyl peptidase IV (DPP-IV) and, therefore, cannot be easily used clinically. Instead, resistant...... with exendin have been carried out for > 6 months and have indicated efficacy in patients inadequately treated with oral antidiabetic agents. Orally active DPP-IV inhibitors, suitable for once-daily administration, have demonstrated similar efficacy. Diabetes therapy, based on GLP-1 receptor activation...

  2. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  3. Two selective novel triterpene glycosides from sea cucumber, Telenata ananas: Inhibitors of chemokine receptor-5

    Digital Repository Service at National Institute of Oceanography (India)

    Hegde, V.R.; Chan, T.-M.; Pu, H.; Gullo, V.P.; Patel, M.G.; Das, P.; Wagner, N.; Parameswaran, P.S.; Naik, C.G.

    mostclinicallyrelevantsince all HIV-1 isolates can utilize one or both of these receptors to gain entry into cells. Recently, much atten- tion has been focused on targeting these receptors for antiviral therapy. The CCR5 receptor has been particu- larly attractive since... and that blockade of these receptors by a specific antagonist will not severely affect normal immune function. Several small molecule antagonists of CCR5 are being developed for HIV therapy, one of which, SCH-C, 3 is currently in clinical trials. As part of our...

  4. EGF-Induced VEGF Exerts a PI3K-Dependent Positive Feedback on ERK and AKT through VEGFR2 in Hematological In Vitro Models.

    Directory of Open Access Journals (Sweden)

    Lilian Saryeddine

    Full Text Available EGFR and VEGFR pathways play major roles in solid tumor growth and progression, however, little is known about these pathways in haematological tumors. This study investigated the crosstalk between EGFR and VEGFR2 signaling in two hematological in vitro models: THP1, a human monocytic leukemia, and Raji, a Burkitt's lymphoma, cell lines. Results showed that both cell lines express EGFR and VEGFR2 and responded to EGF stimulation by activating EGFR, triggering VEGF production and phosphorylating ERK, AKT, and p38 very early, with a peak of expression at 10-20min. Blocking EGFR using Tyrphostin resulted in inhibiting EGFR induced activation of ERK, AKT, and p38. In addition, EGF stimulation caused a significant and immediate increase, within 1min, in pVEGFR2 in both cell lines, which peaked at ~5-10 min after treatment. Selective inhibition of VEGFR2 by DMH4, anti-VEGFR2 antibody or siRNA diminished EGF-induced pAKT and pERK, indicating a positive feedback exerted by EGFR-induced VEGF. Similarly, the specific PI3K inhibitor LY294002, suppressed AKT and ERK phosphorylation showing that VEGF feedback is PI3K-dependent. On the other hand, phosphorylation of p38, initiated by EGFR and independent of VEGF feedback, was diminished using PLC inhibitor U73122. Moreover, measurement of intracellular [Ca2+] and ROS following VEGFR2 inhibition and EGF treatment proved that VEGFR2 is not implicated in EGF-induced Ca2+ release whereas it boosts EGF-induced ROS production. Furthermore, a significant decrease in pAKT, pERK and p-p38 was shown following the addition of the ROS inhibitor NAC. These results contribute to the understanding of the crosstalk between EGFR and VEGFR in haematological malignancies and their possible combined blockade in therapy.

  5. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  6. Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-β type I receptor inhibitor

    International Nuclear Information System (INIS)

    Taniguchi, Yukimi; Kawano, Kumi; Minowa, Takuya; Shimojo, Yuki; Maitani, Yoshie; Sugino, Takashi

    2010-01-01

    Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-β type I receptor (TβR-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of TβR-I inhibitor will open a new strategy for the use of folate receptor (FR)-targeting nanocarriers for cancer treatment. (author)

  7. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. A Specific Inhibitor of TGF-β Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers

    Directory of Open Access Journals (Sweden)

    Sunil K. Halder

    2005-05-01

    Full Text Available Small molecule inhibitors of signaling pathways have proven to be extremely useful for the development of therapeutic strategies for human cancers. Blocking the tumor-promoting effects of transforming growth factor-β (TGF-β in advanced stage carcinogenesis provides a potentially interesting drug target for therapeutic intervention. Although very few TGF-β receptor kinase inhibitors (TRKI are now emerging in preclinical studies, nothing is known about how these inhibitors might regulate the tumor-suppressive or tumor-promoting effects of TGF-β, or when these inhibitors might be useful for treatment during cancer progression. We have investigated the potential of TRKI in new therapeutic approaches in preclinical models. Here, we demonstrate that the TRKI, SB-431542, inhibits TGF-β-induced transcription, gene expression, apoptosis, and growth suppression. We have observed that SB-431542 attenuates the tumor-promoting effects of TGF-β, including TGF-β-induced EMT, cell motility, migration and invasion, and vascular endothelial growth factor secretion in human cancer cell lines. Interestingly, SB-431542 induces anchorage independent growth of cells that are growth-inhibited by TGF-β, whereas it reduces colony formation by cells that are growth-promoted by TGF-β. However, SB-431542 has no effect on a cell line that failed to respond to TGF-β. This represents a novel potential application of these inhibitors as therapeutic agents for human cancers with the goal of blocking tumor invasion, angiogenesis, and metastasis, when tumors are refractory to TGF-β-induced tumor-suppressor functions but responsive to tumor-promoting effects of TGF-β.

  9. Disposition and metabolism of [(14)C] Sacubitril/Valsartan (formerly LCZ696) an angiotensin receptor neprilysin inhibitor, in healthy subjects.

    Science.gov (United States)

    Flarakos, Jimmy; Du, Yancy; Bedman, Timothy; Al-Share, Qusai; Jordaan, Pierre; Chandra, Priya; Albrecht, Diego; Wang, Lai; Gu, Helen; Einolf, Heidi J; Huskey, Su-Er; Mangold, James B

    2016-11-01

    1. Sacubitril/valsartan (LCZ696) is an angiotensin receptor neprilysin inhibitor (ARNI) providing simultaneous inhibition of neprilysin (neutral endopeptidase 24.11; NEP) and blockade of the angiotensin II type-1 (AT1) receptor. 2. Following oral administration, [(14)C]LCZ696 delivers systemic exposure to valsartan and AHU377 (sacubitril), which is rapidly metabolized to LBQ657 (M1), the biologically active neprilysin inhibitor. Peak sacubitril plasma concentrations were reached within 0.5-1 h. The mean terminal half-lives of sacubitril, LBQ657 and valsartan were ∼1.3, ∼12 and ∼21 h, respectively. 3. Renal excretion was the dominant route of elimination of radioactivity in human. Urine accounted for 51.7-67.8% and feces for 36.9 to 48.3 % of the total radioactivity. The majority of the drug was excreted as the active metabolite LBQ657 in urine and feces, total accounting for ∼85.5% of the total dose. 4. Based upon in vitro studies, the potential for LCZ696 to inhibit or induce cytochrome P450 (CYP) enzymes and cause CYP-mediated drug interactions clinically was found to be low.

  10. Sibiriline, a new small chemical inhibitor of receptor-interacting protein kinase 1, prevents immune-dependent hepatitis.

    Science.gov (United States)

    Le Cann, Fabienne; Delehouzé, Claire; Leverrier-Penna, Sabrina; Filliol, Aveline; Comte, Arnaud; Delalande, Olivier; Desban, Nathalie; Baratte, Blandine; Gallais, Isabelle; Piquet-Pellorce, Claire; Faurez, Florence; Bonnet, Marion; Mettey, Yvette; Goekjian, Peter; Samson, Michel; Vandenabeele, Peter; Bach, Stéphane; Dimanche-Boitrel, Marie-Thérèse

    2017-09-01

    Necroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells. Moreover, Sib inhibits necroptotic cell death induced by various death ligands in human or mouse cells while not protecting from caspase-dependent apoptosis. By using competition binding assay and recombinant kinase assays, we demonstrated that Sib is a rather specific competitive RIPK1 inhibitor. Molecular docking analysis shows that Sib is trapped closed to human RIPK1 adenosine triphosphate-binding site in a relatively hydrophobic pocket locking RIPK1 in an inactive conformation. In agreement with its RIPK1 inhibitory property, Sib inhibits both TNF-induced RIPK1-dependent necroptosis and RIPK1-dependent apoptosis. Finally, Sib protects mice from concanavalin A-induced hepatitis. These results reveal the small-molecule Sib as a new RIPK1 inhibitor potentially of interest for the treatment of immune-dependent hepatitis. © 2017 Federation of European Biochemical Societies.

  11. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M. [Univ. of Michigan, Ann Arbor, MI (United States); Homan, Kristoff T. [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jun [Univ. of New Mexico Health Sciences Center, Albuquerque, NM (United States); Wu, Emily K. [Univ. of Michigan, Ann Arbor, MI (United States); Hinkle, Patricia M. [Univ. of Rochester Medical Center, Rochester, NY (United States); Huang, Z. Maggie [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Chuprun, J. Kurt [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Song, Jianliang [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Gao, Erhe [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Cheung, Joseph Y. [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Sklar, Larry A. [Univ. of New Mexico Health Sciences Center, Albuquerque, NM (United States); Koch, Walter J. [Temple Univ. School of Medicine, Philadelphia, Pennsylvania (United States); Tesmer, John J.G. [Univ. of Michigan, Ann Arbor, MI (United States)

    2012-08-10

    G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. In this paper we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine–Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice with paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.

  12. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    Directory of Open Access Journals (Sweden)

    Meirson T

    2017-05-01

    Full Text Available Tomer Meirson, Abraham O Samson, Hava Gil-Henn Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel Abstract: The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2 is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. Keywords: virtual screen, efficiency metrics, MM-GBSA, molecular dynamics

  13. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Directory of Open Access Journals (Sweden)

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  14. Reduction of the protective effect of β-receptor inhibitors on E.coli bacteria

    International Nuclear Information System (INIS)

    Zywietz, F.; Brueckner, V.; Linden, W.

    1974-01-01

    Bacteria of E.coli B/r strain were tested with selenium-substituted amino acids for effects concerning radiation protection. Selenium-methionine was used for the tests. The B-receptor blocker Propanolol (Docitonsup(R)) was applied additionally. The irradiation was carried out on a 200 kV-γ-ray unit with a dose rate of 1,000 R/min. For selenium-methionine a maximum dose reduction factor (DRF) of 1.8 was found. The results of the present tests show that the radiation resistance-increasing effect of the protective substances used here, selenium methionine and cystein, was eliminated partially or totally by the β-receptor blocker. To what extent the development of a substance receptor complex important for the efficiency of AMP mechanism is prevented by the receptor blocker must be seen from further experiments. (GSE) [de

  15. Polymer carriers for anticancer drugs targeted to EGF receptor

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Pola, Robert; Pechar, Michal; Etrych, Tomáš; Ulbrich, Karel; Kovář, Lubomír; Kabešová, Martina; Říhová, Blanka

    2012-01-01

    Roč. 12, č. 12 (2012), s. 1714-1720 ISSN 1616-5187 R&D Projects: GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : biocompatibility * EGFR * peptides Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M) Impact factor: 3.742, year: 2012

  16. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  17. New advances in pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors

    Science.gov (United States)

    Greig, Nigel H.; Reale, Marcella; Tata, Ada Maria

    2016-01-01

    receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer’s disease drugs. PMID:23597304

  18. Heparin-Binding EGF-like Growth Factor (HB-EGF) Therapy for Intestinal Injury: Application and Future Prospects

    Science.gov (United States)

    Yang, Jixin; Su, Yanwei; Zhou, Yu; Besner, Gail E.

    2014-01-01

    Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC. PMID:24345808

  19. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    International Nuclear Information System (INIS)

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-01-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

  20. ZN-INDUCED EGF RECEPTOR REQUIRES SRC-MEDIATED PHOSPHORYLATION OF EGF RECEPTOR ON TYROSINE 845. (R829214)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Tc-{sup 99m} direct radiolabeling of monoclonal antibody ior egf/r3: quality control and image studies in mice

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Carla Roberta; Marczewski, Barbara; Moraes, Vanessa; Barboza, Marycel Figols de; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: crdias@ipen.br

    2005-10-15

    Monoclonal antibodies (Mabs) have been useful for immunoscintigraphic applications in clinical diagnosis since they were introduced in the practice of nuclear medicine. The ior egf/r3 (Centis, Cuba) is a murine monoclonal antibody against epidermal growth factor receptor (EGF-R) and has been widely used in the radioimmunodiagnosis of tumors of epithelial origin. Labeled with 99m Tc, its main application in Nuclear Medicine is the follow up, detection and evaluation of tumor recurrences. The objective of this work is to describe the preparation of a lyophilized formulation (kit) for radiolabeling the Mab ior egf/r3 with 99m Tc for immunoscintigraphic applications. Radiolabeling efficiency, effects on immunoreactivity, image studies and stability of the formulation are reported. The study demonstrated that the kit formulation can be labeled with 99m Tc at high yields and can be used to visualize in vivo human tumors of epithelial origin by immunoscintigraphy studies.(author)

  2. Near Infrared Optical Visualization of Epidermal Growth Factor Receptors Levels in COLO205 Colorectal Cell Line, Orthotopic Tumor in Mice and Human Biopsies

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2013-07-01

    Full Text Available In this study, we present the applicability of imaging epidermal growth factor (EGF receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR. The near infrared (NIR bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6–9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.

  3. EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells.

    Science.gov (United States)

    Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik

    2005-02-01

    Endogenous generated hydrogen peroxide during eye bank storage limits viability. We determined in cultured human corneal endothelial cells (HCEC) whether: (1) this oxidant induces elevations in intracellular calcium concentration [Ca2+]i; (2) epidermal growth factor (EGF) medium supplementation has a protective effect against peroxide mediated rises in [Ca2+]i. Whereas pathophysiological concentrations of H2O2 (10 mM) induced irreversible large increases in [Ca2+]i, lower concentrations (up to 1 mM) had smaller effects, which were further reduced by exposure to either 5 microM nifedipine or EGF (10 ng ml(-1)). EGF had a larger protective effect against H2O2-induced rises in [Ca2+]i than nifedipine. In addition, icilin, the agonist for the temperature sensitive transient receptor potential protein, TRPM8, had complex dose-dependent effects (i.e. 10 and 50 microM) on [Ca2+]i. At 10 microM, it reversibly elevated [Ca2+]i whereas at 50 microM an opposite effect occurred suggesting complex effects of temperature on endothelial viability. Taken together, H2O2 induces rises in [Ca2+]i that occur through increases in Ca2+ permeation along plasma membrane pathways that include L-type Ca2+ channels as well as other EGF-sensitive pathways. As EGF overcomes H2O2-induced rises in [Ca2+]i, its presence during eye bank storage could improve the outcome of corneal transplant surgery.

  4. Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue

    DEFF Research Database (Denmark)

    Usher, Pernille Autzen; Thomsen, Ole Frøkjær; Iversen, Peter

    2005-01-01

    The plasminogen activation (PA) cascade participates in degradation of extracellular matrix during cancer invasion. We have studied the expression of urokinase-type plasminogen activator (uPA) mRNA, uPA receptor (uPAR) mRNA and immunoreactivity, and type-1 plasminogen activator inhibitor (PAI-1) m......RNA and immunoreactivity in 16 prostate adenocarcinomas and 9 benign prostate hyperplasias. uPA mRNA and uPAR mRNA expression were found in 9 and 8 of the adenocarcinomas, respectively, and in 7 and 6 of the benign hyperplasias, respectively. In both malignant and benign lesions, expression of these 2 m...... proximity to cancer cell islands. No immunoreactivity and/or mRNA expression of uPA, uPAR or PAI-1 was observed in cancer cells or in other epithelial cells in any of the cases....

  5. Docking-based Screening of Ficus religiosa Phytochemicals as Inhibitors of Human Histamine H2 Receptor.

    Science.gov (United States)

    Chaudhary, Amit; Yadav, Birendra Singh; Singh, Swati; Maurya, Pramod Kumar; Mishra, Alok; Srivastva, Shweta; Varadwaj, Pritish Kumar; Singh, Nand Kumar; Mani, Ashutosh

    2017-10-01

    Ficus religiosa L. is generally known as Peepal and belongs to family Moraceae . The tree is a source of many compounds having high medicinal value. In gastrointestinal tract, histamine H2 receptors have key role in histamine-stimulated gastric acid secretion. Their over stimulation causes its excessive production which is responsible for gastric ulcer. This study aims to screen the range of phytochemicals present in F. religiosa for binding with human histamine H2 and identify therapeutics for a gastric ulcer from the plant. In this work, a 3D-structure of human histamine H2 receptor was modeled by using homology modeling and the predicted model was validated using PROCHECK. Docking studies were also performed to assess binding affinities between modeled receptor and 34 compounds. Molecular dynamics simulations were done to identify most stable receptor-ligand complexes. Absorption, distribution, metabolism, excretion, and screening was done to evaluate pharmacokinetic properties of compounds. The results suggest that seven ligands, namely, germacrene, bergaptol, lanosterol, Ergost-5-en-3beta-ol, α-amyrin acetate, bergapten, and γ-cadinene showed better binding affinities. Among seven phytochemicals, lanosterol and α-amyrin acetate were found to have greater stability during simulation studies. These two compounds may be a suitable therapeutic agent against histamine H2 receptor. This study was performed to screen antiulcer compounds from F. religiosa . Molecular modeling, molecular docking and MD simulation studies were performed with selected phytochemicals from F. religiosa . The analysis suggests that Lanosterol and α-amyrin may be a suitable therapeutic agent against histamine H2 receptor. This study facilitates initiation of the herbal drug discovery process for the antiulcer activity. Abbreviations used: ADMET: Absorption, distribution, metabolism, excretion and toxicity, DOPE: Discrete Optimized Potential Energy, OPLS: Optimized potential for liquid

  6. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    OpenAIRE

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser108/121, HB-EGF-Cys/Ser116/132, and HB-EGF-Cys/Ser134/143) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with Mr of 6.5, 21 and 24kDa were observed from lys...

  7. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang H

    2016-11-01

    Full Text Available Haijun Zhang Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China Abstract: Lung cancer, ~80%–85% of which is non-small-cell lung cancer (NSCLC, is the leading cause of cancer-related mortality worldwide. Sensitizing mutations in epidermal growth factor receptor (EGFR gene (EGFRm+, such as exon 19 deletions and exon 21 L858R point mutations, are the most important drivers in NSCLC patients. In this respect, small-molecule EGFR tyrosine kinase inhibitors (TKIs have been designed and developed, which launched the era of targeted, personalized and precise medicine for lung cancer. Patients with EGFRm+ could achieve good responses to the treatment with the first-generation EGFR TKIs, such as erlotinib and gefitinib. However, most patients develop acquired drug resistance mostly driven by the T790M mutation occurring within exon 20. Although the second-generation EGFR TKIs, such as afatinib, dacomitinib and neratinib, demonstrated promising activity against T790M in preclinical models, they have failed to overcome resistance in patients due to dose-limiting toxicity. Recently, the third-generation EGFR TKIs have shown to be effective against cell lines and murine models harboring T790M mutations while sparing wild-type EGFR, which represents a promising breakthrough approach in overcoming T790M-mediated resistance in NSCLC patients. This article provides a comprehensive review of the therapy revolution for NSCLC with three generations of EGFR TKIs. Keywords: lung cancer, epidermal growth factor receptor, tyrosine kinase inhibitors, T790M mutation

  8. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: A meta-analysis.

    Science.gov (United States)

    Zhang, Ying-Shi; Li, Qing; He, Bo-Sai; Liu, Ran; Li, Zuo-Jing

    2015-05-28

    To compare the therapeutic effects of proton pump inhibitors vs H₂ receptor antagonists for upper gastrointestinal bleeding in patients after successful endoscopy. We searched the Cochrane library, MEDLINE, EMBASE and PubMed for randomized controlled trials until July 2014 for this study. The risk of bias was evaluated by the Cochrane Collaboration's tool and all of the studies had acceptable quality. The main outcomes included mortality, re-bleeding, received surgery rate, blood transfusion units and hospital stay time. These outcomes were estimated using odds ratios (OR) and mean difference with 95% confidence interval (CI). RevMan 5.3.3 software and Stata 12.0 software were used for data analyses. Ten randomized controlled trials involving 1283 patients were included in this review; 678 subjects were in the proton pump inhibitors (PPI) group and the remaining 605 subjects were in the H₂ receptor antagonists (H₂RA) group. The meta-analysis results revealed that after successful endoscopic therapy, compared with H₂RA, PPI therapy had statistically significantly decreased the recurrent bleeding rate (OR = 0.36; 95%CI: 0.25-0.51) and receiving surgery rate (OR = 0.29; 95%CI: 0.09-0.96). There were no statistically significant differences in mortality (OR = 0.46; 95%CI: 0.17-1.23). However, significant heterogeneity was present in both the numbers of patients requiring blood transfusion after treatment [weighted mean difference (WMD), -0.70 unit; 95%CI: -1.64 - 0.25] and the time that patients remained hospitalized [WMD, -0.77 d; 95%CI: -1.87 - 0.34]. The Begg's test (P = 0.283) and Egger's test (P = 0.339) demonstrated that there was no publication bias in our meta-analysis. In patients with upper gastrointestinal bleeding after successful endoscopic therapy, compared with H₂RA, PPI may be a more effective therapy.

  9. Significance of Interleukin-6 Signaling in the Resistance of Pharyngeal Cancer to Irradiation and the Epidermal Growth Factor Receptor Inhibitor

    International Nuclear Information System (INIS)

    Chen, C.-C.; Chen, W.-C.; Lu, C.-H.; Wang, W.-H.; Lin, P.-Y.; Lee, K.-D.; Chen, M.-F.

    2010-01-01

    Purpose: Tumor eradication by chemoradiotherapy for pharyngeal cancer has not been particularly successful. Targeting epithelial growth factor receptor (EGFR) could be a potential treatment strategy providing additional benefits, but only a subset of these tumors gives a clinically significant response to EGFR inhibitors. The aim has been to identify the role of interleukin-6 (IL-6) signaling and its predictive power in the treatment response of pharyngeal cancer. Methods and Materials: Human pharyngeal cancer cell lines, including the hypopharyngeal cancer cell line FaDu and its derived cell line FaDu-C225-R, were selected. Changes in tumor growth, response to treatment, and responsible signaling pathway were investigated in vitro. Furthermore, 95 pharyngeal cancer tissue specimens were analyzed by immunohistochemical staining, and correlations were made between levels of IL-6, IL-6 receptor (IL-6R), p-AKT, and p-STAT3 expression and the clinical outcome of patients. Results: In vitro, either extrinsic IL-6 stimulation of cancer cells or intrinsically activated IL-6 signaling detected in FADu-C225-R cells results in resistance to irradiation and EGFR inhibitor. Blocking IL-6 signaling attenuated aggressive tumor behavior and sensitized the cells to treatments. The responsible mechanisms included decreased p-STAT3, less nuclear translocation of EGFR, and subsequently attenuated epithelial-mesenchymal transition. Regarding clinical data, staining of p-STAT3 and IL-6 was significantly linked with lower response rates to treatments and shorter survival in pharyngeal cancer patients. Conclusions: IL-6 and p-STAT3 may be significant predictors of pharyngeal carcinoma, and regulating IL-6 signaling can be considered a promising therapeutic approach.

  10. Clinical implications of recent studies using mTOR inhibitors to treat advanced hormone receptor-positive breast cancer

    International Nuclear Information System (INIS)

    Arena, Francis

    2014-01-01

    Breast cancer is a leading cause of cancer-related death worldwide. Approximately 75% of breast cancer is hormone receptor-positive (HR + ) and is managed with endocrine therapies. However, relapse or disease progression caused by primary or acquired endocrine resistance is frequent. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)-mediated signaling is one of the molecular mechanisms leading to endocrine resistance. mTOR inhibitors that target the PI3K/Akt/mTOR pathway are the first of the targeted therapies to be evaluated in clinical trials to overcome endocrine resistance. Although the clinical trial with temsirolimus, an mTOR inhibitor, did not show any benefit when compared with endocrine therapy alone, a Phase II clinical trial with sirolimus has been promising. Recently, everolimus was approved in combination with exemestane by the US Food and Drug Administration for treating postmenopausal women with advanced HR + breast cancer, based on the results of a Phase III trial. Therefore, everolimus represents the first and only targeted agent approved for combating endocrine resistance

  11. Effects of angiotensin converting enzyme inhibitor and angiotensin II antagonist receptor on neointima hyperplasia after vascular balloon injury

    International Nuclear Information System (INIS)

    Wang Yeling; Zhao Lihua

    2004-01-01

    Objective: To study the effects of angiotensin converting enzyme inhibitor (captopril) and angiotensin II antagonist receptor (valsartan) on neointima hyperplasia after vascular balloon injury. Methods: Thirty-six rabbit models were randomly divided into three groups: injuried group, captopril group and valsartan group. Captopril (2 mg·kg -1 ·d -1 po) and valsartan (10 mg·kg -1 ·d -1 po) were given to twelve rabbits respectively from 1 day before the right carotidarteries were injuried by 2.0 mm ballon cathether to 14 days after injury in captopil group and valsartan group. The medicine was not administered in the injuried group. The tissue plasminogen activator (tPA), plaminogen activor inhibitor-1 (PAI-1) antigen level and plasma endothelin (ET) levels were measured before injury, and 7, 14 days after vascular injury. The pathomorphoiogical examination were carried out 14 days after angioplasty. Results: The levels of plasma PAI-1 and ET in captopril group and valsartan group were significantly lower than those in the injuried group (P<0.05). The intimal thickness and extent of lumen stenosis in captopril and valsartan groups were significantly lower than those in the injuried group (P<0.05). Conclusion: Captopril and valsartan can inhibit neointima hyperplasia after vascular ballon injury. (authors)

  12. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer.

    Science.gov (United States)

    Biron, Eric; Bédard, François

    2016-07-01

    The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    International Nuclear Information System (INIS)

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung; Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon; Cho, Dong-Hyung

    2011-01-01

    Highlights: → We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. → Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. → Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. → Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  14. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials

    DEFF Research Database (Denmark)

    Madsbad, Sten; Krarup, Thure; Deacon, Carolyn F

    2008-01-01

    -acting glucagon-like peptide-1 receptor agonists liraglutide and exenatide long-acting release reduce haemoglobin A1c by about 1.0-2.0% and have fewer gastrointestinal side-effects. The orally available dipeptidyl peptidase-4 inhibitors, that is sitagliptin and vildagliptin reduce haemoglobin A1c by 0...

  15. The intestinotrophic peptide, GLP-2, counteracts the gastrointestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, erlotinib, and cisplatin

    DEFF Research Database (Denmark)

    Rasmussen, Andreas Rosén; Viby, Niels-Erik; Hare, Kristine Juul

    2010-01-01

    Erlotinib, an epidermal-growth-factor receptor inhibitor, belongs to a new generation of targeted cancer therapeutics. Gastrointestinal side-effects are common and have been markedly aggravated when erlotinib is combined with cytostatics. We examined the effects of erlotinib alone and combined wi...

  16. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    Science.gov (United States)

    2017-10-01

    response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...hormones that play a critical role in stimulating prostate cancer growth. Androgens activate a protein called the androgen receptor (AR), which...treat patients with prostate cancer, over time the tumors become resistant to the drugs, leaving few treatment options. The goal of this proposal is to

  17. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    Science.gov (United States)

    2016-10-01

    findings in the journal Cancer Research. 15. SUBJECT TERMS androgen receptor, prostate cancer, peptidomimetic conjugates, 16. SECURITY CLASSIFICATION OF...CAN-16-0385. Epub 2016 Aug 3, which is widely read by basic and clinical oncologists. The study was also highlighted in the journal Nature Reviews...This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received February 11

  18. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    Science.gov (United States)

    2017-10-01

    treat patients with prostate cancer, over time the tumors become resistant to the drugs, leaving few treatment options. The goal of this proposal is to...interactions with the AR. 15. SUBJECT TERMS androgen receptor, prostate cancer, peptidomimetic conjugates, 16. SECURITY CLASSIFICATION OF: 17...used successfully to treat patients with prostate cancer, over time the tumors become resistant to the drugs, leaving few treatment options. The goal

  19. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    OpenAIRE

    Yee, Douglas

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response...

  20. A new receptor tyrosine kinase inhibitor, icotinib, for patients with lung adenocarcinoma cancer without indication for chemotherapy.

    Science.gov (United States)

    Zheng, Xiao; Liu, Guan; Wang, Shengye; Zhang, Yunli; Bao, Wenlong; Deng, Dehou; Mao, Weiming; Fang, Meiyu

    2014-10-01

    Epidermal growth factor receptor (EGFR) is an important therapeutic target in lung cancer. Gefitinib and erlotinib, two reversible EGFR receptor tyrosine kinases inhibitors (TKIs), have been approved for the treatment of patients with metastatic non small-cell lung cancer. Icotinib, which is a selective EGFR-TKI, provides a similar efficacy to gefitinib. The present study aimed to investigate the survival and safety of icotinib in patients with lung adenocarcinoma with a poor performance status (PS). A total of 42 cases of lung adenocarcinoma, including 35 females and 7 males, were enrolled. Icotinib was used as the first-line of treatment due to poor PS of the patient or a more advanced age. Icotinib (125 mg) was orally administered three times per day. The overall response rate and disease control rates were 33.3 and 85.7%, respectively. The median survival time was 13.0 months (95% CI, 5.6-20.4), The median progression-free survival time was 7.0 months, and the 1-year survival rate was 71.4%. A total of 79% of patients had an improved PS following icotinib treatment. Grade 1 to 2 rashes and diarrhea were the most frequent side effects. One patient succumbed during the study due to interstitial pneumonia. In conclusion, this is the first study indicating that patients with lung adenocarcinoma and poor PS may benefit from first-line icotinib therapy, but should be cautious of the occurrence of interstitial lung disease.

  1. Stat5 phosphorylation is responsible for the excessive potency of HB-EGF.

    Science.gov (United States)

    Heo, Jeongyeon; Kim, Jae Geun; Kim, Sunghwan; Kang, Hara

    2017-12-23

    Heparin-binding EGF-like growth factor (HB-EGF) is a potent growth factor involved in wound healing and tumorigenesis. Despite the sequence similarity between HB-EGF and EGF, HB-EGF induces cellular proliferation and migration more potently than EGF. However, the differential regulation by HB-EGF and EGF has not been thoroughly elucidated. In this study, we compared signaling pathways activated by HB-EGF and EGF to understand the details of the molecular mechanism of the high potency induced by HB-EGF. HB-EGF specifically induced the phosphorylation of EGFR-Y1045 and activated Stat5, which is responsible for promoting cell proliferation, and migration. The competition of phosphorylated EGFR-Y1045 inhibited Stat5 activation and consequently lowered the effect of HB-EGF on cell proliferation, suggesting that the phosphorylation of EGFR-Y1045 is essential for the activation of Stat5. The phosphorylation of EGFR-Y1045 and Stat5 induced by HB-EGF was prevented by sequestering the heparin-binding domain, suggesting that the heparin-binding domain is critical for HB-EGF-mediated signaling and cellular responses. In conclusion, the heparin-binding domain of HB-EGF was responsible for EGFR-mediated Stat5 activation, resulting in a more potent cellular proliferation, and migration than that mediated by EGF. This molecular mechanism is useful for understanding ligand-specific EGFR signaling and developing biomedicines for wound healing or cancer therapy. © 2017 Wiley Periodicals, Inc.

  2. Addition of vitamin D reverses the decline in GFR following treatment with ACE inhibitors/angiotensin receptor blockers in patients with chronic kidney disease.

    Science.gov (United States)

    Soares, Abel Esteves; Maes, Michael; Godeny, Paula; Matsumoto, Andressa Keiko; Barbosa, Décio Sabbatini; da Silva, Taysa Antonia F; Souza, Flávio Henrique M O; Delfino, Vinicius Daher Alvares

    2017-12-15

    Vitamin D has anti-inflammatory, anti-fibrotic effect, and may block the intrarenal renin-angiotensin system. Adequate vitamin D levels in conjunction with the use of Angiotensin-converting Enzyme Inhibitors/Angiotensin Receptor Blockers may help to slow down chronic kidney disease progression. To study a possible beneficial effect of vitamin D supplementation in chronic kidney disease patients using angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on chronic kidney disease progression we performed a clinical study involving vitamin D supplementation in patients with deficiency of this vitamin. This study was conducted in two chronic kidney disease clinics in the city of Londrina, Brazil, from October 2010 to December 2012. It was involved stage 3 and 4 chronic kidney disease (estimated glomerular filtration rate between 60 and 15mL/min/1.73m 2 ) patients with and without vitamin D deficiency. The patients ingested six-month cholecalciferol 50,000IU oral supplementation to chronic kidney disease patients with vitamin D deficiency. We hypothesize changes in estimated glomerular filtration rate over study period. Our data demonstrate reservation of estimated glomerular filtration with cholecalciferol supplementation to chronic kidney disease patients taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. The combination treatment of angiotensin converting enzyme inhibitors/angiotensin receptor blockers with cholecalciferol prevents the decline in estimated glomerular filtration in patients with chronic kidney disease following treatment with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and may represent a valid approach to reduce renal disease progression in chronic kidney disease patients with vitamin D deficiency. This result needs confirmation in prospective controlled clinical trials. Copyright © 2017. Published by Elsevier Inc.

  3. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi; Sekine, Yoshimoto [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Nakamura, Kazuhiko; Anitha, Ayyappan; Suda, Shiro [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Yamada, Kazuo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Tsujii, Masatsugu [Faculty of Sociology, Chukyo University, Toyota, Aichi (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Yoshikawa, Takeo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Miyachi, Taishi; Tsuchiya, Kenji; Sugihara, Gen-ichi; Matsuzaki, Hideo [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwata, Yasuhide; Suzuki, Katsuaki [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Mori, Norio [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University (Japan); Ouchi, Yasuomi [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); [The Positron Medical Center, Hamamatsu Medical Center, Hamamatsu (Japan); Sugiyama, Toshiro [Aichi Children' s Health and Medical Center, Obu, Aichi (Japan); Takei, Nori [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan)

    2007-09-07

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.

  4. SNP analyses of growth factor genes EGF, TGFβ-1, and HGF reveal haplotypic association of EGF with autism

    International Nuclear Information System (INIS)

    Toyoda, Takao; Nakamura, Kazuhiko; Yamada, Kazuo; Thanseem, Ismail; Anitha, Ayyappan; Suda, Shiro; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio

    2007-01-01

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-β (TGFβ) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFβ1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFβ1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism

  5. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Solmi, Rossella [Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna (Italy); Montroni, Isacco [Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Bologna (Italy); Mattei, Gabriella [Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna (Italy); Taffurelli, Mario [Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Bologna (Italy); Santini, Donatella [Dipartimento di Patologia, Università di Bologna, Bologna (Italy); Pezzetti, Furio [Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna (Italy); Ruggeri, Alessandro [Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell' Apparato Locomotore, Università di Bologna, Bologna (Italy); Castellani, Gastone [Centro Interdipartimentale L. Galvani, Università di Bologna, Bologna (Italy); DIMORFIPA, Università di Bologna, Bologna (Italy); Guidotti, Lia [Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna (Italy); Coppola, Domenico [H. Lee Moffit Cancer Center and Research Institute, University of South Florida, Tampa, FL (United States); Strippoli, Pierluigi; Lauriola, Mattia [Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna (Italy); Francesconi, Mirko [Centro Interdipartimentale L. Galvani, Università di Bologna, Bologna (Italy); DIMORFIPA, Università di Bologna, Bologna (Italy); Martini, Désirée [Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell' Apparato Locomotore, Università di Bologna, Bologna (Italy); Voltattorni, Manuela [Laboratori di Biotecnologie, Via Beverara 123, Bologna (Italy); Ceccarelli, Claudio [Dipartimento di Patologia, Università di Bologna, Bologna (Italy); Ugolini, Giampaolo; Rosati, Giancarlo; Zanotti, Simone [Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Bologna (Italy)

    2008-08-08

    EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and in combination with EGF. Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40 K array A. Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this level of cell cycle distribution after treatment, suggesting a predominantly differentiated state. Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the 2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment. In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes appeared to be less stimulated than for single drug cases. This is the first study to have systematically investigated the effect of cetuximab or gefitinib, alone and in combination

  7. Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pezzetti Furio

    2008-08-01

    Full Text Available Abstract Background EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and in combination with EGF. Methods Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression and scanning electron microscopy (SEM evidenced the ultrastructural morphology. Gene expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40 K array A. Results Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this level of cell cycle distribution after treatment, suggesting a predominantly differentiated state. Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important reduction of the microvilli (which also lose their erect position in Caco-2, possibly invalidating microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the 2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment. In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes appeared to be less stimulated than for single drug cases. Conclusion This is the first study to have systematically investigated

  8. Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines

    International Nuclear Information System (INIS)

    Solmi, Rossella; Montroni, Isacco; Mattei, Gabriella; Taffurelli, Mario; Santini, Donatella; Pezzetti, Furio; Ruggeri, Alessandro; Castellani, Gastone; Guidotti, Lia; Coppola, Domenico; Strippoli, Pierluigi; Lauriola, Mattia; Francesconi, Mirko; Martini, Désirée; Voltattorni, Manuela; Ceccarelli, Claudio; Ugolini, Giampaolo; Rosati, Giancarlo; Zanotti, Simone

    2008-01-01

    EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and in combination with EGF. Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40 K array A. Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this level of cell cycle distribution after treatment, suggesting a predominantly differentiated state. Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the 2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment. In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes appeared to be less stimulated than for single drug cases. This is the first study to have systematically investigated the effect of cetuximab or gefitinib, alone and in combination

  9. Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; de Laat, S. W.; Boonstra, J.

    1990-01-01

    Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild

  10. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    Science.gov (United States)

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  11. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor.

    Science.gov (United States)

    LaFrate, Andrew L; Gunther, Jillian R; Carlson, Kathryn E; Katzenellenbogen, John A

    2008-12-01

    Most patients with hormone-responsive breast cancer eventually develop resistance to traditional antiestrogens such as tamoxifen, and this has become a major obstacle in their treatment. We prepared and characterized the activity of a series of 16 guanylhydrazone small molecules that are designed to block estrogen receptor (ER) activity through a non-traditional mechanism, by directly interfering with coactivator binding to agonist-liganded ER. The inhibitory activity of these compounds was determined in cell-based transcription assays using ER-responsive reporter gene and mammalian two-hybrid assays. Several of the compounds gave IC(50) values in the low micromolar range. Two secondary assays were used to confirm that these compounds were acting through the proposed non-traditional mode of estrogen inhibitory action and not as conventional antagonists at the ligand binding site.

  12. Physicochemical and biological properties of novel amide-based steroidal inhibitors of NMDA receptors

    Czech Academy of Sciences Publication Activity Database

    Adla, Santosh Kumar; Slavíková, Barbora; Šmídková, Markéta; Tloušťová, Eva; Svoboda, Martin; Vyklický, Vojtěch; Krausová, Barbora; Hubálková, Pavla; Nekardová, Michaela; Holubová, Kristína; Valeš, Karel; Buděšínský, Miloš; Vyklický ml., Ladislav; Chodounská, Hana; Kudová, Eva

    2017-01-01

    Roč. 117, Jan (2017), s. 52-61 ISSN 0039-128X. [Conference on Isoprenoids /23./. Minsk, 04.09.2016-07.09.2016] R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/12/1464; GA MŠk LO1302; GA MZd(CZ) NV15-29370A; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : neurosteroid * NMDA receptor * structure-activity relationship * amide * blood-brain-barrier permeability * Caco-2 assay Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry; Organic chemistry (FGU-C) Impact factor: 2.282, year: 2016

  13. KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, induces intrauterine growth restriction in mice.

    Science.gov (United States)

    Abe, Naomichi; Nakahara, Tsutomu; Morita, Akane; Wada, Yoshiko; Mori, Asami; Sakamoto, Kenji; Nagamitsu, Tohru; Ishii, Kunio

    2013-08-01

    We previously reported that treatment with KRN633, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, during mid-pregnancy caused intrauterine growth restriction resulting from impairment of blood vessel growth in the labyrinthine zone of the placenta and fetal organs. However, the relative sensitivities of blood vessels in the placenta and fetal organs to vascular endothelial growth factor (VEGF) inhibitors have not been determined. In this study, we aimed to examine the effects of KRN633 on the vasculatures of organs in mother mice and their newborn pups by immunohistochemical analysis. Pregnant mice were treated daily with KRN633 (5 mg/kg) either from embryonic day 13.5 (E13.5) to E17.5 or from E13.5 to the day of delivery. The weights of the pups of KRN633-treated mice were lower than those of the pups of vehicle-treated mothers. However, no significant difference in body weight was observed between the vehicle- and KRN633-treated mice. The vascular development in the organs (the pancreas, kidney, and intestine) and intestinal lymphatic formation of the pups of KRN633-treated mothers was markedly impaired. In contrast, the KRN633 treatment showed no significant effect on the vascular beds in the organs, including the labyrinthine zone of the placenta, of the mother mice. These results suggest that blood vessels in fetal organs are likely to be more sensitive to reduced VEGF signaling than those in the mother. A partial loss of VEGF function during pregnancy could suppress vascular growth in the fetus without affecting the vasculature in the mother mouse, thereby increasing the risk of intrauterine growth restriction. © 2013 Wiley Periodicals, Inc.

  14. Effect of renal function on the pharmacokinetics of LCZ696 (sacubitril/valsartan), an angiotensin receptor neprilysin inhibitor.

    Science.gov (United States)

    Ayalasomayajula, Surya P; Langenickel, Thomas H; Jordaan, Pierre; Zhou, Wei; Chandra, Priyamvada; Albrecht, Diego; Pal, Parasar; Rajman, Iris; Sunkara, Gangadhar

    2016-09-01

    LCZ696 (sacubitril/valsartan), an angiotensin receptor neprilysin inhibitor, is indicated for chronic heart failure (HF) and reduced ejection fraction (HFrEF) to reduce the risk of cardiovascular death and hospitalization for HF. Following oral administration, LCZ696 provides systemic exposure to valsartan and sacubitril (a prodrug), and its metabolite sacubitrilat (the active neprilysin inhibitor, formerly named as LBQ657), which is eliminated primarily via renal route. Since renal dysfunction is a common comorbidity in patients with HF, two open-label studies assessing the effect of mild, moderate, and severe renal impairment were conducted. Patients with mild (N = 8; creatinine clearance [CrCl] 50 to ≤80 mL/min), moderate (N = 8; CrCl 30 to 80 mL/min) for each severity group were enrolled to assess the pharmacokinetics of LCZ696 analytes following administration of LCZ696 400 mg once daily (QD) on days 1 and 5. The steady-state Cmax and AUC0-24h of sacubitril and valsartan were unchanged in patients with renal impairment compared with healthy subjects. However, the steady-state Cmax of sacubitrilat was increased by ∼60 % in patients irrespective of degree of renal impairment; half-life increased from 12 h (in healthy subjects) to 21.1, 23.7, and 38.5 h, respectively; and AUC0-24h was increased 2.10-, 2.24-, and 2.70-fold, respectively, in patients with mild, moderate, and severe renal impairment. Renal dysfunction increases exposure to sacubitrilat while not impacting sacubitril and valsartan exposure. LCZ696 was generally well tolerated in patients with renal impairment.

  15. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study.

    Science.gov (United States)

    Campos, Regis Albuquerque; Valle, Solange Oliveira Rodrigues; França, Alfeu Tavares; Cordeiro, Elisabete; Serpa, Faradiba Sarquis; Mello, Yara Ferreira; Malheiros, Teresinha; Toledo, Eliana; Mansour, Elie; Fusaro, Gustavo; Grumach, Anete Sevciovic

    2014-01-01

    Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  16. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study

    Directory of Open Access Journals (Sweden)

    Regis Albuquerque Campos

    Full Text Available CONTEXT AND OBJECTIVE: Hereditary angioedema (HAE with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil.DESIGN AND SETTING: Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients.METHODS: Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored.RESULTS: 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age. The symptoms were: subcutaneous edema (22/24; abdominal pain (15/24 and upper airway obstruction (10/24. The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%; 10-20 (5/24; 20.8%; 20-30 (8/24; 33.4%; 30-60 (5/24; 20.8%; and 2 hours (1/24; 4.3%. The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6.CONCLUSION: HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  17. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    Science.gov (United States)

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A transcriptionally active estrogen receptor mutant is a novel type of dominant negative inhibitor of estrogen action.

    Science.gov (United States)

    McInerney, E M; Ince, B A; Shapiro, D J; Katzenellenbogen, B S

    1996-12-01

    We have characterized a human estrogen receptor (ER) mutant, V364E, which has a single amino acid substitution in its hormone-binding domain. This ER mutant is fully active or even superactive at saturating levels of estradiol (10(-8) M E2) yet has the capacity to act as a strong dominant negative inhibitor of the wild type ER. In transient transfection assays using ER-negative Chinese hamster ovary (CHO) cells and two different estrogen response element (ERE)-containing promoter reporter genes, V364E treated with 10(-8) M E2 exhibited approximately 250% and 100% of the activity of the wild type ER with these two promoter contexts, respectively. Despite the high activity of V364E when present alone in cells, coexpression of both V364E and wild type ER causes a significant decrease in overall ER-mediated transcriptional activity. On the TATA promoter, where V364E was more inhibitory, estrogen-stimulated activity was reduced by approximately 50% at a 1:1 ratio of mutant to wild type ER expression vector, and at a 10:1 ratio, 75% of ER activity was inhibited. V364E was expressed at lower levels than wild type ER and has a approximately 40-fold lower affinity for E2 compared with wild type ER. In promoter interference assays, V364E exhibited a strict dependence upon E2 for binding to an ERE. Surprisingly, even when V364E was unable to bind to ERE DNA (i.e. either at low E2 concentration or by mutation of its DNA-binding domain), this mutant retained full dominant negative activity. This highly active ER mutant is, thus, able to repress ER-mediated transcription when the mutant and wild type ER are present together in cells, even without DNA binding. Since competition for ERE binding and the formation of inactive heterodimers cannot fully account for the dominant negative activity of V364E, it is probable that altered interactions with proteins important in ER-mediated transcription play a key role in the repression of transcription by V364E. The properties and probable

  20. Genetic variations in EGF and EGFR and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, Sara; Andersson, Ulrika; Liu, Yanhong

    2010-01-01

    associated EGF polymorphisms in haplotype block 4 were validated in a set from MDACC; however, none of the associations were clearly replicated. rs379644 had a hazard ratio (HR) of 1.19 (0.94-1.51) in the whole population with 18.6 months survival in the risk genotype compared with 24.5 in the reference...

  1. Identification of a novel EGF-sensitive cell cycle checkpoint

    International Nuclear Information System (INIS)

    Walker, Francesca; Zhang Huihua; Burgess, Antony W.

    2007-01-01

    The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells

  2. Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat.

    Directory of Open Access Journals (Sweden)

    Guillaume Lucas

    2010-02-01

    Full Text Available We have recently reported that serotonin(4 (5-HT(4 receptor agonists have a promising potential as fast-acting antidepressants. Here, we assess the extent to which this property may be optimized by the concomitant use of conventional antidepressants.We found that, in acute conditions, the 5-HT(4 agonist prucalopride was able to counteract the inhibitory effect of the selective serotonin reuptake inhibitors (SSRI fluvoxamine and citalopram on 5-HT neuron impulse flow, in Dorsal Raphé Nucleus (DRN cells selected for their high (>1.8 Hz basal discharge. The co-administration of both prucalopride and RS 67333 with citalopram for 3 days elicited an enhancement of DRN 5-HT neuron average firing rate, very similar to what was observed with either 5-HT(4 agonist alone. At the postsynaptic level, this translated into the manifestation of a tonus on hippocampal postsynaptic 5-HT(1A receptors, that was two to three times stronger when the 5-HT(4 agonist was combined with citalopram. Similarly, co-administration of citalopram synergistically potentiated the enhancing effect of RS 67333 on CREB protein phosphorylation within the hippocampus. Finally, in the Forced Swimming Test, the combination of RS 67333 with various SSRIs (fluvoxamine, citalopram and fluoxetine was more effective to reduce time of immobility than the separate administration of each compound.These findings strongly suggest that the adjunction of an SSRI to a 5-HT(4 agonist may help to optimize the fast-acting antidepressant efficacy of the latter.

  3. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats

    International Nuclear Information System (INIS)

    Baladron, Victoriano; Ruiz-Hidalgo, Maria Jose; Nueda, Maria Luisa; Diaz-Guerra, Maria Jose M.; Garcia-Ramirez, Jose Javier; Bonvini, Ezio; Gubina, Elena; Laborda, Jorge

    2005-01-01

    The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis

  4. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  5. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  6. Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules.

    Directory of Open Access Journals (Sweden)

    Raffaella Scardigli

    Full Text Available BACKGROUND: sFRP-3 is a soluble antagonist of Wnts, widely expressed in developing embryos. The Wnt gene family comprises cysteine-rich secreted ligands that regulate cell proliferation, differentiation, organogenesis and oncogenesis of different organisms ranging from worms to mammals. In the canonical signal transduction pathway Wnt proteins bind to the extracellular domain of Frizzled receptors and consequently recruit Dishevelled (Dsh to the cell membrane. In addition to Wnt membrane receptors belonging to the Frizzled family, several other molecules have been described which share homology in the CRD domain and lack the putative trans-membrane domain, such as sFRP molecules (soluble Frizzled Related Protein. Among them, sFRP-3 was originally isolated from bovine articular cartilage and also as a component of the Spemann organizer. sFRP-3 blocks Wnt-8 induced axis duplication in Xenopus embryos and binds to the surface of cells expressing a membrane-anchored form of Wnt-1. Injection of sFRP-3 mRNA blocks expression of XMyoD mRNA and leads to embryos with enlarged heads and shortened trunks. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that sFRP-3 specifically blocks EGF-induced fibroblast proliferation and foci formation. Over-expression of sFRP-3 reverts EGF-mediated inhibition of hair follicle development in the mouse ectoderm while its ablation in Xenopus maintains EGF-mediated inhibition of ectoderm differentiation. Conversely, over-expression of EGF reverts the inhibition of somitic myogenesis and axis truncation in Xenopus and mouse embryos caused by sFRP-3. In vitro experiments demonstrated a direct binding of EGF to sFRP-3 both on heparin and on the surface of CHO cells where the molecule had been membrane anchored. CONCLUSIONS/SIGNIFICANCE: sFRP-3 and EGF reciprocally inhibit their effects on cell proliferation, differentiation and morphogenesis and indeed are expressed in contiguous domains of the embryo, suggesting that in

  7. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  8. Optimization of 1H-indazol-3-amine derivatives as potent fibroblast growth factor receptor inhibitors.

    Science.gov (United States)

    Cui, Jing; Peng, Xia; Gao, Dingding; Dai, Yang; Ai, Jing; Li, Yingxia

    2017-08-15

    Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy because of its critical role in promoting cancer formation and progression. In a continuing effort to improve the cellular activity of hit compound 7r bearing an indazole scaffold, which was previously discovered by our group, several compounds harnessing fluorine substituents were designed, synthesized and biological evaluated. Besides, the region extended out to the ATP binding pocket toward solvent was also explored. Among them, compound 2a containing 2,6-difluoro-3-methoxyphenyl residue exhibited the most potent activities (FGFR1: less than 4.1nM, FGFR2: 2.0±0.8nM). More importantly, compound 2a showed an improved antiproliferative effect against KG1 cell lines and SNU16 cell lines with IC 50 values of 25.3±4.6nM and 77.4±6.2nM respectively. Copyright © 2017. Published by Elsevier Ltd.

  9. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  10. Brief study about the distribution of recombinant human Epidermic Growth Factor (rh-EGF)

    International Nuclear Information System (INIS)

    Rodriguez Garcia, J.C.; De Dios D Espaux, R.; Bello Garciga, J.L.

    1997-01-01

    This report describes results of the study about biodistribution of I-125 recombinant human Epidermic Growth Factor (rhEGF). The radiolabelled product was administrated to Sprague Dawley rats in three different ways: intramuscular, subcutaneous and epidermic; the highest concentration of EGF in blood was found 4 hours after rhEGF administration, with a greater distribution in the plasma with regard to cellular pellet. The slowest plasma clearance corresponded to the intramuscular administration. The highest concentration of radiolabelled rhEGF was found in liver, kidney and intestine. It was found that radiolabelled EGF is excreted mainly throughout urine and faeces although other excretion pathways could exist

  11. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    Science.gov (United States)

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  12. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  13. Associations between ACE-Inhibitors, Angiotensin Receptor Blockers, and Lean Body Mass in Community Dwelling Older Women.

    Science.gov (United States)

    Bea, Jennifer W; Wassertheil-Smoller, Sylvia; Wertheim, Betsy C; Klimentidis, Yann; Chen, Zhao; Zaslavsky, Oleg; Manini, Todd M; Womack, Catherine R; Kroenke, Candyce H; LaCroix, Andrea Z; Thomson, Cynthia A

    2018-01-01

    Studies suggest that ACE-inhibitors (ACE-I) and angiotensin receptor blockers (ARBs) may preserve skeletal muscle with aging. We evaluated longitudinal differences in lean body mass (LBM) among women diagnosed with hypertension and classified as ACE-I/ARB users and nonusers among Women's Health Initiative participants that received dual energy X-ray absorptiometry scans to estimate body composition ( n =10,635) at baseline and at years 3 and 6 of follow-up. Of those, 2642 were treated for hypertension at baseline. Multivariate linear regression models, adjusted for relevant demographics, behaviors, and medications, assessed ACE-I/ARB use/nonuse and LBM associations at baseline, as well as change in LBM over 3 and 6 years. Although BMI did not differ by ACE-I/ARB use, LBM (%) was significantly higher in ACE-I/ARB users versus nonusers at baseline (52.2% versus 51.3%, resp., p =0.001). There was no association between ACE-I/ARB usage and change in LBM over time. Reasons for higher LBM with ACE-I/ARB use cross sectionally, but not longitundinally, are unclear and may reflect a threshold effect of these medications on LBM that is attenuated over time. Nevertheless, ACE-I/ARB use does not appear to negatively impact LBM in the long term.

  14. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    Science.gov (United States)

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  15. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    Science.gov (United States)

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  16. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    International Nuclear Information System (INIS)

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC 50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. EGFR pathway components were qualified as

  17. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives.

    Science.gov (United States)

    Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie

    2016-01-01

    Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium-glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient.

  18. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  19. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents?

    Science.gov (United States)

    Wang, Pei; Fedoruk, Matthew N; Rupert, Jim L

    2008-01-01

    In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma

  20. Immunohistochemical and quantitative changes in salivary EGF, amylase and haptocorrin following radiotherapy for oral cancer

    DEFF Research Database (Denmark)

    Christensen, M E; Hansen, H S; Poulsen, Steen Seier

    1996-01-01

    Epidermal growth factor (EGF), amylase and haptocorrin are molecules produced in the salivary glands. The aim of the present study was to determine immunohistochemical and quantitative alterations in EGF as compared with haptocorrin and amylase following radiotherapy for oral cancer. Changes in t...... a reduction in the mitogenic peptide EGF both immunohistochemically and quantitatively following irradiation for oral cancer, results which may contribute to the understanding of the clinical signs of mucositis.......Epidermal growth factor (EGF), amylase and haptocorrin are molecules produced in the salivary glands. The aim of the present study was to determine immunohistochemical and quantitative alterations in EGF as compared with haptocorrin and amylase following radiotherapy for oral cancer. Changes....... The concentration of EGF in saliva before treatment was significantly higher in patients than in the control group (p oral tumors contribute with EGF to the saliva. In conclusion we have demonstrated...

  1. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1991-01-01

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  2. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  3. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives

    Directory of Open Access Journals (Sweden)

    Gurgle HE

    2016-06-01

    Full Text Available Holly E Gurgle, Karen White, Carrie McAdam-Marx Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA Abstract: Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium–glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium–glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient. Keywords: type 2 diabetes mellitus, GLP-1 receptor agonist, SGLT2 inhibitor, A1c, weight loss, adverse effect

  4. Differential effects of Rho-kinase inhibitor and angiotensin II type-1 receptor antagonist on the vascular function in hypertensive rats induced by chronic l-NAME treatment

    Directory of Open Access Journals (Sweden)

    Bainian Chen

    2012-10-01

    Full Text Available Little attention has been paid to the effect of Rho-kinase inhibitor on the vascular dysfunction of nitric oxide-deficient hypertension. We aimed to investigate whether the Rho-kinase inhibitor fasudil showed beneficial effect on the vascular dysfunction of the NG-nitro-l-arginine methyl ester (l-NAME treated rat, as well as to compare the differential effects of fasudil and angiotensin II receptor antagonist valsartan on vascular function. In the present study, both valsartan and fasudil exerted antihypertensive action on the l-NAME-treated rats, while only valsartan attenuated the cardiac hypertrophy. Treatment with valsartan showed improvement on vascular reactivity to norepinephrine, KCl and CaCl2, whereas fasudil therapy showed little effect on vasoconstriction. Endothelium-dependent vasodilation to acetylcholine was reduced in the NO-deficient group but was normalized by the fasudil therapy. The increased expression of RhoA and Rho-kinase (ROCK in the vasculature was corrected well to normal level by either valsartan or fasudil administration, which seemed to be at least partially responsible for the beneficial effect of the drug infusion. These findings suggest that the angiotensin II receptor antagonist interferes more with the contractile response than Rho-kinase inhibitor, whereas inhibition of Rho-kinase activity exhibits a better improvement on vasorelaxation than blockade of angiotensin II receptor.

  5. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells

    DEFF Research Database (Denmark)

    Jensen, Poul Henning; Christensen, Erik Ilsø; Ebbesen, P.

    1990-01-01

    We have studied the effect of plasminogen activator inhibitors PAI-1 and PAI-2 on the binding of urokinase-type plasminogen activator (u-PA) to its receptor in the human choriocarcinoma cell line JAR. With 125I-labeled ligands in whole-cell binding assays, both uncomplexed u-PA and u......, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function......-PA-inhibitor complexes bound to the receptor with a Kd of approximately 100 pM at 4 degrees C. Transferring the cells to 37 degrees C led to degradation to amino acids of up to 50% of the cell-bound u-PA-inhibitor complexes, whereas the degradation of uncomplexed u-PA was 15%; the remaining ligand was recovered...

  6. Galunisertib (LY2157299), a transforming growth factor-β receptor I kinase inhibitor, attenuates acute pancreatitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao (China); Department of General Surgery, People' s Hospital of Chengyang, Qingdao (China); Yu, M. [Department of Clinical Laboratory, the Women and Children' s Hospital of Qingdao, Qingdao (China); Chen, Y. [Department of Traditional Chinese Medicine, the Affiliated Hospital of Qingdao University, Qingdao (China); Zhang, J. [Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao (China)

    2016-08-08

    Galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGF-βRI), is the only known TGF-β pathway inhibitor. In the present study, we investigated the effect of galunisertib on taurocholate (TAC)-induced acute pancreatitis (AP) in rats, and the role of TGF-β and NF-κB signaling pathways. AP was induced by infusion of TAC into the pancreatic duct of Sprague-Dawley male rats (n=30). The rats (220±50 g) were administered galunisertib intragastrically [75 mg·kg{sup -1}·day{sup -1} for 2 days (0 and 24 h)]. Serum IL-1β, IL-6, TNF-α, amylase (AMY), lipase (LIP), and myeloperoxidase (MPO) levels were measured by ELISA. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); NF-κBp65 and TGF-β1 proteins, as well as TGF-βRI and p-Smad2/3 proteins, were detected by western blot assay. Cell apoptosis was detected by TUNEL assay. H&E staining was used to evaluate the histopathological alterations of the pancreas. Galunisertib treatment attenuated the severity of AP and decreased the pancreatic histological score. In addition, number of apoptotic cells were significantly increased in the galunisertib-treated group (16.38±2.26) than in the AP group (8.14±1.27) and sham-operated group (1.82±0.73; P<0.05 and P<0.01, respectively). Galunisertib decreased the expression levels of TGF-βRI and p-Smad2/3 and inhibited NF-κB activation and p65 translocation compared with the sham-operated group. Furthermore, serum IL-1β, IL-6, TNF-α, AMY and LIP levels and tissue MPO activity were significantly decreased in the galunisertib-treated group. Our data demonstrate that galunisertib attenuates the severity of TAC-induced experimental AP in rats by inducing apoptosis in the pancreas, inhibiting the activation of TGF-β signals and NF-κB as well as the secretion of pro-inflammatory cytokines.

  7. Freeze-dried formulation for direct {sup 99m}Tc-labeling ior-egf/r3 MAb: additives, biodistribution, and stability

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Nunez-Gandolff, Gilda; Perez, Niuvis Perez; Veliz, Belkis Chico; Caballero-Torres, Idania; Duconge, Jorge; Fernandez, Eduardo; Crespo, Francisco Zayas; Veloso, Ana; Iznaga-Escobar, Normando E-mail: normando@ict.sld.cu

    1999-08-01

    Monoclonal antibodies (MAbs) have been useful for immunoscintigraphic applications in clinical diagnosis since they were introduced in nuclear medicine practice. The MAb ior egf/r3 developed at the Center of Molecular Immunology (Havana, Cuba) is a murine antibody that recognizes the human epidermal growth factor receptor (EGF-R) and has been used widely in the radioimmunodiagnosis of tumors of epithelial origin. Based on the direct Schwarz method, the present report describes the preparation of a freeze-dried formulation for radiolabeling the MAb ior egf/r3 with {sup 99m}Tc for immunoscintigraphic applications. Radiolabeling efficiency, effects on immunoreactivity, biodistribution, pharmacokinetic, and stability of the formulation are reported. The study demonstrated that the freeze-dried formulation can be labeled with {sup 99m}Tc at high yield. The resulting {sup 99m}Tc-labeled ior egf/r3 MAb can be used to visualize in vivo human tumors of epithelial origin by immunoscintigraphy studies. The kit does not need any other addition or purification at the time of tagging other than the requisite amount of pertechnetate (40-50 mCi). Because the contents of the kit are lyophilized, no special storage or transportation is required.

  8. Freeze-dried formulation for direct 99mTc-labeling ior-egf/r3 MAb: additives, biodistribution, and stability

    International Nuclear Information System (INIS)

    Morales, Alejo A. Morales; Nunez-Gandolff, Gilda; Perez, Niuvis Perez; Veliz, Belkis Chico; Caballero-Torres, Idania; Duconge, Jorge; Fernandez, Eduardo; Crespo, Francisco Zayas; Veloso, Ana; Iznaga-Escobar, Normando

    1999-01-01

    Monoclonal antibodies (MAbs) have been useful for immunoscintigraphic applications in clinical diagnosis since they were introduced in nuclear medicine practice. The MAb ior egf/r3 developed at the Center of Molecular Immunology (Havana, Cuba) is a murine antibody that recognizes the human epidermal growth factor receptor (EGF-R) and has been used widely in the radioimmunodiagnosis of tumors of epithelial origin. Based on the direct Schwarz method, the present report describes the preparation of a freeze-dried formulation for radiolabeling the MAb ior egf/r3 with 99m Tc for immunoscintigraphic applications. Radiolabeling efficiency, effects on immunoreactivity, biodistribution, pharmacokinetic, and stability of the formulation are reported. The study demonstrated that the freeze-dried formulation can be labeled with 99m Tc at high yield. The resulting 99m Tc-labeled ior egf/r3 MAb can be used to visualize in vivo human tumors of epithelial origin by immunoscintigraphy studies. The kit does not need any other addition or purification at the time of tagging other than the requisite amount of pertechnetate (40-50 mCi). Because the contents of the kit are lyophilized, no special storage or transportation is required

  9. Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-related Transcripts

    Directory of Open Access Journals (Sweden)

    Christin Weissleder

    2016-11-01

    Full Text Available Neuroblasts exist within the human subependymal zone (SEZ; however, it is debated to what extent neurogenesis changes during normal aging. It is also unknown how precursor proliferation may correlate with the generation of neuronal and glial cells or how expression of growth factors and receptors may change throughout the adult lifespan. We provided evidence of dividing cells in the human SEZ in conjunction with a dramatic age-related decline (n=50; 21-103 years of mRNAs indicative of proliferating cells (Ki67 and immature neurons (doublecortin. Microglia mRNA (ionized calcium-binding adapter molecule 1 increased during aging, whereas transcript levels of stem/precursor cells (glial fibrillary acidic protein delta and achaete-scute homolog 1, astrocytes (vimentin and glial fibrillary acidic protein and oligodendrocytes (oligodendrocyte lineage transcription factor 2 remained stable. Epidermal growth factor receptor (EGFR and fibroblast growth factor 2 (FGF2 mRNAs increased throughout adulthood, while transforming growth factor alpha (TGFα, EGF, Erb-B2 receptor tyrosine kinase 4 (ErbB4 and FGF receptor 1 (FGFR1 mRNAs were unchanged across adulthood. Cell proliferation mRNA positively correlated with FGFR1 transcripts. Immature neuron and oligodendrocyte expression positively correlated with TGFα and ErbB4 mRNAs, whilst astrocyte transcripts positively correlated with EGF, FGF2 and FGFR1 mRNAs. Microglia mRNA positively correlated with EGF and FGF2 expression. Our findings indicate that neurogenesis in the human SEZ continues well into adulthood, although proliferation and neuronal differentiation may decline across adulthood. We suggest that mRNA expression of EGF- and FGF-related family members do not become limited during aging and may modulate neuronal and glial fate determination in the SEZ throughout human life.

  10. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A-like inhibitor of differentiation 1 (EID1

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2008-01-01

    Full Text Available Transcriptional activation (TA mediated by the effect of thyroid hormones on target genes requires co-activator proteins such as the early region 1A (E1A associated 300 kDa binding protein (p300 and the cAMP response element binding protein (CREB binding protein (CBP, known as the p300/CBP complex, which acetylate histones 3 and 4 to allow transcriptional machinery access to the target gene promoter. Little is known on the role of p300 in thyroid hormone receptor (TR mediated TA but the E1A-like inhibitor of differentiation 1 (EID1, an inhibitor of p300 histone acetyltransferase (HAT, is a functional homolog of E1A and may inhibit myogenic differentiation factor D (MyoD transcriptional activity and reduces muscle cell differentiation. We evaluated the influence of EID1 on TR-mediated transcriptional activity using transfection and mammalian two-hybrid studies to show that EID1 may partially reduces TA activity of the TR receptor, probably due to p300 blockage since EID1 mutants cannot reduce TR-mediated TA. The EID1 does not affect the function of p160 co-activator proteins (160 kDa proteins of steroid receptor co-activators and is functionally independent of co-repressor proteins or TR binding. Summarizing, EID1 reduces TR-mediated transcriptional activity by blocking p300 and may play an important role in thyroid receptor activity in muscle and other tissues.

  11. Interactive Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers or Their Combination on Survival of Hemodialysis Patients

    Science.gov (United States)

    Kido, Ryo; Akizawa, Tadao; Fukagawa, Masafumi; Onishi, Yoshihiro; Yamaguchi, Takuhiro; Fukuhara, Shunichi

    2018-01-01

    Background Does the use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers individually or as a combination confer a survival benefit in hemodialysis patients? The answer to this question is yet unclear. Methods We performed a case-cohort study using data from the Mineral and Bone Disorder Outcomes Study for Japanese CKD stage 5D patients (MBD-5D), a 3-year multicenter prospective case-cohort study, including 8,229 hemodialysis patients registered from 86 facilities in Japan. All patients had secondary hyperparathyroidism, a condition defined as a parathyroid hormone level ≥180 pg/mL and/or receiving vitamin D receptor activators. We compared all-cause mortality rates between those receiving ACEI, ARB, and their combination and non-users with interaction testing. We used marginal structural Poisson regression (causal model) to estimate the causal effect and interaction adjusted for possible time-dependent confounding. Cardiovascular mortality was also evaluated. Results Among 3,762 randomly sampled subcohort patients, those taking ACEI, ARB, and their combination at baseline accounted for 4.0, 31.6, and 3.8%, respectively. Over 3 years, 1,226 all-cause and 462 cardiovascular deaths occurred. Compared to non-users, ARB-alone users had a lower all-cause mortality rate (adjusted incident rate ratio [aIRR] 0.62, 95% CI 0.50–0.76), whereas ACEI-alone users showed a statistically similar rate (aIRR 1.01, 95% CI 0.57–1.77). On the contrary, combination users had a greater mortality rate (aIRR 2.56, 95% CI 1.22–5.37), showing significant interaction (p = 0.03). Analysis for cardiovascular mortality showed similar results. Conclusion Among hemodialysis patients with secondary hyperparathyroidism, unlike ACEI use, ARB use was associated with greater survival than non-use. Conversely, combination use was associated with greater mortality. Controlled trials are warranted to verify the causality factors of these associations. PMID:29161689

  12. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers reduced dementia risk in patients with diabetes mellitus and hypertension.

    Science.gov (United States)

    Kuan, Yi-Chun; Huang, Kuang-Wei; Yen, Der-Jen; Hu, Chaur-Jong; Lin, Cheng-Li; Kao, Chia-Hung

    2016-10-01

    The effects of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) on dementia risk in patients with type 2 diabetes mellitus (DM) and hypertension remain unknown. We investigated the effects of ACEIs and ARBs on dementia risk in patients with type 2 DM and hypertension. We conducted a cohort study by using the Taiwan National Health Insurance Research Database. We included 2377 patients receiving ACEIs and 1780 patients receiving ARBs in the ACEI and ARB cohorts, respectively. We included a comparable number of patients not receiving ACEIs and ARBs as controls in the non-ACEI and non-ARB cohorts through propensity score matching. The effect of ACEIs and ARBs on dementia risk was estimated through multivariate Cox proportional hazard regression after adjustment for several confounding factors. During the 12-year follow-up period, compared with the non-ACEI cohort, all-cause dementia risk decreased by 26% in the ACEI cohort [hazard ratio (HR)=0.74, 95% confidence interval (CI)=0.56-0.96]. The all-cause dementia risk was nearly 40% lower in the ARB cohort than in the non-ARB cohort (HR=0.60, 95% CI=0.37-0.97). These drugs prevented the occurrence of vascular dementia (VD), however, this effect was nonsignificant for Alzheimer's dementia (AD). Treatment duration- and dosage-related protection effects on dementia occurrence were observed. ACEIs and ARBs may effectively prevent all-cause dementia, particularly VD, in patients with type 2 DM and hypertension. Moreover, compared with ACEIs, ARBs appear to be more advantageous in dementia prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Pneumonia prevention in intubated patients given sucralfate versus proton-pump inhibitors and/or histamine II receptor blockers.

    Science.gov (United States)

    Grindlinger, Gene A; Cairo, Sarah B; Duperre, Carole B

    2016-12-01

    Ventilator-associated pneumonia (VAP) is a common cause of infectious morbidity and mortality in the intensive care unit (ICU). The type of stress-ulcer prophylaxis (SUP) given to ventilated patients may, in part, be responsible. We observed an increase in VAP as ventilator bundle compliance increased and a decrease in VAP when bundle compliance decreased. We reasoned that SUP which raises gastric pH such as proton-pump inhibitors (PPIs) and histamine II (H2) receptor antagonists as opposed to SUP which does not raise pH such as sucralfate (S) may be responsible and also may alter the causative bacteria. This is a single-center retrospective cohort analysis of all intubated, adult surgical patients admitted to the surgical ICU between January and June during the 3-y period 2012-2014. Demographics, APACHE II, Injury Severity Score, VAP occurrence, culprit bacteria, ventilator days, and ICU days were recorded based on the type of SUP given. There were 45 instances of VAP in the 504 study patients, 33 in the PPI/H2 group, and 12 in the S group (P < 0.01). VAP per 1000 ventilator days were 10.2 for PPI/H2 and 3.7 for S (P < 0.01). Culprit bacteria were mostly Pseudomonas, gram-negative bacilli, and methicillin-resistant Staphylococcus aureus in PPI/H2 patients (n = 29) compared with oropharyngeal flora in S patients (n = 6; P < 0.001). There was a substantial difference in VAP occurrence and in the culprit bacteria between S and PPI/H2 treated patients due perhaps to gastric alkalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Osio, A; Mateus, C; Soria, J-C; Massard, C; Malka, D; Boige, V; Besse, B; Robert, C

    2009-09-01

    Acute and subacute cutaneous side-effects of epidermal growth factor receptor inhibitors (EGFRIs) are very frequent and well known. Much less is known about the chronic cutaneous effects of these drugs and about their potential psychosocial impact on patients. We performed a retrospective study of patients treated with EGFRIs for more than 6 months. All patients had a detailed dermatological examination. The primary cancer, associated chemotherapies, skin treatment, evolution of skin symptoms and their impact on quality of life (QoL) as evaluated by the Dermatology Life Quality Index (DLQI) were noted. Seven men and nine women were identified. The mean length of EGFRI treatment was 10 months (range 6-27). At the time of examination, all patients (100%) had cutaneous side-effects. Grade I or II folliculitis was found in 37.5% of the patients. Additional skin manifestations were xerosis (100%), mucositis (69%), hair abnormalities (87.5%), eyelash trichomegaly (62.5%), facial hypertrichosis (56%), painful paronychia (56%) and onycholysis (44%). Dose reduction or EGFRI discontinuation for skin toxicity were needed in six patients (37.5%). DLQI evaluation showed a moderate to strong impact on QoL in four patients (25%). Cutaneous side-effects are found in 100% of patients treated with EGFRIs for more than 6 months and have a significant effect on patients' QoL. The clinical spectrum of skin manifestation varies over time. As the use of EGFRIs rapidly increases, it is critical for us to improve our knowledge in the understanding and managment of these skin manifestations.

  15. Rationale and design of the Affordability and Real-world Antiplatelet Treatment Effectiveness after Myocardial Infarction Study (ARTEMIS): A multicenter, cluster-randomized trial of P2Y12 receptor inhibitor copayment reduction after myocardial infarction.

    Science.gov (United States)

    Doll, Jacob A; Wang, Tracy Y; Choudhry, Niteesh K; Cannon, Christopher P; Cohen, David J; Fonarow, Gregg C; Henry, Timothy D; Bhandary, Durgesh D; Khan, Naeem; Davidson-Ray, Linda D; Anstrom, Kevin; Peterson, Eric D

    2016-07-01

    The use of oral P2Y12 receptor inhibitors after acute myocardial infarction (MI) can reduce risks of subsequent major adverse cardiovascular events (composite of all-cause death, recurrent MI, and stroke), yet medication persistence is suboptimal. Although copayment cost has been implicated as a factor influencing medication persistence, it remains unclear whether reducing or eliminating these costs can improve medication persistence and/or downstream clinical outcomes. ARTEMIS is a multicenter, cluster-randomized clinical trial designed to examine whether eliminating patient copayment for P2Y12 receptor inhibitor therapy affects medication persistence and clinical outcomes. We will enroll approximately 11,000 patients hospitalized for acute ST-elevation and non-ST-elevation MI at 300 hospitals. Choice and duration of treatment with a P2Y12 receptor inhibitor will be determined by the treating physician. Hospitals randomized to the copayment intervention will provide vouchers to cover patients' copayments for their P2Y12 receptor inhibitor for up to 1 year after discharge. The coprimary end points are 1-year P2Y12 receptor inhibitor persistence and major adverse cardiovascular events. Secondary end points include choice of P2Y12 receptor inhibitor, patient-reported outcomes, and postdischarge cost of care. ARTEMIS will be the largest randomized assessment of a medication copayment reduction intervention on medication persistence, clinical outcomes, treatment selection, and cost of care after acute MI. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Inhibition of the epidermal growth factor receptor in bladder cancer cells treated with the DNA-damaging drug etoposide markedly increases apoptosis

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque Ahmed; Nexo, Ebba

    2007-01-01

    : The bladder cancer cell lines RT4 and T24, representing low- and high-malignancy grades respectively, were treated with VP16 (10 or 50 microM) and the level of apoptosis determined using a commercial kit. EGFR receptor activity was determined by western blotting using antibodies against phosphorylated EGFR....... The EGFR was either activated by heparin-binding (HB)-EGF (1 nM) or inhibited with the specific EGFR inhibitor gefitinib (1 or 5 microM). The pan-caspase inhibitor Z-VAD (30 microM) was used to test the involvement of caspase activity. RESULTS: Treatment of T24 bladder cancer cells with VP16 (50 micro...... suggest that activation of the EGFR induced a cell-survival function when bladder cancer cells were treated with the DNA-damaging drug VP16, and that combined treatment with VP16 and the EGFR inhibitor gefitinib might improve the efficacy of treatment. Udgivelsesdato: 2007-Jan...

  17. The effects of chronic administration of epidermal growth factor (EGF) to rats on the levels of endogenous EGF in the submandibular glands and kidneys

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Jøgensen, P E; Poulsen, Steen Seier

    1996-01-01

    Epidermal growth factor (EGF) is mainly produced in the submandibular glands (SMG) and in the kidneys. It has recently been reported that EGF-related ligands may induce their own biosynthesis (autoinduction) in vitro. In the present paper, we investigated whether chronic systemic treatment with E...

  18. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  19. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  20. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  1. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  2. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library

    NARCIS (Netherlands)

    Horn, I. R.; Moestrup, S. K.; van den Berg, B. M.; Pannekoek, H.; Nielsen, M. S.; van Zonneveld, A. J.

    1995-01-01

    The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) mediates endocytosis of a number of structurally unrelated ligands, including complexes of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) or urokinase plasminogen

  3. R-268712, an orally active transforming growth factor-β type I receptor inhibitor, prevents glomerular sclerosis in a Thy1 nephritis model.

    Science.gov (United States)

    Terashima, Hideki; Kato, Mikio; Ebisawa, Masayuki; Kobayashi, Hideki; Suzuki, Kanae; Nezu, Yoshikazu; Sada, Toshio

    2014-07-05

    R-268712 is a novel and specific inhibitor of activin receptor-like kinase 5 (ALK5), a transforming growth factor β (TGF-β) type I receptor. Evaluation of in vitro inhibition indicated that R-268712 is a potent and selective inhibitor of ALK5 with an IC50 of 2.5nM, an approximately 5000-fold more selectivity for ALK5 than p38 mitogen-activated protein kinase (MAPK). Oral administration of R-268712 at doses of 1, 3 and 10mg/kg also inhibited the development of renal fibrosis in a dose-dependent manner in a unilateral ureteral obstruction (UUO) model. Additionally, we evaluated the efficacy of R-268712 in a heminephrectomized anti-Thy1 glomerulonephritis model at doses of 0.3 and 1mg/kg. R-268712 reduced proteinuria and glomerulosclerosis significantly with improvement of renal function. Collectively, these results suggested that R-268712 and other ALK5 inhibitors could suppress glomerulonephritis as well as glomerulosclerosis by an inhibitory mechanism that involves suppression of TGF-β signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. TRPP2 and TRPV4 form an EGF-activated calcium permeable channel at the apical membrane of renal collecting duct cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Zhang

    Full Text Available Regulation of apical calcium entry is important for the function of principal cells of the collecting duct. However, the molecular identity and the regulators of the transporter/channel, which is responsible for apical calcium entry and what factors regulate the calcium conduction remain unclear.We report that endogenous TRPP2 and TRPV4 assemble to form a 23-pS divalent cation-permeable non-selective ion channel at the apical membrane of renal principal cells of the collecting duct. TRPP2\\TRPV4 channel complex was identified by patch-clamp, immunofluorescence and co-immunprecipitation studies in both principal cells that either possess normal cilia (cilia (+ or in which cilia are absent (cilia (-. This channel has distinct biophysical and pharmacological and regulatory profiles compared to either TRPP2 or TRPV4 channels. The rate of occurrence detected by patch clamp was higher in cilia (- compared to cilia (+ cells. In addition, shRNA knockdown of TRPP2 increased the prevalence of TRPV4 channel activity while knockdown of TRPV4 resulted in TRPP2 activity and knockdown of both proteins vastly decreased the 23-pS channel activity. Epidermal growth factor (EGF stimulated TRPP2\\TRPV4 channel through the EGF receptor (EGFR tyrosine kinase-dependent signaling. With loss of cilia, apical EGF treatment resulted in 64-fold increase in channel activity in cilia (- but not cilia (+ cells. In addition EGF increased cell proliferation in cilia (- cell that was dependent upon TRPP2\\TRPV4 channel mediated increase in intracellular calcium.We conclude that in the absence of cilia, an EGF activated TRPP2\\TRPV4 channel may play an important role in increased cell proliferation and cystogenesis.

  5. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  6. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    Science.gov (United States)

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  7. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    Directory of Open Access Journals (Sweden)

    Cian M McCrudden

    Full Text Available Therapeutic inhibition of poly(ADP-ribose polymerase (PARP, as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699, induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  8. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    International Nuclear Information System (INIS)

    Abourbeh, Galith; Dissoki, Samar; Jacobson, Orit; Litchi, Amir; Daniel, Revital Ben; Laki, Desirediu; Levitzki, Alexander; Mishani, Eyal

    2007-01-01

    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors

  9. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    Science.gov (United States)

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. Cost-Effectiveness of Histamine2 Receptor Antagonists Versus Proton Pump Inhibitors for Stress Ulcer Prophylaxis in Critically Ill Patients.

    Science.gov (United States)

    Hammond, Drayton A; Kathe, Niranjan; Shah, Anuj; Martin, Bradley C

    2017-01-01

    To determine the cost-effectiveness of stress ulcer prophylaxis with histamine 2 receptor antagonists (H2RAs) versus proton pump inhibitors (PPIs) in critically ill and mechanically ventilated adults. A decision analytic model estimating the costs and effectiveness of stress ulcer prophylaxis (with H2RAs and PPIs) from a health care institutional perspective. Adult mixed intensive care unit (ICU) population who received an H2RA or PPI for up to 9 days. Effectiveness measures were mortality during the ICU stay and complication rate. Costs (2015 U.S. dollars) were combined to include medication regimens and untoward events associated with stress ulcer prophylaxis (pneumonia, Clostridium difficile infection, and stress-related mucosal bleeding). Costs and probabilities for complications and mortality from complications came from randomized controlled trials and observational studies. A base case scenario was developed with pooled data from an observational study and meta-analysis of randomized controlled trials. Scenarios based on observational and meta-analysis data alone were evaluated. Outcomes were expected and incremental costs, mortalities, and complication rates. Univariate sensitivity analyses were conducted to determine the influence of inputs on cost, mortality, and complication rates. Monte Carlo simulations evaluated second-order uncertainty. In the base case scenario, the costs, complication rates, and mortality rates were $9039, 17.6%, and 2.50%, respectively, for H2RAs and $11,249, 22.0%, and 3.34%, respectively, for PPIs, indicating that H2RAs dominated PPIs. The observational study-based model provided similar results; however, in the meta-analysis-based model, H2RAs had a cost of $8364 and mortality rate of 3.2% compared with $7676 and 2.0%, respectively, for PPIs. At a willingness-to-pay threshold of $100,000/death averted, H2RA therapy was superior or preferred 70.3% in the base case and 97.0% in the observational study-based scenario. PPI therapy

  11. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Grandič, Marjana [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia); Aráoz, Romulo; Molgó, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Turk, Tom; Sepčić, Kristina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Benoit, Evelyne [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Frangež, Robert, E-mail: robert.frangez@vf.uni-lj.si [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia)

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  12. Erratum to: Clinical Pharmacokinetics of Sacubitril/Valsartan (LCZ696): A Novel Angiotensin Receptor-Neprilysin Inhibitor.

    Science.gov (United States)

    Ayalasomayajula, Surya; Langenickel, Thomas; Pal, Parasar; Boggarapu, Sreedevi; Sunkara, Gangadhar

    2018-01-01

    Sacubitril/valsartan (LCZ696) is indicated for the treatment of heart failure with reduced ejection fraction. Absorption of sacubitril/valsartan and conversion of sacubitril (prodrug) to sacubitrilat (neprilysin inhibitor) was rapid with maximum plasma concentrations of sacubitril, sacubitrilat, and valsartan (angiotensin receptor blocker) reaching within 0.5, 1.5-2.0, and 2.0-3.0 h, respectively. With a twofold increase in dose, an increase in the area under the plasma concentration-time curve was proportional for sacubitril, ~1.9-fold for sacubitrilat, and ~1.7-fold for valsartan in healthy subjects. Following multiple twice-daily administration, steady-state maximum plasma concentration was reached within 3 days, showing no accumulation for sacubitril and valsartan, while ~1.6-fold accumulation for sacubitrilat. Sacubitril is eliminated predominantly as sacubitrilat through the kidney; valsartan is eliminated mainly by biliary route. Drug-drug interactions of sacubitril/valsartan were evaluated with medications commonly used in patients with heart failure including furosemide, warfarin, digoxin, carvedilol, levonorgestrel/ethinyl estradiol combination, amlodipine, omeprazole, hydrochlorothiazide, intravenous nitrates, metformin, statins, and sildenafil. Co-administration with sacubitril/valsartan increased the maximum plasma concentration (~2.0-fold) and area under the plasma concentration-time curve (1.3-fold) of atorvastatin; however, it did not affect the pharmacokinetics of simvastatin. Age, sex, or ethnicity did not affect the pharmacokinetics of sacubitril/valsartan. In patients with heart failure vs. healthy subjects, area under the plasma concentration-time curves of sacubitril, sacubitrilat, and valsartan were higher by approximately 1.6-, 2.1-, and 2.3-fold, respectively. Renal impairment had no significant impact on sacubitril and valsartan area under the plasma concentration-time curves, while the area under the plasma concentration-time curve of

  13. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    International Nuclear Information System (INIS)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-01-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC 50 = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC 50 = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1 2 β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC 50 = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1 2 β1γδ) than for the mouse (α1 2 β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  14. Elevated EGF Levels in the Blood Serum of Dogs with Periodontal Diseases and Oral Tumours.

    Science.gov (United States)

    Sobczyńska-Rak, Aleksandra; Żylińska, Beata; Polkowska, Izabela; Szponder, Tomasz

    2018-01-01

    Paradontopathy and neoplasms of the oral cavity represent one of the greatest challenges in human and animal dentistry. EGF plays a key role in maintaining the integrity and proper rate of cell proliferation in normal oral epithelium. The aim of the present study was to study serum levels of EGF in dogs diagnosed with periodontal diseases and oral cavity tumours. The samples comprised of cancerous tissue sections and serum obtained from dogs of various breeds, aged between 5-13 years. Serum EGF concentrations were measured by an immunoenzymatic method. The median for EGF concentration in serum of dogs suffered from severe periodontal diseases was greater when compared to the control group. EGF concentration in dogs with malignant tumours was significantly higher than in those with non-malignant growths. A positive correlation between EGF concentration and tumour size was also observed. EGF level in dogs diagnosed with benign tumours was comparable to the control group. The blood serum level of EGF increases significantly in patients with malignant oral tumours and advanced periodontal disease. In malignant tumours, the high level of EGF correlates with the size and invasiveness of the neoplasm. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. HB-EGF expression as a potential biomarker of acquired middle ear cholesteatoma.

    Science.gov (United States)

    Xie, Shumin; Wang, Xiaoli; Ren, Hongmiao; Liu, Xiaoyu; Ren, Jihao; Liu, Wei

    2017-08-01

    The heparin-binding epidermal growth factor-like growth factor (HB-EGF) plays an essential role in the development and invasiveness of cholesteatoma. This study may help to realize the molecular mechanisms underlying the pathogenesis of cholesteatoma and make HB-EGF a promising target for drug intervention of cholesteatoma. To detect HB-EGF expression in human surgical specimens of acquired middle ear cholesteatoma and analyze its functional role as a regulator of epithelial keratinocytes hyperproliferation. A total of 34 patients who underwent surgical treatment for middle ear cholesteatoma were recruited in the study. The mRNA and protein expression of HB-EGF in middle ear cholesteatoma tissues and normal postauricular skin tissues was investigated by real-time quantitative reverse-transcription-polymerase chain reaction (RT-qPCR), immunohistochemical staining, and western blot. The correlation between bone resorption degree and HB-EGF expression was also analyzed. On average, compared with normal postauricular skin, expression of HB-EGF mRNA in the cholesteatoma epithelium was significantly elevated 2.41-fold by RT-qPCR, and HB-EGF protein significantly upregulated 2.32-fold by western blot. Positive HB-EGF immunostaining observed in the basal and suprabasal layers of cholesteatoma epithelium was significantly stronger than in normal postauricular skin. Meanwhile, an obviously positive correlation between HB-EGF protein expression and bone resorption degree was discovered.

  16. Severe hepatic encephalopathy in a patient with liver cirrhosis after administration of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker combination therapy: a case report

    Directory of Open Access Journals (Sweden)

    Podda Mauro

    2010-05-01

    Full Text Available Abstract Introduction A combination therapy of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers has been used to control proteinuria, following initial demonstration of its efficacy. However, recently concerns about the safety of this therapy have emerged, prompting several authors to urge for caution in its use. In the following case report, we describe the occurrence of a serious and unexpected adverse drug reaction after administration of a combination of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers to a patient with nephrotic syndrome and liver cirrhosis with severe portal hypertension. Case presentation We administered this combination therapy to a 40-year-old Caucasian man with liver cirrhosis in our Hepatology Clinic, given the concomitant presence of glomerulopathy associated with severe proteinuria. While the administration of one single drug appeared to be well-tolerated, our patient developed severe acute encephalopathy after the addition of the second one. Discontinuation of the therapy led to the disappearance of the side-effect. A tentative rechallenge with the same drug combination led to a second episode of acute severe encephalopathy. Conclusion We speculate that this adverse reaction may be directly related to the effect of angiotensin II on the excretion of blood ammonia. Therefore, we suggest that patients with liver cirrhosis and portal hypertension are at risk of developing clinically relevant encephalopathy when angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker combination therapy is administered, thus indicating the need for a careful clinical follow-up. In addition, the incidence of this serious side-effect should be rigorously evaluated in all patients with liver cirrhosis administered with this common treatment combination.

  17. Enhancement of trophoblast differentiation and survival by low molecular weight heparin requires heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Bolnick, Alan D; Bolnick, Jay M; Kohan-Ghadr, Hamid-Reza; Kilburn, Brian A; Pasalodos, Omar J; Singhal, Pankaj K; Dai, Jing; Diamond, Michael P; Armant, D Randall; Drewlo, Sascha

    2017-06-01

    Does low molecular weight heparin (LMWH) require heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) signaling to induce extravillous trophoblast differentiation and decrease apoptosis during oxidative stress? LMWH increased HBEGF expression and secretion, and HBEGF signaling was required to stimulate trophoblast extravillous differentiation, increase invasion in vitro and reduce trophoblast apoptosis during oxidative stress. Abnormal trophoblast differentiation and survival contribute to placental insufficiency syndromes, including preeclampsia and intrauterine growth restriction. Preeclampsia often manifests as a pro-thrombotic state, with unsuccessful transformation of the spiral arteries that reduces oxygen supply and can produce placental infarction. LMWH improves placental function by increasing blood flow. Recent data suggest that the actions of LMWH transcend its anti-coagulative properties, but the molecular mechanism is unknown. There is evidence that LMWH alters the expression of human HBEGF in trophoblast cells, which regulates human trophoblast pathophysiology. HBEGF, itself, is capable of increasing trophoblast survival and invasiveness. First-trimester placental explants and the HTR-8/SVneo cell line, established using extravillous trophoblast outgrowths from first-trimester villous explants, were treated in vitro with LMWH to examine the effects on HBEGF signaling and trophoblast function under normal physiological and pathological conditions. A highly specific antagonist of HBEGF and other inhibitors of HBEGF downstream signaling were used to determine the relationship between LMWH treatment and HBEGF. Placental tissues (n = 5) were obtained with IRB approval and patient consent from first-trimester terminations. Placental explants and HTR-8/SVneo cells were cultured on plastic or Matrigel™ and treated with a therapeutic dose of LMWH (Enoxaparin; 10 IU/ml), with or without CRM197, pan Erb-B2 Receptor Tyrosine Kinase (ERBB

  18. AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hua Xie

    Full Text Available Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h and sustained (≥24 h inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells.

  19. Skin cancer associated with commonly prescribed drugs: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and statins -weighing the evidence.

    Science.gov (United States)

    Nardone, Beatrice; Orrell, Kelsey A; Vakharia, Paras P; West, Dennis P

    2018-02-01

    Skin cancers, including both malignant melanoma (MM) and nonmelanoma skin cancer (NMSC), are the most commonly diagnosed cancers in the US. The incidence of both MM and NMSC continues to rise. Areas covered: Current evidence for an association between four of the most commonly prescribed classes of drugs in the U.S. and risk for MM and NMSC is reported. Medline was searched (January 2000 to May 2017) for each drug in the classes and for 'basal cell carcinoma', 'squamous cell carcinoma', 'non-melanoma skin cancer', 'skin cancer' and 'melanoma'. Skin cancer risk information was reported for: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase inhibitors (statins). Expert opinion: Since skin cancer risk is associated with all four classes of these commonly prescribed drugs that represent nearly 20% of the Top 100 drugs in the U.S., these important findings warrant enhanced education, especially for prescribers and those patients at high risk for skin cancer.

  20. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  1. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  2. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Shoc2 is targeted to late endosomes and required for Erk1/2 activation in EGF-stimulated cells.

    Directory of Open Access Journals (Sweden)

    Emilia Galperin

    Full Text Available Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor (EGF receptor (EGFR, we studied subcellular localization of Shoc2. Upon EGFR activation, endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS (N17S mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations, which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G mutant, that is myristoylated and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF module.

  4. Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Dhivyaa Alagappan

    2009-04-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  5. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  6. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  7. Discoidin domain receptor 1 is activated independently of beta(1) integrin

    DEFF Research Database (Denmark)

    Vogel, W; Brakebusch, C; Fässler, R

    2000-01-01

    independent of the epidermal growth factor (EGF) receptor. In cells that endogenously express both DDR1 and the EGF receptor, stimulation with EGF does not induce DDR activation. Third, we detected full DDR1 activation after collagen stimulation in cells that have been treated with blocking antibodies...... for alpha(2)beta(1) integrin or in cells with a targeted deletion of the beta(1) integrin gene. Finally, we show that overexpression of dominant negative DDR1 in the myoblast cell line C2C12 blocks cellular differentiation and the formation of myofibers....

  8. Differential effects of EGFR ligands on endocytic sorting of the receptor

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Grandal, Michael Vibo; Henriksen, Lasse

    2009-01-01

    signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-alpha, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic...... trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-alpha and epiregulin lead to complete receptor...

  9. Time-dependent changes of levels of endogenous epidermal growth factor in submandibular glands, in kidneys, and in urine in rats during systemic treatment with EGF

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Jørgensen, P E; Thulesen, J

    1998-01-01

    Exogenous EGF influences the levels of endogenous EGF differently in the submandibular glands (SMG) and the kidneys. The aim of the present study was to examine the time-dependent changes in levels of endogenous EGF during 1-4 weeks of EGF treatment.......Exogenous EGF influences the levels of endogenous EGF differently in the submandibular glands (SMG) and the kidneys. The aim of the present study was to examine the time-dependent changes in levels of endogenous EGF during 1-4 weeks of EGF treatment....

  10. Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    Science.gov (United States)

    Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle

    2011-01-01

    Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID

  11. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT in human lung cancer.

    Directory of Open Access Journals (Sweden)

    Frances E Lennon

    Full Text Available Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05. Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.

  12. The role of sialoadenectomy and epıdermal growth factor (EGF) in ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... result, epidermal growth factor was concluded to have an important role in skin development. Key words: Epidermal growth factor, ... sialoadenectomy on epiderm and the role of EGF and antiserum EGF in prevention of .... remarkable finding in skin healing of sialoadenectomy and normal rats. According to ...

  13. Expression of polyhedrin-hEGF fusion protein in cultured cells and ...

    African Journals Online (AJOL)

    For mass production of human epidermal growth factor (hEGF), silkworm baculovirus expression vector system (BEVS) was adopted in this study. hEGF gene was in-frame fused with polyhedrin (Ph) gene under the control of Ph promoter and was used to co-transfect BmN cell with the modified. Bombyx mori baculovirus ...

  14. Insulin induces a transcriptional activation of epiregulin, HB-EGF and amphiregulin, by a PI3K-dependent mechanism: Identification of a specific insulin-responsive promoter element

    International Nuclear Information System (INIS)

    Ornskov, Dorthe; Nexo, Ebba; Sorensen, Boe S.

    2007-01-01

    Previously we have shown that insulin-stimulation of RT4 bladder cancer cells leads to increased proliferation, which require HER1 activation, and is accompanied by increased mRNA expression of the EGF-ligands heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), and epiregulin (EPI) [D. Ornskov, E. Nexo, B.S. Sorensen, Insulin-induced proliferation of bladder cancer cells is mediated through activation of the epidermal growth factor system, FEBS J. 273 (2006) 5479-5489]. In the present paper, we have investigated the molecular mechanism leading to this insulin-induced expression. We monitored the decay of mRNA after inhibiting transcription with Actinomycin D and demonstrated that the insulin-mediated increase was not caused by enhanced mRNA stability. In untreated cells, HB-EGF mRNA was the least stable, whereas AR and EPI mRNA decayed with slower kinetics. However, promoter analysis of HB-EGF and EPI demonstrated that insulin stimulated transcription. Studies on the EPI promoter identified the insulin-responsive element to be located in the region -564 to -365 bp. This region contains potential binding sites for the transcription factors SP1, AP1, and NF-κB. Interestingly, all three transcription factors can be activated by PI3K. We demonstrate that the insulin-induced expression of HB-EGF, AR, and EPI mRNA is completely prevented by the specific PI3K inhibitor Wortmannin, suggesting an involvement of the PI3K

  15. Endogenous EGF as a potential renotrophic factor in ischemia-induced acute renal failure.

    Science.gov (United States)

    Schaudies, R P; Nonclercq, D; Nelson, L; Toubeau, G; Zanen, J; Heuson-Stiennon, J A; Laurent, G

    1993-09-01

    The time course for the increases in soluble renal epidermal growth factor (EGF) after ischemia has been established. These elevated levels of EGF have been compared with the degree of tissue injury as well as the extent of cell proliferation in the recovering tissue. Levels of soluble immunoreactive EGF (irEGF) in control animals were 9.74 +/- 1.1 ng/g wet wt (n = 4-8 for all values) and rose to 83.9 +/- 30 ng/g within 12 h after injury. Soluble irEGF content peaked at 88.8 +/- 15 ng/g at 24 h postinjury and returned to control values by 72 h. We previously reported that trypsin digestion of crude renal membranes (CRM) generates rat EGF that is indistinguishable from that isolated from the submandibular gland. Initial levels of trypsin-releasable membrane-associated irEGF were 439 +/- 26 ng/g. These levels fell to 46.6 +/- 9.6 ng/g at 48 h after injury. The total renal EGF demonstrated an 80% decline 48 h after injury but returned to 50% of the initial values after 72 h representing significant new synthesis of EGF-containing proteins between 48 and 72 h postinjury. Immunohistochemical staining of kidney paraffin sections for EGF immunoreactivity demonstrated staining intensities that paralleled the amount of irEGF in the trypsin-digested CRM fraction, suggesting that the membrane-associated irEGF is the predominant form detected by this technique. Regenerative hyperplasia subsequent to tubular insult was monitored by immunostaining nuclei of S phase cells after pulse labeling with the thymidine analogue 5-bromo-2'-deoxyuridine. Cell proliferation was particularly prominent in the outer stripe of outer medulla of kidneys exposed to ischemia and reached a maximum (19-fold higher than the baseline value) 48 h after reperfusion. Renal cell turnover returned to control values by day 7. The observation that the peak in soluble EGF levels (24 h) precedes the peak in tubular regeneration (48 h) by 24 h is consistent with the hypothesis that EGF is one of the mitogenic

  16. A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury.

    Science.gov (United States)

    Delbary-Gossart, Sandrine; Lee, Sangmi; Baroni, Marco; Lamarche, Isabelle; Arnone, Michele; Canolle, Benoit; Lin, Amity; Sacramento, Jeffrey; Salegio, Ernesto A; Castel, Marie-Noelle; Delesque-Touchard, Nathalie; Alam, Antoine; Laboudie, Patricia; Ferzaz, Badia; Savi, Pierre; Herbert, Jean-Marc; Manley, Geoffrey T; Ferguson, Adam R; Bresnahan, Jacqueline C; Bono, Françoise; Beattie, Michael S

    2016-06-01

    The p75 neurotrophin receptor is important in multiple physiological actions including neuronal survival and neurite outgrowth during development, and after central nervous system injury. We have discovered a novel piperazine-derived compound, EVT901, which interferes with p75 neurotrophin receptor oligomerization through direct interaction with the first cysteine-rich domain of the extracellular region. Using ligand binding assays with cysteine-rich domains-fused p75 neurotrophin receptor, we confirmed that EVT901 interferes with oligomerization of full-length p75 neurotrophin receptor in a dose-dependent manner. Here we report that EVT901 reduces binding of pro-nerve growth factor to p75 neurotrophin receptor, blocks pro-nerve growth factor induced apoptosis in cells expressing p75 neurotrophin receptor, and enhances neurite outgrowth in vitro Furthermore, we demonstrate that EVT901 abrogates p75 neurotrophin receptor signalling by other ligands, such as prion peptide and amyloid-β. To test the efficacy of EVT901 in vivo, we evaluated the outcome in two models of traumatic brain injury. We generated controlled cortical impacts in adult rats. Using unbiased stereological analysis, we found that EVT901 delivered intravenously daily for 1 week after injury, reduced lesion size, protected cortical neurons and oligodendrocytes, and had a positive effect on neurological function. After lateral fluid percussion injury in adult rats, oral treatment with EVT901 reduced neuronal death in the hippocampus and thalamus, reduced long-term cognitive deficits, and reduced the occurrence of post-traumatic seizure activity. Together, these studies provide a new reagent for altering p75 neurotrophin receptor actions after injury and suggest that EVT901 may be useful in treatment of central nervous system trauma and other neurological disorders where p75 neurotrophin receptor signalling is affected. © The Author (2016). Published by Oxford University Press on behalf of the

  17. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  18. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  19. DNA methylation dynamics in the rat EGF gene promoter after partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Deming Li

    2014-06-01

    Full Text Available Epidermal growth factor (EGF, a multifunctional growth factor, is a regulator in a wide variety of physiological processes. EGF plays an important role in the regulation of liver regeneration. This study was aimed at investigating the methylation level of EGF gene throughout liver regeneration. DNA of liver tissue from control rats and partial hepatectomy (PH rats at 10 time points was extracted and a 354 bp fragment including 10 CpG sites from the transcription start was amplified after DNA was modified by sodium bisulfate. The result of sequencing suggested that methylation ratio of four CpG sites was found to be significantly changed when PH group was compared to control group, in particular two of them were extremely striking. mRNA expression of EGF was down-regulated in total during liver regeneration. We think that the rat EGF promoter region is regulated by variation in DNA methylation during liver regeneration.

  20. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P

    1991-01-01

    mutants in the full length receptor. EGF-dependent transforming ability of the single point mutants is similar to that of the wild type, while that of double mutants is decreased and an even lower activity is present in the triple mutant. In each bioassay, including EGF-dependent focal transformation...... biologically. The EGF-R kinase activity is affected by tyrosine substitution since in vitro phosphorylation of exogenous substrates is reduced in the double and triple mutants. Autophosphorylation, in vivo and in vitro, is also reduced, but not totally abolished in the triple point mutant and Dc123 indicating......The epidermal growth factor receptor (EGF-R) C-terminus contains three conserved tyrosines (Y-1068, Y-1148, Y-1173) which are phosphorylated upon EGF activation. To clarify the functional role of these tyrosines, each has been mutated to phenylalanine and studied as single, double and triple...

  1. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    Science.gov (United States)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  2. The Sacubitril/Valsartan, a First-in-Class, Angiotensin Receptor Neprilysin Inhibitor (ARNI): Potential Uses in Hypertension, Heart Failure, and Beyond.

    Science.gov (United States)

    Kario, Kazuomi

    2018-01-27

    Sacubitril/valsartan (LCZ696) is a first-in-class, novel-acting, angiotensin receptor neprilysin inhibitor (ARNI) that provides inhibition of neprilysin and the angiotensin (AT 1 ) receptor. A recent clinical trial PRARDIGM-HF demonstrated that this drug is superior to angiotensin-converting enzyme (ACE) inhibitors for improving the prognosis in the patients with heart failure, and this has resulted in the drug being included in clinical practice guidelines for the management of heart failure with reduced ejection fraction (EF). In addition, sacubitril/valsartan has been developed for the management of hypertension, because it has unique anti-aging properties. However, the clinical evidence of mechanism has not been well validated. A recent mechanistic study PARAMETER demonstrated that sacubitril/valsartan (LCZ696) is superior to angiotensin receptor blocker (ARB) monotherapy for reducing central aortic systolic pressure (primary endpoint) as well as for central aortic pulse pressure (secondary endpoint) and nocturnal BP preferentially. Considering these results, sacubitril/valsartan may be an attractive therapeutic agent to treat the elderly with age-related hypertension phenotypes, such as drug-uncontrolled (resistant) hypertension characterized as systolic (central) hypertension (structural hypertension) and/or nocturnal hypertension (salt-sensitive hypertension). These are the high-risk hypertension phenotypes which are prone to develop heart failure with preserved EF and chronic kidney disease. Sacubitril/valsartan may be effective to suppress the age-related continuum from hypertension to heart failure, and it could be clinically useful not only for secondary prevention, but also as primary prevention of heart failure in uncontrolled elderly hypertensive patients.

  3. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    Science.gov (United States)

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  5. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  6. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system

    Czech Academy of Sciences Publication Activity Database

    Kurtz, T. W.; Pravenec, Michal

    2004-01-01

    Roč. 22, č. 12 (2004), s. 2253-2261 ISSN 0263-6352 R&D Projects: GA ČR GA301/03/0751 Grant - others:HHMI(US) HHMI55000331 Institutional research plan: CEZ:AV0Z5011922 Keywords : angiotensin II receptors * metabolic syndrome * peroxisome proliferator activated receptors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.871, year: 2004

  7. Calcium channel blockers, angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors: Effectiveness in combination with diuretics or β-blockers for treating hypertension

    Directory of Open Access Journals (Sweden)

    John D Bisognano

    2007-11-01

    Full Text Available John D Bisognano1, Trent McLaughlin2, Craig S Roberts3, Simon SK Tang31Internal Medicine Department, Cardiology Division, the University of Rochester Medical Center, Rochester, NY, USA; 2NDC Health, Phoenix, Arizona, USA; 3Pfizer Inc, New York, NY, USAAbstract: This retrospective database analysis compared the effectiveness of dihydropyridine calcium channel blockers (DHPs, angiotensin-converting enzyme (ACE inhibitors, and angiotensin receptor blockers (ARBs added to diuretics or β-blockers. Adults with hypertension treated with diuretic or β-blocker monotherapy between 1998 and 2001 were identified from a large US electronic medical records database of primary care practices. Patients were required to have a baseline blood pressure (BP ≥140/90 mmHg (≥130/80 mmHg for diabetes mellitus and recorded BP measurements within 6 months before and 1–12 months following index date. Patients were matched 1:1:1 by propensity score to correct for differences in baseline characteristics. 1875 patients met study criteria and 660 (220 in each cohort were matched based on propensity scores. Matched cohorts had no significant differences in baseline characteristics. Mean changes in systolic/diastolic BP were –17.5/–8.8, –15.7/–6.3, and –13.0/–8.0 mmHg with DHPs, ACE inhibitors, and ARBs, respectively. Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High BP 6/7 goal attainment for each regimen was 47.3%, 40.0%, and 32.2%, respectively. DHPs, ACE inhibitors, and ARBs improved BP when added to patients’ β-blocker or diuretic therapy. The greatest benefits were observed with DHPs, followed by ACE inhibitors, then ARBs.Keywords: hypertension, amlodipine besylate, lisinopril, valsartan, Joint National Committee (JNC 6 and 7

  8. Angiotensin-Converting Inhibitors and Angiotensin II Receptor Blockers and Longitudinal Change in Percent Emphysema on Computed Tomography. The Multi-Ethnic Study of Atherosclerosis Lung Study

    Science.gov (United States)

    Parikh, Megha A.; Aaron, Carrie P.; Hoffman, Eric A.; Schwartz, Joseph E.; Madrigano, Jaime; Austin, John H. M.; Lovasi, Gina; Watson, Karol; Stukovsky, Karen Hinckley

    2017-01-01

    Rationale: Although emphysema on computed tomography (CT) is associated with increased morbidity and mortality in patients with and without spirometrically defined chronic obstructive pulmonary disease, no available medications target emphysema outside of alpha-1 antitrypsin deficiency. Transforming growth factor-β and endothelial dysfunction are implicated in emphysema pathogenesis, and angiotensin II receptor blockers (ARBs) inhibit transforming growth factor-β, improve endothelial function, and restore airspace architecture in murine models. Evidence in humans is, however, lacking. Objectives: To determine whether angiotensin-converting enzyme (ACE) inhibitor and ARB dose is associated with slowed progression of percent emphysema by CT. Methods: The Multi-Ethnic Study of Atherosclerosis researchers recruited participants ages 45–84 years from the general population from 2000 to 2002. Medication use was assessed by medication inventory. Percent emphysema was defined as the percentage of lung regions less than −950 Hounsfield units on CTs. Mixed-effects regression models were used to adjust for confounders. Results: Among 4,472 participants, 12% used an ACE inhibitor and 6% used an ARB at baseline. The median percent emphysema was 3.0% at baseline, and the rate of progression was 0.64 percentage points over a median of 9.3 years. Higher doses of ACE or ARB were independently associated with a slower change in percent emphysema (P = 0.03). Over 10 years, in contrast to a predicted mean increase in percent emphysema of 0.66 percentage points in those who did not take ARBs or ACE inhibitors, the predicted mean increase in participants who used maximum doses of ARBs or ACE inhibitors was 0.06 percentage points (P = 0.01). The findings were of greatest magnitude among former smokers (P emphysema. There was no evidence that ACE inhibitor or ARB dose was associated with decline in lung function. Conclusions: In a large population-based study, ACE

  9. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases

    DEFF Research Database (Denmark)

    Illemann, Martin; Bird, Nigel; Majeed, Ali

    2009-01-01

    Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1). T...

  10. Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells.

    Science.gov (United States)

    Lee, Ming-Fen; Pan, Min-Hsiung; Chiou, Yi-Siou; Cheng, An-Chin; Huang, Han

    2011-11-09

    Resveratrol and pterostilbene exhibit diverse biological activities. MED28, a subunit of the mammalian Mediator complex for transcription, was also identified as magicin, an actin cytoskeleton Grb2-associated protein, and as endothelial-derived gene (EG-1). Several tumors exhibit aberrant MED28 expression, whereas the underlying mechanism is unclear. Triple-negative breast cancers, often expressing epidermal growth factor (EGF) receptor (EGFR), are associated with metastasis and poor survival. The objective of this study is to compare the effect of resveratrol and pterostilbene and to investigate the role of MED28 in EGFR-overexpressing MDA-MB-231 breast cancer cells. Pretreatment of resveratrol, but not pterostlbene, suppressed EGF-mediated migration and expression of MED28 and matrix metalloproteinase (MMP)-9 in MDA-MB-231 cells. Moreover, overexpression of MED28 increased migration, and the addition of EGF further enhanced migration. Our data indicate that resveratrol modulates the effect of MED28 on cellular migration, presumably through the EGFR/phosphatidylinositol 3-kinase (PI3K) signaling pathway, in breast cancer cells.

  11. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    International Nuclear Information System (INIS)

    Hugo, Honor J; Wafai, Razan; Blick, Tony; Thompson, Erik W; Newgreen, Donald F

    2009-01-01

    A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive

  12. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Directory of Open Access Journals (Sweden)

    Thompson Erik W

    2009-07-01

    Full Text Available Abstract Background A feature of epithelial to mesenchymal transition (EMT relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1 and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4 and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4. Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse

  13. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  14. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    Science.gov (United States)

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  15. Pretreatment with oleic acid accelerates the entrance into the mitotic cycle of EGF-stimulated fibroblasts.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Eiras, A; Beiras, A; Casanueva, F F

    1995-07-01

    We have previously demonstrated that pretreatment of several cell lines with cis-unsaturated fatty acids, like oleic acid, blocks epidermal growth factor (EGF)-induced early ionic signals, and in particular the [Ca2+]i rise. In the present work we show that this blockade does not alter EGF-stimulated cellular proliferation evaluated by direct cell counting, but induces a powerful enhancement in the pulsed thymidine incorporation assay. The lack of effect of oleic acid on EGF-stimulated cellular proliferation was confirmed by repeated cell counts, cumulative thymidine incorporation, and protein synthesis, but a clear synergistic effect between oleic acid and EGF was again obtained by means of time course experiments with pulsed thymidine. Combined flow cytometry analysis and cell counts at earlier times in EGF-stimulated cells showed that oleic acids accelerates the entrance of cells into the replicative cycle leading to an earlier cell division. Afterward, these oleic acid-pretreated cells became delayed by an unknown compensatory mechanism in such a way that at 48 h post-EGF, the cell count in control and oleic acid-pretreated cells was equal. In conclusion (a) oleic acid accelerates or enhances the EGF mitogenic action and (b) in the long term cells compensate the initial perturbation with respect to untreated cells. As a side observation, the widely employed pulsed thymidine incorporation method as a measure of cell division could be extremely misleading unless experimental conditions are well controlled.

  16. The preventive effect of recombinant human growth factor (rhEGF) on the recurrence of radiodermatitis

    International Nuclear Information System (INIS)

    Ryu, Seung-Hee; Kim, Yeun-Hwa; Lee, Sang-Wook; Hong, Joon-Pio

    2010-01-01

    The effects of topical application of recombinant human epidermal growth factor (rhEGF) on wound healing and the recurrence of radiodermatitis were assessed in the irradiated skin of BALB/c Nu/Nu mice. Mice irradiated with 45 Gy of radiation were divided into 5 groups and treated with 10, 50, and 100 μg/g rhEGF ointment, vehicle alone, or no treatment (control) for 6 months. Wounds were observed initially in all groups and complete healing time (HT 100 ) for initial wound repair did not differ significantly among groups. However, the rate of recurrence over 6 months was significantly lower in the EGF-treated groups than in the control group (p<0.05). Histological examination showed that treatment with the optimum dose of EGF (50 μg/g) accelerated normal wound healing when compared with the higher dose of EGF (100 μg/g), vehicle alone, or no treatment, with the latter group showing irregular epidermal thickness, poor definition of epidermis and dermis, and unstable dermal structure. Collagen distribution was also significantly increased in mice treated with 50 μg/g rhEGF (p<0.05) compared with the control or vehicle-treated group. Taken together, these results indicate that treatment with exogenous EGF (50 μg/g dose) can enhance radiation-induced wound repair while preserving structural tissue stability and preventing the recurrence of radiodermatitis. (author)

  17. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    Science.gov (United States)

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  18. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    Science.gov (United States)

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    Science.gov (United States)

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  20. Perturbation of estrogen receptor α localization with synthetic nona-arginine LXXLL-peptide coactivator binding inhibitors

    NARCIS (Netherlands)

    Carraz, M.; Zwart, W.; Phan, T.; Michalides, R.; Brunsveld, L.

    2009-01-01

    The interaction of estrogen receptor a (ERa) with the consensus LXXLL motifs of transcriptional coactivators provides an entry for functional ERa inhibition. Here, synthetic cell-permeable LXXLL peptide probes are brought forward that allow evaluation of the interaction of specific recognition

  1. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  2. Combined pharmacological therapy of the acute radiation disease using a cyclooxygenase-2 inhibitor and an adenosine A(3) receptor agonist

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 9, č. 6 (2014), s. 642-646 ISSN 1895-104X R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Hematopoiesis * Cyclooxygenase inhibition * Adenosine receptor agonist Subject RIV: BO - Biophysics Impact factor: 0.710, year: 2014

  3. Hand-foot skin reaction with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: A systematic review and meta-analysis.

    Science.gov (United States)

    Li, Jing; Gu, Jian

    2017-11-01

    A meta-analysis was conducted to systematically review the risk of hand-foot skin reaction (HFSR) with vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) in patients with cancer. The relevant studies of the randomized controlled trials (RCTs) in cancer patients treated with VEGFR-TKIs were retrieved and the systematic evaluation was conducted. EMBASE, MEDLINE, and PubMed were searched for articles published till May 2017. Twenty-one RCTs and 9552 patients were included. The current analysis suggested that the use of VEGFR-TKIs increased the risk of all-grade HFSR (7.04;95%CI, 5.33-9.30;pcancer type, whereas the RR of high-grade HFSR did not. The risk of all-grade and high-grade HFSR did not affect by drug types, treatment line, median age and treatment duration. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Levels of plasminogen activator inhibitor type 1 and urokinase plasminogen activator receptor in non-small cell lung cancer as measured by quantitative ELISA and semiquantitative immunohistochemistry

    DEFF Research Database (Denmark)

    Pappot, Helle; Skov, Birgit Guldhammer; Pyke, Charles

    1997-01-01

    The components of the plasminogen activation system have been reported to have prognostic impact in several cancer types, e.g. breast-, colon-, gastric- and lung cancer. Most of these studies have used quantification by enzyme-linked immunosorbent assay (ELISA) on tumour tissue extracts. However......, results in non-small cell lung cancer (NSCLC) studies obtained by quantitative ELISA and semiquantitative immunohistochemistry differ. If the prognostic value of the components of the plasminogen activation system is to be exploited clinically in the future, it is important to choose an easy and valid...... methodology. In the present study we investigated levels of plasminogen activator inhibitor type 1 (PAI-I) and urokinase plasminogen activator receptor (uPAR), as quantitated by ELISA in tumour extracts from 64 NSCLC patients (38 squamous cell carcinomas, 26 adenocarcinomas), and compared them to staining...

  5. Both sides of the same coin: Rac1 splicing regulating by EGF signaling.

    Science.gov (United States)

    Fu, Xiang-Dong

    2017-04-01

    EGF, a well-studied mitogen for cancer cells, is revealed to induce an E3 ubiquitin ligase adaptor SPSB1, which recruits the Elongin B/C-Collin complex to trigger ubiquitylation of the negative splicing regulator hnRNP A1. This event is synergized with EGF-activated SR proteins to alter alternative splicing of a key small GTPase Rac1 to enhance cell migration, highlighting converging EGF signals on both negative and positive splicing regulators to jointly promote a key cancer pathway.

  6. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  7. Inhibition of neurotensin-stimulated mast cell secretion and carboxypeptidase A activity by the peptide inhibitor of carboxypeptidase A and neurotensin-receptor antagonist SR 48692.

    Science.gov (United States)

    Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E

    1998-06-01

    Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.

  8. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.

    Science.gov (United States)

    Mori, Yoshikazu; Hirokawa, Takatsugu; Aoki, Katsuyuki; Satomi, Hisanori; Takeda, Shuichi; Aburada, Masaki; Miyamoto, Ken-ichi

    2008-05-01

    We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.

  9. Development and Implementation of a High-Throughput High-Content Screening Assay to Identify Inhibitors of Androgen Receptor Nuclear Localization in Castration-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Nguyen, Minh M.; Dar, Javid A.; Ai, Junkui; Wang, Yujuan; Masoodi, Khalid Z.; Shun, Tongying; Shinde, Sunita; Camarco, Daniel P.; Hua, Yun; Huryn, Donna M.; Wilson, Gabriela Mustata; Lazo, John S.; Nelson, Joel B.; Wipf, Peter

    2016-01-01

    Abstract Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide. PMID:27187604

  10. Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials.

    Science.gov (United States)

    Rodon, Jordi; DeSantos, Victoria; Ferry, Robert Jean; Kurzrock, Razelle

    2008-09-01

    The insulin-like growth factor-I receptor (IGF-IR) was first cloned in 1986. Since then, intense work has defined classic phosphorelays activated via the IGF-IR, which regulate cell proliferation, apoptosis, motility, and fate. The understanding of the roles of hormones in cancer and the growth hormone-IGF-IGF-binding protein axis specifically has yield to a second wave of development: the design of specific inhibitors that interrupt the signaling associated with this axis. The ability to manipulate these pathways holds not only significant therapeutic implications but also increase the chance of deeper insight about the role of the axis in carcinogenesis and metastasis. Nowadays, >25 molecules with the same goal are at different stages of development. Here, we review the clinical and preclinical experience with the two most-investigated strategies, tyrosine kinase inhibitors and monoclonal antibodies, and the advantages and disadvantages of each strategy, as well as other alternatives and possible drug combinations. We also review the biomarkers explored in the first clinical trials, the strategies that have been explored thus far, and the clinical trials that are going to explore their role in cancer treatment.

  11. Determination and confirmation of selective estrogen receptor modulators (SERMs), anti-estrogens and aromatase inhibitors in bovine and porcine urine using UHPLC-MS/MS.

    Science.gov (United States)

    Meijer, Thijs; Essers, Martien L; Kaklamanos, George; Sterk, Saskia S; van Ginkel, Leendert A

    2017-04-01

    Selective estrogen receptor modulators (SERMs), anti-estrogens and aromatase inhibitors are prohibited in human sports doping. However, they also present a risk of being used illegally in animal husbandry for fattening purposes. A method was developed and validated using UHPLC-MS/MS for the determination and confirmation of SERMs, anti-estrogens and aromatase inhibiters in bovine and porcine urine. This method was used in a survey of more than 200 bovine and porcine urine samples from Dutch farms. In 18 out of 103 porcine urine samples (17%) and two out of 114 bovine samples (2%) formestane, an aromatase inhibitor, was detected. None of the other compounds was detected. From human doping control it is known that formestane can, in some cases, be of natural origin. Analyses of reference samples from untreated bovine and porcine animals demonstrated the presence of formestane in bovine animals, but not yet in porcine animals. Future research will focus on whether the detected formestane in porcine and bovine urine is from endogenous or exogenous origin, using GC-c-IRMS.

  12. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas.

    Directory of Open Access Journals (Sweden)

    Sarah K Knutson

    Full Text Available Patients with non-Hodgkin lymphoma (NHL are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone. Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.

  13. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas.

    Science.gov (United States)

    Knutson, Sarah K; Warholic, Natalie M; Johnston, L Danielle; Klaus, Christine R; Wigle, Tim J; Iwanowicz, Dorothy; Littlefield, Bruce A; Porter-Scott, Margaret; Smith, Jesse J; Moyer, Mikel P; Copeland, Robert A; Pollock, Roy M; Kuntz, Kevin W; Raimondi, Alejandra; Keilhack, Heike

    2014-01-01

    Patients with non-Hodgkin lymphoma (NHL) are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone). Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag) component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.

  14. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    Science.gov (United States)

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  15. Renal effects of DPP-4 inhibitor sitagliptin or GLP-1 receptor agonist liraglutide in overweight patients with type 2 diabetes : A 12-week, randomized, double-blind, placebo-controlled trial

    NARCIS (Netherlands)

    Tonneijck, Lennart; Smits, Mark M.; Muskiet, Marcel H A; Hoekstra, Trynke; Kramer, Mark H H; Danser, A. H Jan; Ter Wee, Piet M.; Diamant, Michaela; Joles, Jaap A.; Van Raalte, Daniël H.

    2016-01-01

    OBJECTIVE To investigate effects of dipeptidyl peptidase-4 inhibitor (DPP-4I) sitagliptin or glucagon-like peptide 1 (GLP-1) receptor agonist liraglutide treatment on renal hemodynamics, tubular functions, and markers of renal damage in overweight patients with type 2 diabetes without chronic kidney

  16. A polyethylenimine-modified carboxyl-poly(styrene/acrylamide copolymer nanosphere for co-delivering of CpG and TGF-β receptor I inhibitor with remarkable additive tumor regression effect against liver cancer in mice

    Directory of Open Access Journals (Sweden)

    Liang SY

    2016-12-01

    Full Text Available Shuyan Liang,* Jun Hu,* Yuanyuan Xie, Qing Zhou, Yanhong Zhu, Xiangliang Yang National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Cancer immunotherapy based on nanodelivery systems has shown potential for treatment of various malignancies, owing to the benefits of tumor targeting of nanoparticles. However, induction of a potent T-cell immune response against tumors still remains a challenge. In this study, polyethylenimine-modified carboxyl-styrene/acrylamide (PS copolymer nanospheres were developed as a delivery system of unmethylated cytosine-phosphate-guanine (CpG oligodeoxynucleotides and transforming growth factor-beta (TGF-β receptor I inhibitors for cancer immunotherapy. TGF-β receptor I inhibitors (LY2157299, LY were encapsulated to the PS via hydrophobic interaction, while CpG oligodeoxynucleotides were loaded onto the PS through electrostatic interaction. Compared to the control group, tumor inhibition in the PS-LY/CpG group was up to 99.7% without noticeable toxicity. The tumor regression may be attributed to T-cell activation and amplification in mouse models. The results highlight the additive effect of CpG and TGF-β receptor I inhibitors co-delivered in cancer immunotherapy. Keywords: CpG, TGF-β receptor I inhibitor, Pst-AAm copolymer nanosphere, immunotherapy

  17. ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Yuriko eIwakura

    2013-02-01

    Full Text Available Ligands for ErbB1-4 receptor tyrosine kinases, such as epidermal growth factor (EGF and neuregulins, regulate brain development and function. Thus, abnormalities in their signaling are implicated in the etiology or pathology of schizophrenia and Parkinson’s disease. Among the ErbB receptors, ErbB1 and ErbB4 are expressed in dopamine and GABA neurons, while ErbB1, 2, and/or 3 are mainly present in oligodendrocytes, astrocytes and their precursors. Thus, deficits in ErbB signaling might contribute to schizophrenia neuropathology stemming from these cell types. By incorporating the latest cancer molecular biology as well as our recent progress, we discuss signal cross talk between the ErbB1-4 subunits and their neurobiological functions in each cell type. The potential contribution of virus-derived cytokines (virokines that mimic EGF and neuregulin-1 in brain diseases are also discussed.

  18. Incretin-based treatment of type 2 diabetes: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors

    DEFF Research Database (Denmark)

    Deacon, Carolyn F

    2007-01-01

    Incretins are gut peptides that potentiate nutrient-stimulated insulin secretion following meal ingestion. Activities of the dominant incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide, include glucose-dependent stimulation of insulin secretion and, in preclin...... and liraglutide) and DPP-4 inhibitors that act to increase concentrations of endogenous intact incretins (e.g. sitagliptin and vildagliptin). Clinical trials of these incretin-based therapies have shown them to be effective in improving glycaemic control in patients with T2DM....

  19. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor

    DEFF Research Database (Denmark)

    Behrendt, Niels; List, Karin; Andreasen, Peter A

    2003-01-01

    The reciprocal pro-enzyme activation system of plasmin, urokinase-type plasminogen activator (uPA) and their respective zymogens is a potent mechanism in the generation of extracellular proteolytic activity. Plasminogen activator inhibitor type 1 (PAI-1) acts as a negative regulator. This system...... is complicated by a poorly understood intrinsic reactivity of the uPA pro-enzyme (pro-uPA) before proteolytic activation, directed against both plasminogen and PAI-1. We have studied the integrated activation mechanism under the repression of PAI-1 in a purified system. A covalent reaction between pro...

  20. Flipped script for gefitinib: A reapproved tyrosine kinase inhibitor for first-line treatment of epidermal growth factor receptor mutation positive metastatic nonsmall cell lung cancer.

    Science.gov (United States)

    Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E

    2017-04-01

    Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.

  1. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-01-01

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A 2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy

  2. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    International Nuclear Information System (INIS)

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-01-01

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with 3 H-naloxone or 3 H-D-Ala 2 -D-Leu 5 -enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables

  3. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  4. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  5. Dronerarone acts as a selective inhibitor of 3,5,3'-triiodothyronine binding to thyroid hormone receptor-alpha1: in vitro and in vivo evidence.

    Science.gov (United States)

    Van Beeren, H C; Jong, W M C; Kaptein, E; Visser, T J; Bakker, O; Wiersinga, W M

    2003-02-01

    Dronedarone (Dron), without iodine, was developed as an alternative to the iodine-containing antiarrhythmic drug amiodarone (AM). AM acts, via its major metabolite desethylamiodarone, in vitro and in vivo as a thyroid hormone receptor alpha(1) (TRalpha(1)) and TRbeta(1) antagonist. Here we investigate whether Dron and/or its metabolite debutyldronedarone inhibit T(3) binding to TRalpha(1) and TRbeta(1) in vitro and whether dronedarone behaves similarly to amiodarone in vivo. In vitro, Dron had a inhibitory effect of 14% on the binding of T(3) to TRalpha(1), but not on TRbeta(1). Desethylamiodarone inhibited T(3) binding to TRalpha(1) and TRbeta(1) equally. Debutyldronedarone inhibited T(3) binding to TRalpha(1) by 77%, but to TRbeta(1) by only 25%. In vivo, AM increased plasma TSH and rT(3), and decreased T(3). Dron decreased T(4) and T(3), rT(3) did not change, and TSH fell slightly. Plasma total cholesterol was increased by AM, but remained unchanged in Dron-treated animals. TRbeta(1)-dependent liver low density lipoprotein receptor protein and type 1 deiodinase activities decreased in AM-treated, but not in Dron-treated, animals. TRalpha(1)-mediated lengthening of the QTc interval was present in both AM- and Dron-treated animals. The in vitro and in vivo findings suggest that dronedarone via its metabolite debutyldronedarone acts as a TRalpha(1)-selective inhibitor.

  6. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer

    Directory of Open Access Journals (Sweden)

    Resmi Mustarichiei

    2014-03-01

    Full Text Available Background: Based on data from the Hospital Information System (HIS in 2007, breast cancer is the top ranked diagnosed cancer in Indonesia. Estrogen receptor alpha (ERα is associated with breast cancer because it is found in high levels in cancer tissues. Curcumol, curcumenol, isocurcumenol of white tumeric rhizomes (Curcuma zedoaria (Christm. Roscoe, and β-sitosterol from seeds of pumpkin (Cucurbita pepo L. have been reported to have inhibitory activity against cancer cells. This study presents the in silico study of these compounds as inhibitors of ERα.Methods: Docking simulations are carried out in this paper to visualize molecular-level interactions between the four compounds with ERα. Docking simulations between estradiol and tamoxifen on ERα are carried out as well.Results: Docking results indicated that curcumol, curcumenol, isocurcumenol, and β-sitosterol showed inhibitory activity againts estrogen receptor alpha (ERα.  The order of potency is shown consecutively by isocurcumenol, curcumol, curcumenol, and β-sitosterol with values 0.584 M, 1.36 M, 1.61 M, and 7.35 M respectively. Curcumenol and estradiol interacts with ERα through hydrogen bonds and hydrophobic interactions, whereas curcumol, isocurcumenol, β-sitosterol and tamoxifen through hydrophobic interactions in succession. Conclusion: Natural products containing all four compounds have the potential to be used as drugs or adjuvant drugs in breast cancer therapy.Keywords: β-sitosterol, breast cancer, curcumol, curcumenol, estradiol, ERα, isocurcumenol

  7. 5-HT2C receptors in the BNST are necessary for the enhancement of fear learning by selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Pelrine, Eliza; Pasik, Sara Diana; Bayat, Leyla; Goldschmiedt, Debora; Bauer, Elizabeth P

    2016-12-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed to treat anxiety and depression, yet they paradoxically increase anxiety during initial treatment. Acute administration of these drugs prior to learning can also enhance Pavlovian cued fear conditioning. This potentiation has been previously reported to depend upon the bed nucleus of the stria terminalis (BNST). Here, using temporary inactivation, we confirmed that the BNST is not necessary for the acquisition of cued or contextual fear memory. Systemic administration of the SSRI citalopram prior to fear conditioning led to an upregulation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) in the oval nucleus of the BNST, and a majority of these neurons expressed the 5-HT2C receptor. Finally, local infusions of a 5-HT2C receptor antagonist directly into the oval nucleus of the BNST prevented the fear memory-enhancing effects of citalopram. These findings highlight the ability of the BNST circuitry to be recruited into gating fear and anxiety-like behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  9. Participation of mitochondrial diazepam binding inhibitor receptors in the anticonflict, antineophobic and anticonvulsant action of 2-aryl-3-indoleacetamide and imidazopyridine derivatives.

    Science.gov (United States)

    Auta, J; Romeo, E; Kozikowski, A; Ma, D; Costa, E; Guidotti, A

    1993-05-01

    The 2-hexyl-indoleacetamide derivative, FGIN-1-27 [N,N-di-n-hexyl-2- (4-fluorophenyl)indole-3-acetamide], and the imidazopyridine derivative, alpidem, both bind with high affinity to glial mitochondrial diazepam binding inhibitor receptors (MDR) and increase mitochondrial steroidogenesis. Although FGIN-1-27 is selective for the MDR, alpidem also binds to the allosteric modulatory site of the gamma-aminobutyric acidA receptor where the benzodiazepines bind. FGIN-1-27 and alpidem, like the neurosteroid 3 alpha,21-dehydroxy-5 alpha-pregnane-20-one (THDOC), clonazepam and zolpidem (the direct allosteric modulators of gamma-aminobutyric acidA receptors) delay the onset of isoniazid and metrazol-induced convulsions. The anti-isoniazid convulsant action of FGIN-1-27 and alpidem, but not that of THDOC, is blocked by PK 11195. In contrast, flumazenil blocked completely the anticonvulsant action of clonazepam and zolpidem and partially blocked that of alpidem, but it did not affect the anticonvulsant action of THDOC and FGIN-1-27. Alpidem, like clonazepam, zolpidem and diazepam, but not THDOC or FGIN-1-27, delay the onset of bicuculline-induced convulsions. In two animal models of anxiety, the neophobic behavior in the elevated plus maze test and the conflict-punishment behavior in the Vogel conflict test, THDOC and FGIN-1-27 elicited anxiolytic-like effects in a manner that is flumazenil insensitive, whereas alpidem elicited a similar anxiolytic effect, but is partially blocked by flumazenil. Whereas PK 11195 blocked the effect of FGIN-1-27 and partially blocked alpidem, it did not affect THDOC in both animal models of anxiety.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial.

    Science.gov (United States)

    Garfield, Lauren D; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Pollock, Bruce G; Kristjansson, Sean D; Doré, Peter M; Lenze, Eric J

    2014-10-01

    Antidepressant side effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation, and, rarely, significant harm. Older adults assume the largest and most serious burden of medication side effects. We investigated the association between antidepressant side effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Adults (N = 177) aged ≥ 60 years were randomized to active treatment or placebo for 12 weeks. Side effects were assessed using the Udvalg fur Kliniske Undersøgelser side-effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR [L/S + rs25531], HTR1A rs6295, HTR2A rs6311, respectively). Four significant drug-placebo side-effect differences were found: increased duration of sleep, dry mouth, diarrhea, and diminished sexual desire. Analyses using putative high- versus low-transcription genotype groupings revealed six pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing serotonin transporter genotypes, respectively, and greater diarrhea with the 1A receptor low-transcription genotype. Diminished sexual desire was experienced significantly more by high-expressing genotypes in the serotonin transporter, 1A, or 2A receptors. There was not a significant relationship between drug concentration and side effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Genetic variation in the serotonin system may predict who develops common SSRI side effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. Published by Elsevier Inc.

  11. INTERACTION OF RECOMBINANT DIPHTHERIA TOXOIDS WITH CELLULAR RECEPTORS in vitro

    Directory of Open Access Journals (Sweden)

    K. Yu. Manoilov

    2016-06-01

    Full Text Available The aim of the research was to compare in vitro characteristics of reception of the natural diphtheria toxin — DT and its nontoxic recombinant analogs — toxoids. For assessing ligand-receptor interaction the method of immunoenzyme analysis and ELISA was used, where the bonding layer recombinant analogues of diphtheria toxin cell receptor HB-EGF from sensitive and resistant to the toxin of the organisms were served. According to the results of ELISA the natural diphtheria toxin, in contrast to recombinant toxoids — CRM197, and B subunit, interacted with mouse HB-EGF with a very low affinity. While human HB-EGF with an equally high affinity connected as toxoids as native diphtheria toxin. Therefore, the analyzed recombinant analogs of toxin obtained in E. coli cells did not reproduce in full measure the receptor specificity of the natural toxin, which should be considered in the case of using these proteins as biotech products.

  12. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    International Nuclear Information System (INIS)

    Leissner, Philippe; Verjat, Thibault; Bachelot, Thomas; Paye, Malick; Krause, Alexander; Puisieux, Alain; Mougin, Bruno

    2006-01-01

    One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer

  13. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Krause Alexander

    2006-08-01

    Full Text Available Abstract Background One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1. In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. Methods The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. Results uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS and Breast Cancer specific Survival (BCS were significantly shorter in patients expressing high levels of PAI-1 mRNA (p PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR = 10.12; p = 0.0002 and for BCS (HR = 13.17; p = 0.0003. Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41 nor with BCS (p = 0.19. In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. Conclusion These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer patients.

  14. EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Directory of Open Access Journals (Sweden)

    Har-Vardi Iris

    2007-01-01

    Full Text Available Abstract Background Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. Methods Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. Results PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls.

  15. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  16. The association of TP53 mutations with the resistance of colorectal carcinoma to the insulin-like growth factor-1 receptor inhibitor picropodophyllin

    International Nuclear Information System (INIS)

    Wang, Quan; Wei, Feng; Lv, Guoyue; Li, Chunsheng; Liu, Tongjun; Hadjipanayis, Costas G; Zhang, Guikai; Hao, Chunhai; Bellail, Anita C

    2013-01-01

    There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53 mutations often occur in colorectal

  17. The role of GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effects of neurosteroids on food intake in mice.

    Science.gov (United States)

    Reddy, D S; Kulkarni, S K

    1998-06-01

    The present studies were undertaken to investigate the neuroactive steroidal modulation of feeding behavior and possible involvement of gamma-aminobutyric acid type-A (GABA-A) and mitochondrial diazepam binding inhibitor (DBI) receptors (MDR) in food-deprived male mice. Allopregnanolone (0.5-2 mg/kg), a neurosteroid, progesterone (1-10 mg/kg), a neurosteroid precursor, and 4'-chlordiazepam (0.25-1 mg/kg), a specific high affinity MDR agonist, produced a dose-dependent hyperphagic effects. In contrast, neurosteroids pregnenolone sulfate (PS) (1-10 mg/kg) and dehydroepiandrosterone sulfate (DHEAS) (1-10 mg/kg) produced a hypophagic effect, in a dose-dependent manner. The allopregnanolone-, progesterone- and 4'-chlordiazepam-induced hyperphagic effect was blocked by picrotoxin (1 mg/kg), a GABA-A chloride channel antagonist, but not by flumazenil (2 mg/kg), a benzodiazepine (BZD) antagonist. The 4'-chlordiazepam-induced hyperphagic effect was prevented by pretreatment with PK11195 (2 mg/kg), a selective partia