WorldWideScience

Sample records for efficient thermal management

  1. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  2. Efficient thermal management for multiprocessor systems

    OpenAIRE

    Coşkun, Ayşe Kıvılcım

    2009-01-01

    High temperatures and large thermal variations on the die create severe challenges in system reliability, performance, leakage power, and cooling costs. Designing for worst-case thermal conditions is highly costly and time-consuming. Therefore, dynamic thermal management methods are needed to maintain safe temperature levels during execution. Conventional management techniques sacrifice performance to control temperature and only consider the hot spots, neglecting the effects of thermal varia...

  3. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  4. Electric Motor Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin

    2016-06-07

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  5. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  6. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  7. Power Electronics Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert; Bennion, Kevin

    2016-06-08

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  8. Efficient thermal diode with ballistic spacer

    Science.gov (United States)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  9. Light-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Light-Duty Vehicle Thermal Management Light-Duty Vehicle Thermal Management Image of a semi improving the thermal efficiency of light-duty vehicles (LDVs) while maintaining the thermal comfort that utility vehicles, vans, and light trucks in use on U.S. roads, and the average American drives 11,300

  10. Power Electronics Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on inverter components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.

  11. Power Electronics Thermal Management R&D: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-08

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  12. Micro-Scale Avionics Thermal Management

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  13. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  14. An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image

    Science.gov (United States)

    Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan

    2017-10-01

    It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.

  15. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  16. A Robust Model Predictive Control for efficient thermal management of internal combustion engines

    International Nuclear Information System (INIS)

    Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio

    2016-01-01

    Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO_2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for

  17. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  18. Electric Motor Thermal Management R&D. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

  19. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  20. Thermally Optimized Paradigm of Thermal Management (TOP-M)

    Science.gov (United States)

    2017-07-18

    19b. TELEPHONE NUMBER (Include area code) 18-07-2017 Final Technical Jul 2015 - Jul 2017 NICOP - Thermally Optimized Paradigm of Thermal Management ...The main goal of this research was to present a New Thermal Management Approach, which combines thermally aware Very/Ultra Large Scale Integration...SPAD) image sensors were used to demonstrate the new thermal management approach. Thermal management , integrated temperature sensors, Vt extractor

  1. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  2. An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency

    Science.gov (United States)

    Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

    2003-01-01

    The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

  3. Novel Magnetic-to-Thermal Conversion and Thermal Energy Management Composite Phase Change Material

    Directory of Open Access Journals (Sweden)

    Xiaoqiao Fan

    2018-05-01

    Full Text Available Superparamagnetic materials have elicited increasing interest due to their high-efficiency magnetothermal conversion. However, it is difficult to effectively manage the magnetothermal energy due to the continuous magnetothermal effect at present. In this study, we designed and synthesized a novel Fe3O4/PEG/SiO2 composite phase change material (PCM that can simultaneously realize magnetic-to-thermal conversion and thermal energy management because of outstanding thermal energy storage ability of PCM. The composite was fabricated by in situ doping of superparamagnetic Fe3O4 nanoclusters through a simple sol–gel method. The synthesized Fe3O4/PEG/SiO2 PCM exhibited good thermal stability, high phase change enthalpy, and excellent shape-stabilized property. This study provides an additional promising route for application of the magnetothermal effect.

  4. Thermal management of Li-ion battery with liquid metal

    International Nuclear Information System (INIS)

    Yang, Xiao-Hu; Tan, Si-Cong; Liu, Jing

    2016-01-01

    Highlights: • Liquid metal is used for power battery pack thermal management. • Better cooling performance and more uniform module temperature is obtained. • Less power consumption is needed. • The proposed liquid metal cooling system is robust and can cope with stressful conditions. - Abstract: Thermal management especially cooling of electric vehicles (EVs) battery pack is of great significance for guaranteeing the performance of the cells as well as safety and high-efficiency working of the EVs. Liquid cooling is a powerful way to keep the battery temperature in a proper range. However, the efficiency of conventional liquid cooling is still limited due to the inherently low thermal conductivity of the coolant which is usually water or aqueous ethanol. In this paper, a new kind of coolant, liquid metal, is proposed to be used for the thermal management of the battery pack. Mathematical analysis and numerical simulations are conducted to evaluate the cooling capability, pump power consumption and module temperature uniformity of the liquid metal cooling system, in comparison with that of water cooling. The results show that under the same flow conditions, a lower and more uniform module temperature can be obtained and less pump power consumption are needed in the liquid metal cooling system. In addition, liquid metal has an excellent cooling capability coping with stressful conditions, such as high power draw, defects in cells, and high ambient temperature. This makes it a promising coolant for the thermal management of high driving force EVs and quick charge batteries.

  5. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  6. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  7. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  8. Active Cooling and Thermal Management of a Downhole Tool Electronics Section

    DEFF Research Database (Denmark)

    Soprani, Stefano; Engelbrecht, Kurt; Just Nørgaard, Anders

    2015-01-01

    combines active and passive cooling techniques, aiming at an efficient thermal management, preserving the tool compactness and avoiding the use of moving parts. Thermoelectric coolers were used to transfer the dissipated heat from the temperature-sensitive electronics to the external environment. Thermal...... contact resistances were minimized and thermally insulating foam protected the refrigerated microenvironment from the hot surroundings....

  9. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  10. Weight Optimization of Active Thermal Management Using a Novel Heat Pump

    Science.gov (United States)

    Lear, William E.; Sherif, S. A.

    2004-01-01

    Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.

  11. Management Index Systems and Energy Efficiency Diagnosis Model for Power Plant: Cases in China

    Directory of Open Access Journals (Sweden)

    Jing-Min Wang

    2016-01-01

    Full Text Available In recent years, the energy efficiency of thermal power plant largely contributes to that of the industry. A thorough understanding of influencing factors, as well as the establishment of scientific and comprehensive diagnosis model, plays a key role in the operational efficiency and competitiveness for the thermal power plant. Referring to domestic and abroad researches towards energy efficiency management, based on Cloud model and data envelopment analysis (DEA model, a qualitative and quantitative index system and a comprehensive diagnostic model (CDM are construed. To testify rationality and usability of CDM, case studies of large-scaled Chinese thermal power plants have been conducted. In this case, CDM excavates such qualitative factors as technology, management, and so forth. The results shows that, compared with conventional model, which only considered production running parameters, the CDM bears better adaption to reality. It can provide entities with efficient instruments for energy efficiency diagnosis.

  12. Management Methods of Energy Efficiency and reduction of Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Actina, G.; Grackova, L.; Zebergs, V.; Zeltins, N.

    2007-01-01

    The management methods of energy efficiency and reduction of GHG emissions and their introduction depend on the financing possibilities and the management structures. Analysis is made of the following methods for the management of the process of raising energy efficiency: an energy audit and certification; the third-party financing; networks for energy efficiency and services of raising energy efficiency. In Latvia more than a half of all the energy resources are consumed for heating and the supply of hot water. The thermal parameters of buildings are poor therefore wide introduction of buildings certification, based on energy audit is of particular importance. The third-party financing would allow resolving the justified problems of audit and certification in order to hasten the heating process of buildings, particularly, owing to the appearance of respective foreign third-party financing companies, although the privatisation of dwelling houses and reorganisation of their management is not yet completed. The networks for energy efficiency have not found supporters in Latvia, however, great importance is attached to the thermal parameters of industrial premises, which are as poor as in the other buildings of the country, and here is a considerable potential of energy economy. Concerning the services of raising energy efficiency, the management method of this process is supposed to reach maximum energy economy after thermo and technical renovation of buildings at their various stages. It is connected with general organisational and financial adjustment of the management of buildings, as well as with the development of the energy service company.(author)

  13. Thermal management in inertial fusion energy slab amplifiers

    International Nuclear Information System (INIS)

    Sutton, S.B.; Albrecht, G.F.

    1995-01-01

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, cooling flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system

  14. Thermal management of space stations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control. This discussion introduces the concept and development of thermal management, presents the aspects of thermal management and further extends its application to subsystems of the space station.

  15. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  16. Quantum efficiency and thermal emittance of metal photocathodes

    Directory of Open Access Journals (Sweden)

    David H. Dowell

    2009-07-01

    Full Text Available Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths with major advances occurring since the invention of the photocathode gun and the realization of emittance compensation. These state-of-the-art electron beams are now becoming limited by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance for metal cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive the quantum efficiency and thermal emittance, and compare our results to those of others.

  17. Thermal management of microelectronics with electrostatic fluid accelerators

    International Nuclear Information System (INIS)

    Wang, Hsiu-Che; Jewell-Larsen, Nels E.; Mamishev, Alexander V.

    2013-01-01

    Optimal thermal management is critical in modern consumer electronics. Typically, a thermal management scheme for an electronic system involves several physical principles. In many cases, it is highly desirable to enhance heat transfer at the solid-air interface while maintaining small size of the thermal management solution. The enhancement of heat transfer at the solid-air interface can be achieved by several physical principles. One principle that is getting increased attention of thermal management design engineers is electrostatic fluid acceleration. This paper discusses recent breakthroughs in state-of-the-art of electrostatic fluid accelerators (EFAs). The paper compares and contrasts EFAs’ design and performance metrics to those of other airside cooling technologies used in small form factor applications. Since the energy efficiency, flow rate, and acoustic emissions are highly influenced by the scale of the airside cooling devices, the paper also presents the analysis of fundamental effect of scaling laws on heat transfer performance. The presented review and analysis helps drawing conclusions regarding achievable comparative performance and practicality of using different design approaches and physical principles for different applications. -- Highlights: ► Discuss breakthrough in state-of-the-art of electrostatic fluid accelerators (EFA). ► Compare EFAs' performance metrics to those of other airside cooling technologies. ► Show analysis of fundamental effect of scaling laws on heat transfer performance

  18. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ramandi, M.Y.; Dincer, I.; Naterer, G.F. [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, Oshawa, ON (Canada)

    2011-07-15

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems. (orig.)

  19. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    Science.gov (United States)

    Ramandi, M. Y.; Dincer, I.; Naterer, G. F.

    2011-07-01

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.

  20. Novel thermal management structures and their applications in new hybrid technologies and feed-through structures

    International Nuclear Information System (INIS)

    Carter, A.A.; Oliveira, R. de; Gandi, A.

    1999-01-01

    Novel techniques are described for fabricating a new thermal management structure (TMS), in the form of rigid low-mass structures with extremely high in-plane thermal conductivity. The core materials can be forms of thermally anisotropically conducting pyrolytic graphite that are directly encapsulated in a new thin-layering process. The structures can be used in a large variety of applications, including: (a) Efficient interfacing with ceramic materials and metals to provide new thermal management technologies. (b) Providing the source for a new hybrid technology where low-mass custom-designed multilayer thin-film circuits can be directly processed onto such structures. Alternatively, having been prefabricated on an independent substrate, hybrids can be efficiently interfaced to such thermal management structures. (c) Providing electrical connectivity between both sides of a TMS board through a new feedthrough technology that allows the fabrication of both single-sided and double-sided hybrids. These thermal management techniques and their applications are the subject of an international patent application number PCT/GB99/02180, filed in the names of the European Organization for Nuclear Research and Queen Mary and Westfield College, London. (orig.)

  1. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  2. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    International Nuclear Information System (INIS)

    Dowell, D.

    2009-01-01

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others

  3. Power Electronics Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics Thermal Management Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the investigates and develops thermal management strategies for power electronics systems that use wide-bandgap

  4. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  5. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  6. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhehao, E-mail: ccgri_lzh@163.com [Changchun Gold Research Institute, 130012 (China); Peng, Yuelian, E-mail: pyl@live.com.au [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Dong, Yajun; Fan, Hongwei [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Chen, Ping [The Research Institute of Environmental Protection, North China Pharmaceutical Group Corporation, 050015 (China); Qiu, Lin [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Qi [National Major Science and Technology Program Management Office for Water Pollution Control and Treatment, MEP, 100029 (China)

    2014-10-30

    Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO{sub 2} aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO{sub 2} aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes.

  7. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity

    International Nuclear Information System (INIS)

    Li, Zhehao; Peng, Yuelian; Dong, Yajun; Fan, Hongwei; Chen, Ping; Qiu, Lin; Jiang, Qi

    2014-01-01

    Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO 2 aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO 2 aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes

  8. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  9. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  10. Thermal Transport in Diamond Films for Electronics Thermal Management

    Science.gov (United States)

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH... ELECTRONICS THERMAL MANAGEMENT 5a. CONTRACT NUMBER FA8650-15-C-7517 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Samuel...seeded sample (NRL 010516, Die A5). The NCD membrane and Al layer thicknesses, tNCD, were measured via transmission electron microscopy (TEM). The

  11. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  12. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  13. Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management

    International Nuclear Information System (INIS)

    Garimella, Suresh V.; Persoons, Tim; Weibel, Justin; Yeh, Lian-Tuu

    2013-01-01

    Highlights: ► Thermal management approaches reviewed against energy usage of IT industry. ► Challenges of energy efficiency in large-scale electronic systems highlighted. ► Underlying drivers for progress at the business and technology levels identified. ► Thermal, electrical and energy management challenges discussed as drivers. ► Views of IT system operators, manufacturers and integrators represented. - Abstract: We identify technological drivers for tomorrow’s data centers and telecommunications systems, including thermal, electrical and energy management challenges, based on discussions at the 2nd Workshop on Thermal Management in Telecommunication Systems and Data Centers in Santa Clara, California, on April 25–26, 2012. The relevance of thermal management in electronic systems is reviewed against the background of the energy usage of the information technology (IT) industry, encompassing perspectives of different sectors of the industry. The underlying drivers for progress at the business and technology levels are identified. The technological challenges are reviewed in two main categories – immediate needs and future needs. Enabling cooling techniques that are currently under development are also discussed

  14. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  15. Thermo-mechanical properties of carbon nanotubes and applications in thermal management

    Science.gov (United States)

    Nguyen, Manh Hong; Thang Bui, Hung; Trinh Pham, Van; Phan, Ngoc Hong; Nguyen, Tuan Hong; Chuc Nguyen, Van; Quang Le, Dinh; Khoi Phan, Hong; Phan, Ngoc Minh

    2016-06-01

    Thanks to their very high thermal conductivity, high Young’s modulus and unique tensile strength, carbon nanotubes (CNTs) have become one of the most suitable nano additives for heat conductive materials. In this work, we present results obtained for the synthesis of heat conductive materials containing CNT based thermal greases, nanoliquids and lubricating oils. These synthesized heat conductive materials were applied to thermal management for high power electronic devices (CPUs, LEDs) and internal combustion engines. The simulation and experimental results on thermal greases for an Intel Pentium IV processor showed that the thermal conductivity of greases increases 1.4 times and the saturation temperature of the CPU decreased by 5 °C by using thermal grease containing 2 wt% CNTs. Nanoliquids containing CNT based distilled water/ethylene glycol were successfully applied in heat dissipation for an Intel Core i5 processor and a 450 W floodlight LED. The experimental results showed that the saturation temperature of the Intel Core i5 processor and the 450 W floodlight LED decreased by about 6 °C and 3.5 °C, respectively, when using nanoliquids containing 1 g l-1 of CNTs. The CNTs were also effectively utilized additive materials for the synthesis of lubricating oils to improve the thermal conductivity, heat dissipation efficiency and performance efficiency of engines. The experimental results show that the thermal conductivity of lubricating oils increased by 12.5%, the engine saved 15% fuel consumption, and the longevity of the lubricating oil increased up to 20 000 km by using 0.1% vol. CNTs in the lubricating oils. All above results have confirmed the tremendous application potential of heat conductive materials containing CNTs in thermal management for high power electronic devices, internal combustion engines and other high power apparatus.

  16. Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Yong Chuah Yee

    2018-01-01

    Full Text Available Solar energy is typically collected through photovoltaic (PV to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.

  17. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  18. Thermodynamic analysis of thermal efficiency and power of Minto engine

    International Nuclear Information System (INIS)

    He, Wei; Hou, Jingxin; Zhang, Yang; Ji, Jie

    2011-01-01

    Minto engine is a kind of liquid piston heat engine that operates on a small temperature gradient. But there is no power formula for it yet. And its thermal efficiency is low and formula sometimes is misused. In this paper, deriving the power formula and simplifying the thermal efficiency formula of Minto engine based on energy distribution analysis will be discussed. To improve the original Minto engine, a new design of improved Minto engine is proposed and thermal efficiency formula and power formula are also given. A computer program was developed to analyze thermal efficiency and power of original and improved Minto engines operating between low and high-temperature heat sources. The simulation results show that thermal efficiency of improved Minto engine can reach over 7% between 293.15 K and 353.15 K which is much higher than that of original one; the temperature difference between upper and lower containers is lower than half of that between low and high temperature of heat sources when the original Minto engines output the maximum power; on the contrary, it is higher in the improved Minto engines. -- Highlights: ► The thermal efficiency formula of Minto engine is simplified and the power formula is established. ► A high-powered design of improved Minto engine is proposed. ► A computer simulation program based on real operating environment is developed.

  19. A Thermal grid coordinated by a Multi Agent Energy Management System

    NARCIS (Netherlands)

    Pruissen, O.P. van; Kamphuis, V.; Togt, A. van der; Werkman, E.

    2013-01-01

    In the near future an increase of both thermal grids and sustainable suppliers of heat with intermittency behavior, connected to these heat grids, is expected. For smart operation this challenges the current centralized management systems. To deal with this and to optimize cost and energy efficiency

  20. Thermal management of EV battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Birch, P.K.

    1984-01-01

    The thermal limitations of the actual design and the benefits of more extensive thermal management of electric vehicle systems are described. During this work a number of practical limitations in vehicle design, which has to be frozen relatively early in the project, made it impossible to take advantage of the benefits of thermal management in connection with the design of the modular battery system. This study, therfore, deals only very briefly with the actual project. The aim has been to show the possibilities of improvement based on traditional electrochemical systems (e.g., all lead-acid) by means of thermal management.

  1. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Availability-based computer management of a cold thermal storage system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Ferrano, F.J.

    1990-01-01

    This paper reports on work to develop an availability-based, on-line expert system to manage a thermal energy storage air-conditioning system. The management system is designed to be used by mechanical engineers in the field of air-conditioning control and maintenance. Specifically, the expert system permits the user to easily monitor the second law of thermodynamics operating efficiencies of the major components and the system as a whole in addition to the daily scheduled operating parameters of a cold thermal storage system. Through the use of computer-generated and continually updated screen display pages, the user is permitted interaction with the expert system. The knowledge-based system is developed with a commercially available expert system shell that is resident in a personal computer. In the case studied, 130 various analog and binary inputs/outputs are used. The knowledge base for the thermal energy storage expert system included nine different display pages that are continually updated, 25 rules, three tasks, and three loops

  3. Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications

    Directory of Open Access Journals (Sweden)

    Chao-Yang Huang

    2013-08-01

    Full Text Available The efficiency of photovoltaic modules decreases as the cell temperature increases. It is necessary to have an adequate thermal management mechanism for a photovoltaic module, especially when combined with a building construction system. This study aims to investigate via computational fluid dynamics simulations the heat transfer characteristics and thermal management performance of microencapsulated phase change material modules for photovoltaic applications under temporal variations of daily solar irradiation. The results show that the aspect ratio of the microencapsulated phase change material layer has significant effects on the heat transfer characteristics and the overall thermal performance of the two cases examined with different melting points (26 °C and 34 °C are approximately the same.

  4. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  5. Logistics, Management and Efficiency

    OpenAIRE

    Mircea UDRESCU; Sandu CUTURELA

    2014-01-01

    The problem related to the efficiency of the management for organization is general being the concern off all managers. In the present essay we consider that the efficacy of the organization begins from the structural systemization of the organizational management into general management, management of logistics and management of production which demands a new managerial process, more competitive based on economic efficiency.

  6. Lighting system with thermal management system

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  7. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  8. Project report for fiscal 1998 on the research cooperation promotion project/research cooperation related to practical use of a thermal efficiency enhancing system for use in thermal power plants; 1998 nendo kenkyu kyoryoku suishin jigyo / karyoku hatsudensho ni okeru netsu koritsu kojo system no jitsuyoka ni kansuru kenkyu kyoryoku jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Thermal efficiency enhancing system technology for existing thermal power plants is studied jointly with Indonesia to achieve energy conservation and power generation cost reduction and serve for suppressing CO2 emission. Site investigations were carried out for the study on enhancing thermal efficiency in component devices, including improvements in a device to rinse small pipes in condensers and in materials used in air preheaters, as well as for heat management and efficient operation of the plants. Indonesian engineers were received to develop device designing and thermal efficiency controlling programs, and for technical guidance. Site seminars were held to proliferate the achievements. Under the trend of increasing electric power demand, Indonesia is apt to place first priority on stabilized operation of power plants, with the efforts of thermal efficiency management staying behind partly due to fossil fuel price being low. The present project has made it possible to utilize hereafter the result of the rough design on improving the thermal efficiency in existing thermal power plants as has been done under the present project. Receiving the researchers and holding the site seminars also helped transfer the technologies on the thermal efficiency improving processes, and device maintenance and management methods. The project has also contributed to the consciousness reformation. (NEDO)

  9. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  10. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan; Ng, Kim Choon; Кaltayev, Aidarkhan

    2017-01-01

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper

  11. Advanced thermal management technologies for defense electronics

    Science.gov (United States)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  12. Increasing the efficiency of thermal power stations

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-01-01

    High energy prices and an increased investment of costs in power plants as well as the necessity to minimize all kinds of environmental pollution have severe consequences on the construction and operation of thermal power stations. One of the most promising measures to cope with the mentioned problems is to raise the thermal efficiency of power plants. With the example of an Austrian electric utility it can be shown that by application of high efficiency combined cycles primary energy can be converted into electricity in a most efficient manner. Excellent operating experience has proved the high reliability of these relatively complex systems. Raising the temperature of the gas topping process still higher will not raise the efficiency considerably. In this respect a Rankine cycle is superior to a Brayton cycle. In a temperature range of 850 to 900 0 C were conventional materials with known properties can still be used, only the alkali metals cesium and potassium have the necessary physical and thermodynamic properties for application in Rankine topping cycles. Building on experience gained in the Fast Breeder development and from the US space program, a potassium topping cycle linked to a conventional water steam cycle with an intermediate diphenyl vapour cycle has been proposed which should give thermal efficiencies in excess of 50%. In a multi-national program this so called Treble Rankine Cycle is being investigated under the auspices of the International Energy Agency. Work is in progress to investigate the technical and economic feasibility of this energy conversion system. Experimental investigations are already under way in the Austrian Research Center Seibersdorf where high temperature liquid metal test facilities have been operated since 1968. (Author)

  13. Optimization of thermal efficiency of nuclear central power like as PWR

    International Nuclear Information System (INIS)

    Lapa, Nelbia da Silva

    2005-10-01

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  14. Power Electronics Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-07

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  15. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  16. 14. Thermal management in the electrified propulsion; 14. Thermomanagement im elektrifizierten Antrieb

    Energy Technology Data Exchange (ETDEWEB)

    Wiebelt, Achim; Wawzyniak, Markus [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-07-15

    In conventional vehicles powered by an internal combustion engine, the thermal management usually is considered related with improvements in efficiency and the after-treatment of exhaust gas. New challenges come along due to the electrification of the drive train. Firstly, the temperature-sensitive lithium-ion battery must be cooled to the target temperature. This requires a connection of the battery cooling to the air conditioning of the vehicle. On the other side, the air conditionings in the summer as well as especially the interior heating in the winter are demanding in the design of those systems. With increasing electrification of the drive train, the required power of the drive train has to be provided by the battery more and more. This reduces the range of the electric vehicle. These thermal management systems have to operate as efficiently as possible. However, the air conditioning is not only to be seen in terms of air conditioning and thus in terms of customer acceptance, but also in terms of safety aspects. In winter, the windows must be kept free of ice and condensation as rapidly and permanently as possible. Because of the pleasant air-conditioned passenger compartment of vehicles, the so-called thermal stress for drivers is reduced in the summer thus promoting the driver's concentration.

  17. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    Science.gov (United States)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk

  18. Power Electronics and Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New vehicle electronics systems are being developed at a rapid pace, and NREL is examining strategies to

  19. Influences on the thermal efficiency of energy piles

    International Nuclear Information System (INIS)

    Cecinato, Francesco; Loveridge, Fleur A.

    2015-01-01

    Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures. - Highlights: • A numerical model for 3D thermal transient analysis of energy piles is developed. • The model is validated against both field data and an analytical solution. • Key parameters are then identified for efficient thermal design of energy piles. • Energy efficiency is maximised by large pipe number and concrete conductivity. • Large exchanger fluid velocity does not have a major impact on efficiency

  20. Numerical conversion efficiency of thermally isolated Seebeck nanoantennas

    Directory of Open Access Journals (Sweden)

    Edgar Briones

    2016-11-01

    Full Text Available In this letter, we evaluate the conversion efficiency of thermally isolated Seebeck nanoantennas by numerical simulations and discuss their uses and scope for energy harvesting applications. This analysis includes the simple case of titanium-nickel dipoles suspended in air above the substrate by a 200 nm silicon dioxide membrane to isolate the heat dissipation. Results show that substantially thermal gradients are induced along the devices leading to a harvesting efficiency around 10-4 %, 400 % higher than the previously reported Seebeck nanoantennas. In the light of these results, different optimizing strategies should be considered in order to make the Seebeck nanoantennas useful for harvesting applications.

  1. Theoretical Modelling Methods for Thermal Management of Batteries

    Directory of Open Access Journals (Sweden)

    Bahman Shabani

    2015-09-01

    Full Text Available The main challenge associated with renewable energy generation is the intermittency of the renewable source of power. Because of this, back-up generation sources fuelled by fossil fuels are required. In stationary applications whether it is a back-up diesel generator or connection to the grid, these systems are yet to be truly emissions-free. One solution to the problem is the utilisation of electrochemical energy storage systems (ESS to store the excess renewable energy and then reusing this energy when the renewable energy source is insufficient to meet the demand. The performance of an ESS amongst other things is affected by the design, materials used and the operating temperature of the system. The operating temperature is critical since operating an ESS at low ambient temperatures affects its capacity and charge acceptance while operating the ESS at high ambient temperatures affects its lifetime and suggests safety risks. Safety risks are magnified in renewable energy storage applications given the scale of the ESS required to meet the energy demand. This necessity has propelled significant effort to model the thermal behaviour of ESS. Understanding and modelling the thermal behaviour of these systems is a crucial consideration before designing an efficient thermal management system that would operate safely and extend the lifetime of the ESS. This is vital in order to eliminate intermittency and add value to renewable sources of power. This paper concentrates on reviewing theoretical approaches used to simulate the operating temperatures of ESS and the subsequent endeavours of modelling thermal management systems for these systems. The intent of this review is to present some of the different methods of modelling the thermal behaviour of ESS highlighting the advantages and disadvantages of each approach.

  2. Passive thermal management system for downhole electronics in harsh thermal environments

    International Nuclear Information System (INIS)

    Shang, Bofeng; Ma, Yupu; Hu, Run; Yuan, Chao; Hu, Jinyan; Luo, Xiaobing

    2017-01-01

    Highlights: • A passive thermal management system is proposed for downhole electronics. • Electronics temperature can be maintained within 125 °C for six-hour operating time. • The result shows potential application for the logging tool in oil and gas industry. - Abstract: The performance and reliability of downhole electronics will degrade in high temperature environments. Various active cooling techniques have been proposed for thermal management of such systems. However, these techniques require additional power input, cooling liquids and other moving components which complicate the system. This study presents a passive Thermal Management System (TMS) for downhole electronics. The TMS includes a vacuum flask, Phase Change Material (PCM) and heat pipes. The thermal characteristics of the TMS is evaluated experimentally. The results show that the system maintains equipment temperatures below 125 °C for a six-hour operating period in a 200 °C downhole environment, which will effectively protect the downhole electronics.

  3. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  4. Application of the thermal efficiency analysis software 'EgWin' at existing power plants

    International Nuclear Information System (INIS)

    Koda, E.; Takahashi, T.; Nakao, Y.

    2008-01-01

    'EgWin' is the general purpose software to analyze a thermal efficiency of power system developed in CRIEPI. This software has been used to analyze the existing power generation unit of 30 or more, and the effectiveness has been confirmed. In thermal power plants, it was used for the clarification of the thermal efficiency decrease factor and the quantitative estimation of the influence that each factor gave to the thermal efficiency of the plant. Also it was used for the quantitative estimation of the effect by the operating condition change and the facility remodeling in thermal power, atomic energy, and geothermal power plants. (author)

  5. Dimetrodon: Processor-level Preventive Thermal Management via Idle Cycle Injection

    OpenAIRE

    Reddi, Vijay Janapa; Gandhi, Sanjay; Brooks, David M.; Seltzer, Margo I.; Bailis, Peter

    2011-01-01

    Processor-level dynamic thermal management techniques have long targeted worst-case thermal margins. We examine the thermal-performance trade-offs in average-case, preventive thermal management by actively degrading application performance to achieve long-term thermal control. We propose Dimetrodon, the use of idle cycle injection, a flexible, per-thread technique, as a preventive thermal management mechanism and demonstrate its efficiency compared to hardware techniques in a commodity operatin...

  6. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    thermal distortion parameter (TDP). Thus, this material presents a viable and efficient alternative to existing materials for thermal management in electronics.

  7. Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Javani, N.; Dincer, I.; Naterer, G.F.; Yilbas, B.S.

    2014-01-01

    In the present study, energy and exergy analyses are conducted to investigate a new cooling system of hybrid electric vehicles (HEVs). A latent heat thermal energy storage system is integrated with an active refrigeration cycle where octadecane is selected as the phase change material (PCM). The liquid cooling system flows through the chiller following a conventional vapor compression cooling cycle. The latent heat shell and the tube heat exchanger operate in parallel with the chiller and a fraction of coolant enters the heat exchanger and, therefore, decreases the heat load of the chiller, leading to a lower work required by the compressor. The exergy destruction rate and the exergy efficiency of each component in a hybrid thermal management system (TMS) are calculated. In addition, the effects of parameters such as the fraction of coolant entering the heat storage system (PCM mass fraction), evaporator temperature, and compressor pressure ratio on the system performance are investigated. The findings of the exergy analysis reveal that the overall exergy efficiency of the system with PCM presence is 31%, having the largest exergy destruction rate of 0.4 kW and the heat exchangers have lower exergy efficiency as compared to other components. In addition, the results of the parametric study show that an increase in PCM mass fraction results in an increase in exergy efficiency of the system. An environmental impact assessment is also conducted and the results show that an increase in exergy efficiency of the cooling system reduces greenhouse gasses and also increases the sustainability of the system. Moreover, a multi-objective optimization using the genetic algorithm is performed by incorporating two objective functions, namely exergy efficiency to be maximized and total cost rate of the system to be minimized. A Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The results show that the maximum

  8. Electrothermal Impedance Spectroscopy as a Cost Efficient Method for Determining Thermal Parameters of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (HEV, PHEV, grid support) are becoming more and more power demanding. The increasing charging and discharging power capability rates...... of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery’s temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus, thermal modelling of lithium-ion...... battery cells and battery packs is gaining importance. Equivalent thermal circuits’ models have proven to be relatively accurate with low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment for parametrization. Recent research initiated...

  9. Electrothermal impedance spectroscopy as a cost efficient method for determining thermal parameters of lithium ion batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    2017-01-01

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (hybrid electric vehicles, plug-in hybrid electric vehicles, grid support) are becoming more and more power demanding. The increasing charging...... and discharging power capability rates of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery's temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus......, thermal modelling of lithium-ion battery cells and battery packs is gaining importance. Equivalent thermal circuits' models have proven to be relatively accurate with a low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment...

  10. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  11. STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER

    Directory of Open Access Journals (Sweden)

    J. W. JEONG

    2015-12-01

    Full Text Available It is essential to optimize HVAC (Heating, Ventilation and Air-Conditioning system for a thermal plant or an electric vehicle since it has a significant effect on the thermal efficiency. PTC (positive temperature coefficient heaters are often used for a heating system and the power module of the PTC heaters, IGBT (insulated gate bipolar mode transistor, requires thermal management. In this study, in order to maximize the cooling performance for IGBT, a novel method that uses forced convection inside the HVAC duct with heat sinks was developed. In addition, heat sinks were optimized in terms of IGBT junction temperature and heat sink weight by 3-dimensional CFD (Computational Fluid Dynamics simulation. The results show that the junction temperature of IGBT for 5.6kW PTC heater can be maintained at about 335K.

  12. Annual Report: Turbine Thermal Management (30 September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, Mary Anne; Richards, George

    2014-04-10

    The FY13 NETL-RUA Turbine Thermal Management effort supported the Department of Energy’s (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach included explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE’s advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address: • Development and design of aerothermal and materials concepts in FY12-13. • Design and manufacturing of these advanced concepts in FY13. • Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. In addition to a Project Management task, the Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of heat transfer, materials development, and secondary flow control. These include: • Aerothermal and Heat Transfer • Coatings and Materials Development • Design Integration and Testing • Secondary Flow Rotating Rig.

  13. The art of software thermal management for embedded systems

    CERN Document Server

    Benson, Mark

    2014-01-01

    This book introduces Software Thermal Management (STM) as a means of reducing power consumption in a computing system, in order to manage heat, improve component reliability, and increase system safety.  Readers will benefit from this pragmatic guide to the field of STM for embedded systems and its catalog of software power management techniques.  Since thermal management is a key bottleneck in embedded systems design, this book focuses on power as the root cause of heat. Since software has an enormous impact on power consumption in an embedded system, this book guides readers to manage heat effectively by understanding, categorizing, and developing new ways to reduce dynamic power. Whereas most books on thermal management describe mechanisms to remove heat, this book focuses on ways to avoid generating heat in the first place.   • Explains fundamentals of software thermal management, application techniques and advanced optimization strategies; • Describes a novel method for managing dynamic power, e...

  14. Thermal efficiency maximization for H- and X-shaped heat exchangers based on constructal theory

    International Nuclear Information System (INIS)

    Chen, Lingen; Feng, Huijun; Xie, Zhihui; Sun, Fengrui

    2015-01-01

    Constructal optimizations of H- and X-shaped heat exchangers are carried out by taking the maximum thermal efficiency (the ratio of the dimensionless heat transfer rate to the dimensionless total pumping power) as optimization objective. The constraints of total tube volumes and spaces occupied by heat exchangers are considered in the optimizations. For the H-shaped heat exchanger, the thermal efficiency decreases when the dimensionless mass flow rate increases. For the higher order of the X-shaped heat exchanger, when the order number is 3, the thermal efficiency of the heat exchanger with Murry law is increased by 68.54% than that with equal flow velocity in the tubes, and by 435.46% than that with equal cross section area of the tubes. - Highlights: • Constructal optimizations of H- and X-shaped heat exchangers are carried out. • Maximum thermal efficiency is taken as optimization objective. • Thermal efficiency is defined as ratio of heat transfer rate to total pumping power. • Optimal constructs of H- and X-shaped heat exchangers are obtained. • Thermal efficiency of X-shaped heat exchanger is larger than that of H-shaped.

  15. Ambient Temperature Based Thermal Aware Energy Efficient ROM Design on FPGA

    DEFF Research Database (Denmark)

    Saini, Rishita; Bansal, Neha; Bansal, Meenakshi

    2015-01-01

    Thermal aware design is currently gaining importance in VLSI research domain. In this work, we are going to design thermal aware energy efficient ROM on Virtex-5 FPGA. Ambient Temperature, airflow, and heat sink profile play a significant role in thermal aware hardware design life cycle. Ambient...

  16. Effect of CRAC units layout on thermal management of data center

    International Nuclear Information System (INIS)

    Nada, S.A.; Said, M.A.

    2017-01-01

    Highlights: • CFD study of thermal management in data centers. • Effects of layout arrangements of the CRACs units relative to the racks array on data center performance. • Design guide liens for data centers energy efficiency improvements. - Abstract: Comprehensive numerical studies of thermal management of data centers were presented by several investigators for different geometric and operating conditions of data centers. In the present work, a technical note regarding the effect of the computer room air conditioning (CRAC) units layout arrangements is presented. Two arrangements of CRAC units layouts are investigated; namely locating CRACs units in line with the racks row and locating the CRACs units perpendicular to the rack row. Temperature distributions, air flow characteristics particularly air recirculation and bypass and thermal management in data centers are evaluated in terms of the measureable overall performance parameters: supply/return heat indices (SHI/RHI) and return temperature indices (RTI). The results showed that locating CRAC units perpendicular to the racks row has the following effects: (i) enhances the uniformity of the air flow from the perforated tiles along the rack row, (ii) reduces the hot air recirculation at the ends racks of the row and the cold air bypass at the middle rack of the row and (iii) enhances the data center performance parameters RTI, SHI and RHI.

  17. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

    Science.gov (United States)

    Xu, Hang; Pasini, Damiano

    2016-01-01

    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  18. PREFACE: Eurotherm Seminar 102: Thermal Management of Electronic Systems

    Science.gov (United States)

    Punch, J.; Walsh, E.

    2014-07-01

    About EUROTHERM The aim of the EUROTHERM Committee (www.eurothermcommittee.eu) is to promote and foster European cooperation in Thermal Sciences and Heat Transfer by gathering together scientists and engineers working in specialized areas. The Committee consists of members representing and appointed by national bodies in the EU countries. The current President of EUROTHERM is Professor Anton van Steenhoven from the University of Eindhoven (The Netherlands). The Committee organizes and coordinates European scientific events such as the EUROTHERM Seminars (about 4 per year) and the European Thermal Sciences Conference (every 4 years). About EUROTHERM Seminar 102 (www.eurothermseminar102.com) This seminar, part of the long-running series of European seminars on the thermal sciences, took place in June 2014 at the University of Limerick in Limerick, Ireland. The seminar addressed the topic of 'Thermal Management of Electronic Systems', a critical contemporary application area which represents a vibrant challenge for practitioners of the thermal sciences. We convey special thanks to the reviewers who have evaluated these papers. We also thank the scientific committee, consisting of internationally recognized experts. Their role has been to manage the evaluation of abstracts and the papers selection process as co-coordinators for specific topics. This seminar was hosted by the Stokes Institute at the University of Limerick. It could not have been organized without the efficient help of our administrators and technicians for IT support. This volume of Journal of Physics: Conference Series includes 27 articles presented at the seminar. Dr. Jeff Punch, Chair Stokes Institute, University of Limerick, Limerick, Ireland Email: jeff.punch@ul.ie Prof. Edmond Walsh, Co-Chair Associate Professor, Osney Laboratories, Department of Engineering Science, University of Oxford, UK Email: edmond.walsh@bnc.ox.ac.uk

  19. Supplier selection criteria for sustainable supply chain management in thermal power plant

    Science.gov (United States)

    Firoz, Faisal; Narayan Biswal, Jitendra; Satapathy, Suchismita

    2018-02-01

    Supplies are always in great demand when it comes to industrial operations. The quality of raw material their price accompanied by sustainability and environmental effects are a major concern for industrial operators these days. Supply Chain Management is the subject which is focused on how the supply of different products is carried out. The motive is that each operation performed can be optimized and inherently the efficiency of the whole chain is integrated. In this paper we will be dealing with all the criteria that are required to be evaluated before selecting a supplier, in particular, focusing on Thermal Power Plant. The most suppliers of the thermal power plant are the coal suppliers. The quality of coal directly determines the efficiency of the whole plant. And when there are matters concerning coal environmental pollution plays a very crucial role. ANP method has been used here to select suppliers of thermal power sectors in Indian context. After applying ANP to prioritize the sustainable supplier selection criteria, it is found that for thermal power industries best suppliers are Nationalized/State owned suppliers then 2nd ranked suppliers are imported supplier. Private owned suppliers are ranked least. So private owned suppliers must be more concerned about their performance. Among these suppliers it is found that to compete in the global market privatized suppliers have to give more emphasize on most important criteria like sustainability, then fuel cost and quality. Still some sub-criteria like a clean program, environmental issues, quality, reliability, service rate, investment in high technology, green transportation channel, waste management etc needs for continuous improvement as per their priority.

  20. Thermal performance and efficiency of supercritical nuclear reactors

    International Nuclear Information System (INIS)

    Romney Duffey; Tracy Zhou; Hussam Khartabil

    2009-01-01

    The paper reviews the major advances and innovative aspects of the thermal performance of recent concepts for super-critical water-cooled nuclear reactors (SCWR). The concepts are based on the extensive experience in the thermal power industry with super and ultra-supercritical boilers and turbines. The challenges and goals of increased efficiency, reduced cost, enhanced safety and co-generation have been pursued over the last ten years, and have resulted both in viable concepts and a vibrant defined R and D effort. The supercritical concept has wide acceptance among industry, as it reflects standard engineering practices and current thermal plant technology that is being already deployed. The SCWR concept represents a continuous development of water-cooled reactor technology, which utilizes the best and latest advances made in the thermal power industry. (author)

  1. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  2. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a Ray David, NREL National Renewable Energy Laboratory (NREL) researchers are assisting heavy-duty

  3. Heat Transfer Enhancement and Thermal Management for Space Applications Employing Femtosecond Laser Processed Metallic Surfaces with Micro/Nanostructures

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal management is one of the most important challenges in space applications. The success of space exploration and travel is directly tied to how we efficiently...

  4. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  5. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  6. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    International Nuclear Information System (INIS)

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-01-01

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  7. Thermal cycle efficiency of the indirect combined HTGR-GT power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    High thermal efficiency of 50% could be expected in a power generation system coupling a high temperature gas-cooled reactor(HTGR) with a closed cycle gas turbine(GT). There are three candidate systems such as a direct cycle(DC), an indirect cycle(ICD) and an indirect combined cycle(IDCC). The IDCC could solve many problems in both the DC and the IDC and consists of a primary circuit and a secondary circuit where a topping cycle is a Brayton cycle and a bottoming cycle is a steam cycle. In this report, the thermal cycle efficiency of the IDCC is examined regarding configurations of components and steam pressure. It has been shown that there are two types of configurations, that is, a perfect cascade type and a semi-cascade one and the latter can be further classified into Case A, Case B and Case C. The conditions achieving the maximum thermal cycle efficiency were revealed for these cases. In addition, the optimum system configurations were proposed considering the thermal cycle efficiency, safety and plant arrangement. (author).

  8. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  9. Thermoelectric conversion efficiency in IV-VI semiconductors with reduced thermal conductivity

    Directory of Open Access Journals (Sweden)

    Akihiro Ishida

    2015-10-01

    Full Text Available Mid-temperature thermoelectric conversion efficiencies of the IV-VI materials were calculated under the Boltzmann transport theory of carriers, taking the Seebeck, Peltier, and Thomson effects into account. The conversion efficiency was discussed with respect to the lattice thermal conductivity, keeping other parameters such as Seebeck coefficient and electrical conductivity to the same values. If room temperature lattice thermal conductivity is decreased up to 0.5W/mK, the conversion efficiency of a PbS based material becomes as high as 15% with the temperature difference of 500K between 800K and 300K.

  10. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  11. Management optimization in Thermal complex through water reuse

    International Nuclear Information System (INIS)

    De Souza, S.; Manganelli, A.; Bertolotto, J.; Leys, P.; Garcia, B.

    2004-01-01

    Water reuse involves the concept of the exploitation of a previously used water, for a new, beneficial purpose. Actually, in Uruguay, thermal water is just utilised for balneological purposes, in this paper is proposed the water reuse taking the excess of used swimming pool water, and using it for heating and greenhouse irrigation, and australian lobster breeding. An important aspect of sustainable thermal water management is the protection of the exploted thermal water resources, so water reuse plays an important role in water resource, and ecosystem management, because it reduces the volume discharged and also reduces the risk of thermal pollution [es

  12. Efficiency analysis system of material management

    Directory of Open Access Journals (Sweden)

    Bogusław Śliwczyński

    2012-12-01

    Full Text Available Background: Significant scope of enterprise's efficiency management is improving of material management process both the strategic and operational level. The complexity of material flow processes can lead to a threat such as distraction and disintegration of analysis focusing on many different factors influenced on effective sourcing and procurement management, transport and warehousing processes, inventory management, working capital and cash flow management. Material and methods: The presented article focuses on multidimensional and multi-criteria analysis of material management efficiency that is considered as decision support system. Authors have presented results of the research regarding ineffective material management confirm insufficient analytical supporting in various decisions of procurement operations. Results and conclusions: Based on research results authors presented in the article model of efficiency analysis system of material management.

  13. Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles

    Science.gov (United States)

    Wang, Jingtao; Zhang, Jin; Chen, Zhiyou

    2012-06-01

    A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC's performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.

  14. Micro channels in macro thermal management solutions

    Directory of Open Access Journals (Sweden)

    Kosoy Boris V.

    2006-01-01

    Full Text Available Modern progress in electronics is associated with increase in computing ability and processing speed, as well as decrease in size. Future applications of electronic devices in aviation, aero space and high performance consumer products’ industry demand on very stringent specifications concerning miniaturization, component density, power density and reliability. Excess heat produces stresses on internal components inside the electronic device, thus creating reliability problems. Thus, a problem of heat generation and its efficient removal arises and it has led to the development of advanced thermal control systems. Present research analyses a thermodynamic feasibility of micro capillary heat pumped net works in thermal management of electronic systems, considers basic technological constrains and de sign availability, and identifies perspective directions for the further studies. Computer Fluid Dynamics studies have been per formed on the laminar convective heat transfer and pressure drop of working fluid in silicon micro channels. Surface roughness is simulated via regular constructal, and stochastic models. Three-dimensional numerical solution shows significant effects of surface roughness in terms of the rough element geometry such as height, size, spacing and the channel height on the velocity and pressure fields.

  15. Control strategy for power management, efficiency-optimization and operating-safety of a 5-kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Zhang, Lin; Jiang, Jianhua; Cheng, Huan; Deng, Zhonghua; Li, Xi

    2015-01-01

    Highlights: • Efficiency optimization associated with simultaneous power and thermal management. • Fast load tracing, fuel starvation, high efficiency and operating safety are considered. • Open loop pre-conditioning current strategy is proposed for load step-up transients. • Feedback control scheme is proposed for load step-up transients. - Abstract: The slow power tracking, operating safety, especially the fuel exhaustion, and high efficiency considerations are the key issues for integrated solid oxide fuel cell (SOFC) systems during power step up transients, resulting in the relatively poor dynamic capabilities and make the transient load following very challenging and must be enhanced. To this end, this paper first focus on addressing the efficiency optimization associated with simultaneous power and thermal management of a 5-kW SOFC system. Particularly, a traverse optimization process including cubic convolution interpolation algorithm are proposed to obtain optimal operating points (OOPs) with the maximum efficiency. Then this paper investigate the current implications on system step-up transient performance, then a two stage pre-conditioning current strategy and a feedback power reference control scheme is proposed for load step-up transients to balance fast load following and fuel starvation, after that safe thermal transient is validated. Simulation results show the efficacy of the control design by demonstrating the fast load following ability while maintaining the safe operation, thus safe; efficient and fast load transition can be achieved

  16. Thermal management of batteries

    Science.gov (United States)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  17. The thermal management of high power light emitting diodes

    Science.gov (United States)

    Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin

    2012-10-01

    Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.

  18. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  19. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  20. Envisioning, quantifying, and managing thermal regimes on river networks

    Science.gov (United States)

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  1. Electrochemical-thermal Modeling to Evaluate Active Thermal Management of a Lithium-ion Battery Module

    International Nuclear Information System (INIS)

    Bahiraei, Farid; Fartaj, Amir; Nazri, Gholam-Abbas

    2017-01-01

    Lithium-ion batteries are commonly used in hybrid electric and full electric vehicles (HEV and EV). In HEV, thermal management is a strict requirement to control the batteries temperature within an optimal range in order to enhance performance, safety, reduce cost, and prolong the batteries lifetime. The optimum design of a thermal management system depends on the thermo-electrochemical behavior of the batteries, operating conditions, and weight and volume constraints. The aim of this study is to investigate the effects of various operating and design parameters on the thermal performance of a battery module consisted of six building block cells. An electrochemical-thermal model coupled to conjugate heat transfer and fluid dynamics simulations is used to assess the effectiveness of two indirect liquid thermal management approaches under the FUDC driving cycle. In this study, a novel pseudo 3D electrochemical-thermal model of the battery is used. It is found that the cooling plate thickness has a significant effect on the maximum and gradient of temperature in the module. Increasing the Reynolds number decreases the average temperature but at the expense of temperature uniformity. The results show that double channel cooling system has a lower maximum temperature and more uniform temperature distribution compared to a single channel cooling system.

  2. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  3. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    procedure incorporates specific steps exposing the wall to different climate conditions, ranging from cold and dry to hot and humid, with and without a pressure gradient. This study showed that air infiltration alone might decrease the thermal resistance of a residential wall by 15 %, more for industrial walls. Results from the research underpin a discussion concerning the importance of a holistic approach to building design if we are to meet the challenge of energy savings and sustainability. Thermal insulation efficiency is a main concept used throughout, and since it measures utilization it is a partial measure of sustainability. It is therefore proposed as a necessary design parameter in addition to a performance indicator when designing building envelopes. The thermal insulation efficiency ranges from below 50 % for a wood stud wall poorly designed with incorporated VIP, while an optimized design with VIP placed in an uninterrupted external layer shows an efficiency of 99 %, almost perfect. Thermal insulation efficiency reflects the measured wall performance full scale test, thus indicating efficiency under varied environmental loads: heat, moisture and pressure. The building design must be as a system, integrating all the subsystems together to function in concert. New design methodologies must be created along with new, more reliable and comprehensive measuring, testing and integrating procedures. New super insulators are capable of reducing energy usage below zero energy in buildings. It would be a shame to waste them by not taking care of the rest of the system. This thesis details the steps that went into this study and shows how this can be done Key words: Vacuum insulation panels, VIP, serpentine edge, thermal bridge, composite film, gas diffusion, defect dominated, holistic approach, building enclosure, integrated testing and modeling, energy equivalent, field performance, air flow, thermal insulation efficiency.

  4. Mechatronics design and experimental verification of an electric-vehicle-based hybrid thermal management system

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2016-02-01

    Full Text Available In this study, an electric-vehicle-based thermal management system was designed for dual energy sources. An experimental platform developed in a previous study was modified. Regarding the mechanical components, a heat exchanger with a radiator, proportional valve, coolant pipes, and coolant pump was appropriately integrated. Regarding the electric components, two heaters emulating waste heat were controlled using two programmable power supply machines. A rapid-prototyping controller with two temperature inputs and three outputs was designed. Rule-based control strategies were coded to maintain optimal temperatures for the emulated proton exchange membrane fuel cells and lithium batteries. To evaluate the heat power of dual energy sources, driving cycles, energy management control, and efficiency maps of energy sources were considered for deriving time-variant values. The main results are as follows: (a an advanced mechatronics platform was constructed; (b a driving cycle simulation was successfully conducted; and (c coolant temperatures reached their optimal operating ranges when the proportional valve, radiator, and coolant pump were sequentially controlled. The benefits of this novel electric-vehicle-based thermal management system are (a high-efficiency operation of energy sources, (b low occupied volume integrated with energy sources, and (c higher electric vehicle traveling mileage. This system will be integrated with real energy sources and a real electric vehicle in the future.

  5. Power and Thermal Management of System-on-Chip

    DEFF Research Database (Denmark)

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  6. Thermal efficiency of a non-transferred thermal plasma cannon

    International Nuclear Information System (INIS)

    Mercado, A.; Cota, G.; Merlo, L.; Pacheco, J.; Pena, R.; Cruz, A.

    1997-01-01

    This work shows a thermal efficiency research (ν) for a plasma torch in d.c. which was carried out through the realization of an energy balance around the system under consideration. The plasma torch is manufactured in copper with a tungsten incrustations in cathode. The gas used was argon and the gas fluxes were at the rank of 10 and 40 lt/min to the total pressure of 1.2 bar (1.1 atm). With these conditions it was worked with electric currents at the rank of 40 and 180 A. The data were collected through a data acquisition card which was programmed in Windows environment. (Author)

  7. High thermal efficiency, radiation-based advanced fusion reactors. Final report

    International Nuclear Information System (INIS)

    Taussig, R.T.

    1977-04-01

    A new energy conversion scheme is explored in this study which has the potential of achieving thermal cycle efficiencies high enough (e.g., 60 to 70 percent) to make advanced fuel fusion reactors attractive net power producers. In this scheme, a radiation boiler admits a large fraction of the x-ray energy from the fusion plasma through a low-Z first wall into a high-Z working fluid where the energy is absorbed at temperatures of 2000 0 K to 3000 0 K. The hot working fluid expands in an energy exchanger against a cooler, light gas, transferring most of the work of expansion from one gas to the other. By operating the radiation/boiler/energy exchanger as a combined cycle, full advantage of the high temperatures can be taken to achieve high thermal efficiency. The existence of a mature combined cycle technology from the development of space power plants gives the advanced fuel fusion reactor application a firm engineering base from which it can grow rapidly, if need be. What is more important, the energy exchanger essentially removes the peak temperature limitations previously set by heat engine inlet conditions, so that much higher combined cycle efficiencies can be reached. This scheme is applied to the case of an advanced fuel proton-boron 11 fusion reactor using a single reheat topping and bottoming cycle. A wide variety of possible working fluid combinations are considered and particular cycle calculations for the thermal efficiency are presented. The operation of the radiation boiler and energy exchanger are both described. Material compatibility, x-ray absorption, thermal hydraulics, structural integrity, and other technical features of these components are analyzed to make a preliminary assessment of the feasibility of this concept

  8. Exergy analysis of thermal management system for range-extended electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hamut, H. S.; Dincer, I.; Naterer, G. F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca

    2011-07-01

    In the last few decades, the energy crisis, increasing gas prices and concerns over environmental pollution have encouraged the development of electric vehicle (EV) and hybrid electric vehicle (HEV) technologies. In this paper, a thermal management system (TMS) installed in a range-extended electric vehicle is examined and is found to have a substantial impact on battery efficiency and vehicle performance. An exergy analysis was conducted on the refrigeration and coolant circuits and the Coefficient of Performance (COP) of the baseline system was determined to be 2.0 with a range of 1.8 to 2.4. The overall exergy was found to be 32% with a range of 26% to 39%. Ambient temperature had the largest impact on overall exergy efficiency but there is a need to further investigate temperature effects on battery efficiency, since the battery's performance has such a high impact on vehicle performance overall.

  9. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  10. Combined simulation of energy and thermal management for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, Bjoern; Jeck, Peter [Institut fuer Kraftfahrzeuge Aachen (Germany); Simon, Carsten [fortiss GmbH, Muenchen (Germany); Ungermann, Jochen [Audi AG, Ingolstadt (Germany)

    2012-11-01

    The project eperformance, which is funded by the BMBF, is conducted by project partners from RWTH Aachen, Audi, Bosch Engineering and fortiss GmbH, in order to demonstrate the concept of an electric vehicle on the basis of a holistic development approach. To support this, several simulation platforms come into use, i.e. CFD Simulation for cooling concepts, electromagnetic simulations for electric machine design, physical simulation of cooling circuits as well as vehicle mechanics and controller design. To develop an energy efficient vehicle management, some of these simulation domains have to be combined, to simulate interdependencies between for example usage of high-voltage batteries, their thermal response and the impact for controller strategies. Within the project it was decided to use the Tool TISC (TLK Inter Software Connector) to combine as well a physical model, based on Modelica/Dymola to simulate thermal behaviours of components with a longitudinal vehicle model and a controller model, both based in MATLAB/Simulink. Advantages of such a coupled simulation are the re-usability of existing models in both tools with their tool-specific benefits as well as the possibility to cluster the models on different computers. The article will explain how the combined simulation is set up and parameterized, and will show two use cases: the thermal management of the two independent battery systems of the demonstrator vehicle and the torque distribution on the three electric machines in the vehicle, depending on the drive situation and the thermal state of the machines. (orig)

  11. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  12. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Sijie; Zhao, Rui; Liu, Jie; Gu, Junjie

    2014-01-01

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  13. Power Electronics Thermal Management R&D (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  14. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  15. Efficiently Inefficient Markets for Assets and Assets Management

    DEFF Research Database (Denmark)

    Garleanu, Nicolae; Heje Pedersen, Lasse

    We consider a model where investors can invest directly or search for an asset manager, information about assets is costly, and managers charge an endogenous fee. The efficiency of asset prices is linked to the efficiency of the asset management market: if investors can find managers more easily......, more money is allocated to active management, fees are lower, and asset prices are more efficient. Informed managers outperform after fees, uninformed managers underperform after fees, and the net performance of the average manager depends on the number of "noise allocators." Finally, we show why large...

  16. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  17. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management

    Science.gov (United States)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  18. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  20. Analysis and optimization of hybrid electric vehicle thermal management systems

    Science.gov (United States)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  1. Molecular Dynamic Simulation of High Thermal Conductivity Synthetic Spider Silk for Thermal Management in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal management is crucial to space technology. Because electronic and other thermally sensitive materials will be located in an essentially airless environment,...

  2. Energy efficiency and pollution control for thermal units in the Egyptian industry

    International Nuclear Information System (INIS)

    Said Abdel-wahab; Ismail, W.M.

    1999-01-01

    Energy conservation and environmental protection project (ECEP) is a Usaid sponsored project. Its main objective is to promote energy conservation and pollution protection in the egyptian industry through a group of demonstrated projects. One of the implemented activities is the boilers and furnaces tune-up program, which aims to increase energy efficiency and reduce pollution. To achieve this objective. (ECEP) distributed 100 electronic portable exhaust gas analyzers to cover eight industrial sectors at six different geographical locations in egypt. These analyzers were used to measure the contents of exhaust gases to help operators tune up their equipment on regular basis. The result is that the firing thermal units operate at the highest possible combustion efficiency to reduce the amount of fuel consumption as well as pollution emissions. The analyzer used measures two types of temperature, five different stack gases, draft and smoke density. moreover it computes the efficiency of combustion as well as Co2 and excess air percentage. Thermal units that rested by these analyzers were consuming a huge amount of fossil fuel from different types. The average combustion efficiency for thermal units tested was improved by 14%, 15% and 28% for boilers, furnaces and diesel respectively

  3. Effect of thermal management on the properties of saturable absorber mirrors in high-power mode-locked semiconductor disk lasers

    International Nuclear Information System (INIS)

    Rantamäki, Antti; Lyytikäinen, Jari; Jari Nikkinen; Okhotnikov, Oleg G

    2011-01-01

    The thermal management of saturable absorbers is shown to have a critical impact on a high-power mode-locked disk laser. The absorber with efficient heat removal makes it possible to generate ultrashort pulses with high repetition rates and high power density.

  4. Mathematical modelling of a steam boiler room to research thermal efficiency

    International Nuclear Information System (INIS)

    Bujak, J.

    2008-01-01

    This paper introduces a mathematical model of a boiler room to research its thermal efficiency. The model is regarded as an open thermodynamic system exchanging mass, energy, and heat with the atmosphere. On those grounds, the energy and energy balance were calculated. Here I show several possibilities concerning how this model may be applied. Test results of the coefficient of thermal efficiency were compared to a real object, i.e. a steam boiler room of the Provincial Hospital in Wloclawek (Poland). The tests were carried out for 18 months. The results obtained in the boiler room were used for verification of the mathematical model

  5. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data

    International Nuclear Information System (INIS)

    Barbeito, Inés; Zaragoza, Sonia; Tarrío-Saavedra, Javier; Naya, Salvador

    2017-01-01

    Highlights: • Intelligent web platform development for energy efficiency management in buildings. • Controlling and supervising thermal comfort and energy consumption in buildings. • Statistical quality control procedure to deal with autocorrelated data. • Open source alternative using R software. - Abstract: In this paper, a case study of performing a reliable statistical procedure to evaluate the quality of HVAC systems in buildings using data retrieved from an ad hoc big data web energy platform is presented. The proposed methodology based on statistical quality control (SQC) is used to analyze the real state of thermal comfort and energy efficiency of the offices of the company FRIDAMA (Spain) in a reliable way. Non-conformities or alarms, and the actual assignable causes of these out of control states are detected. The capability to meet specification requirements is also analyzed. Tools and packages implemented in the open-source R software are employed to apply the different procedures. First, this study proposes to fit ARIMA time series models to CTQ variables. Then, the application of Shewhart and EWMA control charts to the time series residuals is proposed to control and monitor thermal comfort and energy consumption in buildings. Once thermal comfort and consumption variability are estimated, the implementation of capability indexes for autocorrelated variables is proposed to calculate the degree to which standards specifications are met. According with case study results, the proposed methodology has detected real anomalies in HVAC installation, helping to detect assignable causes and to make appropriate decisions. One of the goals is to perform and describe step by step this statistical procedure in order to be replicated by practitioners in a better way.

  7. Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/Thermal collector

    International Nuclear Information System (INIS)

    Kostic, Ljiljana T.; Pavlovic, Tomislav M.; Pavlovic, Zoran T.

    2010-01-01

    In this paper the results of the influence of reflectance from flat plate solar radiation concentrators made of Al sheet and Al foil on energy efficiency of PV/Thermal collector are presented. The total reflectance from concentrators made of Al sheet and Al foil is almost the same, but specular reflectance which is bigger in concentrators made of Al foil results in increase of solar radiation intensity concentration factor. With the increase of solar radiation intensity concentration factor, total daily thermal and electrical energy generated by PV/Thermal collector with concentrators increase. In this work also optimal position of solar radiation concentrators made of Al sheet and Al foil and appropriate thermal and electrical efficiency of PV/Thermal collector have been determined. Total energy generated by PV/Thermal collector with concentrators made of Al foil in optimal position is higher than total energy generated by PV/Thermal collector with concentrators made of Al sheet.

  8. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  9. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  10. Efficiently Inefficient Markets for Assets and Asset Management

    DEFF Research Database (Denmark)

    Garleanu, Nicolae; Pedersen, Lasse Heje

    We consider a model where investors can invest directly or search for an asset manager, information about assets is costly, and managers charge an endogenous fee. The efficiency of asset prices is linked to the efficiency of the asset management market: if investors can find managers more easily......, more money is allocated to active management, fees are lower, and asset prices are more efficient. Informed managers outperform after fees, uninformed managers underperform after fees, and the net performance of the average manager depends on the number of "noise allocators." Small investors should...... be passive, but large and sophisticated investors benefit from searching for informed active managers since their search cost is low relative to capital. Hence, managers with larger and more sophisticated investors are expected to outperform....

  11. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  12. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  13. Refrigerating liquid prototype for LED's thermal management

    International Nuclear Information System (INIS)

    Faranda, Roberto; Guzzetti, Stefania; Lazaroiu, George Cristian; Leva, Sonia

    2012-01-01

    The heat management is the critical factor for high performance operation of LED. A new heat management application of refrigerating liquid integrated within a fabricated prototype is proposed and investigated. A series of experiments considering different heights of liquid level were performed to evaluate the heat dissipation performance and optical characteristics of the refrigerating liquid based prototype. The results reveal that the junction temperature decreases as the level of refrigerating liquid increases. The experimental results report that the refrigerating liquid reduces the junction temperature, and can positively influence the luminous radiation performances. An optimization investigation of the proposed solution was carried out to find an optimum thermal performance. The experiments indicated that refrigerating liquid cooling is a powerful way for heat dissipation of high power LEDs, and the fabrication of prototype was feasible and useful. - Highlights: ► New heat management application of refrigerating liquid on a fabricated LED prototype. ► Thermal models setup and comparison between the classical and the new solutions. ► The impact of refrigerating liquid level on LED thermal and luminous performances. ► The relationship between different levels of liquid with LED prototype performances.

  14. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  15. An analysis of factors that influence the technical efficiency of Malaysian thermal power plants

    International Nuclear Information System (INIS)

    See, Kok Fong; Coelli, Tim

    2012-01-01

    The main objectives of this paper are to measure the technical efficiency levels of Malaysian thermal power plants and to investigate the degree to which various factors influence efficiency levels in these plants. Stochastic frontier analysis (SFA) methods are applied to plant-level data over an eight year period from 1998 to 2005. This is the first comprehensive analysis (to our knowledge) of technical efficiency in the Malaysian electricity generation industry using parametric method. Our empirical results indicate that ownership, plant size and fuel type have a significant influence on technical efficiency levels. We find that publicly-owned power plants obtain average technical efficiencies of 0.68, which is lower than privately-owned power plants, which achieve average technical efficiencies of 0.88. We also observe that larger power plants with more capacity and gas-fired power plants tend to be more technically efficient than other power plants. Finally, we find that plant age and peaking plant type have no statistically significant influence on the technical efficiencies of Malaysian thermal power plants. - Highlights: ► We examine the technical efficiency (TE) levels of Malaysian thermal power plants. ► We also investigate the degree to which various factors influence efficiency levels in these plants. ► Stochastic frontier analysis methods are used. ► Average plant would have to increase their TE level by 21% to reach the efficient frontier. ► Ownership, plant size and fuel type have a significant influence on the TE levels.

  16. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  17. Environmental and thermal efficiency benefits by use of RDF

    International Nuclear Information System (INIS)

    Rosvold, Helge

    1994-01-01

    This paper presents a brief overview of refuse derived fuel (RDF) processing systems, and the different types of RDF. The quality of RDF, combustion of RDF in fluidized beds, and moving grate reactors, operating conditions, emissions (sulphur dioxide, nitrogen oxides, carbon monoxide and hydrogen chloride) and thermal efficiency are discussed. (UK)

  18. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  19. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  20. Thermal Implications for Extreme Fast Charge

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  1. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

    International Nuclear Information System (INIS)

    Hussain, Abid; Tso, C.Y.; Chao, Christopher Y.H.

    2016-01-01

    It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density. - Highlights: • Thermal management for Li-ion batteries using nickel-paraffin is studied. • The temperature is reduced by 31% as compared to natural air cooling mode. • The temperature increases with increase of porosity and pore density of metal foam. • Battery discharge capacity increases with the increase in porosity. • Battery discharge capacity increases with the decreases in pore density.

  2. Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors

    Science.gov (United States)

    Nakajima, Anri; Shoji, Atsushi; Yonemori, Kei; Seo, Nobuhide

    2016-02-01

    Thermal conductivities of silicone matrix polymers including fillers of diamond particles and/or hexagonal boron nitride (h-BN) platelets were systematically investigated in an attempt to find a thermal interface material (TIM) having high isotropic thermal conductivity and high electrical insulating ability to enable efficient heat dissipation from the motor coil ends of electric vehicles. The TIM with mixed fillers of diamond particles and h-BN platelets had a maximum thermal conductivity of 6.1 W m-1 K-1 that was almost isotropic. This is the highest value among the thermal conductivities of TIMs with silicone matrix polymer reported to date. The mechanism behind the thermal conductivity of the TIMs was also examined from the viewpoint of the change in the number of thermally conductive networks and/or a decrease in the thermal resistivity of junctions of neighboring diamond particles through the incorporation of h-BN platelets. The TIMs developed in this study will make it possible to manage the heat of electric motors and will help to popularize electric vehicles.

  3. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  4. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    Energy Technology Data Exchange (ETDEWEB)

    Ma Kunquan; Liu Jing [Cryogenic Laboratory, PO Box 2711, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-08-07

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern.

  5. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    International Nuclear Information System (INIS)

    Ma Kunquan; Liu Jing

    2007-01-01

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern

  6. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter

    Science.gov (United States)

    Khateeb, Siddique A.; Farid, Mohammed M.; Selman, J. Robert; Al-Hallaj, Said

    A lithium-ion battery employing a novel phase change material (PCM) thermal management system was designed for an electric scooter. Passive thermal management systems using PCM can control the temperature excursions and maintain temperature uniformity in Li-ion batteries without the use of active cooling components such as a fan, a blower or a pump found in air/liquid-cooling systems. Hence, the advantages of a compact, lightweight, and energy efficient system can be achieved with this novel form of thermal management system. Simulation results are shown for a Li-ion battery sub-module consisting of nine 18650 Li-ion cells surrounded by PCM with a melting point between 41 and 44 °C. The use of aluminum foam within the PCM and fins attached to the battery module were studied to overcome the low thermal conductivity of the PCM and the low natural convection heat transfer coefficient. The comparative results of the PCM performance in the presence of Al-foam and Al-fins are shown. The battery module is also simulated for summer and winter conditions. The effect of air-cooling on the Li-ion battery was also studied. These simulation results demonstrate the successful use of the PCM as a potential candidate for thermal management solution in electric scooter applications and therefore for other electric vehicle applications.

  7. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  8. A review on lithium-ion power battery thermal management technologies and thermal safety

    Science.gov (United States)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  9. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  10. Efficient Resource Management in Cloud Computing

    OpenAIRE

    Rushikesh Shingade; Amit Patil; Shivam Suryawanshi; M. Venkatesan

    2015-01-01

    Cloud computing, one of the widely used technology to provide cloud services for users who are charged for receiving services. In the aspect of a maximum number of resources, evaluating the performance of Cloud resource management policies are difficult to optimize efficiently. There are different simulation toolkits available for simulation and modelling the Cloud computing environment like GridSim CloudAnalyst, CloudSim, GreenCloud, CloudAuction etc. In proposed Efficient Resource Manage...

  11. Optimizing the gear efficiency under consideration of thermal optimisation strategies and customer-specific load conditions; Optimierung des Getriebewirkungsgrads unter Beruecksichtigung thermischer Optimierungsstrategien und kundenspezifischer Lastkollektive

    Energy Technology Data Exchange (ETDEWEB)

    Inderwisch, Kathrien; Kuecuekay, Ferit [Technische Univ. Braunschweig (Germany). Inst. fuer Fahrzeugtechnik

    2012-11-01

    Nowadays, the automotive industry have been received more attention to improve the transmission efficiency. Most of the researches have been concentrated on development and optimisation on transmission actuators, shifting elements, bearings, lubricants or lightweight constructions. Due to the low load requirements and associated low efficiencies for transmissions in driving cycles the transmissions cause energy losses which cannot be neglected. Two main stategies can be followed up for the optimisation of transmission efficiency. At first the efficiency benefit of transmissions through optimisation of hardware components will be presented. The second possibility is the representation of an optimal thermal management especially at low temperatures. Warming-up the transmission oil or transmission components can increase the efficiency of transmissions significantly. Techniques like this become more important in the course of electrification of drive trains and therefore decreased availability of heat. A simulation tool for calculation and minimisation of power loss for manual and dual-clutch transmissions was developed at the Institute of Automotive Engineering and verified by measurements. The simulation tool calculates the total transmission efficiency as well as the losses of individual transmission components depending on various environmental conditions. In this paper, the results in terms of increasing the efficiency of transmissions by optimisation of hardware components will be presented. Furthermore, the effects of temperature distribution in the transmission as well as the potential of minimising loss at low temperatures through thermal management will be illustrated. (orig.)

  12. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  13. Research and development of advanced aluminium/graphite composites for thermal management applications

    OpenAIRE

    Wyszkowska, Edyta; Olejnik, Ewa; Bertarelli, Alessandro

    2015-01-01

    Thermal management materials are continuously gaining importance as a consequence of everlasting evolution in performance of electronic and electric devices. In particular, by improving the heat exchanger’s materials' properties (i.e. thermal conductivity) it is possible to boost further performance and miniaturization of such devices. Due to their high thermal conductivity, Copper and Aluminium are currently the most commonly used materials for thermal management applications. However, the m...

  14. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  15. Thermal management of electronics: A review of literature

    Directory of Open Access Journals (Sweden)

    Anandan Sundaram Shanmuga

    2008-01-01

    Full Text Available Due to rapid growth in semiconductor technology, there is a continuous increase of the system power and the shrinkage of size. This resulted in inevitable challenges in the field of thermal management of electronics to maintain the desirable operating temperature. The present paper reviews the literature dealing with various aspects of cooling methods. Included are papers on experimental work on analyzing cooling technique and its stability, numerical modeling, natural convection, and advanced cooling methods. The issues of thermal management of electronics, development of new effective cooling schemes by using advanced materials and manufacturing methods are also enumerated in this paper. .

  16. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Peng Liu

    2017-07-01

    Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

  17. Thermal management approaches of Cu(In x ,Ga1-x )Se2 micro-solar cells

    Science.gov (United States)

    Sancho-Martínez, Diego; Schmid, Martina

    2017-11-01

    Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga1-x )Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.

  18. A balanced strategy in managing steam generator thermal performance

    International Nuclear Information System (INIS)

    Hu, M. H.; Nelson, P. R.

    2009-01-01

    This paper presents a balanced strategy in managing thermal performance of steam generator designed to deliver rated megawatt thermal (MWt) and megawatt electric (MWe) power without loss with some amount of thermal margin. A steam generator (SG) is a boiling heat exchanger whose thermal performance may degrade because of steam pressure loss. In other words, steam pressure loss is an indicator of thermal performance degradation. Steam pressure loss is mainly a result of either 1) tube scale induced poor boiling or 2) tube plugging historically resulting from tubing corrosion, wear due to flow induced tube vibration or loose parts impact. Thermal performance degradation was historically due to tube plugging but more recently it is due to poor boiling caused by more bad than good constituents of feedwater impurities. The whole SG industry still concentrates solely on maintenance programs towards preventing causes for tube plugging and yet almost no programs on maintaining adequate boiling of fouled tubes. There can be an acceptable amount of tube scale that provides excellent boiling capacity without tubing corrosion, as operational experience has repeatedly demonstrated. Therefore, future maintenance has to come up balanced programs for allocating limited resources in both maintaining good boiling capacity and preventing tube plugging. This paper discusses also thermal performance degradation due to feedwater impurity induced blockage of tube support plate and thus subsequent water level oscillations, and how to mitigate them. This paper provides a predictive management of tube scale for maintaining adequate steam pressure and stable water level without loss in MWt/MWe or recovering from steam pressure loss or water level oscillations. This paper offers a balanced strategy in managing SG thermal performance to fulfill its mission. Such a strategy is even more important in view of the industry trend in pursuing extended power uprate as high as 20 percent

  19. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...... on a generic compliant BTMS. The aim is to assist in the design of a novel compatible BTMS. Additionally, the article delivers a set of recommendations to make an effective BTMS....

  20. Experimental investigation on thermal management of electric vehicle battery with heat pipe

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Lin Zirong; Li Fuhuo

    2013-01-01

    Highlights: ► The thermal management system of electric vehicle battery with heat pipes was designed. ► Temperature rise is a key factor for the design of power battery thermal management system. ► Temperature distribution is inevitable to reference for better design of heat pipes used for heat dissipation. ► Heat pipes are effective for power batteries thermal management within electric vehicles. - Abstract: In order to increase the cycle time of power batteries and decrease the overall cost of electric vehicles, the thermal management system equipped with heat pipes was designed according to the heat generated character of power batteries. The experimental result showed that the maximum temperature could be controlled below 50 °C when the heat generation rate was lower than 50 W. Coupled with the desired temperature difference, the heat generation rate should not exceed 30 W. The maximum temperature and temperature difference are kept within desired rang under unsteady operating conditions and cycle testing conditions. Applying heat pipes based power batteries thermal management is an effective method for energy saving in electric vehicles.

  1. Enabling fast charging – Battery thermal considerations

    International Nuclear Information System (INIS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler

    2017-01-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  2. Thermal management of electric vehicle`s batteries using phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Rafalovich, A.; Longardner, W.; Keller, G.; Schmidter, T.C. [SHAPE, Inc., Indianapolis (United States); Fleming, F. [Hawker Energy Products Ltd, Newport (United Kingdom)

    1994-12-31

    SHAPE, Inc. (USA) and Hawker Energy Products Ltd. (UK) have successfully developed a passive thermal management system for sealed lead acid batteries featuring Phase Change Materials (PCM`s). The system utilizes a reversible, high energy density PCM with a transition temperature that is comparable to the optimum operating temperature of lead acid batteries. SHAPE`s thermal storage, containing non-toxic, non-hazardous, non-flammable PCM, absorbs excess heat generated by a battery and thus provides a substantial improvement in thermal stability, operating performance, and battery life. This thermal management system also assists in maintaining higher battery temperatures in cold weather environments. A mathematical model has been developed to accurately predict the thermal behavior of a battery, with and without PCM, during cycling. The results of this model have been verified through experimental battery cycling as well as through actual battery testing. The success of the model permits analysis of a thermally managed battery through an extreme range of ambient temperatures (-40 deg C to 40 deg C). (orig.)

  3. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  4. Determining an energy-optimal thermal management strategy for electric driven vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Andre; Probst, Tobias; Puente Leon, Fernando [Karlsruher Institut fuer Technology (KIT), Karlsruhe (Germany). Inst. of Industrial Information Technology (IIIT)

    2012-11-01

    In electric, hybrid electric and fuel cell vehicles, thermal management may have a significant impact on vehicle range. Therefore, optimal thermal management strategies are required. In this paper a method for determining an energy-optimal control strategy for thermal power generation in electric driven vehicles is presented considering all controlled devices (pumps, valves, fans, and the like) as well as influences like ambient temperature, vehicle speed, motor and battery and cooling cycle temperatures. The method is designed to be generic to increase the thermal management development process speed and to achieve the maximal energy reduction for any electric driven vehicle (e.g., by waste heat utilization). Based on simulations of a prototype electric vehicle with an advanced cooling cycle structure, the potential of the method is shown. (orig.)

  5. Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity

    International Nuclear Information System (INIS)

    Sadri, Somayyeh; Raveshi, Mohammad Reza; Amiri, Shayan

    2012-01-01

    In this study, one type of applicable analytical method, differential transformation method (DTM), is used to evaluate the efficiency and behavior of a straight fin with variable thermal conductivity and heat transfer coefficient. Fins are widely used to enhance heat transfer between primary surface and the environment in many industrial applications. The performance of such a surface is significantly affected by variable thermal conductivity and heat transfer coefficient, particularly for large temperature differences. General heat transfer equation related to the fin is derived and dimensionalized. The concept of differential transformation is briefly introduced, and then this method is employed to derive solutions of nonlinear equations. Results are evaluated for several cases such as: laminar film boiling or condensation, forced convection, laminar natural convection, turbulent natural convection, nucleate boiling, and radiation. The obtained results from DTM are compared with the numerical solution to verify the accuracy of the proposed method. The effects of design parameters on temperature and efficiency are evaluated by some figures. The major aim of the present study, which is exclusive for this article, is to find the effect of the modes of heat transfer on fin efficiency. It has been shown that for radiation heat transfer, thermal efficiency reaches its maximum value

  6. Battery management systems with thermally integrated fire suppression

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  8. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  9. A review of passive thermal management of LED module

    NARCIS (Netherlands)

    Ye, H.; Sau, K.; Zeijl, H. van; Gielen, A.W.J.; Zhang, G.

    2011-01-01

    Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light

  10. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  11. High thermal efficiency and low emission performance of a methanol reformed gas fueled engine for hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Nakajima, Y.; Shudo, T.; Hiruma, M. [Musahi Inst. of Tech., Tokyo (Japan); Komatsu, H.; Takagi, Y. [Nissan Motor Co., Ltd., Yokosuka (Japan)

    2000-07-01

    An internal combustion engine (ICE) operation was carried out experimentally by using the mixture of air and fuel simulating the reformed gas as the fuel. It has been found that the engine can expectedly attain ultra-low emission and high thermal efficiency, namely 35% brake thermal efficiency in the basis of the low heat value of the theoretically reformed gas or 42% in the basis of the low heat value of methanol. By using the result for the estimation of the total thermal efficiency at the end of the motor output shaft of a hybrid electric vehicle, it has been found that the total thermal efficiency of the reformed gas engine system is 34% in case of a 120% energy increment and 33% in case of a 116% energy increment with a little higher NOx emission of 60 ppm while the counterpart of the fuel cell system is 34%. When the emission level for EZEV is required, the total thermal efficiency falls to 32% in case of a 120% energy increment and 31% in case of a 116% energy increment. From the points of the reliability proved by the long history, higher specific power and low cost, the internal combustion engine system with the thermal efficiency almost equal to that of the fuel cell (FC) system is further more practical when methanol is used as the fuel. (orig.)

  12. Printable, flexible and stretchable diamond for thermal management

    Science.gov (United States)

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  13. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan

    2017-07-08

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper, influence of thermal management on storage capacity of the ANG vessel was studied experimentally and numerically. 3D numerical model was considered in order to understand heat transfer phenomena and analyze influence of thermal control comprehensively. In addition, a detailed 2D axisymmetric unit cell model of adsorbent layer with heat exchanger was developed, followed by optimization of heat exchanging device design to minimize volume occupied by fins and tubes. Heat transfer, mass transfer and adsorption kinetics, which occur in ANG vessel during charging process, are accounted for in models. Nelder-Mead method is implemented to obtain the geometrical parameters, which lead to the optimal characteristics of heat exchange. A new optimized configuration of ANG vessel was developed with compact heat exchanger. Results show that storage capacity of the ANG vessel increased significantly due to lowering of heat exchanger volume for 3 times from 13.5% to 4.3% and effective temperature control.

  14. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  15. Nanoscale thermal transport. II. 2003–2012

    OpenAIRE

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2013-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of th...

  16. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    International Nuclear Information System (INIS)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-01-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  17. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  18. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  19. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  20. Optimum layout of engine thermal management; Optimale Auslegung des Motor-Thermomanagements

    Energy Technology Data Exchange (ETDEWEB)

    Beykirch, Ruediger; Knauf, Juergen; Lehmann, Joerg [FEV GmbH, Aachen (Germany). Simulation Ottomotoren; Beulshausen, Johannes [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen

    2013-05-01

    Optimising an engine's thermal management on the basis of different driving cycles and vehicle and engine tests is both time-consuming and costly. FEV GmbH, in cooperation with the Institute for Combustion Engines at RWTH Aachen University, has developed a holistic simulation model that enables the thermal management of an individual engine to be optimised.

  1. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  2. Approaches of Improving University Assets Management Efficiency

    Science.gov (United States)

    Wang, Jingliang

    2015-01-01

    University assets management, as an important content of modern university management, is generally confronted with the issue of low efficiency. Currently, to address the problems exposed in university assets management and take appropriate modification measures is an urgent issue in front of Chinese university assets management sectors. In this…

  3. Alexandria: towards an efficient centralised document management. More efficient business processes

    International Nuclear Information System (INIS)

    Couvreur, D.

    2011-01-01

    The capital of SCK-CEN is the knowledge of its staff. There is an enormous amount of information circulating within the research centre. A centralised management for all documents is also critical to efficiently manage, share and unlock the expertise. Since 2009, SCK-CEN has been working on a document management system: Alexandria. A first test draft was completed in 2010.

  4. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    Science.gov (United States)

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  5. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    Science.gov (United States)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  6. Thermal management approaches of Cu(Inx, Ga1−x)Se2 micro-solar cells

    International Nuclear Information System (INIS)

    Sancho-Martínez, Diego; Schmid, Martina

    2017-01-01

    Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga 1−x )Se 2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10  ×  to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µ m 2 to 1 mm 2 ). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement. (paper)

  7. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  8. Promoting energy efficiency investments with risk management decision tools

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    This paper reviews current capital budgeting practices and their impact on energy efficiency investments. The prevalent use of short payback 'rule-of-thumb' requirements to screen efficiency projects for risk is shown to bias investment choices towards 'sure bet' investments bypassing many profitable efficiency investment options. A risk management investment strategy is presented as an alternative to risk avoidance practices applied with payback thresholds. The financial industry risk management tool Value-at-Risk is described and extended to provide an Energy-Budgets-at-Risk or EBaR risk management analysis to convey more accurate energy efficiency investment risk information. The paper concludes with recommendations to expand the use of Value-at-Risk-type energy efficiency analysis.

  9. Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.

    Science.gov (United States)

    La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel

    2017-12-15

    Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Efficiency gains of photovoltaic system using latent heat thermal energy storage

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Fernandes, Gabriel; Singh, Baljit; Ganguly, Sayantan

    This paper presents experimental assessments of the thermal and electrical performance of photovoltaic (PV) system by comparing the latent heat-cooled PV panel with the naturally-cooled equivalent. It is commonly known that the energy conversion efficiency of the PV cells declines with the increment

  11. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  12. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process...

  13. Sensitivity analysis of efficiency thermal energy storage on selected rock mass and grout parameters using design of experiment method

    International Nuclear Information System (INIS)

    Wołoszyn, Jerzy; Gołaś, Andrzej

    2014-01-01

    Highlights: • Paper propose a new methodology to sensitivity study of underground thermal storage. • Using MDF model and DOE technique significantly shorter of calculations time. • Calculation of one time step was equal to approximately 57 s. • Sensitivity study cover five thermo-physical parameters. • Conductivity of rock mass and grout material have a significant impact on efficiency. - Abstract: The aim of this study was to investigate the influence of selected parameters on the efficiency of underground thermal energy storage. In this paper, besides thermal conductivity, the effect of such parameters as specific heat, density of the rock mass, thermal conductivity and specific heat of grout material was investigated. Implementation of this objective requires the use of an efficient computational method. The aim of the research was achieved by using a new numerical model, Multi Degree of Freedom (MDF), as developed by the authors and Design of Experiment (DoE) techniques with a response surface. The presented methodology can significantly reduce the time that is needed for research and to determine the effect of various parameters on the efficiency of underground thermal energy storage. Preliminary results of the research confirmed that thermal conductivity of the rock mass has the greatest impact on the efficiency of underground thermal energy storage, and that other parameters also play quite significant role

  14. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  15. Energy savings and increased electric vehicle range through improved battery thermal management

    International Nuclear Information System (INIS)

    Smith, Joshua; Hinterberger, Michael; Schneider, Christoph; Koehler, Juergen

    2016-01-01

    Lithium-ion cells are temperature sensitive: operation outside the optimal operating range causes premature aging and correspondingly reduces vehicle range and battery system lifetime. In order to meet consumer demands for electric and hybrid-electric vehicle performance, especially in adverse climates, a battery thermal management system (BTMS) is often required. This work presents a novel experimental method for analyzing BTMS using three sample cooling plate concepts. For each concept, the input parameters (ambient temperature, coolant temperature and coolant flow rate) are varied and the resulting effect on the average temperature and temperature distribution across and between cells is compared. Additionally, the pressure loss along the coolant path is utilized as an indicator of energy efficiency. Using the presented methodology, various cooling plate layouts optimized for production alternative techniques are compared to the state of the art. It is shown that these production-optimized cooling plates provide sufficient thermal performance with the additional benefit of mechanical integration within the battery and/or vehicle system. It is also shown that the coolant flow influences battery cell thermal behavior more than the solid material and that pressure drop is more sensitive to geometrical changes in the cooling plate than temperature changes at the module.

  16. Improving energy efficiency in buildings under the framework of facility management and leasing financing

    Energy Technology Data Exchange (ETDEWEB)

    Leutgoeb, Klemens [Austrian Energy Agency (Austria)

    2007-07-01

    Non-residential buildings see a big variety of building management and financing schemes. Two approaches quickly gain shares in the European real estate market: Leasing Financing (LF) and Facility Management (FM). They change the framework for the implementation of energy efficiency measures: LF influences the decision criteria in new construction and refurbishment; FM plays a crucial role during the operation phase.Although LF and FM introduce new parties and thus an additional set of interests, they must not be perceived as obstacles per se: They also offer new ways towards energy efficiency. Pilot activities in Austria demonstrate the successful integration of advanced energy services into the framework of LF and FM: At the end of the contract duration, leasing-financed buildings may be confronted with a need for comprehensive refurbishment. Here, leasing can become an important catalyst in preparing the refurbishment project. Integrating energy efficiency measures to the refurbishment activity and guaranteeing thermal-energetic qualities, provide the lessor with the opportunity to prolong and enlarge a running contract. Furthermore, this service reduces his credit risk, due to reduced running (i.e. energy) cost for the lessee. FM means outsourcing of selected building management functions to an external specialist. The list of requested services can be extended by the identification, implementation, operation and potentially also financing of cost-effective energy saving measures, and by a guarantee on energy cost savings - in other words by integrating elements of EPC-contracts into FM.

  17. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Influence of moisture content of combusted wood on the thermal efficiency of a boiler

    Science.gov (United States)

    Dzurenda, Ladislav; Banski, Adrián

    2017-03-01

    In the paper the influence of moisture content of wood on the heat losses and thermal efficiency of a boiler is analysed. The moisture content of wood has a negative effect, especially on flue gas loss. The mathematical dependence of the thermal efficiency of a boiler is presented for the following boundary conditions: the moisture content of wood 10-60%, range of temperatures of emitted flue gases from the boiler into the atmosphere 120-200 C, the emissions meeting the emission standards: carbon monoxide 250 mgm-3, fly ash 50 mgm-3 and the heat power range 30-100%.

  19. Influence of moisture content of combusted wood on the thermal efficiency of a boiler

    Directory of Open Access Journals (Sweden)

    Dzurenda Ladislav

    2017-03-01

    Full Text Available In the paper the influence of moisture content of wood on the heat losses and thermal efficiency of a boiler is analysed. The moisture content of wood has a negative effect, especially on flue gas loss. The mathematical dependence of the thermal efficiency of a boiler is presented for the following boundary conditions: the moisture content of wood 10-60%, range of temperatures of emitted flue gases from the boiler into the atmosphere 120-200 C, the emissions meeting the emission standards: carbon monoxide 250 mgm−3, fly ash 50 mgm−3 and the heat power range 30-100%.

  20. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  1. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  2. Strategic Impact of Knowledge Management on Organisational Efficiency

    DEFF Research Database (Denmark)

    Larsen, Michael Holm; Pedersen, Mogens Kühn

    1999-01-01

    Knowledge management is rarely found in a strategy context. Although some companies already have introduced the role of a chief knowledge officer, knowledge management is not treated as a strategic endeavour. Furthermore, contributions from an academic point of view are scarce in the field...... of the strategic issues of knowledge management. This paper contributes with some insight in pointing out the strategic question that knowledge management might provide answers for: The efficiency issue of stategic positioning. Furthermore, the paper emphasises the distinction between symmetric and asymmetric...... incentives in business relations, and on this basis identifies the notion of Distributed Knowledge Management as a means for creating efficiency strategies with symmetric incentives in business relations. In this way a strategic agenda for knowledge management is identified....

  3. Efficiency of supply chain management. Strategic and operational approach

    Directory of Open Access Journals (Sweden)

    Grzegorz Lichocik

    2013-06-01

    Full Text Available Background: One of the most important issues subject to theoretical considerations and empirical studies is the measurement of efficiency of activities in logistics and supply chain management. Simultaneously, efficiency is one of the terms interpreted in an ambiguous and multi-aspect manner, depending on the subject of a study. The multitude of analytical dimensions of this term results in the fact that, apart from economic efficiency being the basic study area, other dimensions perceived as an added value by different groups of supply chain participants become more and more important. Methods: The objective of this paper is to attempt to explain the problem of supply chain management efficiency in the context of general theoretical considerations relating to supply chain management. The authors have also highlighted determinants and practical implications of supply chain management efficiency in strategic and operational contexts. The study employs critical analyses of logistics literature and the free-form interview with top management representatives of a company operating in the TSL sector. Results: We must find a comprehensive approach to supply chain efficiency including all analytical dimensions connected with real goods and services flow. An effective supply chain must be cost-effective (ensuring economic efficiency of a chain, functional (reducing processes, lean, minimising the number of links in the chain to the necessary ones, adapting supply chain participants' internal processes to a common objective based on its efficiency and ensuring high quality of services (customer-oriented logistics systems. Conclusions: Efficiency of supply chains is not only a task for which a logistics department is responsible as it is a strategic decision taken by the management as regards the method of future company's operation. Correctly planned and fulfilled logistics tasks may result in improving performance of a company as well as the whole

  4. Efficiency assessment and benchmarking of thermal power plants in India

    International Nuclear Information System (INIS)

    Shrivastava, Naveen; Sharma, Seema; Chauhan, Kavita

    2012-01-01

    Per capita consumption of electricity in India is many folds lesser than Canada, USA, Australia, Japan, Chaina and world average. Even though, total energy shortage and peaking shortage were recorded as 11.2% and 11.85%, respectively, in 2008–09 reflecting non-availability of sufficient supply of electricity. Performance improvement of very small amount can lead to large contribution in financial terms, which can be utilized for capacity addition to reduce demand supply gap. Coal fired thermal power plants are main sources of electricity in India. In this paper, relative technical efficiency of 60 coal fired power plants has been evaluated and compared using CCR and BCC models of data envelopment analysis. Target benchmark of input variables has also been evaluated. Performance comparison includes small versus medium versus large power plants and also state owned versus central owned versus private owned. Result indicates poor performance of few power plants due to over use of input resources. Finding reveals that efficiency of small power plants is lower in comparison to medium and large category and also performance of state owned power plants is comparatively lower than central and privately owned. Study also suggests different measures to improve technical efficiency of the plants. - Highlights: ► This study evaluates relative technical efficiency of 60 coal fired thermal power plants of India. ► Input oriented CCR and BCC models of data envelopment analysis have been used. ► Small, medium and large power plants have been compared. ► Study will help investor while setting up new power projects. ► Power plants of different ownerships have also been compared.

  5. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  6. Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Jung, Sung Kwon

    2016-01-01

    Highlights: • An ANN model for predicting optimal start moment of the cooling system was developed. • An ANN model for predicting the amount of cooling energy consumption was developed. • An optimal control algorithm was developed employing two ANN models. • The algorithm showed the advanced thermal comfort and energy efficiency. - Abstract: The aim of this study was to develop a control algorithm to demonstrate the improved thermal comfort and building energy efficiency of accommodation buildings in the cooling season. For this, two artificial neural network (ANN)-based predictive and adaptive models were developed and employed in the algorithm. One model predicted the cooling energy consumption during the unoccupied period for different setback temperatures and the other predicted the time required for restoring current indoor temperature to the normal set-point temperature. Using numerical simulation methods, the prediction accuracy of the two ANN models and the performance of the algorithm were tested. Through the test result analysis, the two ANN models showed their prediction accuracy with an acceptable error rate when applied in the control algorithm. In addition, the two ANN models based algorithm can be used to provide a more comfortable and energy efficient indoor thermal environment than the two conventional control methods, which respectively employed a fixed set-point temperature for the entire day and a setback temperature during the unoccupied period. Therefore, the operating range was 23–26 °C during the occupied period and 25–28 °C during the unoccupied period. Based on the analysis, it can be concluded that the optimal algorithm with two predictive and adaptive ANN models can be used to design a more comfortable and energy efficient indoor thermal environment for accommodation buildings in a comprehensive manner.

  7. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  8. Thermal Management and Analysis for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. A. Van Luik

    2004-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced waste (mostly from spent nuclear fuel) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. Table 1 provides an overview of design constraints related to thermal management after repository closure. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and

  9. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  10. Thermal efficiency and particulate pollution estimation of four biomass fuels grown on wasteland

    Energy Technology Data Exchange (ETDEWEB)

    Kandpal, J.B.; Madan, M. [Indian Inst. of Tech., New Delhi (India). Centre for Rural Development and Technology

    1996-10-01

    The thermal performance and concentration of suspended particulate matter were studied for 1-hour combustion of four biomass fuels, namely Acacia nilotica, Leucaena leucocepholea, Jatropha curcus, and Morus alba grown in wasteland. Among the four biomass fuels, the highest thermal efficiency was achieved with Acacia nilotica. The suspended particulate matter concentration for 1-hour combustion of four biomass fuels ranged between 850 and 2,360 {micro}g/m{sup 3}.

  11. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  12. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  13. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  14. Lighting system with thermal management system having point contact synthetic jets

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  15. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    Science.gov (United States)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  16. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source

    International Nuclear Information System (INIS)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-01-01

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1–10 5 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz–10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed. (paper)

  17. Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2016-04-01

    Full Text Available This paper explores the layout of an optimum process for supplying heat to Russian municipal heating systems operating in a market environment. We analyze and compare the standard cogeneration unit design with two-stage reheating of service water coming from controlled extraction locations and layouts that employ three in-line reheaters with heat the supply controlled by a rotary diaphragm and qualitative/quantitative methods (so-called “uncontrolled extraction”. Cogeneration unit designs are benchmarked in terms of their thermal efficiency expressed as a fuel consumption rate. The specific fuel consumption rate on electricity production is viewed as a key parameter of thermal efficiency.

  18. Investigation of Primary Dew-Point Saturator Efficiency in Two Different Thermal Environments

    Science.gov (United States)

    Zvizdic, D.; Heinonen, M.; Sestan, D.

    2015-08-01

    The aim of this paper is to describe the evaluation process of the performance of the low-range saturator (LRS), when exposed to two different thermal environments. The examined saturator was designed, built, and tested at MIKES (Centre for Metrology and Accreditation, Finland), and then transported to the Laboratory for Process Measurement (LPM) in Croatia, where it was implemented in a new dew-point calibration system. The saturator works on a single-pressure-single-pass generation principle in the dew/frost-point temperature range between and . The purpose of the various tests performed at MIKES was to examine the efficiency and non-ideality of the saturator. As a test bath facility in Croatia differs from the one used in Finland, the same tests were repeated at LPM, and the effects of different thermal conditions on saturator performance were examined. Thermometers, pressure gauges, an air preparation system, and water for filling the saturator at LPM were also different than those used at MIKES. Results obtained by both laboratories indicate that the efficiency of the examined saturator was not affected either by the thermal conditions under which it was tested or by equipment used for the tests. Both laboratories concluded that LRS is efficient enough for a primary realization of the dew/frost-point temperature scale in the range from to , with flow rates between and . It is also shown that a considerable difference of the pre-saturator efficiency, indicated by two laboratories, did not have influence to the overall performance of the saturator. The results of the research are presented in graphical and tabular forms. This paper also gives a brief description of the design and operation principle of the investigated low-range saturator.

  19. Research and development of advanced aluminium/graphite composites for thermal management applications

    CERN Document Server

    Wyszkowska, Edyta; Bertarelli, Alessandro

    Thermal management materials are continuously gaining importance as a consequence of everlasting evolution in performance of electronic and electric devices. In particular, by improving the heat exchanger’s materials' properties (i.e. thermal conductivity) it is possible to boost further performance and miniaturization of such devices. Due to their high thermal conductivity, Copper and Aluminium are currently the most commonly used materials for thermal management applications. However, the mismatch in thermal expansion between Cooper/Aluminium and Silicon is limiting the heat transfer at the interface between the electronic chip and the heat exchanger. Furthermore, Copper is indeed characterized by a high thermal conductivity but at the same time its high density (8.9 g/cm3) increases weight of the final product, which in most of the cases does not meet specific application requirements. High cost of these materials is another constraint which limits their application. Due to aforementioned facts, monolith...

  20. Thermal Dissipation Efficiency in a Micro-Processor Using Carbon Nanotubes Based Composite

    Science.gov (United States)

    Thang, Bui Hung; Van Quang, Cao; Nghia, Van Trong; Hong, Phan Ngoc; Van Chuc, Nguyen; Tam, Ngo Thi Thanh; Quang, Le Dinh; Khang, Dao Duc; Khoi, Phan Hong; Minh, Phan Ngoc

    2009-09-01

    Modern electronic and optoelectronic devices such as μ-processor, light emitting diode, semiconductor laser issued a challenge in the thermal dissipation problem. Finding an effective way for thermal dissipation therefore becomes a very important issue. It is known that carbon nanotubes (CNTs) is one of the most valuable materials with high thermal conductivity (2000 W/m.K compared to thermal conductivity of Ag 419 W/m.K). This suggested an approach in applying the CNTs as an essential component for thermal dissipation media to improve the performance of computer processor and other high power electronic devices. In this work multi walled carbon nanotubes (MWCNTs) based composites were utilized as the thermal dissipation media in a micro processor of a personal computer. The MWCNTs of different concentrations were added into polyaniline, commercial silicon thermal paste and commercial silver thermal paste by mechanical methods. A personal computer with configuration: Intel Pentium IV 3.066 GHz, 512 MB of RAM and Windows XP Service Pack 2 Operating System was employed. The thermal dissipation efficiency of the system was evaluated by directly measure the temperature of the μ-processor during the operation of the computer in different CPU speeds. The measured results showed that the CNTs based composite could reduce the temperature of the u-processor more than 5° C, and the time for increasing the temperature of the μ-processor was three times longer than that when using commercial thermal paste.

  1. An efficient chaos embedded hybrid approach for hydro-thermal unit commitment problem

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Ji, Bin; Yuan, Yanbin; Ikram, Rana M.; Zhang, Xiaopan; Huang, Yuehua

    2015-01-01

    Highlights: • Thermal unit commitment is considered in hydrothermal generation scheduling (SHTGS). • Two newly proposed promising optimization algorithms are combined to solving SHTGS. • The proposed method is enhanced by integrating a chaotic local search strategy. • Heuristic search strategies are applied to handle the constraints of the SHTGS. • The results verify the proposed method is feasible and efficient for handling SHTGS. - Abstract: This paper establishes a model to deal with the short-term hydrothermal generation scheduling (SHTGS) problem. The problem is composed of three interconnected parts: short-term hydrothermal coordination, thermal unit commitment and economic load dispatch. An efficient hybrid method composed of chaotic backtracking search optimization algorithm and binary charged system search algorithm (CBSA–BCSS) is proposed to solve this problem. In order to analyze the effect of the chaotic map on the performance of the method, three different chaotic maps are adopted to integrate into the proposed method and the corresponding consequences are achieved. Furthermore, efficient heuristic search strategies are adopted to handle with the complicated constraints of the SHTGS system. Finally, a hydrothermal unit commitment system is utilized to verify the feasibility and effectiveness of the proposed method. The results demonstrate the efficiency of the hybrid optimization method and the appropriation of the constraint handling strategies. The comparison of the solutions achieved by different methods shows that the proposed method has higher efficiency in terms of solving SHTGS problem

  2. Energy efficiency from business management perspective; Prosessi-integraatin energiatehokkuuden liikejohtaminen - PI-ENERGIALIITO

    Energy Technology Data Exchange (ETDEWEB)

    Ahtila, P.; Tuomaala, M. (Helsinki Univ. of Technology, Center for Energy Technology, Espoo (Finland)); Malmi, T.; Virtanen, T. (Helsinki School of Economics, Helsinki (Finland))

    2008-07-01

    The purpose of the research is to enhance the ways to manage energy efficiency as part of business management. The work includes a study of the differences between technical energy efficiency metrics and a company's business management metrics. The work also includes a study of the differences between energy efficiency management at a unit process scale and energy efficiency management at a total site scale. In addition, the ways to evaluate energy efficiency investments are studied. The research tries to propose ways to support existing practices in order to promote energy efficiency investment activity. The research is supported by case studies where a change in process energy efficiency is carried out. The case studies are evaluated from two perspectives: from engineering perspective and from business management perspective. (orig.)

  3. Efficiency of early application of immunomodulators in combined effect of radiation and thermal injury

    International Nuclear Information System (INIS)

    Makarov, G.F.

    1989-01-01

    Medical effect of thymus preparations (thymoline, thymoptine) and levamysole under combined radiation-thermal injury is studied. Experimental results have shown that early application of certain immunostimulators under combined radiation-thermal injury of medium criticality is low-efficient. Their ability to sufficiently increase the antibody synthesis is manifested only under combined action of burns and irradiation in non-lethal doses. 5 refs

  4. Monitoring the Efficiency of Budget Management of Trade Enterprises in Ukraine

    Directory of Open Access Journals (Sweden)

    Frolova Larysa V

    2016-08-01

    Full Text Available The article justifies the actuality of carrying out the monitoring of budget management efficiency at trade enterprises in Ukraine. It has been found that the efficiency of each trade enterprise management system, in particular the efficiency of budget management system, is determined by several factors, among which there considered the enterprise business profile, the competitive situation in the market and the standard of living of the population. The efficiency of budget management and, as a result, the efficiency of trade enterprises’ activity is reflected in the results of the effectiveness of the main indicators of the financial budgets of enterprises. Therefore, using the method of fuzzy sets, there carried out an integral evaluation of the efficiency of budget management based on the efficiency of financial budgets: the budget revenues and expenditures, cash flow budget and budgeted balance sheet. The study is carried out for Ukraine as a whole, and its most developed regions.

  5. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  6. 24 CFR 1006.325 - Maintenance, management and efficient operation.

    Science.gov (United States)

    2010-04-01

    ... § 1006.325 Maintenance, management and efficient operation. (a) Written policies. The DHHL must develop... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Maintenance, management and efficient operation. 1006.325 Section 1006.325 Housing and Urban Development Regulations Relating to Housing...

  7. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  8. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion

    International Nuclear Information System (INIS)

    Wu, Wenhao; Huang, Xinyu; Li, Kai; Yao, Ruimin; Chen, Renjie; Zou, Ruqiang

    2017-01-01

    Graphical abstract: The thermal conductivity of PU was enhanced to 43 times of the pristine value by encapsulation in a PGF, PU@PGF can be used for highly efficient electro-to-heat energy conversion and storage with the highest energy storage efficiency up to 85%. - Highlights: • The composite exhibits an in-situ solid-solid phase change behavior. • The enthalpy of polyurethane is enhanced within the matrix. • The thermal conductivity of the composite is 43 times as much as that of the polyurethane. • Supercooling of polyurethane is greatly reduced. • The composite is applied to cold protection as a wear layer. - Abstract: A novel solid-to-solid phase change composite brick was prepared by combination of polyurethane (PU) and pitch-based graphite foam (PGF). The carbonaceous support, which can be used for mass production, not only greatly improves the thermal conductivity but promote electro-to-heat conversion efficiency of organic phase change materials (PCMs). Our composite retained the enthalpy of PCM and exhibited a greatly reduced supercooling temperature. The novel composite was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The enthalpy of polyurethane has increased about 8.6% after infiltrating into graphite foam. The composite was very stable during thermal cycle test, and the electro-to-heat conversion efficiency achieves to 85% at lower voltages (1.5–1.8 V), which can vastly reduce energy consumption. The as-prepared composite was used in a wear layer to test its performance comparing with normal fabric.

  9. Hydrothermal modeling for the efficient design of thermal loading in a nuclear waste repository

    International Nuclear Information System (INIS)

    Cho, Won-Jin; Kim, Jin-Seop; Choi, Heui-Joo

    2014-01-01

    Highlights: • Three-dimensional hydrothermal modeling for HLW repository is performed. • The model reduces the peak temperature in the repository by about 10 °C. • Decreasing the tunnel distance is more efficient to improve the disposal density. • The EDZ surrounding the deposition hole increases the peak temperature. • The peak temperature for the double-layer repository remains below the limit. - Abstract: The thermal analysis of a geological repository for nuclear waste using the three-dimensional hydrothermal model is performed. The hydrothermal model reduces the maximum peak temperature in the repository by about 10 °C compared to the heat conduction model with constant thermal conductivities. Decreasing the tunnel distance is more efficient than decreasing the deposition hole spacing to improve the disposal density for a given thermal load. The annular excavation damaged zone surrounding the deposition hole has a considerable effect on the peak temperature. The possibility of double-layer repository is analyzed from the viewpoint of the thermal constraints of the repository. The maximum peak temperature for the double-layer repository is slightly higher than that for the single-layer repository, but remains below the temperature limit

  10. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  11. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel

    International Nuclear Information System (INIS)

    An, Zhoujian; Jia, Li; Li, Xuejiao; Ding, Yong

    2017-01-01

    Highlights: • A new type of BTM system based on flow boiling in mini-channel are presented. • Uniform temperature and volume distribution of battery module are obtained. • The temperatures of battery cell are maintained around 40 °C. • There exists an appropriate Re number range for boiling heat transfer in mini-channel. - Abstract: In order to guarantee the safety and prolong the lifetime of lithium-ion power battery within electric vehicles, thermal management system is essential. A new type of thermal management system based on flow boiling in mini-channel utilizing dielectric hydrofluoroether liquid which boiling point is 34 °C is proposed. The cooling experiments for battery module are carried out at different discharge rates and flow Re number. The cooling effect and the influence of battery cooling on the electrochemical characteristics are concerned. The experimental results show that the thermal management can efficiently reduce maximum temperature of battery module and surface maximum temperature difference. A relatively uniform temperature and voltage distributions are provided within the battery module at higher discharge rate benefit from the advantage of boiling heat transfer with uniform temperature distribution on cold plate. It is shown that the voltage decreases with the increase of Re number of fluid due to the reducing of temperature. There exist slight fluctuations of voltage distribution because of the non-uniformity of temperature distribution within the battery module at higher discharge rates. For different discharge rate, there also exists an appropriate Re number range during which the mode of heat transfer is mainly in boiling heat transfer mode and the cooling result can be greatly improved.

  12. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  13. SSTL based thermal and power efficient RAM design on 28nm FPGA for spacecraft

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Hussain, D. M.A.

    2016-01-01

    In this paper, an approach is made to design a Thermal and Power efficient RAM for that reason we have used DDR4L memory and six different members of SSTL I/Os standards on 28nm technology. Every spacecraft requires most energy efficient electronic system and for that very purpose we have designe...

  14. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation

    DEFF Research Database (Denmark)

    Asadi, Amin; Asadi, Meisam; Rezaniakolaei, Alireza

    2018-01-01

    efficiency of the nanofluid has been evaluated based on different figures of merit. It is revealed that using this nanofluid instead of the base fluid can be beneficial in all the studied solid concentrations and temperatures for both the internal laminar and turbulent flow regimes except the solid...... concentrations of 1 and 1.5% in internal turbulent flow regimes. The effect of adding nanoparticles on pumping power and convective heat transfer coefficient has also been theoretically investigated.......The main objective of the present study is to assess the heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid over different temperatures (25–50 °C) and solid concentrations (0.125%–1.5%). To this end, first of all, the stability of the nano-oil has been studied through the Zeta...

  15. Savings on natural gas consumption by doubling thermal efficiencies of balanced-flue space heaters

    Energy Technology Data Exchange (ETDEWEB)

    Juanico, Luis E. [Conicet, and Centro Atomico Bariloche e Instituto Balseiro, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina); Gonzalez, Alejandro D. [Grupo de Estudios Ambientales, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (Inibioma-Conicet), 8400 Bariloche, Rio Negro (Argentina)

    2008-07-01

    Natural gas is a relatively clean fossil fuel for space heating. However, when it is not used efficiently high consumption can become an environmental problem. In Argentina, individual balanced-flue space heaters are the most extensively used in temperate and cold regions. This furnace is a simple device with a burner set into a metal chamber, separated from the indoor ambient by an enclosing cabinet, and both inlet and outgas chimneys are connected to the outdoor ambient. In previous studies, we measured the performance of these commercial devices, and found very low thermal efficiency (in the range of 39-63% depending on the chimney configuration). The extensive use of these devices is possible due to the availability of unlimited amount of subsidised natural gas to households and businesses. In the present work, we developed a prototype with simple and low cost modifications made on commercial models, and measured the improvements on the thermal efficiency. Findings showed better infrared radiation, enhanced indoor air convection, and passive chimney flow regulation leading to thermal efficiency in the range of 75-85%. These values represent an improvement of 100% when compared to marketed models, and hence, the specific cost of the heater per unit of useful heating power delivered was actually reduced. Considering the large market presence of these furnaces in both residential and business sectors in Argentina, the potential benefits related to gas consumption and environmental emissions are very significant. (author)

  16. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    Science.gov (United States)

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization analysis of thermal management system for electric vehicle battery pack

    Science.gov (United States)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  18. Impact of management attitudes on perceived thermal comfort

    NARCIS (Netherlands)

    Derksen, T.; Franchimon, F.; Bronswijk, van J.E.M.H.

    2008-01-01

    Objectives This study examined the influence of some organizational and management characteristics on the perception of indoor environment qualities such as thermal comfort and related stress. Methods One open office in each of three organizations in Eindhoven was studied. An office environment

  19. EVALUATION OF THERMAL EFFICIENCY OF THE TECHNOLOGICAL SCHEME OF APPLE CHIPS AND DRIED FRUITS PRODUCTION

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2014-01-01

    Full Text Available The estimation of thermodynamic perfection of separate technological processes is executed at heat-moisture of handling of fruit and a line of manufacture of fruit apple chips and dried fruits. The technological scheme of a line of processing of fruits and manufactures of fruit chips on the basis of convection and the microwave-dryings suggested resource-saving. The technique is made and results of calculation of thermal expenses for various schemes of manufacture of apple chips are resulted. For the offered scheme material, thermal and power streams on the basis of balance parities of technological processes are certain. The comparative thermal production efficiency of apple chips for a base foreign variant and the offered technological scheme with the closed cycle of use of the heat-carrier and the combined convection-microwave-drying is shown. In this paper we define the thermal and energy flows for the processes of convective drying, pre-microwave drying, hydrothermal treatment and final microwave drying plant material, which are one of the main stages of the production of all kinds of fruit and vegetable concentrates, including fruit apple chips. Resource-saving ways moisture-heat of handling (hydration, blanching, drying, etc. produce raw materials in the production of food concentrates suggested a reduced water flow with a high degree of use of its potential power and microwave sources. To assess the thermal efficiency of the various processes and production schemes used as indicators of thermal efficiency and proposed value of specific heat (kJ / kg given mass productivity per unit of feedstock and translational moisture. The values of the mass fraction of the heat of material flows for the base and the proposed resource-saving production scheme fruit chips, for example, apple, based on a combination of convection-microwave drying each control surface.

  20. Thermal efficiency of low cost solar collectors - CSBC; Eficiencia termica de coletores solares de baixo custo - CSBC

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Renato C.; Shiota, Robson T.; Mello, Samuel F.; Assis Junior, Valdir; Bartoli, Julio R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Tecnologia de Polimeros

    2006-07-01

    The thermal performance of a low cost flat panel solar collector was measured. This Low Cost Solar Collector is a novel concept for water heating using only thermoplastics materials, used on building: ceiling and tubes made of unplasticized PVC, but without transparent cover. The top side of the UPVC panel was black painted to be the solar radiation absorber surface. Prototypes were installed on two charity houses around Campinas and at the FEQ campus, being used without any trouble for one year. The thermal efficiency analysis followed ABNT NBR 10184 standard at the Green-Solar Laboratory, Brazilian Centre for Development of Solar Thermal Energy, PUC-Minas. It was measured a thermal efficiency of 67%, compared to the 75% usually found on conventional solar collectors made of copper tubes and with glass cover. (author)

  1. Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model

    International Nuclear Information System (INIS)

    Bi, Gong-Bing; Song, Wen; Zhou, P.; Liang, Liang

    2014-01-01

    Data envelopment analysis (DEA) has gained much popularity in performance measurement of power industry. This paper presents a slack-based measure approach to investigating the relationship between fossil fuel consumption and the environmental regulation of China's thermal power generation. We first calculate the total-factor energy efficiency without considering environmental constraints. An environmental performance indicator is proposed through decomposing the total-factor energy efficiency. The proposed approach is then employed to examine whether environmental regulation affects the energy efficiency of China's thermal power generation. We find that the environmental efficiency plays a significant role in affecting energy performance of China's thermal generation sector. Decreasing the discharge of major pollutants can improve both energy performance and environmental efficiency. Besides, we also have three main findings: (1) The energy efficiency and environmental efficiency were relatively low. (2) The energy and environmental efficiency scores show great variations among provinces. (3) Both energy efficiency and environmental efficiency are of obvious geographical characteristics. According to our findings, we suggest some policy implications. - Highlights: • We assess the energy efficiency and the environmental efficiency of China's thermal power generation simultaneously. • The energy efficiency and the environmental efficiency were relatively low during 2007–2009. • The energy efficiency and environmental efficiency show obvious geographic characters. • The environmental performance of a DMU plays a decisive role in the energy performance

  2. Efficiency of Management Systems, Based on International Standards

    Directory of Open Access Journals (Sweden)

    Elena B. Gafforova

    2012-03-01

    Full Text Available The article considers major trends of management systems standardization development and efficiency. The authors determine possible structure of effects in the process of integrated management systems implementation.

  3. Energy subsidies in Argentina lead to inequalities and low thermal efficiency

    International Nuclear Information System (INIS)

    Gonzalez, A. D.

    2009-01-01

    Natural gas is the main energy resource for buildings in Argentina. Since 2002, subsidies have kept the prices of this fuel between 9 and 26 times lower than regular prices in other countries. The lowest prices are the result of climate-related subsidies. In cold areas, heating uses several times more energy than locations in Europe with a similar climate. A potential for consumption reductions of up to 70% suggests a very low building thermal performance. The main barriers to finding a solution are the heavy subsidies and public unawareness. Users, government officials, and construction professionals do not identify the very low thermal efficiency. Energy policies to encourage improvements are proposed. (author)

  4. Efficiency of management of sustainable development – challenges, problems, barriers

    Directory of Open Access Journals (Sweden)

    Zięba K.

    2016-06-01

    Full Text Available This paper discusses such issues as the importance of efficiency management of sustainable development. In the authors’ opinion, this matter is currently topical subject due to, among others, on the still high costs of irrational management in the field. Dynamically changing environment forces to search for new solutions for efficiency management of sustainable development, and unfortunately, in many countries it is still a significant problem. For some countries, the efficiency management of sustainable development is difficult. It should be noted that the problem with the inaction of relevant activities of the countries in the field of development of efficiency management of sustainability development will grow, because globalization makes it necessary to generate new solutions emerging to date problems. Facing each country there are so many challenges in the field. However, some countries are aware of the seriousness of the problem and therefore take a number of measures in this regard, often regardless of the amount of costs. This has an impact on their competitiveness. Apparent is also increasing incorporation of new original solutions in the field of sustainable development management.

  5. A review of thermal management and safety for lithium ion batteries

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    performance. Therefore,thermal management of batteries is essential for various purposes containing thermal runaway and longstanding of cell functioning period. The favorable outcome of electricdriven vehicles (EDVs) depends on the lithium-ion battery technology. Notwithstanding, the safety concern...... is a considerable technical problem and has become an important factor which might postpones subsequent extension of lithium-ion batteries. This paper reviews different methods for thermal management of lithium-ion batteries. Various methods such as using Phase change materials and using air cooling, straight......Decreasing of fossil fuel sources and ecological worries has spurred global attention in the expansion of developing energy storing systems for electric vehicles (EVs). As a consequence of escalating appeal on new dependable power supplier for hybrid electric vehicles, lithium-ion (Li...

  6. A dual-stage sodium thermal electrochemical converter (Na-TEC)

    Science.gov (United States)

    Limia, Alexander; Ha, Jong Min; Kottke, Peter; Gunawan, Andrey; Fedorov, Andrei G.; Lee, Seung Woo; Yee, Shannon K.

    2017-12-01

    The sodium thermal electrochemical converter (Na-TEC) is a heat engine that generates electricity through the isothermal expansion of sodium ions. The Na-TEC is a closed system that can theoretically achieve conversion efficiencies above 45% when operating between thermal reservoirs at 1150 K and 550 K. However, thermal designs have confined previous single-stage devices to thermal efficiencies below 20%. To mitigate some of these limitations, we consider dividing the isothermal expansion into two stages; one at the evaporator temperature (1150 K) and another at an intermediate temperature (650 K-1050 K). This dual-stage Na-TEC takes advantage of regeneration and reheating, and could be amenable to better thermal management. Herein, we demonstrate how the dual-stage device can improve the efficiency by up to 8% points over the best performing single-stage device. We also establish an application regime map for the single- and dual-stage Na-TEC in terms of the power density and the total thermal parasitic loss. Generally, a single-stage Na-TEC should be used for applications requiring high power densities, whereas a dual-stage Na-TEC should be used for applications requiring high efficiency.

  7. Thermal efficiencies and OTEC potentials at some offshore sites along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sathe, P.V.; Varadachari, V.V.R.

    The annual variation of thermal efficiency of closed OTEC power cycle at some selected offshore sites along the Indian coast is presented. OTEC potentials at these sites have been evaluated in order to identify promising locations for exploration...

  8. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    Science.gov (United States)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  9. Modernised Portuguese schools - From IAQ and thermal comfort towards energy efficiency plans

    Science.gov (United States)

    Pereira, Luisa Maria Dias

    . The continuous monitoring period varied between schools, from a minimum of 48h monitoring up to three weeks, during the mid-season [spring - autumn period (excluding summer vacation) in 2013]. Air exchange rates (AER), more specifically infiltration rates, are quantified aiming at determining the current airtightness condition of the refurbished schools. A subjective IEQ assessment is also performed, focusing on occupants’ feedback, providing insight on the potential linkages between energy use and occupants’ satisfaction and comfort. The thesis builds on the current EEP panorama and practice, which is based only on cost/energy control, extending it to address the equilibrium between IEQ evaluation and occupants’ perceived conditions/preferences. This approach is applied in two schools - selected based on the previous study on energy and IEQ conditions of the eight schools. The EEP methodology starts by deepening the knowledge of each school, mostly focusing on crossing the schools occupancy schedule with systems operation [(mainly those controlled by the building management system (BMS)]. An analysis on recently updated legislation is also performed (in particular fresh air flow rates requirements). It is shown that some potential energy savings can be achieved and that IEQ conditions can be improved at very low or even negligible costs. Other considerations, namely addressing the thermal energy production systems of the schools (e.g., boilers scheduling), the lighting systems (e.g., lighting circuits) and non-controlled plug loads, are also mentioned. Based upon all these findings, a handbook of good practice is drafted for secondary school buildings in Portugal. This EEP is accompanied by a list of Energy Efficiency Measures (EEM). It is proposed that this document is headed by a School - Energy Performance Certificate (S-EPC) based on the billed energy consumption. This document suggests the establishment of the figure of the Energy Manager.

  10. Thermal effects in supercapacitors

    CERN Document Server

    Xiong, Guoping; Fisher, Timothy S

    2015-01-01

    This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and  replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.

  11. Efficient silvicultural practices for eastern hardwood management

    Science.gov (United States)

    Gary W. Miller; John E. Baumgras

    1994-01-01

    Eastern hardwood forests are now managed to meet a wide range of objectives, resulting in the need for silvicultural alternatives that provide timber, wildlife, aesthetics, recreation, and other benefits. However, forest management practices must continue to be efficient in terms of profiting from current harvests, protecting the environment, and sustaining production...

  12. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Yoshimasa; Kubo, Shosei; Suzuki, Katsuaki; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Shizu, Katsuyuki [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Tanaka, Hiroyuki [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2015-11-02

    We developed a thermally activated delayed fluorescence (TADF) emitter, 2,4,6-tris(4-(9,9-dimethylacridan-10-yl)phenyl)-1,3,5-triazine (3ACR-TRZ), suitable for use in solution-processed organic light-emitting diodes (OLEDs). When doped into 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host at 16 wt. %, 3ACR-TRZ showed a high photoluminescence quantum yield of 98%. Transient photoluminescence decay measurements of the 16 wt. % 3ACR-TRZ:CBP film confirmed that 3ACR-TRZ exhibits efficient TADF with a triplet-to-light conversion efficiency of 96%. This high conversion efficiency makes 3ACR-TRZ attractive as an emitting dopant in OLEDs. Using 3ACR-TRZ as an emitter, we fabricated a solution-processed OLED exhibiting a maximum external quantum efficiency of 18.6%.

  13. Fiscal 2000 achievement report. Model project for international energy consumption efficiency improvement (Model project for improvement of boiler and turbine efficiency); 2000 nendo seika hokoku. Kokusai energy shohi koritsuka tou model jigyo (Boira tabin koritsu kojo model jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    A project was implemented for Japan to transfer its energy conservation technologies for helping Indonesia conserve energy and reduce CO2 emissions, which occurred at Muara Karang Thermal Power Plant of an Indonesian power company named PT PJB. Items to be introduced are condenser tubes (material change from cupro-nickel to titanium), ball cleaning equipment, turbine gland seal improvement, air preheater improvement, thermal efficiency management system, and so forth. In this fiscal year, turbine gland seals and air preheater elements were manufactured, and the thermal efficiency management system was designed. As an dissemination activity, 10 engineers were invited to Japan from the Indonesian Ministry of Energy and Mineral Resources, PT PLN, and PT PJB. They attended a training program lasting approximately two weeks, which included study tours to the factories actually building the equipment to be introduced and field/classroom training/education on thermal efficiency management and others. The engineers actively performed their boiler improvement work back in Indonesia. (NEDO)

  14. Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard Thermal Management

    Science.gov (United States)

    2011-12-01

    which includes the current from regenerative braking . Repeated UAC cycles are used as the model input to generate the surface temperature Ts to test...battery thermal dynamics is the key to an effective thermal management system and to main- tain safety, performance, and life longevity of these Li-Ion...the current and surface temperature of the battery, which are the commonly mea- sured signals in a vehicle battery management system . It is shown that

  15. An Environmental Management Model of Thermal Waters in Entre Ríos Province, Argentina

    Science.gov (United States)

    Pablo, Mársico Daniel; Luís, Díaz Eduardo; Ivana, Zecca; Oscar, Dallacosta; Antonio, Paz-González

    2015-04-01

    Deep exploratory drillings, i.e. those with more than 500 meters depth, have been performed in the Entre Ríos province, Argentina, in order to ascertain the presence of thermal water. Drilling began in 1994, and until now there have been 18 polls with very variable results in terms of mineralization, resource flow, and temperature. The aim of this study was to present a management model, which should allow operators of thermal complexes to further develop procedures for safeguarding the biodiversity of the ecosystems involved, both during exploration and exploitation activities. The environmental management Plan proposed is constituted by a set of technical procedures that are formulated and should be performed during the stages of exploration and exploitation of the resource, and consists of: environmental monitoring, environmental audit, public information and contingency programs. This Plan describes the measures and proposals aimed at protecting environmental quality in the area of influence of a thermal complex project, ensuring that its execution remains environmentally responsibly, and allowing implementation of specific actions to prevent or correct environmental impacts, as predicted in the evaluation of the Environmental Program. The audit of environmental impact includes and takes into account natural factors, such as water, soil, atmosphere, flora and fauna, and also cultural factors. The technical audit Plan was prepared in order to get a systematic structure and organization of the verification process, and also with regard to document the degree of implementation of the proposed mitigation measures. Finally, an environmental contingency program was implemented, and its objective was to consider the safeguarding of life and its natural environment. Thus, a guide has been developed with the main actions to be taken on a contingency, since forecast increases the efficiency of the response. The methodology developed here was adopted as the procedure

  16. Hydrodynamic efficiency and thermal transport in planar target experiments at LLE

    International Nuclear Information System (INIS)

    Boehly, T.; Goldman, L.M.; Seka, W.; Craxton, R.S.

    1984-01-01

    The authors report the results of single beam irradiation of thin CH foils at laser intensities of 10 13 to 10 15 W/cm 2 in 0.8 ns pulses containing 20 to 50 J of 350 nm and 1054 nm light. They also discuss the hydrodynamic efficiency, thermal transport and preheat in these targets. Included is the measurement of the ion blowoff energy distribution and velocity. The efficient acceleration by short wavelength radiation causes target displacements comparable to the spot size resulting in two-dimension effects. The results are adequately modeled with the 2-D hydrocode SAGE using a flux limiter of f=0.04

  17. Investigation of thermal management materials for automotive electronic control units

    International Nuclear Information System (INIS)

    Mallik, Sabuj; Ekere, Ndy; Best, Chris; Bhatti, Raj

    2011-01-01

    Today's electronics packages are smaller and more powerful than ever before. This leads to ever increasing thermal challenges for the systems designer. The automotive electronic control unit (ECU) package faces the same challenge of thermal management as the industry in general. This is coupled with the latest European Union legislation (Euro 6 standard) which forced the ECU manufacturers to completely re-design their ECU platform with improved hardware and software capability. This will result in increased power densities and therefore, the ability to dissipate heat will be a key factor. A higher thermal conductivity (TC) material for the ECU housing (than the currently used Aluminium) could improve heat dissipation from the ECU. This paper critically reviews the state-of-the-art in thermal management materials which may be applicable to an automotive ECU. This review shows that of the different materials currently available, the Al/SiC composites in particular have very good potential for automotive ECU application. In terms of metal composites processing, the liquid metal infiltration process is recommended as it has a lower processing cost and it also has the ability to produce near net-shape materials.

  18. Dividing wall column: Improving thermal efficiency, energy savings and economic performance

    International Nuclear Information System (INIS)

    Aurangzeb, Md; Jana, Amiya K.

    2016-01-01

    Highlights: • A rigorous model is developed for a dividing wall column. • Heat transfer model for metal wall is proposed. • Performance improvement is quantified for a ternary system. • Thermal efficiency, energy savings and cost are three used indices. - Abstract: This work aims at investigating the performance improvement of a dividing wall column (DWC) for the separation of a ternary system. It is true that for fractionating a ternary mixture, at least a sequence of two conventional distillation columns is required. To improve energetic and economic potential, and reduce space requirement, two columns are proposed to merge into one shell with a dividing wall. For developing the mathematical model of a distillation column, we consider the effect of heat transfer through the metal wall placed at an intermediated position inside the cylindrical column. The simulated DWC model is verified using the Aspen Plus flowsheet simulator with a wide variety of phase equilibrium models. The superiority of this proposed heat integrated configuration is shown for a ternary hydrocarbon system over a conventional distillation sequence (CDS) in terms of mainly three performance indexes, namely thermal efficiency, energy savings and total annual cost (TAC). It is investigated that the dividing wall distillation scheme can secure a 37.5% energy efficiency, and a 22.6% savings in energy consumption and 23.23% in TAC. The promising performance can also be quantified in terms of a reasonably low payback period of 2.11 years.

  19. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  20. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  1. Assessment of thermal efficiency of heat recovery coke making

    Science.gov (United States)

    Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.

    2017-08-01

    The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.

  2. Useful work and the thermal efficiency in the ideal Lenolr cycle with regenerative preheating

    Science.gov (United States)

    Georgiou, Demos P.

    2000-11-01

    In the existing thermal engine concepts negative work transfer (usually needed to drive a compression process) is supplied by the work produced by the engine itself. The remaining difference (i.e., the net work transfer) becomes the useful work, since it is available for external consumption. The thermal efficiency is the parameter that compares this against the heat input into the system. It forms the main optimization parameter in any engine design. The objective of the present study is to show that for the case of the Lenoir cycle with regenerative preheating the entire positive work is available for external consumption, since the negative (i.e., the compression) work is supplied by the atmospheric air. Not only this, but, during the compression process and due to the pressure difference across the two sides of the moving piston, an additional (useful) work transfer may be generated. Thus, the proposed power plant may be considered as a combination of a thermal engine and a wind turbine. In the ideal cycle limit (at least), the total amount of useful work exceeds the heat entering the system. This leads to the definition of a new parameter for the efficiency (called the technical efficiency), which compares the combined positive work transfer (i.e., the useful one) against the heat entering the system and which may exceed the 100% level.

  3. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  4. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  5. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  6. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  7. High-performance noncontact thermal diode via asymmetric nanostructures

    Science.gov (United States)

    Shen, Jiadong; Liu, Xianglei; He, Huan; Wu, Weitao; Liu, Baoan

    2018-05-01

    Electric diodes, though laying the foundation of modern electronics and information processing industries, suffer from ineffectiveness and even failure at high temperatures. Thermal diodes are promising alternatives to relieve above limitations, but usually possess low rectification ratios, and how to obtain a high-performance thermal rectification effect is still an open question. This paper proposes an efficient contactless thermal diode based on the near-field thermal radiation of asymmetric doped silicon nanostructures. The rectification ratio computed via exact scattering theories is demonstrated to be as high as 10 at a nanoscale gap distance and period, outperforming the counterpart flat-plate diode by more than one order of magnitude. This extraordinary performance mainly lies in the higher forward and lower reverse radiative heat flux within the low frequency band compared with the counterpart flat-plate diode, which is caused by a lower loss and smaller cut-off wavevector of nanostructures for the forward and reversed scheme, respectively. This work opens new routes to realize high performance thermal diodes, and may have wide applications in efficient thermal computing, thermal information processing, and thermal management.

  8. Analysis of the impact of storage conditions on the thermal recovery efficiency of low-temperature ATES systems

    NARCIS (Netherlands)

    Bloemendal, Martin; Hartog, Niels

    Aquifer thermal energy storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling using groundwater stored at different temperatures. The thermal recovery efficiency is one of the main parameters that determines the overall energy savings of ATES systems

  9. Analysis of the impact of storage conditions on the thermal recovery efficiency of low-temperature ATES systems

    NARCIS (Netherlands)

    Bloemendal, J.M.; Hartog, Niels

    2018-01-01

    Aquifer thermal energy storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling using groundwater stored at different temperatures. The thermal recovery efficiency is one of the main parameters that determines the overall energy savings of ATES systems

  10. Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

    2008-06-24

    This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

  11. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    International Nuclear Information System (INIS)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

    2015-01-01

    High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

  12. Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines

    International Nuclear Information System (INIS)

    Zhong Junhu; Zheng Yuli; Qing Li; Qiang Li

    2010-01-01

    Thermodynamic cycle transferring heat and work was executed in thermoacoustic engines, when the acoustic resonators substituted the moving mechanical components of the traditional heat engines. Based on the traveling-wave phasing and reversible heat transfer, thermoacoustic Stirling engines could achieve 70% of the Carnot efficiency theoretically, if the inevitable viscous dissipation in resonators was also counted as exported power. It should be pointed out an error on this efficiency evaluation in the previous literatures. More than 70% of the acoustic power production was often consumed by the side-branch resonator that was the essential configuration to build up a thermoacoustic Stirling engine. According to the simulation results and some experimental data, the actual available acoustic power consumed by the acoustic loads was restricted by the operating peak-to-mean pressure ratio, i.e. |p 1 /p m |. When the peak-to-mean pressure ratio operated on 4-6.5%, the thermal efficiency and power density of the available acoustic power reached higher levels. But the available acoustic power would approach zero when |p 1 /p m | attained 10%. It was approved that the turbulence oscillation occurred on the higher |p 1 /p m | (usually >4%) was the main reason of the excess dissipation in the side-branch resonator. This character of the available power limited the wide application of thermoacoustic Stirling engines. The evaluation of thermal efficiency and energy conversion also indicated the improving direction of thermoacoustic Stirling engines. Generators driven by the thermoacoustic Stirling engines were an effective way, due to the elimination of the side-branch resonator. To achieve a high power density and a high pressure ratio on the higher available power efficiency level, the standing-wave thermoacoustic engines might outvie the traveling-wave thermoacoustic engines. To enjoy the best features of standing-wave engines and traveling-wave engines simultaneously

  13. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  14. Nanooptics for high efficient photon managment

    Science.gov (United States)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  15. Cost efficiency of waste management in Dutch municipalities

    NARCIS (Netherlands)

    de Groot, Hans; van Heezik, A.; Hollanders, D.; Felsö, F.

    2011-01-01

    This paper analyses the cost efficiency of waste management of Dutch municipalities. For the first time stochastic frontier analysis is applied to Dutch data, employing recent multi-year data (2005-2008). The preliminary findings confirm earlier results on the importance for cost efficiency of

  16. Application of phase change materials in thermal management of electronics

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2007-01-01

    Application of a novel PCM package for thermal management of portable electronic devices was investigated experimentally for effects of various parameters e.g. power input, orientation of package, and various melting/freezing times under cyclic steady conditions. Also, a two-dimensional numerical study was made and compared the experimental results. Results show that increased power inputs increase the melting rate, while orientation of the package to gravity has negligible effect on the thermal performance of the PCM package. The thermal resistance of the device and the power level applied to the PCM package are of critical importance for design of a passive thermal control system. Comparison with numerical results confirms that PCM-based design is an excellent candidate design for transient electronic cooling applications

  17. Mechanics and thermal management of stretchable inorganic electronics.

    Science.gov (United States)

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-03-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics.

  18. Mechanics and thermal management of stretchable inorganic electronics

    Science.gov (United States)

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-01-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics. PMID:27547485

  19. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  20. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  1. Thermal Management System for Long-Lived Venus Landers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall program objective is to develop a high-temperature passive thermal management system for the Radioisotope Power Conversion system that energizes the...

  2. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  3. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2015-01-01

    undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends

  4. Optimization of thermal efficiency of nuclear central power like as PWR; Otimizacao da eficiencia termica de uma usina nuclear do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, Nelbia da Silva

    2005-10-15

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  5. Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Rezaniakolaei, Alireza; Ranjbar, A.A.

    2018-01-01

    In most thermoelectric systems the thermal boundary conditions are transient, and thermal manage-ment of the system is critical to improve electrical performance of the system. In this study, effect of using phase change materials (PCM) to control the hot and cold side temperatures...

  6. Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Eloisa Di Sipio

    2017-11-01

    Full Text Available The performance of very shallow geothermal systems (VSGs, interesting the first 2 m of depth from ground level, is strongly correlated to the kind of sediment locally available. These systems are attractive due to their low installation costs, less legal constraints, easy maintenance and possibility for technical improvements. The Improving Thermal Efficiency of horizontal ground heat exchangers Project (ITER aims to understand how to enhance the heat transfer of the sediments surrounding the pipes and to depict the VSGs behavior in extreme thermal situations. In this regard, five helices were installed horizontally surrounded by five different backfilling materials under the same climatic conditions and tested under different operation modes. The field test monitoring concerned: (a monthly measurement of thermal conductivity and moisture content on surface; (b continuous recording of air and ground temperature (inside and outside each helix; (c continuous climatological and ground volumetric water content (VWC data acquisition. The interactions between soils, VSGs, environment and climate are presented here, focusing on the differences and similarities between the behavior of the helix and surrounding material, especially when the heat pump is running in heating mode for a very long time, forcing the ground temperature to drop below 0 °C.

  7. Efficiency maximization and performance evaluation of hybrid dual channel semitransparent photovoltaic thermal module using fuzzyfied genetic algorithm

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2016-01-01

    Highlights: • Thermal modeling of novel dual channel semitransparent photovoltaic thermal hybrid module. • Efficiency maximization and performance evaluation of dual channel photovoltaic thermal module. • Annual performance has been evaluated for Srinagar, Jodhpur, Bangalore and New Delhi (India). • There are improvements in results for optimized system as compared to un-optimized system. - Abstract: The work has been carried out in two steps; firstly the parameters of hybrid dual channel semitransparent photovoltaic thermal module has been optimized using a fuzzyfied genetic algorithm. During the course of optimization, overall exergy efficiency is considered as an objective function and different design parameters of the proposed module have been optimized. Fuzzy controller is used to improve the performance of genetic algorithms and the approach is called as a fuzzyfied genetic algorithm. In the second step, the performance of the module has been analyzed for four cities of India such as Srinagar, Bangalore, Jodhpur and New Delhi. The performance of the module has been evaluated for daytime 08:00 AM to 05:00 PM and annually from January to December. It is to be noted that, an average improvement occurs in electrical efficiency of the optimized module, simultaneously there is also a reduction in solar cell temperature as compared to un-optimized module.

  8. Aerial thermal images to assess irrigation efficiency in 'Vitis vinifera' cv. Albariño

    Science.gov (United States)

    Gonzalez, Xesús Pablo; Fandiño, María; Rey, Benjamín J.; José Cancela, Javier

    2017-04-01

    Canopy temperature was defined as key data to irrigation management and to detect crop water stress (Jackson, 1982). Recently, temperature camera was installed on board in a Unmanned Aerial Vehicle (UAV), thus heterogeneity within field could be determined. Pereira et al. (2012) have defined the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP). Actually, it is crucial achieve higher WP and WUE, where crop yield variability between years must be reduced with the smallest irrigation water, but with a correct management of crop water stress during the season. In this study, Albariño cultivar grapevine, priority in Galicia (Spain) in Designation of Origen 'Rías Baixas', was assessed in relation to water productivity index, focus on irrigation treatments aspects, during 2016. Albariño vineyard was planted in 1996 on 110-Richter at a spacing of 3 × 2 m (1667 vines ha-1) (41°57 6 N, 8°49 26 W, elevation 101 m). Vines were trained to a vertical trellis system on a Guyot oriented in the East-West direction. Three irrigation treatments were applied: irrigation from budburst to maturation (T1), from flowering to maturation (T2), and from veraison to maturation (T3), moreover a rain-fed treatment was implemented. All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WP TWUfarm, introduced rainfall and irrigation depth; to WP Irrig, only irrigation depth applied; was used. Moreover, crop water stress index (CWSI) was used to determine homogenize areas within experimental plot, using an UAV with a thermal camera (ThermoMAP, senseFly, SW) to achieve a final map with 14 cm per pixel resolution. During August 11th, at the end of veraison, camera was installed in an 'eBee Ag' UAV (senseFly, SW) with a median flight altitude of 75 m over ground level. Yield per hectare were recorded and total irrigation depth per treatment during the growing season from March to

  9. Toward effective strategies for energy efficient network management

    NARCIS (Netherlands)

    Vreeswijk, Jacob Dirk; van Berkum, Eric C.; van Arem, Bart; van Vliet, H.; Abadi, A.; Bauer e.a., D.

    2010-01-01

    Trade-offs in efficiency, equity and acceptability arise as a central feature in traffic management. Today's urban traffic network management strategies focus on overall system performance and often overlook the interests of the individual road user. In addition, the emphasis is on travel time

  10. PERFORMANCE MANAGEMENT AND EFFICIENCY OF COMMUNICATION

    Directory of Open Access Journals (Sweden)

    LIVIU NEAMTU

    2017-12-01

    Full Text Available Performance management is, in fact, that systemic coordination process through communication of actions undertaken by the firm in the context of an environment which is in a continuous movement and transformation, which anticipates changes, taking appropriate response measures, time-reacting, dynamically, flexible and quickly to these changes through appropriate strategies, which application in practice is monitored, controlled and adjusted continuously. Performance management is defined as complete and complex levels of communication on organizing through strategies, policy decisions, coordination with business plans and innovative programs and tactics along with the steps required to implement these levels in the company's activity. Performance management is the management of the company based on communication and participativ management; therefore the efficiency of communication and participativ management is the foundation of performance management, it outlines the priorities, thus becoming the basic factor in the development of management programs and in the course of their ongoing. Consequently, for running relevant and profitable a business, a company needs performance management areas well-delineated, with specific tasks, that can transform customer or generally the society needs into profitable business opportunities.

  11. Interaction between daily load demand curve and management of hydro-thermal generation system

    International Nuclear Information System (INIS)

    Granelli, G.; Montagna, M.; Pasini, G.; Innorta, M.; Marannino, P.

    1993-01-01

    The influence that the behaviour of the daily load demand curve has on the management of a hydro-thermal generation system is considered. The aim of this paper is to show the improvements that can be achieved by suitable load management techniques capable of flattening the load demand curve. The analysis is carried out by using a hydro-thermal scheduling program and a thermal unit dynamic dispatch procedure. The possibility of properly re-committing the available thermal units is also taken into account. The economical and technical convenience of shutting down less economical thermal units operating near the lower generations limits is verified. Finally, some considerations are made about the possible use of the thermal generation incremental costs as a tool for planning the end users' kWh prices, even in the short term. The results refer to a system with characteristics similar to those of the Italian one. In determining the daily load demand curves, the characteristics of load demand in Italy as well as in other European countries are taken into account

  12. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  13. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  14. A review on battery thermal management in electric vehicle application

    Science.gov (United States)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  15. Increasing thermal efficiency of Rankine cycles by using refrigeration cycles: A theoretical analysis

    International Nuclear Information System (INIS)

    Sarr, Joachim-André Raymond; Mathieu-Potvin, François

    2016-01-01

    Highlights: • A new stratagem is proposed to improve thermal efficiency of Rankine cycles. • Three new configurations are optimized by means of numerical simulations. • The Rankine-1SCR design is advantageous for 1338 different fluid combinations. • The Rankine-2SCR design is advantageous for 772 different fluid combinations. • The Rankine-3SCR design is advantageous for 768 different fluid combinations. - Abstract: In this paper, three different modifications of the basic Rankine thermodynamic cycle are proposed. The objective is to increase the thermal efficiency of power systems based on Rankine cycles. The three new systems are named “Rankine-1SCR”, “Rankine-2SCR”, and “Rankine-3SCR” cycles, and they consist of linking a refrigeration cycle to the basic Rankine cycle. The idea is to use the refrigeration cycle to create a low temperature heat sink for the Rankine cycle. These three new power plant configurations are modeled and optimized with numerical tools, and then they are compared with the basic Rankine cycle. The objective function is the thermal efficiency of the systems (i.e., net power output (kW) divided by heat rate (kW) entering the system), and the design variables are the operating temperatures within the systems. Among the 84 × 84 (i.e., 7056) possible combinations of working and cooling fluids investigated in this paper, it is shown that: (i) the Rankine-1SCR system is advantageous for 1338 different fluid combinations, (ii) the Rankine-2SCR system is advantageous for 772 different fluid combinations, and (iii) the Rankine-3SCR system is advantageous for 768 different fluid combinations.

  16. Efficient Spatial Data Structure for Multiversion Management of Engineering Drawings

    Directory of Open Access Journals (Sweden)

    Yasuaki Nakamura

    2004-08-01

    Full Text Available In the engineering database system, multiple versions of a design including engineering drawings should be managed efficiently. The paper proposes an extended spatial data structure for efficient management of multiversion engineering drawings. The R-tree is adapted as a basic data structure. The efficient mechanism to manage the difference between drawings is introduced to the R-tree to eliminate redundant duplications and to reduce the amount of storage required for the data structure. The extended data structures of the R-tree, MVR and MVR* trees, are developed and the performances of these trees are evaluated. A series of simulation tests shows that, compared with the basic R-tree, the amounts of storage required for the MVR and MVR* trees are reduced to 50% and 30%, respectively. The search efficiencies of the R, MVR, and MVR* trees are almost the same.

  17. Characterization of a thermoelectric cooler based thermal management system under different operating conditions

    International Nuclear Information System (INIS)

    Russel, M.K.; Ewing, D.; Ching, C.Y.

    2013-01-01

    The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system. - Highlights: ► A model was developed for thermal management systems using thermoelectric coolers. ► Model predictions were in good agreement with experimental results. ► An operating envelope was developed for peak and off peak conditions. ► The effect of the number of thermoelectric coolers on the system was determined.

  18. Fiscal 1998 research report. Feasibility study on improvement of the thermal efficiency of existing coal- fired thermal power plants in China; 1998 nendo chosa hokokusho. Chugoku kisetsu sekitan karyoku hatsudensho koritsu kojo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on the improvement project of the thermal efficiency of existing coal-fired thermal power plants in China to relate it to Japanese clean development mechanism. General study was made on the facility and operation of existing 300MW coal-fired thermal power plant units, and on-site study was also made on improvement of the thermal efficiency of some typical power plants. Based on these studies, effective improvement measures were identified, and general evaluation was carried out based on a cost effectiveness. The study result showed that the total efficiency improvement measures improve the plant efficiency of a standard 300MW unit by nearly 4%, and reduce CO{sub 2} emission by 184 ktons/y. The efficiency improvement measures for 10 300MW units by 2010 are estimated to reduce CO{sub 2} emission by 1.84 Mtons/y in 2010. This reduced emission is equivalent to annual emission of one 300MW unit. This project is reasonable enough if the cooperation range between Japan and the other country, and a source of funds are clarified. (NEDO)

  19. Combined Thermal Management and Power Generation Concept for the Spent Fuel Dry Storage Cask

    International Nuclear Information System (INIS)

    Kim, In Guk; Bang, In Cheol

    2017-01-01

    The management of the spent nuclear fuel generated by nuclear power plants is a major issue in Korea due to insufficient capacity of the wet storage pools. Therefore, it is considered that dry storage system is the one possible solution for storing spent fuel. A dual-purpose metal cask (transportation and storage) is currently developing in Korea. This cask has 21 of fuel assemblies and 16.8 kW of maximum decay heat. To evaluate the critical safety in normal/off normal and accident conditions, critical stabilities were conducted by using CSAS 6.0. The experimental investigation of heat removal of a concrete storage cask was also conducted under normal, off normal and accident conditions. The results of the evaluation showed a good safety of the dry storage cask. The results showed the enhanced thermal performance according to modification of flow rate. To verify combined thermal management and power generation concept, a new type of test facility for dry storage cask was designed in 1/10 scale of concrete dry storage cask. The experimental study involved the cooling methods that are an integrated system on the top of the dry cask and air flow path on the canister wall. The results showed the temperature distribution of the wall and inside of the dry cask at the normal condition. The influence of the change of the heat load and cooling system were investigated. The heat removal by the integrated system is approximately 20% of the total heat removal of the dry cask with reduced wall temperature. In these tests, economic analysis is conducted by applying the concept of the cost and efficiency. Under different decay power cases, the energy efficiency of the heat pipe and Stirling engine are determined and compared based on experimental results. The average efficiencies of the Stirling engine were the range of 2.375 to 3.247% under the power range of 35– 65W. These results showed that advanced dry storage concept had a better cooling performance in comparison with

  20. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  1. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  2. Efficiency audit for IT-systems of state management strategic objects

    Directory of Open Access Journals (Sweden)

    Abasov V.A.

    2017-06-01

    Full Text Available Hackers’ attacks at the end of 2016 and at the beginning of 2017 р. on governmental information and telecommunication systems, including Ministry of Finance in Ukraine, and State Treasury Department, caused vast delays in budgetary payments. They showed «sensitiveness» and insecurity of governmental institutions for cyber-attacks because of control absence of three main security measures, such as technical limitations for downloading programs, limited use of rights for local administrators, systematical software renewals. International experience shows these security measures of governmental IT-systems have to be the audit subject of state financial control authorities. The base of information technology audit was initiated in the studies of І.К. Drozd, S.V. Іvachnenkova, М.М. Benko, Ju.А. Кuxminskiy, А.V. Мamyshev. Simultaneously, the issue of IT-system state audit was examined in theoretical researches partially because there is no practice of such audit in Ukraine. That is why it is necessary to learn international practice of efficiency audit for IT-systems and world standards for establishments of state management sector. The research allowed to propose the methodology of efficiency audit for IT-systems for state institutions; the methodology provides planning and conducting the main procedures on the base of risk estimation of security threats for information systems. The author determines the peculiarities in security risk management for IT-systems by means of risk estimation of security components of IT-systems while conducting efficiency audit. The author sets the method of descending step-by-step detailing for audit estimation of IT-system risk management efficiency at strategic enterprises belonging to state management sector by means of adaptation of ISSAI standard norms. The paper proposes three possible options of management solution concerning IT-system risk management efficiency on the base of information about the

  3. A Mathematical Approach to Supply Complexity Management Efficiency Evaluation for Supply Chain

    Directory of Open Access Journals (Sweden)

    Changhee Kim

    2015-01-01

    Full Text Available This study aims to identify the factors of complexity due to the globalization of supply chain and to measure the management efficiency of the factors which cause the supply complexity within supply chain. This study conducts an analysis to utilize linear programming and bootstrapping, targeting 12 Korean companies among the selected companies in Fortune Global 500. According to the results from the analysis, 4 companies with relatively high management efficiency of the factors which cause the supply complexity and 8 companies with relatively low management efficiency are found. The research findings reveal that public companies with the small number of products, factories, and providers relatively manage the supply complexity compared to private companies. Moreover, this study suggests projection point as a direction for relatively less efficient companies and excess quantity of input which should reduce for its achievement. This study also has an implication to establish a further standard of efficiency to manage the supply complexity for companies.

  4. Thermal management of Li-ion cells from the view of the development of energy storages for electric-powered vehicles in an overview; Thermomanagement von Li-Ionen-Zellen aus Sicht der Energiespeicher-Entwicklung fuer Elektrofahrzeuge im Ueberblick

    Energy Technology Data Exchange (ETDEWEB)

    Fleckenstein, Matthias [BMW Group, Muenchen (Germany)

    2010-07-01

    As the operation of a Li-ion energy storage system in automotive applications has to be efficient, safe and reliable, the thermal management of the battery cells becomes one of the main factors influencing the success of electrified powertrains. Therefore, one of the most important system variables is the cell internal temperature, as it influences efficiency, aging and power capability of the energy storage in a major way. The challenges and potentials of thermal management for Li-ion cells are illustrated in this article. It consists on one hand of the exact thermal and electric cell state determination. On the other hand it includes the control of battery temperature during operation by active cooling and heating and its operation strategy. Therefore the active cooling system can be implemented as air-, liquid or refrigerant fluid coolant cycles. An essential tools of thermal battery-management is the modeling of cell behavior. This article gives a survey on the simulation landscape of thermal-electric co-simulation of Li-ion cells mentioned in literature. Thermal cell models spread from lumped 0D-modes to complex 3D finite element models comprising different detailing degree and computation effort. Electric battery models range from simple cell models of an ideal voltage source up to complex microscopic spatialized electrochemical models. Focus is also set on the parameterization of the different cell models. The article mentions the established approaches to achieve electrical and thermal characteristics. Subsequently, two different variations of thermal-electric simulation models comprising different simulation aims are introduced. (orig.)

  5. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    Science.gov (United States)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure

  6. Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.

    Science.gov (United States)

    Velichkin, Vladimir A.; Zavyalov, Vladimir A.

    2018-03-01

    This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.

  7. Thermal management and analysis for a potential yucca mountain repository

    International Nuclear Information System (INIS)

    Van Luik, A.

    2005-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced. waste (mostly from spent nuclear fuel.) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and. the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and includes a summary of the technical basis that supports these evaluations. The majority of the material

  8. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    Science.gov (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  9. EFFICIENT MANAGEMENT OF WORKING CAPITAL: A STUDY OF HEATHCARE SECTOR IN INDIA

    Directory of Open Access Journals (Sweden)

    Harsh, Vineet, KAUR

    2014-11-01

    Full Text Available Efficient management of working capital means management of various components of working capital in such a way that an adequate amount of working capital is maintained for smooth running of a firm and for fulfilment of twin objectives of liquidity and profitability. Also it is the most crucial factor for survival and solvency of a concern. The present paper attempts to measure the efficiency of working capital of firms in Healthcare Sector in India. The study reveals that most of the firms of this sector have efficiently managed their current assets for the purpose of generation of sales. Further more efficient management of working capital has a positive effect on Income to Average total assets.

  10. Model-based optimal monitoring as a design tool for thermal management functions; Modellbasierte Optimalsteuerung als Auslegungswerkzeug fuer Thermomanagementfunktionen

    Energy Technology Data Exchange (ETDEWEB)

    Appelt, Christian; Kaeppner, Christoph [Volkswagen AG, Wolfsburg (Germany)

    2012-11-01

    Increasing vehicle and environmental sensoring leads to further improvement of situational control strategies. In case of optimal control, the energy efficiency of the entire vehicle can benefit. However, a truly optimal control often results from a hardware demanding real-time optimization process, which typically cannot be provided by vehicle control units. This article describes a method to support the process of parameter application and function development in the field of thermal management. A heat storage prototype system is used to demonstrate a model based optimal control for a fuel efficient heat flow into the transmission and the combustion engine. Instead of designing an evitable optimal control function and fitting its parameters with a series of vehicle tests, a physically based thermal drivetrain model is used. Due to the model's highly multiple real-time capability, the global optimal dynamic programming method generates a control trajectory depending on the defined environmental conditions. Simpler control patterns are then developed by analyzing these trajectories and by identifying their cause of action. The resulting control strategy is tested by measuring the fuel saving potential on a roller test bench. (orig.)

  11. Area-based management and fishing efficiency

    NARCIS (Netherlands)

    Marchal, P.; Ulrich, C.; Pastoors, M.

    2002-01-01

    The scope of this study is to investigate the extent to which area-based management may have influenced the fishing efficiency of the Danish and Dutch demersal fleets harvesting cod, plaice and sole in the North Sea. Special consideration is given to the `plaice box', a restricted area where fishing

  12. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  13. Management applications for thermal IR imagery of lake processes

    Science.gov (United States)

    Whipple, J. M.; Haynes, R. B.

    1971-01-01

    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  14. Efficient management vital to large, long-term engineering projects

    International Nuclear Information System (INIS)

    Wolfe, P.L.

    1989-01-01

    This article describes the ways in which firms manage large hazardous waste mitigation projects efficiently. Staffing concerns, control systems and report mechanisms critical to effective and timely management of these large-scale programs are explored

  15. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    Science.gov (United States)

    Goli, Pradyumna; Legedza, Stanislav; Dhar, Aditya; Salgado, Ruben; Renteria, Jacqueline; Balandin, Alexander A.

    2014-02-01

    Li-ion batteries are crucial components for progress in mobile communications and transport technologies. However, Li-ion batteries suffer from strong self-heating, which limits their life-time and creates reliability and environmental problems. Here we show that thermal management and the reliability of Li-ion batteries can be drastically improved using hybrid phase change material with graphene fillers. Conventional thermal management of batteries relies on the latent heat stored in the phase change material as its phase changes over a small temperature range, thereby reducing the temperature rise inside the battery. Incorporation of graphene to the hydrocarbon-based phase change material allows one to increase its thermal conductivity by more than two orders of magnitude while preserving its latent heat storage ability. A combination of the sensible and latent heat storage together with the improved heat conduction outside of the battery pack leads to a significant decrease in the temperature rise inside a typical Li-ion battery pack. The described combined heat storage-heat conduction approach can lead to a transformative change in thermal management of Li-ion and other types of batteries.

  16. POSSIBILITIES OF INCREASING EFFICIENCY WITHIN SERIAL PRODUCTION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    CODRUŢA DURA

    2010-01-01

    Full Text Available Under the impact of transition to the new post-industrial society, massproduction recently faced the most numerous difficulties. They are caused by turbulences in theexternal environment in which companies operate, manifested in particular by enhancing thedynamism of markets and by deep changes in the structure of consumers’ demands. In thiscontext, specialized literature records the concerns for increasing the efficiency and flexibilityof products, elements involving radical changes of management and manufacturingtechnologies methods. Given these issues, the paper approaches two separate ways to improvethe management of serial production: increasing economic efficiency by optimizing the size ofbatches and flexible production systems by implementing techniques to reduce the change-overtime.

  17. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  18. Operational and environmental performance in China's thermal power industry: Taking an effectiveness measure as complement to an efficiency measure.

    Science.gov (United States)

    Wang, Ke; Zhang, Jieming; Wei, Yi-Ming

    2017-05-01

    The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system's capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system's capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational

  19. Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2014-08-01

    Full Text Available A new design of thermal management system for lithium ion battery pack using thermoelectric coolers (TECs is proposed. Firstly, the 3D thermal model of a high power lithium ion battery and the TEC is elaborated. Then the model is calibrated with experiment results. Finally, the calibrated model is applied to investigate the performance of a thermal management system for a lithium ion battery pack. The results show that battery thermal management system (BTMS with TEC can cool the battery in very high ambient temperature. It can also keep a more uniform temperature distribution in the battery pack than common BTMS, which will extend the life of the battery pack and may save the expensive battery equalization system.

  20. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and

  1. Modeling based on design of thermal management systems for vertical elevation applications powered by lithium-ion batteries

    International Nuclear Information System (INIS)

    Martín-Martín, Leire; Gastelurrutia, Jon; Nieto, Nerea; Ramos, Juan Carlos; Rivas, Alejandro; Gil, Iñigo

    2016-01-01

    Highlights: • A TMS is designed for a cylindrical Li-ion BP using CFD tools. • The model is experimentally validated with a maximum time-averaged error of 1.5 °C. • Cell temperature and module thermal dispersion are below 39 °C and 3 °C. • The prototype design fulfills all thermal requirements. • Design improvements are proposed to minimize the cost and the TMS consumption. - Abstract: Environmental sustainability, more efficient use of energy, and active safety concepts are becoming important requirements for the actual elevation sector. In this context IK4-IKERLAN and ORONA have designed an auxiliary energy storage system (ESS) for a residential elevation application based on lithium-ion cells. Safety and specially lifetime are two of the main concerns surrounding this new technology, which is closely related to the cells operating behavior and temperature asymmetries in the complete ESS. Therefore, the temperature of the cells in battery packs (BPs) needs to be controlled in an efficient way. This paper describes the development of the thermal management system (TMS) designed for this application based on various Computational Fluid Dynamics (CFD) mathematical models. The accuracy of Transient model is validated by using a single module to compare the simulation temperature results with experimental measurements, with a maximum time-averaged temperature prediction error of 1.5 °C. The proposed design is validated as it fulfills the requirements for a wide operating window, with a maximum cell temperature of 39 °C and a thermal dispersion at system level below 3 °C for the worst tested case. A more realistic current profile is checked numerically in the worst ambient and operative conditions for different virtual design variants to propose improvements.

  2. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  3. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo [Center for Environmental Studies, Kyung Hee University, Yongin (Korea, Republic of)

    2016-02-15

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  4. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    International Nuclear Information System (INIS)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo

    2016-01-01

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  5. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    Science.gov (United States)

    Maser, Adam Charles

    More electric aircraft systems, high power avionics, and a reduction in heat sink capacity have placed a larger emphasis on correctly satisfying aircraft thermal management requirements during conceptual design. Thermal management systems must be capable of dealing with these rising heat loads, while simultaneously meeting mission performance. Since all subsystem power and cooling requirements are ultimately traced back to the engine, the growing interactions between the propulsion and thermal management systems are becoming more significant. As a result, it is necessary to consider their integrated performance during the conceptual design of the aircraft gas turbine engine cycle to ensure that thermal requirements are met. This can be accomplished by using thermodynamic subsystem modeling and simulation while conducting the necessary design trades to establish the engine cycle. However, this approach also poses technical challenges associated with the existence of elaborate aircraft subsystem interactions. This research addresses these challenges through the creation of a parsimonious, transparent thermodynamic model of propulsion and thermal management systems performance with a focus on capturing the physics that have the largest impact on propulsion design choices. This modeling environment, known as Cycle Refinement for Aircraft Thermodynamically Optimized Subsystems (CRATOS), is capable of operating in on-design (parametric) and off-design (performance) modes and includes a system-level solver to enforce design constraints. A key aspect of this approach is the incorporation of physics-based formulations involving the concurrent usage of the first and second laws of thermodynamics, which are necessary to achieve a clearer view of the component-level losses across the propulsion and thermal management systems. This is facilitated by the direct prediction of the exergy destruction distribution throughout the system and the resulting quantification of available

  6. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  7. SSTL Based Low Power Thermal Efficient WLAN Specific 32bit ALU Design on 28nm FPGA

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Das, Teerath

    2016-01-01

    at minimum and maximum temperature as compared to all other considered I/O standards. This design has application where 32bit ALU design is considered for designing an electronic device such as WLAN. The design can be implemented on different nano chips for better efficiency depending upon the design...... with consideration of airflow toward hit sink and different frequency on which ALU operate in network processor or any WLAN devices. We have done total power analysis of WLAN operating on different frequencies. We have considered a set of frequencies, which are based on IEEE 802.11 standards. First we did...... efficient IO standard. While analyzing we found out that when WLAN device shift from 343.15K to 283.15K, there is maximum thermal power reduction in SSTL135_R as compared to all considered I/O standards. When we compared same I/Os for different frequencies we observed maximum thermal efficiency in SSTL15...

  8. EFFICIENCY OF CREDIT PORTFOLIO MANAGEMENT IN CONDITIONS OF ECONOMIC INSTABILITY

    Directory of Open Access Journals (Sweden)

    Koshel H.

    2018-01-01

    Full Text Available Introduction. The active development of integration processes causes the necessity of applying high-level approaches to management of the banking system, which is an essential part of the financial sector. Due to the importance of credit operations in the portfolio of banking assets, development of efficient and flexible credit management system is the basis for financial and market stability of banks. Purpose. Analyze the condition of the credit portfolio of banking institutions under the influence of economic processes and make conclusions and recommendations about the effectiveness of managing the bank’s credit portfolio and generalize ways of improving the structure and quality of the bank’s credit portfolio. Results. Over the last six years, the quality of the credit portfolio has become worse because of the bad debts growing and, as a result, decreasing in revenues. The calculated coefficient of management efficiency of a credit portfolio shows the dependence of this indicator on the value of risk and yield. In order to confirm the dependence and determine the degree of influence of these indicators on the efficiency of management of a loan portfolio, an economic-mathematical model was constructed on the example of both individual banks and the banking system as a whole. Detected dependence of factors is quite logical, therefore, the model can be recommended for practical use. Conclusion. Using this method of determining the management efficiency of a credit portfolio will allow the management of the bank to make reasonable decisions. It will allow the possibility of forming a more justified credit portfolio, taking into account not only the profitability, but also the real level of risk of credit operations.

  9. Wastewater Management Efficiency and Determinant Factors in the Chinese Industrial Sector from 2004 to 2014

    Directory of Open Access Journals (Sweden)

    Hidemichi Fujii

    2017-08-01

    Full Text Available This study analyzes industrial wastewater management efficiency using a Chinese provincial dataset from 2004 to 2014. The weighted Russell directional distance model is used to evaluate the efficiency of management practices. Determinants analysis was conducted based on governmental policy, pollution abatement, and market factors to identify the main drivers of industrial wastewater management efficiency in China. The results indicate that the wastewater management efficiency improved in the eastern and central regions. However, there is a significant efficiency gap between provinces in the western region. Moreover, the main determinants of wastewater management efficiency differ among regions and pollutants.

  10. Establishing an energy efficiency recommendation for commercial boilers

    International Nuclear Information System (INIS)

    Ware, Michelle J.

    2000-01-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of$40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over$25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings

  11. Diagnostics of the ability of the management-leader to interact efficiently

    Directory of Open Access Journals (Sweden)

    Lugova Victoria M.

    2013-03-01

    Full Text Available The article is devoted to the issue of diagnostics of ability of a manager-leader to interact efficiently. It conducts a theoretical analysis of a list of qualities of an efficient manager and leader. It specifies the qualities that provide the manager’s ability to conduct efficient social interaction. They include organisational qualities and social perception. The article offers methods of their diagnostics, namely: “Psychological assessment of organisational abilities of a person in a group” and “Diagnostics of perceptive and interactive competence”. Approbation of these methods at five enterprises of the Kharkiv region showed that the level of development of organisational qualities and perceptive and interactive competence of managers is average. The article proves that managers of Ukrainian enterprises not yet ready to be also leaders to their personnel. The article offers to develop ability of a manager-leader to interact efficiently through obtaining new information about specific features of manager’s interaction with other people, re-thinking of own self and own behaviour, structuring new forms of behaviour and regulation of inter-personal interaction and securing positive experience under conventional situations of managerial interaction with the help of trainings.

  12. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  13. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  14. Economic efficiency and risk character of fire management programs, Northern Rocky Mountains

    Science.gov (United States)

    Thomas J. Mills; Frederick W. Bratten

    1988-01-01

    Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...

  15. Using cooperative control to manage uncertainties for Aquifer Thermal Energy Storage (ATES)

    Science.gov (United States)

    Jaxa-Rozen, Marc; Rostampour, Vahab; Kwakkel, Jan; Bloemendal, Martin

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) technology can lead to major reductions in energy demand for heating and cooling in buildings. ATES systems rely on shallow aquifers to seasonally store thermal energy and have become popular in the Netherlands, where a combination of easily accessible aquifers and strict energy regulations makes the technology especially relevant. However, this rapid adoption has made their management in dense urban areas more challenging. For instance, thermal interferences between neighboring systems can degrade storage efficiency. Policies for the permitting and spatial layout of ATES thus tend to be conservative to ensure the performance of individual systems, but this limits the space available for new systems - leading to a trade-off between individual system performance, and the overall energy savings obtained from ATES in a given area. Furthermore, recent studies show that operational uncertainties contribute to poor outcomes under current planning practices; systems in the Netherlands typically use less than half of their permitted water volume. This further reduces energy savings compared to expectations and also leads to an over-allocation of subsurface space. In this context, this work investigates the potential of a more flexible approach for ATES planning and operation, under which neighboring systems coordinate their operation. This is illustrated with a three-building idealized case, using a model predictive control approach for two control schemes: a decoupled formulation, and a centralized scheme that aims to avoid interferences between neighboring systems (assuming perfect information exchange). These control schemes are compared across a range of scenarios for spatial layout, building energy demand, and climate, using a coupled agent-based/geohydrological simulation. The simulation indicates that centralized operation could significantly improve the spatial layout efficiency of ATES systems, by allowing systems to be placed

  16. Methods to determine stratification efficiency of thermal energy storage processes–Review and theoretical comparison

    DEFF Research Database (Denmark)

    Haller, Michel; Cruickshank, Chynthia; Streicher, Wolfgang

    2009-01-01

    This paper reviews different methods that have been proposed to characterize thermal stratification in energy storages from a theoretical point of view. Specifically, this paper focuses on the methods that can be used to determine the ability of a storage to promote and maintain stratification...... during charging, storing and discharging, and represent this ability with a single numerical value in terms of a stratification efficiency for a given experiment or under given boundary conditions. Existing methods for calculating stratification efficiencies have been applied to hypothetical storage...

  17. Global thermal analysis of air-air cooled motor based on thermal network

    Science.gov (United States)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  18. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The Onsager reciprocity relation and generalized efficiency of a thermal Brownian motor

    International Nuclear Information System (INIS)

    Tian-Fu, Gao; Jin-Can, Chen; Yue, Zhang

    2009-01-01

    Based on a general model of Brownian motors, the Onsager coefficients and generalized efficiency of a thermal Brownian motor are calculated analytically. It is found that the Onsager reciprocity relation holds and the Onsager coefficients are not affected by the kinetic energy change due to the particle's motion. Only when the heat leak in the system is negligible can the determinant of the Onsager matrix vanish. Moreover, the influence of the main parameters characterizing the model on the generalized efficiency of the Brownian motor is discussed in detail. The characteristic curves of the generalized efficiency varying with these parameters are presented, and the maximum generalized efficiency and the corresponding optimum parameters are determined. The results obtained here are of general significance. They are used to analyze the performance characteristics of the Brownian motors operating in the three interesting cases with zero heat leak, zero average drift velocity or a linear response relation, so that some important conclusions in current references are directly included in some limit cases of the present paper. (general)

  20. Evolution of thermal fatigue management of piping in US LWRs

    International Nuclear Information System (INIS)

    McDewitt, M.; Wolfe, K.; McGill, R.

    2015-01-01

    Fatigue usage caused by cyclic changes of thermally stratified reactor coolant in Light Water Reactor (LWR) pressure boundary piping was not an original consideration in US Nuclear Power Plant (NPP) designs. During the mid 1980's, several events involving cracking and leakage due to thermal cycling occurred in reactor coolant system branch piping at both US and International NPPs. In 1988, the US Nuclear Regulatory Commission (US NRC) issued Bulletin 88-08 to alert LWR licensees of the potential for piping failures due to stratified thermal cycling. In response to these events, the US nuclear industry developed initiatives to identify susceptible components and established measures to monitor and prevent future failures. These initiatives have been effective in preventing leakage events, but have also identified fewer defects than expected based on screening model predictions. Improved analytical techniques are being investigated to maintain program effectiveness while minimizing unnecessary non-destructive examinations. This paper discusses the evolution of the US thermal fatigue initiatives, and analytical concepts being evaluated to improve program efficiency. (authors)

  1. Thermal management for high power lithium-ion battery by minichannel aluminum tubes

    International Nuclear Information System (INIS)

    Lan, Chuanjin; Xu, Jian; Qiao, Yu; Ma, Yanbao

    2016-01-01

    Highlights: • A new design of minichannel cooling is developed for battery thermal management system. • Parametric studies of minichannel cooling for a cell are conducted at different discharge rates. • Minichannel cooling can maintain almost uniform temperature (T_d_i_f_f < 1 °C). • Pumping power assumption is only about 5 milliwatt. - Abstract: Lithium-ion batteries are widely used for battery electric (all-electric) vehicles (BEV) and hybrid electric vehicles (HEV) due to their high energy and power density. An battery thermal management system (BTMS) is crucial for the performance, lifetime, and safety of lithium-ion batteries. In this paper, a novel design of BTMS based on aluminum minichannel tubes is developed and applied on a single prismatic Li-ion cell under different discharge rates. Parametric studies are conducted to investigate the performance of the BTMS using different flow rates and configurations. With minichannel cooling, the maximum cell temperature at a discharge rate of 1C is less than 27.8 °C, and the temperature difference across the cell is less than 0.80 °C using flow rate at 0.20 L/min, at the expense of 8.69e-6 W pumping power. At higher discharge rates, e.g., 1.5C and 2C, higher flow rates are required to maintain the same temperature rise and temperature difference. The flow rate needed is 0.8 L/min for 1.5C and 2.0 L/min for 2C, while the required pumping power is 4.23e-4 W and 5.27e-3 W, respectively. The uniform temperature distribution (<1 °C) inside the single cell and efficient pumping power demonstrate that the minichannel cooling system provides a promising solution for the BTMS.

  2. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2015-04-01

    Full Text Available The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of hydraulic connection of solar collector modules as the new result of our work have been proposed. The results of numerical simulation of thermal efficiency of solar heat source for boiler of combined heat supply system with the account of design features of the circuit; regime parameters of thermal generators that allow establishing rational conditions of its functioning have been worked out. The conditions of functioning that provide required temperature of heat carrier incoming to boiler and value of flow rate at which the slippage of heat carrier is not possible for different hydraulic circuits of solar modules have been established.

  3. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    Science.gov (United States)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  4. Area-based management and fishing efficiency

    DEFF Research Database (Denmark)

    Marchal, P.; Ulrich, Clara; Pastoors, M.

    2002-01-01

    The scope of this study is to investigate the extent to which area-based management may have influenced the fishing efficiency of the Danish and Dutch demersal fleets harvesting cod, plaice and sole in the North Sea. Special consideration is given to the 'plaice box', a restricted area where...... fishing is prohibited to towed-gear fleets of horsepower exceeding 300 hp. An index of fishing power is calculated as the log-ratio between the catch per unit effort (CPUE) of any vessel and some survey abundance index. Annual trends in fishing are calculated as the year-effect derived from a general...... linear model (GLM) analysis of the index of fishing power. The fishing efficiency of Danish gill-netters and, to some extent, Danish seiners, has overall increased inside the 'plaice box', whilst remaining relatively stable outside. However, the fishing efficiency of the other exemption fleets has...

  5. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  6. Investigation of power battery thermal management by using mini-channel cold plate

    International Nuclear Information System (INIS)

    Huo, Yutao; Rao, Zhonghao; Liu, Xinjian; Zhao, Jiateng

    2015-01-01

    Highlights: • Micro-channel cold plate was used for battery thermal management. • Maximum temperature of battery decreased with the increase of channel number. • Effect of flow direction on cooling performance is smaller with the increase of flow rate. • Cooling performance increased with the increase of inlet flow rate. • The increasing trend become smaller when the flow rate is high enough. - Abstract: In order to guarantee the safety and extend the cycle life of Li-ion power batteries within electric vehicles, a mini-channel cold plate-based battery thermal management system is designed to cool a rectangular Li-ion battery. A three-dimensional thermal model of the cooling system was established and the effects of number of channels, flow direction, inlet mass flow rate and ambient temperature on temperature rise and distribution of the battery during the discharge process were investigated. The results suggest that the maximum temperature of the battery decreases with increases in the number of channels and inlet mass flow rate. The effect of flow direction on cooling performance was smaller after mass flow rate increased. The cooling performance improved with the increase of inlet mass flow rate but the increasing trend became smaller, and the mass flow rate as 5 × 10 −4 kg s −1 was optimal. The simulation results will be useful for the design of mini-channel cold plate-based battery thermal management system

  7. Integrated energy and advanced thermal management system for hybrid electric vehicles

    NARCIS (Netherlands)

    Wei, C.

    2017-01-01

    Hybrid electric vehicles (HEVs) featuring a fuel source engine and an energy storage source battery play an important role in improving fuel efficiency compared with its conventional counterparts. In view of the drawbacks of the existing research neglecting the thermal aspects when it comes to

  8. Smart Battery Thermal Management for PHEV Efficiency Une gestion avancée de la thermique de la batterie basse tension de traction pour optimiser l’efficacité d’un véhicule hybride électrique rechargeable

    Directory of Open Access Journals (Sweden)

    Lefebvre L.

    2013-03-01

    Full Text Available A smart battery thermal management is crucial for vehicle performances and battery lifetime targets achievements when electric and plug-in hybrid electric vehicles are concerned. The thermal system needs to be designed and tuned in accordance and compromises with powertrain and vehicle requirements, battery pack architecture, environmental constraints, costs, weight, etc., in a process that will be described in the first part of this paper. Among the portfolio of battery thermal management technologies, these items will be illustrated by two examples: thermal management by cabin air and by refrigerant in a direct cooling, enlightening a decision process. A simplified battery thermo-electric simulation model, which the second part of our work focuses on, has been built, first for both thermal and energetic balance dimensioning of the battery thermal management system. Examples are given on these two perspectives. That simplified simulation model has also identified some promising thermal management strategies for improving vehicle efficiency and performances and battery lifetime. That is the task of the last part of this paper. Battery heating has shown opportunities for improving energy and power availability at cold conditions and, thus, electric drive availability and autonomy. Post-cooling the battery at the end of a journey and its pre-conditioning before the following journey, not only improve vehicle efficiency, electric drive availability and autonomy, but also enhance battery lifetime and compromises with cabin thermal comfort. Others promising strategies optimizing the relation between vehicle performances and battery lifetime are still under investigations. L’atteinte des performances et des prestations requises d’un véhicule électrique ou hybride électrique rechargeable nécessite un thermomanagement intelligent de la batterie basse tension de traction. Ce thermomanagement est incontournable pour respecter dans le même temps

  9. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  10. Thermal management evaluation of the complex electro-optical system

    Directory of Open Access Journals (Sweden)

    Nijemčević Srećko S.

    2017-01-01

    Full Text Available The thermal management of a complex electro-optical system aimed for outdoor application is challenging task due to the requirement of having an air-sealed enclosure, harsh working environment, and an additional thermal load generated by sunlight. It is essential to consider the effect of heating loads in the system components, as well as the internal temperature distribution, that can have influence on the system life expectancy, operational readiness and parameters, and possibility for catastrophic failure. The main objective of this paper is to analyze internal temperature distribution and evaluate its influence on system component operation capability. The electro-optical system simplified model was defined and related thermal balance simulation model based on Solid Works thermal analysis module was set and applied for temperature distribution calculation. Various outdoor environment scenarios were compared to evaluate system temperature distribution and evaluate its influence on system operation, reliability, and life time in application environment. This work was done during the design process as a part of the electro-optical system optimization. The results show that temperature distribution will not be cause for catastrophic failure and malfunction operation during operation in the expected environment.

  11. Energy Savings Through Thermally Efficient Crucible Technology: Fundamentals, Process Modeling, and Applications

    Science.gov (United States)

    Shi, Wenwu; Pinto, Brian

    2017-12-01

    Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.

  12. Management of efficiency of agricultural production on the basis of ...

    African Journals Online (AJOL)

    Management of efficiency of agricultural production on the basis of margin approach. ... Journal of Fundamental and Applied Sciences ... and systematized to the management of production costs of agricultural products, the proposed definition ...

  13. Distance Education, Efficiency and Scientific Management: Some Doubts. ESTR Occasional Paper Number 12.

    Science.gov (United States)

    Campion, Mick

    The theme of the 1983 Australian and South Pacific External Studies Association concerned developing efficient teaching-learning systems and efficient management systems. Such an emphasis on efficiency was symptomatic in the United States' educational arena to a commitment to the practices of scientific management. The central role accorded to…

  14. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  15. Outage Risk Assessment and Management (ORAM) thermal-hydraulics toolkit

    International Nuclear Information System (INIS)

    Denny, V.E.; Wassel, A.T.; Issacci, F.; Pal Kalra, S.

    2004-01-01

    A PC-based thermal-hydraulic toolkit for use in support of outage optimization, management and risk assessment has been developed. This mechanistic toolkit incorporates simple models of key thermal-hydraulic processes which occur during an outage, such as recovery from or mitigation of outage upsets; this includes heat-up of water pools following loss of shutdown cooling, inadvertent drain down of the RCS, boiloff of coolant inventory, heatup of the uncovered core, and reflux cooling. This paper provides a list of key toolkit elements, briefly describes the technical basis and presents illustrative results for RCS transient behavior during reflux cooling, peak clad temperatures for an uncovered core and RCS response to loss of shutdown cooling. (author)

  16. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities

    Directory of Open Access Journals (Sweden)

    Beatrice Marchi

    2017-10-01

    Full Text Available Energy efficiency represents a key resource for economic and social development, providing substantial benefits to different stakeholders, ranging from the entities which develop energy efficient measures to everyone in society. In addition to cost savings, multiple benefits can be achieved by supporting a better alignment between energy issues and strategic business priorities: e.g., improved competitiveness, profitability, quality, etc. Thus, energy efficiency can be a strategic advantage, not just a marginal issue, for companies. However, most firms, especially small and medium enterprises (SMEs, face many problems and, in some cases, hostility when trying to effectively implement energy efficiency actions. The most dominant barriers are the access to capital and the lack of awareness (especially in terms of life cycle cost effects. The supply chain viewpoint represents one of the main opportunities for overcoming those barriers and improving energy performance even for weaker companies. Since the current literature on energy efficiency and practical approaches to ensure energy efficiency mainly focus on energy performance on a single-firm basis, this paper aims to provide a systematic review of papers on the integration of energy efficiency in supply chain design and management published in academic journal, thereby defining potential research streams to close the gaps in the literature. A number of literature reviews have been published focusing on specific aspects of sustainable or on green supply chain management; however, to the best of our knowledge, no review has focused on the energy efficiency issue. Firstly, the present paper shows how considering energy consumption in supply chain management can contribute to more energy-efficient processes from a systemic point of view. Then, the review methodology used is defined and the sampled papers are analyzed and categorized based on the different approaches they propose. From these

  17. The impact of New Public Management on efficiency: an analysis of Madrid's hospitals.

    Science.gov (United States)

    Alonso, José M; Clifton, Judith; Díaz-Fuentes, Daniel

    2015-03-01

    Madrid has recently become the site of one of the most controversial cases of public healthcare reform in the European Union. Despite the fact that the introduction of New Public Management (NPM) into Madrid hospitals has been vigorous, little scholarship has been done to test whether NPM actually led to technical efficiency. This paper is one of the first attempts to do so. We deploy a bootstrapped data envelopment analysis to compare efficiency scores in traditionally managed hospitals and those operating with new management formulas. We do not find evidence that NPM hospitals are more efficient than traditionally managed ones. Moreover, our results suggest that what actually matters may be the management itself, rather than the management model. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Progress in vehicle aerodynamics and thermal management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Jochen (ed.) [Stuttgart Univ. (DE). Inst. fuer Kraftfahrwesen und Verbrennungsmotoren (IVK); Forschungsinstitut fuer Kraftfahrwesen und Fahrzeugmotoren (FKFS), Stuttgart (Germany)

    2010-07-01

    Vehicle aerodynamics and thermal management are subjects of increasing importance for automotive development especially regarding the necessity to reduce the energy consumption of the vehicle as well as the need to improve ist comfort. This book is intended for engineers, physicists, and mathematicians who work on vehicle aerodynamics. It is also addressed to people in research organizations, at universities and agencies. It may be of interest to technical journalists and to students. (orig.)

  19. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  20. Application of advanced thermal management technologies to the ATLAS SCT barrel module baseboards

    Energy Technology Data Exchange (ETDEWEB)

    Apsimon, R.J. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX (United Kingdom); Batchelor, L.E. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX (United Kingdom); Beck, G.A. [Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Canard, P. [European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland); Carter, A.A. [Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)]. E-mail: a.a.carter@qmul.ac.uk; Carter, J.R. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Davis, V.R. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX (United Kingdom); Oliveira, R. de [European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland); Gibson, M.D. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX (United Kingdom); Hominal, L. [European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland); Ilie, D.M. [Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Ilie, S.D. [European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland); Leboube, C.G. [European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland); Mistry, J. [Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Morin, J. [Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Morris, J.; Nagai, K. [Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Sexton, I.; Thery, X. [European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland); Tyndel, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX (United Kingdom)

    2006-09-15

    The paper describes the application of advanced thermal management technologies to the design and production of the barrel module baseboard of the SemiConductor Tracker (SCT) of the ATLAS experiment at the Large Hadron Collider (LHC). The barrel modules contain silicon microstrip sensors and readout ASICs for tracking charged particles, and the baseboard forms the central element of the module, providing both its necessary thermal management and its mechanical structure. The baseboard requirements and specifications are given, and design and fabrication details are described. The properties of the 3000 baseboards successfully produced for the SCT are summarised.

  1. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  2. Energy efficiency public lighting management in the cities

    International Nuclear Information System (INIS)

    Radulovic, Dusko; Skok, Srdjan; Kirincic, Vedran

    2011-01-01

    Cities all around the world are faced with a rapid increase of urban population, and their crucial sustainable development issue becomes energy management. Moreover, the national energy management sector is slowly passing from government surveillance to the responsibility of local municipalities. The energy efficiency management in cities helps local governments to focus on important energy projects that have strong environmental aspects and financial feasibility. This paper analyzes the public lighting energy management in the Croatian city of Rijeka in order to determine the connection of the energy market liberalization and sustainable development in urban areas. Research results indicate a significant connection between investments in energy management of public lighting and its influence on lower emissions of carbon dioxide (CO 2 ).

  3. Synthesis of Zirconium-Containing Polyhedral Oligometallasilsesquioxane as an Efficient Thermal Stabilizer for Silicone Rubber

    Directory of Open Access Journals (Sweden)

    Jiedong Qiu

    2018-05-01

    Full Text Available Free radicals play a negative role during the thermal degradation of silicone rubber (SR. Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T5 (temperature at 5% weight loss of SR/Zr-POSS significantly increased by 31.7 °C when compared to the unmodified SR. Notably, after aging 12 h at 280 °C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains.

  4. Study of thermal and hydraulic efficiency of supersonic tube of temperature stratification

    Science.gov (United States)

    Tsynaeva, Anna A.; Nikitin, Maxim N.; Tsynaeva, Ekaterina A.

    2017-10-01

    Efficiency of supersonic pipe for temperature stratification with finned subsonic surface of heat transfer is the major of this paper. Thermal and hydraulic analyses of this pipe were conducted to asses effects from installation of longitudinal rectangular and parabolic fins as well as studs of cylindrical, rectangular and parabolic profiles. The analysis was performed based on refined empirical equations of similarity, dedicated to heat transfer of high-speed gas flow with plain wall, and Kármán equation with Nikuradze constants. Results revealed cylindrical studs (with height-to-diameter ratio of 5:1) to be 1.5 times more efficient than rectangular fins of the same height. At the same time rectangular fins (with height-to-thickness ratio of 5:1) were tend to enhance heat transfer rate up to 2.67 times compared to bare walls from subsonic side of the pipe. Longitudinal parabolic fins have minuscule effect on combined efficiency of considered pipe since extra head losses void any gain of heat transfer. Obtained results provide perspective of increasing efficiency of supersonic tube for temperature stratification. This significantly broadens device applicability in thermostatting systems for equipment, cooling systems for energy converting machinery, turbine blades and aerotechnics.

  5. Efficient STEP (solar thermal electrochemical photo) production of hydrogen - an economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Licht, Stuart [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Solar Institute, George Washington University, Washington, DC 20052 (United States); Chitayat, Olivia; Bergmann, Harry; Dick, Andrew; Ayub, Hina [Solar Institute, George Washington University, Washington, DC 20052 (United States); Ghosh, Susanta [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Department of Chemistry, Visva-Bharati, Santiniketan (India)

    2010-10-15

    A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H{sub 2} at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H{sub 2} production, (3) 25% CPV driven molten electrolysis H{sub 2} production, and (4) 35% CPV driven solid oxide electrolysis H{sub 2} production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from 5.74 to 4.96 to 3.01 to 2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H{sub 2}/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi{sup 2} in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and

  6. Application of cold thermal energy storage (CTES) for building demand management in hot climates

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Nagarajan, Balamurugan; Romagnoli, Alessandro

    2016-01-01

    Highlights: • A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. • CTES systems were used to perform demand management strategies, removing partial load operations and shaving peak loads. • CTES was used to perform price arbitrage, exploiting the difference between peak and off peak electricity rates in Singapore. • Results showed that it is possible to enhance the efficiency of the whole system, achieving both energy and economic savings. • Depending on the sizing scenario, the pay back periods ranged from a minimum of 8.9 years to a maximum of 16 years. - Abstract: This paper investigates the feasibility of Cold Thermal Energy Storage (CTES) for building demand management applications in hot climate characterized by a cooling season lasting all year long. An existing office building, located in Singapore, serves as case study. The CTES is coupled to the existing cooling systems in order to address the opportunity of improving overall energy efficiency and to perform price arbitrage, exploiting the spread between peak and off-peak energy tariffs. Six different sizes for the CTES are analyzed, addressing different percentage of the daily cooling energy demand. A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. Results indicate that it is possible to enhance the efficiency of the whole cooling system, achieving both energy and economic savings. The payback periods of the different solutions range from a minimum of 8.9 years to a maximum of 16 years. All these aspects make CTES applications a viable option. However, a large amount of space in direct proximity to the building is necessary and, especially in largely urban environment, this is not always available.

  7. Surface Catalytic Efficiency of Advanced Carbon Carbon Candidate Thermal Protection Materials for SSTO Vehicles

    Science.gov (United States)

    Stewart, David A.

    1996-01-01

    The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.

  8. Public policy analysis of energy efficiency and load management in changing electricity businesses

    International Nuclear Information System (INIS)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-01-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted

  9. Public policy analysis of energy efficiency and load management in changing electricity business

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Energy Analysis Dept.; Hamrin, J. [Centre for Resource Solutions (United States); Eyre, N. [Energy Savings Trust (United Kingdom); Crossley, D.; Maloney, M.; Watt, G. [Energy Futures Australia Pty Ltd (Australia)

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted. (author)

  10. Public policy analysis of energy efficiency and load management in changing electricity businesses

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted.

  11. [Assessment and comparison of hospital operating efficiency under different management systems].

    Science.gov (United States)

    2017-06-18

    To assess and analyze the operation efficiency of 8 commission general public hospitals managed directly by National Health and Family Planning Commission and 8 municipal general hospitals managed directly by Beijing Municipal Administration of Hospitals in Beijing and to provide suggestions on improving service capacity and designing relevant health policy. Input and output data of 8 commission hospitals and 8 municipal hospitals were obtained from Beijing Direct-Reported Health Statistics data from 2011 to 2014. Data envelopment analysis was used as the hospital operation efficiency measurement tool. The CCR and BCC models were built to calculate technical efficiency (TE), pure technical efficiency (PTE), scale efficiency (SE) and the status of scale efficiency of 16 hospitals in 2011 and 2014; the Malmquist index model was built to analyze the total factor productivity change (TFPC), technological change (TC), technical efficiency change, pure technical efficiency change and scale efficiency change of the 16 hospitals from 2011 to 2014. In 2011, the TE, PTE and SE of the commission hospitals were higher than those of the municipal hospitals, and the TEs of the commission hospitals and the municipal hospitals were 0.918 and 0.873 respectively. In 2014, the TE, PTE and SE of commission hospitals were lower than those of the municipal hospitals, and the TE of the commission hospitals and the municipal hospitals were 0.906 and 0.951, respectively, which was contrary to the results in 2011. According to the Malmquist index model, the average of TFPC of the municipal hospitals was larger than that of the commission hospitals, the former increased 5.9% and the latter increased 2.8% per year; the average of TC was greater than the one in both the municipal hospitals and the commission hospitals, with a growth of 3.2% and 2.9% per year, respectively; the average growth of PTE in the commission hospitals was lower than that of the municipal hospitals, and the average

  12. Managing Recreation Enterprises Efficiency under Conditions of Informatisation and Globalisation of Economy

    Directory of Open Access Journals (Sweden)

    Korogodova Olena O.

    2014-03-01

    Full Text Available The goal of the article is development of recommendations on improvement of the recreation enterprise efficiency management mechanism with consideration of new tendencies of globalisation and informatisation of economy. The article considers main approaches to determination of efficiency of entrepreneurial activity and proposes a classification of types of enterprise efficiency by the following criteria: nature of expenditures and results, environmental impact of the enterprise, duration of effect and localisation. The article marks out the cause-effect relation for each type of enterprise efficiency. It develops a scheme of elements of the mechanism of management of recreation enterprise efficiency and identifies conceptual principles of this mechanism. It offers the “recreation attractiveness” notion, which, unlike existing ones, reflects the essence of demand on enterprise services more accurately and facilitates development of the recreation enterprise recreation attractiveness management mechanism by criteria of recreation potential, prices and quality of enterprise services. Using this criteria as basic, the article builds methods of rating assessment of recreation enterprises. It is necessary to study deeper the methodical instruments for diagnostics of four elements of recreation enterprise functioning: external environment, recreation potential, organisational status and management potential.

  13. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kozak, Joseph P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tomerlin, Jeff J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  14. Improving IC process efficiency with critical materials management

    Science.gov (United States)

    Hanson, Kathy L.; Andrews, Robert E.

    2003-06-01

    The management of critical materials in a high technology manufacturing facility is crucial to obtaining consistently high production yield. This is especially true in an industry like semiconductors where the success of the product is so dependent on the integrity of the critical production materials. Bar code systems, the traditional management tools, are voluntary, defeatable, and do not continuously monitor materials when in use. The significant costs associated with mis-management of chemicals can be captured with a customized model resulting in highly favorable ROI"s for the NOWTrak RFID chemical management system. This system transmits reliable chemical data about each individual container and generates information that can be used to increase wafer production efficiency and yield. The future of the RFID system will expand beyond the benefits of chemical management and into dynamic IC process management

  15. Cost efficiency and ressource efficiency in the waste management. Proceedings; Kosten- und Ressourceneffizienz in der Abfallwirtschaft. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K. [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany)]|[Technische Univ. Braunschweig (Germany). Lehrstuhl fuer Abfall- und Ressourcenwirtschaft; Bergs, C.G. [Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Berlin (Germany); Kosak, G. [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany)]|[IBK-Kosak GmbH, Neustadt/Weinstrasse (Germany); Wallamnn, R. (eds.) [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany)]|[IGW Ingenieurgemeinschaft Witzenhausen Fricke und Turk GmbH (Germany)

    2007-07-01

    Within the scope of the 68th information discussion of ANS e.V., the following lectures were held: (a) Supply of resources from the German waste management (S. Harmening); (b) Ressource management: A contribution to environment, climate and fees (R. Siechau); (c) Climate protection and protection of resources by means of export of technology and know-how (A. Jaron); (d) The future of the markets of secondary raw materials (E. Rehbock, T. Probst); (e) Potentials of increase of the contributions o the waste management to climate protection and protection of resources (G. Dehoust, U. Fritsche); (f) Evaluation of new strategic efforts to disposal of domestic wastes under consideration of resource efficiency and relevance of climate (M. Kranert, G. Hafner); (g) REACh and secondary raw materials (B. Kummer); (h) What is the effect of the regulation of chemicals (REACh) on the recycling economy? (A. Ochs, H. Kleinwege); (i) Motivation and steps of planning according to rekommunalisation (K.-H. Kellermann); (j) Chances and risks of private disposers (P. Kurth); (k) Cost advantages and boundary conditions at intercommunal cooperations of procurement (H. Gassner); (l) From BAB to budgeting - why does a new advertising of service contracts not result in an improvement of the communal efficiency? (W.P. Bauer, K. Ihmels); (m) Benchmarking as an instrument of control in the waste management (K. Gellenbeck); (n) Minimizing financial costs - the funding programs of KW in the waste management (M. von Zedlitz); (o) Innovative models of cooperation, financing and operating models for the establishment of new fermentation plants (M. Zeifang); (p) BEKON dry fermentation for production of biogas from organic waste (P. Lutz); (q) New methods for process control during composting - a component in the enhancement of efficiency of utilization of biological wastes (Frank Scholwin, Gereon Stolle); (r) Enhancement of the output of biogas by means of specific loading materials (Heinrich Josef

  16. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  17. Temperature-gated thermal rectifier for active heat flow control.

    Science.gov (United States)

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  18. Thermal efficiency of Duovent array glassing; Eficiencia termica de arreglos de vidrios Duovent

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Garcia G; Cortina Leyva, C; Flores Prieto, Jose J [Centro Nacional de Investigacion y Tecnologico, DGIT SEP, Cuernavaca, Morelos (Mexico)

    2000-07-01

    This paper presents an experimental study of the thermal performance of duovent glazing with different solar control coatings. The thermal efficiency, {eta}, was determined. The duovent array consists of 6 mm glass+solar coating+air layer+6 mm glass. The width of the air layer between the two glasses is 12 mm. The experimental work was carried out using a calorimeter setup calling DEMETEV. The DEMETEV was specially designed to measure the heat gains through sample glassings. The heat flux, the shading coefficients and the thermal efficiency curve as a function of the temperature difference and incident radiative flux are presented. Comparing the results for duovent with clear glasses with the ones reported by Dubrous show a difference of 2.2%. Also this study verifies the theoretical model reported. [Spanish] En este trabajo se presenta un estudio experimental del comportamiento termico de vidrios Duovent con diferentes filtros solares mediante el calculo de la eficiencia termica, {eta}. El arreglo lo comprende vidrio+filtro+aire+vidrio de 6 mm de espesor con un espacio con aire entre vidrios de 12 mm. El trabajo experimental se llevo a cabo haciendo uso del dispositivo calorimetrico experimental, denominado DEMETEV, que fue disenado especialmente para medir las ganancias de calor a traves de vidrios. Se presentan los flujos de calor, los coeficientes de sombreado y la curva de eficiencia termica como funcion de la diferencia de temperaturas y del flujo radioactivo incidente. Los resultados obtenidos para vidrios claros fueron comparados con los que se obtuvieron en el trabajo reportado por Dubrous obteniendo una diferencia del 2.2%. Tambien se presenta la validacion de los datos experimentales con un modelo teorico reportado.

  19. THE EFFICIENCY OF IMPLEMENTING PRIVATE MANAGEMENT IN STATE COMPANIES

    Directory of Open Access Journals (Sweden)

    Mungiu-Pupăzan Mariana Claudia

    2012-09-01

    Full Text Available In 2012, nine state-owned companies are expected to have private management giving up the statemanagement. Therefore, a full debate of this issue is required, taking into consideration the fact that, in ouropinion, this process involves more than just the replacement of a manager with another. The implementationof private management in companies of national strategy, currently in state ownership, is desired to be aprofound and also very complex process, aiming to change organizational culture in depth, both verticallyand horizontally, so as to increase efficiency in these companies.Implementation of private management could be a good opportunity for an efficient development ofthese companies, for an increasing level of competitiveness on the international market, but only in terms ofa leadership team chosen on performance criteria, with a coherent set of objectives and a high independencelevel of decision.There are some opinions from people with experience in managing both private and statecompanies. They believe that the idea of establishing a private management in state companies, is, in themain, good, but it is essential to take into consideration the idea of a team trained to lead the company,instead of one person as a general manager.Another element to be taken into account, so that this idea of private management may have thedesired effect, is to precisely determine companies where private management teams should be installed. Notall companies are suitable for the same private management strategy. This type of leadership is better forcompanies with a real international perspective, such as Tarom, while strategic companies should be ratherreformed, including management privatization, and kept as state strategic areas. However, strict criteria ofstate intervention in decision-making process should be established, a striking question concerning thecircumstances under which such a management team could be successful, given that state firms are

  20. NASA's New Thermal Management Systems Roadmap; Whats in it, What it Means

    Science.gov (United States)

    Swanson, Ted

    2016-01-01

    In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.

  1. The assessment of risk management system’s economic efficiency in retail banking

    OpenAIRE

    Cvilikas, Aurelijus; Paužuolis, Vaidas

    2014-01-01

    The banking risk management is always a relevant topic in financial sector’s academic literature, but the detailed analysis of current studies showed that there is a lack of studies in risk management’s economic efficiency assessment in retail banking, where the risk management system’s administration cost may be a significant part of total credit institution’s cost. The scientific problem of this article is: how the economic efficiency of retail banking risk management system could be ...

  2. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  3. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    Science.gov (United States)

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  4. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.; Murphy, J.W. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Kim, J. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Rozhdestvenskyy, S.; Mejia, I. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Park, H. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Allee, D.R. [Flexible Display Center, Arizona State University, Phoenix, AZ 85284 (United States); Quevedo-Lopez, M. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Gnade, B., E-mail: beg031000@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-12-01

    Solid-state neutron detectors offer an alternative to {sup 3}He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10{sup −6} gamma-ray efficiency.

  5. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  6. Graphite Foam Heat Exchangers for Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S

  7. Electric Motor Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    Past work in the area of active convective cooling provided data on the average convective heat transfer coefficients of circular orifice automatic transmission fluid (ATF) jets impinging on stationary targets intended to represent the wire bundle surface of the motor end-winding. Work during FY16 focused on the impact of alternative jet geometries that could lead to improved cooling over a larger surface of the motor winding. Results show that the planar jet heat transfer coefficients over a small (12.7-mm-diameter) target surface are not too much lower than for the circular orifice jet in which all of the ATF from the jet impinges on the target surface. The planar jet has the potential to achieve higher heat transfer over a larger area of the motor end winding. A new test apparatus was constructed to measure the spatial dependence of the heat transfer relative to the jet nozzle over a larger area representative of a motor end-winding. The tested planar flow geometry has the potential to provide more uniform cooling over the full end-winding surface versus the conventional jet configuration. The data will be used by motor designers to develop thermal management strategies to improve motor power density. Work on passive thermal design in collaboration with Oak Ridge National Laboratory to measure the thermal conductivity of wire bundle samples representative of end-winding and slot-winding materials was completed. Multiple measurement techniques were compared to determine which was most suitable for measuring composite wire bundle samples. NREL used a steady-state thermal resistance technique to measure the direction-dependent thermal conductivity. The work supported new interactions with industry to test new materials and reduce passive-stack thermal resistance in motors, leading to motors with increased power density. NREL collaborated with Ames Laboratory in the area of material characterization. The work focused on measuring the transverse rupture strength of

  8. The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis

    International Nuclear Information System (INIS)

    Ghosh, Ranjan; Kathuria, Vinish

    2016-01-01

    This paper investigates the impact of institutional quality – typified as regulatory governance – on the performance of thermal power plants in India. The Indian power sector was reformed in the early 1990s. However, reforms are effective only as much as the regulators are committed in ensuring that they are implemented. We hypothesize that higher the quality of regulation in a federal Indian state, higher is the efficiency of electric generation utilities. A translog stochastic frontier model is estimated using index of state-level independent regulation as one of the determinants of inefficiency. The dataset comprises a panel of 77 coal-based thermal power plants during the reform period covering over 70% of installed electricity generation capacity. The mean technical efficiency of 76.7% indicates there is wide scope for efficiency improvement in the sector. Results are robust to various model specifications and show that state-level regulators have positively impacted plant performance. Technical efficiency is sensitive to both unbundling of state utilities, and regulatory experience. The policy implication is that further reforms which empower independent regulators will have far reaching impacts on power sector performance. - Highlights: • The impact of regulatory governance on Indian generation efficiency is investigated. • Stochastic frontier analysis (SFA) on a panel dataset covering pre and post reform era. • Index of state-wise variation in regulation to explain inefficiency effects. • Results show improved but not very high technical efficiencies. • State-level regulation has positively impacted power plant performance.

  9. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  10. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  11. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  12. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation

    International Nuclear Information System (INIS)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-01-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs

  13. Development and Implementation of Efficiency-Improving Analysis Methods for the SAGE III on ISS Thermal Model Originating

    Science.gov (United States)

    Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; Scola, Salvatore; Tobin, Steven; McLeod, Shawn; Mannu, Sergio; Guglielmo, Corrado; Moeller, Timothy

    2013-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2015. A detailed thermal model of the SAGE III payload has been developed in Thermal Desktop (TD). Several novel methods have been implemented to facilitate efficient payload-level thermal analysis, including the use of a design of experiments (DOE) methodology to determine the worst-case orbits for SAGE III while on ISS, use of TD assemblies to move payloads from the Dragon trunk to the Enhanced Operational Transfer Platform (EOTP) to its final home on the Expedite the Processing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC)-4, incorporation of older models in varying unit sets, ability to change units easily (including hardcoded logic blocks), case-based logic to facilitate activating heaters and active elements for varying scenarios within a single model, incorporation of several coordinate frames to easily map to structural models with differing geometries and locations, and streamlined results processing using an Excel-based text file plotter developed in-house at LaRC. This document presents an overview of the SAGE III thermal model and describes the development and implementation of these efficiency-improving analysis methods.

  14. Thermally enhanced photoluminescence for energy harvesting: from fundamentals to engineering optimization

    Science.gov (United States)

    Kruger, N.; Kurtulik, M.; Revivo, N.; Manor, A.; Sabapathy, T.; Rotschild, C.

    2018-05-01

    The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with the temperature rise at any emitted wavelength. Non-thermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a redshifted photon. Such a quantum process is governed by rate conservation, which is contingent on the quantum efficiency. In the past, the role of rate conservation for significant thermal excitation had not been studied. Recently, we presented the theory and an experimental demonstration that showed, in contrast to thermal emission, that the PL rate is conserved when the temperature increases while each photon is blueshifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how such thermally enhanced PL (TEPL) generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that TEPL is an ideal optical heat pump that can harvest thermal losses in photovoltaics with a maximal theoretical efficiency of 70%, and practical concepts potentially reaching 45% efficiency. Here we move the TEPL concept onto the engineering level and present Cr:Nd:YAG as device grade PL material, absorbing solar radiation up to 1 μm wavelength and heated by thermalization of energetic photons. Its blueshifted emission, which can match GaAs cells, is 20% of the absorbed power. Based on a detailed balance simulation, such a material coupled with proper photonic management can reach 34% power conversion efficiency. These results raise confidence in the potential of TEPL becoming a disruptive technology in photovoltaics.

  15. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  16. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  17. Towards Efficient Energy Management: Defining HEMS and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Soler, José

    2011-01-01

    in home environments, researches have been designing Home Energy Management Systems (HEMS). Efficiently managing and distributing electricity in the grid will also help to reduce the increase of energy consumption in the future. The power grid is evolving into the Smart Grid, which is being developed...... to distribute and produce electricity more efficiently. This paper presents the high level goals and requirements of HEMS and the Smart Grid. Additionally, it provides an overview on how Information and Communication Technologies (ICT) is involved in the Smart Grid and how they help to achieve the emerging...... functionalities that the Smart Grid can provide....

  18. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  19. Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility

    Science.gov (United States)

    Neubauer, Jeremy; Wood, Eric

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility that is affected by driver aggression and effects of climate-both directly on battery temperature and indirectly through the loads of cabin and battery thermal management systems. Utility is further affected as the battery wears through life in response to travel patterns, climate, and other factors. In this paper we apply the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to driver aggression and climate effects over the life of the vehicle. We find the primary challenge to cold-climate BEV operation to be inefficient cabin heating systems, and to hot-climate BEV operation to be high peak on-road battery temperatures and excessive battery degradation. Active cooling systems appear necessary to manage peak battery temperatures of aggressive, hot-climate drivers, which can then be employed to maximize thru-life vehicle utility.

  20. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  1. Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management

    International Nuclear Information System (INIS)

    Ounoughene, G.; Joubert, A.; Le Coq, L.; LeBihan, O.; Debray, B.; Chivas-Joly, C.; Longuet, C.; Lopez-Cuesta, J-M.

    2017-01-01

    Considering the wide use and production of NMs since last two decades, these trendy nanomaterials (NMs) are expected to end up in thermal disposal and waste incineration plants (WIP). It seems relevant to assess the risks related to the thermal disposal and incineration of waste containing NMs (WCNMs). The objective of this work is to present a first approach to develop a preliminary methodology for risk management in order (1) to give insights on nanosafety of exposed operators and on potential environmental risks related to the incineration and thermal disposal of WCNMs, and (2) to eventually support decision-makers and incineration plant managers. Therefore, the main challenge is to find (a) key parameter(s) which would govern the decision related to risk management of NMs thermal disposal. On the one hand, we focused on the relevant literature studies about experimental works on incineration of NMs. On the other hand, we conducted an introductory discussion with a group of experts. The review of this literature highlights that the nano-object’s nanostructure destruction appears as a relevant indicator of the risks related to the NMs incineration. As a consequence, we defined a “temperature of nanostructure destruction” (TND) which would be the temperature from which the nanostructure will be destroyed. This parameter has been assumed to be a consistent indicator to develop a preliminary methodology. If the combustion chamber temperature is higher than the TND of the NM (or if they are close to each other), then the nanostructure will be destroyed and no risks related to NMs remain. If the TND of the NMs is higher than the combustion chamber temperature, then the nanostructure will not be destroyed and risks related to NMs have to be considered. As a result, five groups of NMs have been identified. WCNMs including carbonic NMs appear to be in good position to be destroyed safely in WIP. On the other hand, based on this criterion, there would be no

  2. Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management

    Science.gov (United States)

    Ounoughene, G.; LeBihan, O.; Debray, B.; Chivas-Joly, C.; Longuet, C.; Joubert, A.; Lopez-Cuesta, J.-M.; Le Coq, L.

    2017-06-01

    Considering the wide use and production of NMs since last two decades, these trendy nanomaterials (NMs) are expected to end up in thermal disposal and waste incineration plants (WIP). It seems relevant to assess the risks related to the thermal disposal and incineration of waste containing NMs (WCNMs). The objective of this work is to present a first approach to develop a preliminary methodology for risk management in order (1) to give insights on nanosafety of exposed operators and on potential environmental risks related to the incineration and thermal disposal of WCNMs, and (2) to eventually support decision-makers and incineration plant managers. Therefore, the main challenge is to find (a) key parameter(s) which would govern the decision related to risk management of NMs thermal disposal. On the one hand, we focused on the relevant literature studies about experimental works on incineration of NMs. On the other hand, we conducted an introductory discussion with a group of experts. The review of this literature highlights that the nano-object’s nanostructure destruction appears as a relevant indicator of the risks related to the NMs incineration. As a consequence, we defined a “temperature of nanostructure destruction” (TND) which would be the temperature from which the nanostructure will be destroyed. This parameter has been assumed to be a consistent indicator to develop a preliminary methodology. If the combustion chamber temperature is higher than the TND of the NM (or if they are close to each other), then the nanostructure will be destroyed and no risks related to NMs remain. If the TND of the NMs is higher than the combustion chamber temperature, then the nanostructure will not be destroyed and risks related to NMs have to be considered. As a result, five groups of NMs have been identified. WCNMs including carbonic NMs appear to be in good position to be destroyed safely in WIP. On the other hand, based on this criterion, there would be no

  3. Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-08-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-3.6 %) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-10.2 %) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  4. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    International Nuclear Information System (INIS)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Abid; Mortensen, Henrik Hilleke

    2013-01-01

    Highlights: ► Developing a general zero dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model for a forklift. ► System performance with different cooling fluids. ► Water and thermal management of fuel cell system. ► Effect of inlet temperature, outlet temperature and temperature gradient on system performance. - Abstract: A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water–ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32–33% in the inner loop and 60–65% in the outer loop for all ranges of current. The system can then be started up at about −25 °C with negligible change in the efficiency

  5. The role of knowledge management in raising the efficiency of pilots ...

    African Journals Online (AJOL)

    The role of knowledge management in raising the efficiency of pilots' performance in the ... Journal of Fundamental and Applied Sciences ... the actual knowledge management implementation in the aviation industry as well as determining the ...

  6. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  7. Performance Assessment of Low-Temperature Thermal Storage with Electromagnetic Control

    Directory of Open Access Journals (Sweden)

    Ya-Wei Lee

    2014-08-01

    Full Text Available This study presents electromagnetic-controlled thermal storage (ECTS that can be directly implemented in strategies of low-temperature waste heat recovery for energy-consuming equipment. A magnetic nanofluid (MNF prepared from fine iron ferrite ferromagnetic particles is recommended as a latent heat medium (LHM. During electromagnetic induction, local flow fluctuations are generated and thermal convection in the MNF can be enhanced. The achieved results demonstrated that ECTS has a wide operational range and an optimum storage efficiency of 84.46%. Thus, a self-perturbation mode used to enhance thermal energy transportation can be designed for numerous waste heat management applications.

  8. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers

    International Nuclear Information System (INIS)

    Samimi, Fereshteh; Babapoor, Aziz; Azizi, Mohammadmehdi; Karimi, Gholamreza

    2016-01-01

    High latent heat of PCMs (phase change materials) has made them as one of the most important materials for thermal management purposes. However, PCMs’ low thermal diffusivities could limit their use in applications which require fast thermal response. The goal of this study is to simulate thermal performance of a lithium ion battery cell in the presence of carbon fiber-PCM composites. The effect of carbon fiber loading within the PCM on thermal performance is studied and the results are compared with the experimental data. The results showed that the presence of carbon fibers increases the effective thermal conductivity of PCM and hence influences temperature distribution within the cell. PCM composites containing higher percentages of carbon fibers present a more uniform temperature distribution. The results showed that the minimum and maximum thermal conductivity enhancement of 85% and 155% respectively (105% on average). A reasonable agreement is obtained between the simulation results and the experimental data. - Highlights: • Phase change materials (PCMs) are used for thermal management purposes. • Effective thermal conductivity of PCMs can be enhanced by loading carbon fibers. • Thermal performance of a battery is studied in presence of carbon fiber loaded PCM. • The presence of carbon fibers in the PCM can improve Li-ion battery performance.

  9. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent

    Directory of Open Access Journals (Sweden)

    Chunlei Dong

    2016-12-01

    Full Text Available It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenylmethyl-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA is synthesized and characterized. When it is used as a co-curing agent of 4,4′-methylenedianiline (DDM for curing diglycidyl ether of bisphenol A (DGEBA, the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %. To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one.

  10. Application of multiple-point geostatistics to simulate the effect of small scale aquifer heterogeneity on the efficiency of Aquifer Thermal Energy Storage (ATES)

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for Aquifer Thermal Energy Storage (ATES) systems and wells. Recent model studies indicate that meter scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In this paper, the influence of centimeter scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3 - 3.6%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6 - 10.2%) on the energy output of the ATES system. It is concluded that it is important to incorporate small scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  11. NOx emissions and thermal efficiencies of small scale biomass-fuelled combustion plant with reference to process industries in a developing country

    International Nuclear Information System (INIS)

    Tariq, A.S.; Purvis, M.R.I.

    1996-01-01

    Solid biomass materials are an important industrial fuel in many developing countries and also show good potential for usage in Europe within a future mix of renewable energy resources. The sustainable use of wood fuels for combustion relies on operation of plant with acceptable thermal efficiency. There is a clear link between plant efficiency and environmental impacts due to air pollution and deforestation. To supplement a somewhat sparse literature on thermal efficiencies and nitrogen oxide emissions from biomass-fuelled plants in developing countries, this paper presents results for tests carried out on 14 combustion units obtained during field trials in Sri Lanka. The plants tested comprised steam boilers and process air heaters. Biomass fuels included: rubber-wood, fuelwood from natural forests; coconut shells; rice husks; and sugar can bagasse. Average NO x (NO and NO 2 ) emissions for the plants were found to be 47 gNO 2 GJ -1 with 18% conversion of fuel nitrogen. The former value is the range of NO x emission values quoted for combustion of coal in grate-fired systems; some oil-fired systems and systems operating on natural gas, but is less than the emission levels for the combustion of pulverized fuel and heavy fuel oil. This value is significantly within current European standards for NO x emission from large combustion plants. Average thermal efficiency of the plants was found to be 50%. Observations made on operational practices demonstrated that there is considerable scope for the improvement of this thermal efficiency value by plant supervisor training, drying of fuelwood and the use of simple instruments for monitoring plant performance. (Author)

  12. Energy efficiency of housing for older citizens: Does it matter?

    International Nuclear Information System (INIS)

    Miller, Wendy; Vine, Desley; Amin, Zakaria

    2017-01-01

    Global population ageing has significant implications for public policy in areas such as health, housing and economic security. The notion of housing as a public health issue is not new, yet very little research has examined the links between housing specifically built for older people, energy performance and occupant health and economic security. Utilising a case study approach, this research examined the interplay between the energy efficiency of housing explicitly designed for this demographic, the thermal efficiency of their dwellings, and the impact on internal temperatures and monthly energy costs. The study shows that the thermal efficiency of the dwellings is not the same across all dwellings, impacting the internal temperatures experienced by the elderly occupants and their finances. This has implications for energy efficiency policy, policy governing the energy performance of buildings specifically designed for older people, as well as the mandatory disclosure of building performance. The study highlights in particular the need for energy policy to be further refined to link the thermal performance requirements of buildings to the broader health care plan and specific needs of older people. - Highlights: • Housing quality impacts on the health and economic wellbeing of older people. • This demographic can have limited capacity to manage and pay for thermal comfort. • Building thermal performance is not disclosed or linked to occupants' health care. • Energy and health policies need to be much more closely aligned. • This can be through building regulations, mandatory disclosure and heat wave plans.

  13. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  14. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  15. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    DEFF Research Database (Denmark)

    Haller, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa

    2010-01-01

    process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged......A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification...

  16. Efficiency limit of solar cells with index-near-zero photon management layers

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, A.P.

    2017-05-15

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer – a transparent index-near-zero (INZ) material – applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers – and their influence on solar cell current density, open circuit voltage, and power conversion efficiency – are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  17. Efficiency limit of solar cells with index-near-zero photon management layers

    International Nuclear Information System (INIS)

    Kirk, A.P.

    2017-01-01

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer – a transparent index-near-zero (INZ) material – applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers – and their influence on solar cell current density, open circuit voltage, and power conversion efficiency – are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  18. Efficiency limit of solar cells with index-near-zero photon management layers

    Science.gov (United States)

    Kirk, A. P.

    2017-05-01

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer - a transparent index-near-zero (INZ) material - applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers - and their influence on solar cell current density, open circuit voltage, and power conversion efficiency - are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  19. Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner

    International Nuclear Information System (INIS)

    Saberi Moghaddam, Mohammad Hossein; Saei Moghaddam, Mojtaba; Khorramdel, Mohammad

    2017-01-01

    This paper investigates the geometric parameters related to thermal efficiency and pollution emission of a multi-hole flat flame burner. Recent experimental studies indicate that such burners are significantly influenced by both the use of distribution mesh and the size of the diameter of the main and retention holes. The present study numerically simulated methane-air premixed combustion using a two-step mechanism and constant mass diffusivity for all species. The results indicate that the addition of distribution mesh leads to uniform flow and maximum temperature that will reduce NOx emissions. An increase in the diameter of the main holes increased the mass flow which increased the temperature, thermal efficiency and NOx emissions. The size of the retention holes should be considered to decrease the total flow velocity and bring the flame closer to the burner surface, although a diameter change did not considerably improve temperature and thermal efficiency. Ultimately, under temperature and pollutant emission constraints, the optimum diameters of the main and retention holes were determined to be 5 and 1.25 mm, respectively. - Highlights: • Using distribution mesh led to uniform flow and reduced Nox pollutant by 53%. • 93% of total heat transfer occurred by radiation method in multi-hole burner. • Employing retention hole caused the flame become closer to the burner surface.

  20. ABOUT FORMS, EFFICIENCY AND ASSESSMENT OF ENVIRONMENTAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    H. Bachev

    2015-03-01

    Full Text Available We suggest a holistic framework for analyzing, assessment and improvement of environmental management using “agrariansector” as an example. It incorporates an interdisciplinary approach (Economics, Organization, Law, Sociology, Ecology, Technology, Behavioral and Political Sciences and includes: specification of managerial actors, needs and spectrum of governing modes (institutional environment; private, collective, market, public modes at different level of decision-making (individual, farm, eco-system, local, regional, national, transnational, global; specification of critical socio-economic, natural, technological, behavioral etc. factors of managerial choice, and feasible spectrum of managerial forms; defining and assessing comparative and absolute efficiency of eco-management forms and system; improvement of forms of public intervention in eco-management.

  1. Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Kline, Michelle [Univ. of Utah, Salt Lake City, UT (United States)

    2011-01-01

    Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and the challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.

  2. Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study

    International Nuclear Information System (INIS)

    Aste, Niccolò; Leonforte, Fabrizio; Manfren, Massimiliano; Mazzon, Manlio

    2015-01-01

    Highlights: • We perform a parametric simulation study on a calibrated building energy model. • We introduce adaptive shadings and night free cooling in simulations. • We analyze the effect of thermal capacity on the parametric simulations results. • We recognize that cooling demand and savings scales linearly with thermal capacity. • We assess the advantage of medium-heavy over medium and light configurations. - Abstract: The reduction of energy consumption for heating and cooling services in the existing building stock is a key challenge for global sustainability today and buildings’ envelopes retrofit is one the main issues. Most of the existing buildings’ envelopes have low levels of insulation, high thermal losses due to thermal bridges and cracks, absence of appropriate solar control, etc. Further, in building refurbishment, the importance of a system level approach is often undervalued in favour of simplistic “off the shelf” efficient solutions, focused on the reduction of thermal transmittance and on the enhancement of solar control capabilities. In many cases, the importance of the dynamic thermal properties is often neglected or underestimated and the effective thermal capacity is not properly considered as one of the design parameters. The research presented aims to critically assess the influence of the dynamic thermal properties of the building fabric (roof, walls and floors) on sensible heating and cooling energy demand for a case study. The case study chosen is an existing office building which has been retrofitted in recent years and whose energy model has been calibrated according to the data collected in the monitoring process. The research illustrates the variations of the sensible thermal energy demand of the building in different retrofit scenarios, and relates them to the variations of the dynamic thermal properties of the construction components. A parametric simulation study has been performed, encompassing the use of

  3. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    Science.gov (United States)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  4. Theory and practice. Possible ways of putting fossil fuels to more efficient use in thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Peter, F

    1986-02-01

    In the past decade, the development of fuel and investment costs as it occurred has not given any crucial incentive for a necessary change in thermal efficiency. This can be partly attributed to the high level of technology, but also to the fact that the money spent on efficiency-improving measures increases exponentially for the most part. In any case, it should always be borne in mind in planning a new power station plant that the economic efficiency not only of the plant as a whole must be optimized, but also each individual component and system involved. All efforts to improve economic efficiency in systems and components should be harmonised to fit in with one another.

  5. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  6. A new approach for the prediction of thermal efficiency in solar receivers

    International Nuclear Information System (INIS)

    Barbero, Rubén; Rovira, Antonio; Montes, María José; Martínez Val, José María

    2016-01-01

    Highlights: • A new model for thermal efficiency calculation of solar collectors is developed. • It is derived from the complete differential equation for any technology. • Accurately capture the results of numerical models avoiding iteration process. • Two new critical parameters are defined to be considered for design. • Some relevant aspects for design arise from its application to PTC. - Abstract: Optimization of solar concentration receiver designs requires of models that characterize thermal balance at receiver wall. This problem depends on external heat transfer coefficients that are a function of the third power of the temperature at the absorber wall. This nonlinearity introduces a difficulty in obtaining analytical solutions for the balance differential equations. So, nowadays, several approximations consider these heat transfer coefficients as a constant or suggest a linear dependence. These hypotheses suppose an important limitation for their application. This paper describes a new approach that allows the use of an analytical expression obtained from the heat balance differential equation. Two simplifications based on this model can be made in order to obtain other much simpler equations that adequately characterize collector performance for the majority of solar technologies. These new equations allow the explicit calculation of the efficiency as a function of some characteristic parameters of the receiver. This explicit calculation introduces some advantages in the receiver optimization process because iteration processes are avoided during the calculations. Validation of the proposed models was made by the use of the experimental measurements reported by Sandia National Laboratories (SNL) for the trough collector design LS-2.

  7. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  8. Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Yuji, E-mail: fukaya.yuji@jaea.go.jp; Nishihara, Tetsuo

    2016-10-15

    Highlights: • We evaluate the number of canisters and its footprint for HTGR. • We proposed new waste loading method for direct disposal of HTGR. • HTGR can significantly reduce HLW volume compared with LWR. - Abstract: Reduction on volume of High Level radioactive Waste (HLW) and footprint in a geological repository due to high burn-up and high thermal efficiency of High Temperature Gas-cooled Reactor (HTGR) has been investigated. A helium-cooled and graphite-moderated commercial HTGR was designed as a Gas Turbine High Temperature Reactor (GTHTR300), and that has particular features such as significantly high burn-up of approximately 120 GWd/t, high thermal efficiency around 50%, and pin-in-block type fuel. The pin-in-block type fuel was employed to reduce processed graphite volume in reprocessing. By applying the feature, effective waste loading method for direct disposal is proposed in this study. By taking into account these feature, the number of HLW canister generations and its repository footprint are evaluated by burn-up fuel composition, thermal calculation and criticality calculation in repository. As a result, it is found that the number of canisters and its repository footprint per electricity generation can be reduced by 60% compared with Light Water Reactor (LWR) representative case for direct disposal because of the higher burn-up, higher thermal efficiency, less TRU generation, and effective waste loading proposed in this study for HTGR. But, the reduced ratios change to 20% and 50% if the long term durability of LWR canister is guaranteed. For disposal with reprocessing, the number of canisters and its repository footprint per electricity generation can be reduced by 30% compared with LWR because of the 30% higher thermal efficiency of HTGR.

  9. Effects of thermal energy harvesting on the human - clothing - environment microsystem

    Science.gov (United States)

    Myers, A. C.; Jur, J. S.

    2017-10-01

    The objective of this work is to perform an in depth investigation of garment-based thermal energy harvesting. The effect of human and environmental factors on the working efficiency of a thermal energy harvesting devices, or a thermoelectric generator (TEG), placed on the body is explored.. Variables that strongly effect the response of the TEG are as follows: skin temperature, human motion or speed, body location, environmental conditions, and the textile properties surrounding the TEG. In this study, the use of textiles for managing thermal comfort of wearable technology and energy harvesting are defined. By varying the stitch length and/or knit structure, one can manipulate the thermal conductivity of the garment in a specific location. Another method of improving TEG efficiency is through the use of a heat spreader, which increases the effective collection area of heat on the TEG hot side. Here we show the effect of a TEG on the thermal properties of a garment with regard to two knit stitches, jersey and 1 × 1 rib.

  10. A comparative study on thermal efficiency between the present floor and a ceramic floor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.M.; Kim, K.S. [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Choi, B.S. [Kyung Hee University, Yongin (Korea, Republic of); Ko, J.S.; Park, S.K. [Bomwoo and Co. LTD., Kwangju (Korea, Republic of)

    1999-04-01

    A ceramic floor with improved thermal conductivity and efficiency has been developed in this study. The new ceramic floor minimizes the shrinkage rate to below 0.07% and shows almost no cleavage. There is no need to repair the ceramic floor because its bottom surface is flat. It especially shows an excellent performance in the test of a compressive strength (300 kg/cm{sup 2} based on 28 days), a flexural strength (64 kg/cm{sup 2} based on 28 days), and a convenient pressing. It is lighter than the present floor and it is expected to be applicable for a self-leveling ceramic motar in the residences and apartments. It shows an excellent character in the thermal conductivity and other physical properties compare to the present cement mortar. 5 refs., 3 figs., 2 tabs.

  11. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine

    International Nuclear Information System (INIS)

    Su, Jianye; Xu, Min; Li, Tie; Gao, Yi; Wang, Jiasheng

    2014-01-01

    Highlights: • Experiments for the effects of cooled EGR and two compression ratios (CR) on fuel efficiency were conducted. • The mechanism for the observed fuel efficiency behaviors by cooled EGR and high CR was clarified. • Cooled EGR offers more fuel efficiency improvement than elevating CR from 9.3 to 10.9. • Combining 18–25% cooled EGR with 10.9 CR lead to 2.1–3.5% brake thermal efficiency improvements. - Abstract: The downsized boosted spark-ignition direct-injection (SIDI) engine has proven to be one of the most promising concepts to improve vehicle fuel economy. However, the boosted engine is typically designed at a lower geometric compression ratio (CR) due to the increased knock tendency in comparison to naturally aspirated engines, limiting the potential of improving fuel economy. On the other hand, cooled exhaust gas recirculation (EGR) has drawn attention due to the potential to suppress knock and improve fuel economy. Combing the effects of boosting, increased CR and cooled EGR to further improve fuel economy within acceptable knock tolerance has been investigated using a 2.0 L downsized boosted SIDI engine over a wide range of engine operating conditions from 1000 rpm to 3000 rpm at low to high loads. To clarify the mechanism of this complicated effects, the first law of thermodynamics analysis was conducted with the inputs from GT-Power® engine simulation. Experiment results indicate that cooled EGR provides more brake thermal efficiency improvement than increasing geometric CR from 9.3 to 10.9. The benefit of brake thermal efficiency from the higher CR is limited to low load conditions. The attributes for improving brake thermal efficiency by cooled EGR include reduced heat transfer loss, reduced pumping work and increased ratio of specific heats for all the engine operating conditions, as well as higher degree of constant volume heat release only for the knock-limited high load conditions. The combined effects of 18–25% cooled EGR

  12. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  13. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    Science.gov (United States)

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-04-01

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermal and electrical energy management in a PEMFC stack - An analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, S.; Jayakumar, K.; Rajalakshmi, N.; Dhathathreyan, K.S. [Centre for Fuel Cell Technology, ARC International (ARCI), 120, Mambakkam Main Road, Medavakkam, Chennai 601 302 (India)

    2008-02-15

    An analytical method has been developed to differentiate the electrical and thermal resistance of the PEM fuel cell assembly in the fuel cell operating conditions. The usefulness of this method lies in the determination of the electrical resistance based on the polarization curve and the thermal resistance from the mass balance. This method also paves way for the evaluation of cogeneration from a PEMFC power plant. Based on this approach, the increase in current and resistance due to unit change in temperature at a particular current density has been evaluated. It was observed that the internal resistance of the cell is dependent on the electrode fabrication process, which also play a major role in the thermal management of the fuel cell stack. (author)

  15. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  16. Problems of assessment of efficiency of managing corporate rights in joint stock companies

    Directory of Open Access Journals (Sweden)

    Kurinnyy Oleksandr V.

    2013-03-01

    Full Text Available The goal of the article lies in identification of specific features of formation, implementation and practical use of the balanced scorecard of efficiency of managing corporate rights in domestic joint stock companies. Complexity of formation of the balanced scorecard of efficiency of managing property of shareholders is due to a necessity of ensuring deliberateness of the combination of financial and non-financial indicators for formalisation of managerial goals, establishment of a connection between financial parameters and operation indicators of enterprise activity and also attempt to determine the whole cost of an enterprise, which would be adequate to the market value of its assets. Taking into account the above, the article defines efficiency of managing shares of the joint stock as the degree of correlation between the goal, regulatory set functions, managerial actions and results of execution of managerial duties by managers. Prospect of further studies in this direction is development of methodical basis of formation and functioning of the balanced scorecard of efficiency of the use of shares of corporate rights in a joint stock company.

  17. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  18. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Zhang Guoqing

    2011-01-01

    Highlights: → We study the thermal energy management performance of ageing LiFePO 4 power battery. → 3-D modules of single cell and battery pack are formulated according to the experimental results. → Thermal resistance in the battery cell leaded to an inevitable temperature difference. → It is necessary to improve the thermal conductivity and lower the melting point of phase change material. → Thermal conductivity of phase change material and battery exist an effective proportion. - Abstract: Thermal energy management performance of ageing commercial rectangular LiFePO 4 power batteries using phase change material (PCM) and thermal behavior related to thermal conductivity between the PCM and the cell are discussed in this paper. The heat sources are simplified according to the experimental results of the cells discharged at 35 A (∼5 C). 3-D modules of a single cell and battery pack are formulated, respectively. The results show that the thermal resistance in the cell leads to an inevitable temperature difference. It is necessary to improve the thermal conductivity and to lower the melting point of the PCM for heat transfer enhancement. The PCM with a melting point lower than 45 deg. C will be more effective for heat dissipation, with a desired maximum temperature below 50 deg. C. The temperature difference in the whole unit before PCM melting will be decreased significantly. In addition, a proper k PCM :k c is necessary for a well designed battery thermal energy management system.

  19. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  20. Experimental investigation on the thermal performance of a closed oscillating heat pipe in thermal management

    Science.gov (United States)

    Rao, Zhonghao; Wang, Qingchao; Zhao, Jiateng; Huang, Congliang

    2017-10-01

    To investigate the thermal performance of the closed oscillating heat pipe (OHP) as a passive heat transfer device in thermal management system, the gravitation force, surface tension, cooling section position and inclination angle were discussed with applied heating power ranging from 5 to 65 W. The deionized water was chosen as the working fluid and liquid-filling ratio was 50 ± 5%. The operation of the OHP mainly depends on the phase change of the working fluid. The working fluid within the OHP was constantly evaporated and cooled. The results show that the movement of the working fluid was similar to the forced damped mechanical vibration, it has to overcome the capillary resistance force and the stable oscillation should be that the OHP could successful startup. The oscillation frequency slowed and oscillation amplitude decreased when the inclination angle of the OHP increased. However, the thermal resistance increased. With the increment of the heating power, the average temperature of the evaporation and condensation section would be close. If the heating power was further increased, dry-out phenomenon within the OHP would appeared. With the decrement of the L, the start-up heating power also decreased and stable oscillation would be formed.

  1. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  2. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Chunfeng Lan

    2018-02-01

    Full Text Available We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc, short-circuit current (Jsc and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells.

  3. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)

    Science.gov (United States)

    Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.

    2017-05-01

    In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.

  4. Thermal efficiency improvement in high output diesel engines a comparison of a Rankine cycle with turbo-compounding

    International Nuclear Information System (INIS)

    Weerasinghe, W.M.S.R.; Stobart, R.K.; Hounsham, S.M.

    2010-01-01

    Thermal management, in particular, heat recovery and utilisation in internal combustion engines result in improved fuel economy, reduced emissions, fast warm up and optimized cylinder head temperatures. turbo-compounding is a heat recovery technique that has been successfully used in medium and large scale engines. Heat recovery to a secondary fluid and expansion is used in large scale engines, such as in power plants in the form of heat recovery steam generators (HRSG) . The present paper presents a thermodynamic analysis of turbo-compounding and heat recovery and utilisation through a fluid power cycle, a technique that is also applicable to medium and small scale engines. In a fluid power cycle, the working fluid is stored in a reservoir and expanded subsequently. The reservoir acts as an energy buffer that improves the overall efficiency, significantly. This paper highlights the relative advantage of exhaust heat secondary power cycles over turbo-compounding with the aid of MATLAB based QSS Toolbox simulation results. Steam has been selected as the working fluid in this work for its superior heat capacity over organic fluids and gases.

  5. Eco-efficiency of solid waste management in Welsh SMEs

    Science.gov (United States)

    Sarkis, Joseph; Dijkshoorn, Jeroen

    2005-11-01

    This paper provides an efficiency analysis of practices in Solid Waste Management of manufacturing companies in Wales. We apply data envelopment analysis (DEA) to a data set compiled during the National Waste Survey Wales 2003. We explore the relative performance of small and medium sized manufacturing enterprises (SME; 10-250 employees) in Wales. We determine the technical and scale environmental and economic efficiencies of these organizations. Our evaluation focuses on empirical data collected from companies in a wide diversity of manufacturing industries throughout Wales. We find significant differences in industry and size efficiencies. We also find correlations that exist among environmental and economic efficiencies. These variations show that improvements can be made using benchmarks from similar and different size industries. Further pursuit of an investigation of possible reasons for these differences is recommended.

  6. Thermal Management in Fine-Grained 3-D Integrated Circuits

    OpenAIRE

    Iqbal, Md Arif; Macha, Naveen Kumar; Danesh, Wafi; Hossain, Sehtab; Rahman, Mostafizur

    2018-01-01

    For beyond 2-D CMOS logic, various 3-D integration approaches specially transistor based 3-D integrations such as monolithic 3-D [1], Skybridge [2], SN3D [3] holds most promise. However, such 3D architectures within small form factor increase hotspots and demand careful consideration of thermal management at all levels of integration [4] as stacked transistors are detached from the substrate (i.e., heat sink). Traditional system level approaches such as liquid cooling [5], heat spreader [6], ...

  7. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  8. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  9. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    Science.gov (United States)

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  10. Thermal Performance and Efficiency Investigation of Conventional Boost, Z-source and Y-source Converters

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2016-01-01

    Boost converters are needed in many applications that require the output voltage to be higher than the input voltage. Recently, boost type converters have been attracted by the industrial applications, and hence it has become an extremely hot topic of research. Recently, many researchers proposed...... the impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and has...... not been investigated yet. Therefore this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on the thermal evaluation of semiconductors. In addition, the three topologies are also compared with respect to their efficiency. The operational principle...

  11. Thermal Power:Focusing on Efficient and Clean Generation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    History review Before the foundation of New China,there was no thermal power equipment manufacturing industry in China at all.China imported the manufacturing technology of 6-MW and12-MW thermal power units from the former

  12. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  13. Heat transfer and thermal management studies of lithium polymer batteries for electric vehicle applications

    Science.gov (United States)

    Song, Li

    developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.

  14. A resource allocation model to support efficient air quality management in South Africa

    Directory of Open Access Journals (Sweden)

    U Govender

    2009-06-01

    Full Text Available Research into management interventions that create the required enabling environment for growth and development in South Africa are both timely and appropriate. In the research reported in this paper, the authors investigated the level of efficiency of the Air Quality Units within the three spheres of government viz. National, Provincial, and Local Departments of Environmental Management in South Africa, with the view to develop a resource allocation model. The inputs to the model were calculated from the actual man-hours spent on twelve selected activities relating to project management, knowledge management and change management. The outputs assessed were aligned to the requirements of the mandates of these Departments. Several models were explored using multiple regressions and stepwise techniques. The model that best explained the efficiency of the organisations from the input data was selected. Logistic regression analysis was identified as the most appropriate tool. This model is used to predict the required resources per Air Quality Unit in the different spheres of government in an attempt at supporting and empowering the air quality regime to achieve improved output efficiency.

  15. Managing the indoor environment and energy efficiency in historical buildings

    Energy Technology Data Exchange (ETDEWEB)

    Huovila, P., Email: pekka.huovila@vtt.fi

    2012-06-15

    In Italy there are a lot of historical buildings that are relevant in cultural, architectural and artistic terms. Such heritage needs a constant process of renovation to keep the buildings secure, safe and efficient and to make them suitabled for host offices, museums, events and art exhibitions. Unfortunately, most of these renovation activities consider only either the security issues or outward appearance or the indoor conditions or the installations; all actions are independently designed and implemented, and an integrated approach is missing. Italian public bodies strongly need support and guidelines to write optimal tenders for building refurbishments. In this paper, we present a methodology for assessing the state of building and defining tender requirements. The methodology is based on the definition of performance indicators, related to security against human threats, thermal and hygrometric quality, living indoor conditions, air quality, lighting conditions, resilience and management of emergencies in case of natural disasters, accessibility, etc. A very important aspect that the methodology considers is compliance with regulations. Also some economical aspects will be considered. The methodology is implemented in a decision- support software tool that presents the different indicators in relation to each other, evaluating performance indices. These indices could be used to simulate different solutions and help choose the best one. Particular attention is paid to how the results are shown to end users. (orig.)

  16. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  17. Thermal efficiency of a non-transferred thermal plasma cannon; Eficiencia termica de un canon de plasma termico no-transferido

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, A; Cota, G; Merlo, L; Pacheco, J; Pena, R; Cruz, A [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    This work shows a thermal efficiency research ({nu}) for a plasma torch in d.c. which was carried out through the realization of an energy balance around the system under consideration. The plasma torch is manufactured in copper with a tungsten incrustations in cathode. The gas used was argon and the gas fluxes were at the rank of 10 and 40 lt/min to the total pressure of 1.2 bar (1.1 atm). With these conditions it was worked with electric currents at the rank of 40 and 180 A. The data were collected through a data acquisition card which was programmed in Windows environment. (Author)

  18. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  19. Thermal properties and burning efficiency of crude oils and refined fuel oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Alva, Wilson Ulises Rojas; Mindykowski, Pierrick Anthony

    2017-01-01

    The thermal properties and burning efficiencies of fresh and weathered crude oils and a refined fuel oil were studied in order to improve the available input data for field ignition systems for the in-situ burning of crude oil on water. The time to ignition, surface temperature upon ignition, heat......-cooled holder for a cone calorimeter under incident heat fluxes of 0, 5, 10, 20, 30, 40 and 50 kW/m2. The results clearly showed that the weathered oils were the hardest to ignite, with increased ignition times and critical heat fluxes of 5-10 kW/m2. Evaporation and emulsification were shown...

  20. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  1. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  2. EFFICIENCY OF APPLICATION OF RFID IN SUPPLY CHAIN MANAGEMENT

    OpenAIRE

    Aleksandra Nowakowska

    2008-01-01

    Development of contemporary logistics has seen tendencies to attach greatimportance to processes of flow of information in supply chain. It is necessary to look for newways of efficient management of this flow, which is possible through development of newtechnologies, including RFID (Radio Frequency Identification).

  3. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  5. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  7. Achieving Efficiency and Effectiveness in Purchasing and Supply Management

    DEFF Research Database (Denmark)

    Bals, Lydia; Turkulainen, Virpi

    2017-01-01

    of the most prevalent business practices in various areas, many businesses fail to realize the benefits anticipated from their outsourcing initiatives. Research reports that one major reason for these outsourcing challenges lies in the design of the focal organization. In this paper, we take an organization......As a function with a strategic role, Purchasing and Supply Management (PSM) needs to continuously find ways to improve its efficiency and effectiveness. One potential way to specifically addressing efficiency targets is to outsource parts of the purchasing process. While outsourcing remains one...

  8. Management efficiency improvement promotion of SS; SS no unei koritsuka sokushin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Full amount fund petroleum product marketer and Sumisyo petroleum of Sumitomo accelerate management efficiency improvement of service station (SS). National about 300 places have been developed in within the year Within SS, it aims at break-even point achievement of gasoline, coarse advantage 10 yen per light oil of 1 liter in 84 all tied SS stores. SS which has realized the system of 10 yen in the current is whole about 50%. But, by doing personnel configurations and operational procedures, that they reexamine the balance management, etc. in half remaining SS 12 yen-13 yen; the efficiency improvement is done thoroughly. (translated by NEDO)

  9. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  10. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  11. Efficiency of thermal outgassing for tritium retention measurement and removal in ITER

    Directory of Open Access Journals (Sweden)

    G. De Temmerman

    2017-08-01

    Full Text Available As a licensed nuclear facility, ITER must limit the in-vessel tritium (T retention to reduce the risks of potential release during accidents, the inventory limit being set at 1kg. Simulations and extrapolations from existing experiments indicate that T-retention in ITER will mainly be driven by co-deposition with beryllium (Be eroded from the first wall, with co-deposits forming mainly in the divertor region but also possibly on the first wall itself. A pulsed Laser-Induced Desorption (LID system, called Tritium Monitor, is being designed to locally measure the T-retention in co-deposits forming on the inner divertor baffle of ITER. Regarding tritium removal, the baseline strategy is to perform baking of the plasma-facing components, at 513K for the FW and 623K for the divertor. Both baking and laser desorption rely on the thermal desorption of tritium from the surface, the efficiency of which remains unclear for thick (and possibly impure co-deposits. This contribution reports on the results of TMAP7 studies of this efficiency for ITER-relevant deposits.

  12. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  13. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    Science.gov (United States)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  14. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2018-06-01

    Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement

  15. The Role of Knowledge Management in Raising the Efficiency of ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... management implementation and the pilots' performance. There are lag of higher ... efficiency and effectiveness of business processes with an impact on the .... available. Knowledge of an enterprise is a basis for building.

  16. Operation management of thermal power plant. Karyoku plant no unten kanri

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-15

    Nowadays, thermal power plants are getting bigger and bigger in capacity. At the same time, high reliability to the frequent start and stop due to the demand change as well as effective economy. This paper describes the total operation management system. It included the start and stop, normal operation, specified operation, water quality, operation management involving the environmental problems, protection of machinery and equipment in case of emergency, measures against the failure, and the measures against the disaster. The outline of the normal operation is as follows: from the cost economical point of view, the kind of fuel is changed according to the load; i.e., coal for basic operation, LNG for basic to medium operation, and oil for medium to peak operation. The change in demand cannot be followed by the hydroelectric power. The adjustment of the power depending on the load change can be achieved by the thermal power generation. The automatic frequency control, economical load distribution control are also done. In the nighttime, the minimum load operation is required. The voltage change operation below the rated value or the phase-advancing operation is also done depending on the load conditions. 21 figs., 6 tabs.

  17. The Efficiency of Managing School Records by Secondary School ...

    African Journals Online (AJOL)

    This study examined the efficiency of management of school records by secondary school principals in Delta state, Nigeria. As a descriptive survey, the study population comprised all the 602 public secondary school principals in the state. A structured questionnaire was used to gather data which was subsequently ...

  18. Design, enhanced Thermal and Flow efficiency of a 2KW active magnetic regenerator

    DEFF Research Database (Denmark)

    Dallolio, Stefano; Eriksen, Dan; Engelbrecht, Kurt

    power of 1500 W over a temperature span of 25 K. This paper explains several details of the device, such as the design of the magnet, the regenerator housing and the flow system. In particular, this paper investigates the best geometry for the regenerator bed to achieve a thermal and mechanically...... efficient housing to be used in the AMR system. Particular attention has been given to the reduction of the parasitic losses through the regenerator housing: both heat leaks between the magnetocaloric material (MCM) and an adjacent iron ring and the surroundings through a lid on top of the regenerator...

  19. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  20. Increasing the energy efficiency of microcontroller platforms with low-design margin co-processors

    NARCIS (Netherlands)

    Gomez, A.; Bartolini, A.; Rossi, D.; Can Kara, B.; Fatemi, S.H.; Pineda de Gyvez, J.; Benini, L.

    2017-01-01

    Reducing the energy consumption in low cost, performance-constrained microcontroller units (MCU’s) cannot be achieved with complex energy minimization techniques (i.e. fine-grained DVFS, Thermal Management, etc), due to their high overheads. To this end, we propose an energy-efficient, multi-core