WorldWideScience

Sample records for efficient red phosphorescent

  1. Efficient red phosphorescent organic light emitting diodes with double emission layers

    International Nuclear Information System (INIS)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G

    2008-01-01

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A -1 at 10 mA cm -2 is achieved in the D-EML device compared with 3.7 cd A -1 in the single-EML device

  2. Efficient red phosphorescent organic light emitting diodes with double emission layers

    Energy Technology Data Exchange (ETDEWEB)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G [NNL, National Nanotechnology Laboratory of CNR-INFM, Distretto tecnologico ISUFI, Universita del Salento, Italy, Via per Arnesano, Km.5, 73100 Lecce (Italy)], E-mail: mohamed.benkhalifa@unile.it

    2008-08-07

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A{sup -1} at 10 mA cm{sup -2} is achieved in the D-EML device compared with 3.7 cd A{sup -1} in the single-EML device.

  3. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    International Nuclear Information System (INIS)

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong; Zhang Liying; Li Bin

    2009-01-01

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C 2' )iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C 2 )](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A -1 and a maximum luminance of 39 050 cd m -2 . The power efficiency is 8.7 lm W -1 at 100 cd m -2 . Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m -2 .

  4. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer

    International Nuclear Information System (INIS)

    Liu, Baiquan; Xu, Miao; Tao, Hong; Ying, Lei; Zou, Jianhua; Wu, Hongbin; Peng, Junbiao

    2013-01-01

    Highly efficient red phosphorescent organic polymer light-emitting diodes (PhOLEDs) were fabricated based on a solution-processed small-molecule host 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) by doping an iridium complex, tris(1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine)iridium (III) (Ir(MPCPPZ) 3 ). A hole blocking layer 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI) with a function of electron transport was thermally deposited onto the top of CBP layer. The diode with the structure of ITO/PEDOT:PSS (50 nm)/CBP:Ir(MPCPPZ) 3 (55 nm)/TPBI (30 nm)/Ba (4 nm)/Al (120 nm) showed an external quantum efficiency (QE ext ) of 19.3% and luminous efficiency (LE) of 18.3 cd/A at a current density of 0.16 mA/cm 2 , and Commission International de I'Eclairage (CIE) coordinates of (0.607, 0.375). It was suggested that the diodes using TPBI layer exhibited nearly 100% internal quantum efficiency and one order magnitude enhanced LE or QE ext efficiencies. -- Highlights: • Efficient red PhOLEDs based on a solution-processed small-molecule host were fabricated. • By altering volume ratio of chloroform/chlorobenzene solvent, we got best film quality of CBP. • EQE of the diode was 19.3%, indicating nearly 100% internal quantum yield was achieved

  5. Red organic light emitting devices with reduced efficiency roll-off behavior by using hybrid fluorescent/phosphorescent emission structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Tianhang; Choy, Wallace C.H., E-mail: chchoy@eee.hku.h

    2010-11-01

    Organic light emitting device (OLED) with a fluorescence-interlayer-phosphorescence emissive structure (FIP EML) is proposed to solve efficiency roll-off issue effectively. By doping fluorescent emitter of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) and phosphorescent emitter of tris(1-phenylisoquinolinolato-C2,N)iridium(III) (Ir(piq){sub 3}) into the different regions of emission zone to form FIP EML in red OLED, an improvement of more than 20% in luminance efficiency roll-off compared with that of typical phosphorescent OLED with single EML in 10-500 mA/cm{sup 2} range has been obtained. Detailed mechanisms have been studied. Such improvement should be attributed to the distinct roles of the two emitters, where DCJTB mainly used to influence the carrier transport leading to an improved balance of charge carriers while Ir(piq){sub 3} functions as the radiative decay sites for most generated excitons. Meanwhile, with the help of the formation of FIP EML, the redistribution of excitons in recombination zone, the suppression of non-radiative exciton quenching processes and the elimination of energy transfer loss also contribute to the enhancement of efficiency roll-off. The method proposed here may provide a route to develop efficient OLED for high luminance applications.

  6. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2018-02-01

    A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light-emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light-emitting diodes.

  7. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    Science.gov (United States)

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  8. Efficient red organic light-emitting diode sensitized by a phosphorescent Ir compound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.R. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); You, H. [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Tang, H. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); Ding, G.H. [Institute of Advanced Materials and Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Ma, D.G. [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Tian, H. [Institute of Advanced Materials and Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Sun, R.G. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China)], E-mail: runguangsun@126.com

    2008-01-15

    The efficiencies of red organic light-emitting diode (OLED) using tris-(8-hydroxy-quinoline)aluminum (Alq{sub 3}) as host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyra n (DCJTB) as dopant were greatly increased by adding a small amount (0.3 wt%) of Ir compound, iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N',C{sup 4}) (acetyl acetonate) (Ir(C6){sub 2}(acac)), as a sensitizer. The device has a sandwiched structure of indium tin oxide (ITO)/4,4',4''-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine (T-NATA) (40 nm)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4' diamine (NPB) (40 nm)/Alq{sub 3}:DCJTB (0.7 wt%):Ir(C6){sub 2}(acac) (0.3 wt%) (40 nm)/Alq{sub 3} (40 nm)/LiF (1 nm)/Al (120 nm). It can be seen that the current efficiencies of this device remained almost (13.8{+-}1) cd/A from 0.1 to 20,000 cd/m{sup 2} and the Commission International d'Eclairage (CIE) coordinates at (0.60, 0.37) in the range of wide brightness. The significant improvement was attributed to the sensitization effect of the doped Ir(C6){sub 2}(acac), thus the energy of singlet and triplet excitons is simultaneously transferred to the DCJTB.

  9. Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency.

    Science.gov (United States)

    Lee, Jeong-Hwan; Shin, Hyun; Kim, Jae-Min; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2017-02-01

    The use of exciplex forming cohosts and phosphors incredibly boosts the efficiency of organic light-emitting diodes (OLEDs) by providing a barrier-free charge injection into an emitting layer and a broad recombination zone. However, most of the efficient OLEDs based on the exciplex forming cohosts has suffered from the short operational lifetime. Here, we demonstrated phosphorescent OLEDs (PhOLEDs) having both high efficiency and long lifetime by using a new exciplex forming cohost composed of N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) and (1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T). The red-emitting PhOLEDs using the exciplex forming cohost achieved a maximum external quantum efficiency (EQE) of 34.1% and power efficiency of 62.2 lm W 1- with low operating voltages and low efficiency roll-offs. More importantly, the device demonstrated a long lifetime around 2249 h from 1000 cd m -2 to 900 cd m -2 (LT 90 ) under a continuous flow of constant current. The efficiencies of the devices are the highest for red OLEDs with an LT 90 > 1000 h.

  10. Highly efficient red phosphorescent Ir(III) complexes for organic light- emitting diodes based on aryl(6-arylpyridin-3-yl)methanone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Ju; Lee, Kum Hee [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Seok Jae; Seo, Ji Hyun [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-07-29

    A series of phosphorescent Ir(III) complexes 1-4 were synthesized based on aryl(6-arylpyridin-3-yl)methanone ligands, and their photophysical and electroluminescent properties were characterized. Multilayer devices with the configuration, Indium tin oxide/4,4',4''-tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (60 nm)/4,4'-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (20 nm)/Ir(III) complexes doped in N,N'-dicarbazolyl-4,4'-biphenyl (30 nm, 8%)/2,9-dimethyl-4,7-diphenyl-phenathroline (10 nm)/tris(8-hydroxyquinoline)-aluminum (20 nm)/lithium quinolate (2 nm)/ Al (100 nm), were fabricated. Among these, the device employing complex 2 as a dopant exhibited efficient red emission with a maximum luminance, luminous efficiency, power efficiency and quantum efficiency of 16200 cd/m{sup 2} at 14.0 V, 12.20 cd/A at 20 mA/cm{sup 2}, 4.26 lm/W and 9.26% at 20 mA/cm{sup 2}, respectively, with Commission Internationale de l'Enclairage coordinates of (0.63, 0.37) at 12.0 V.

  11. Efficient Phosphorescent OLEDS Based on Vacuum Deposition ...

    African Journals Online (AJOL)

    Thereby, we demonstrate high-efficiency organic light-emitting diodes by incorporating a double emission layer {i.e. both doped with the green phosphorescent dye tris(phenylpyridine)iridium [Ir(ppy)3]} into p-i-n-type device structure based on vacuum deposition technology. The intrinsic and doped transports layers are ...

  12. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    Science.gov (United States)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  13. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    Science.gov (United States)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  14. Spirobifluorene Core-Based Novel Hole Transporting Materials for Red Phosphorescence OLEDs

    Directory of Open Access Journals (Sweden)

    Ramanaskanda Braveenth

    2017-03-01

    Full Text Available Two new hole transporting materials, named HTM 1A and HTM 1B, were designed and synthesized in significant yields using the well-known Buchwald Hartwig and Suzuki cross- coupling reactions. Both materials showed higher decomposition temperatures (over 450 °C at 5% weight reduction and HTM 1B exhibited a higher glass transition temperature of 180 °C. Red phosphorescence-based OLED devices were fabricated to analyze the device performances compared to Spiro-NPB and NPB as reference hole transporting materials. Devices consist of hole transporting material as HTM 1B showed better maximum current and power efficiencies of 16.16 cd/A and 11.17 lm/W, at the same time it revealed an improved external quantum efficiency of 13.64%. This efficiency is considerably higher than that of Spiro-NPB and NPB-based reference devices.

  15. Efficiency optimization of green phosphorescent organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Soo; Jeon, Woo Sik; Yu, Jae Hyung [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Pode, Ramchandra, E-mail: rbpode@khu.ac.k [Department of Physics, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Kwon, Jang Hyuk, E-mail: jhkwon@khu.ac.k [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of)

    2011-03-01

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp{sub 2}) and green phosphorescent Ir(ppy){sub 3} [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m{sup 2} is noticed in this Bepp{sub 2} single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  16. Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles

    Science.gov (United States)

    Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-10-01

    We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.

  17. High efficiency orange-red phosphorescent organic light emitting diodes based on a Pt(II)-pyridyltriazolate complex from a structure optimized for charge balance and reduced efficiency roll-off

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghang; Lin, Ming-Te; Shepherd, Nigel D. [Department of Material Science and Engineering, University of North Texas, Denton, Texas (United States); Chen, Wei-Hsuan; McDougald, Roy Jr.; Arvapally, Ravi; Omary, Mohammad [Department of Chemistry, University of North Texas, Denton, Texas (United States)

    2012-01-15

    We report a high power efficiency (PE) of 44.7 {+-} 0.5 lm/W, high external quantum efficiency (EQE) of 19.7 {+-} 0.1% at 500 Cd/m{sup 2}, and efficiency roll-off of only 4% of the peak value at a useful brightness of 1000 Cd/m{sup 2} from orange-red emitting, organic light emitting diodes featuring 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) as the hole transport layer/electron blocking layer, an emissive layer consisting of 65% bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp){sub 2}) doped into 4,4'-bis(carbazol-9-yl)triphenylamine (CBP), and 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene (TPBI) as the electron transport layer (ETL). Based on a comparison of these structures with devices that did not incorporate an electron/exciton blocker and devices featuring N,N'-dicarbazolyl-3,5-benzene (mCP) as the electron/exciton blocking layer, we ascribe the high efficiency and low efficiency roll-off to better charge balance, and enhanced confinement of excitons and the recombination zone to the emissive layer. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Boucar Diouf

    2012-01-01

    Full Text Available Key factors to control the efficiency in iridium doped red and green phosphorescent light emitting diodes (PhOLEDs are discussed in this review: exciton confinement, charge trapping, dopant concentration and dopant molecular structure. They are not independent from each other but we attempt to present each of them in a situation where its specific effects are predominant. A good efficiency in PhOLEDs requires the triplet energy of host molecules to be sufficiently high to confine the triplet excitons within the emitting layer (EML. Furthermore, triplet excitons must be retained within the EML and should not drift into the nonradiative levels of the electron or hole transport layer (resp., ETL or HTL; this is achieved by carefully choosing the EML’s adjacent layers. We prove how reducing charge trapping results in higher efficiency in PhOLEDs. We show that there is an ideal concentration for a maximum efficiency of PhOLEDs. Finally, we present the effects of molecular structure on the efficiency of PhOLEDs using red iridium complex dopant with different modifications on the ligand to tune its highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO energies.

  19. Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated Iridium (III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Marc [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Dumur, Frédéric, E-mail: frederic.dumur@univ-amu.fr [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Wantz, Guillaume, E-mail: guillaume.wantz@ims-bordeaux.fr [University of Bordeaux, IMS, UMR 5218, F-33400 Talence (France); CNRS, IMS, UMR 5218, F-33400 Talence (France); Vila, Neus; Mbomekallé, Israel [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Bertin, Denis; Gigmes, Didier [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Mayer, Cédric R., E-mail: cmayer@lisv.uvsq.fr [Laboratoire d’Ingénierie des Systèmes de Versailles LISV – EA 4048, Université de Versailles Saint Quentin en Yvelines, 10/12 avenue de l’Europe, 78140 Vélizy (France)

    2013-11-15

    Highly efficient red-emitting Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) based on a neutral vacuum-sublimatable heteroleptic iridium (III) complex have been designed and studied. Heteroleptic complex Ir(piq){sub 2}(acac) was prepared in one step with acetylacetone (acac) as the ancillary ligand. Electronic and spectroscopic properties of Ir(piq){sub 2}(acac) were investigated by UV–visible absorption, fluorescence spectroscopy and cyclic voltammetry. Electrophosphorescent devices comprising Ir(piq){sub 2}(acac) as dopant of TCTA exhibited outstanding electroluminescence performance with a current efficiency of 10.0 cd A{sup −1}, a maximum power efficiency of 7.2 lm W{sup −1} and a maximal brightness of 3540 cd m{sup −2} was reached at 8.0 V. CIE coordinates close to the standard red of the national television system committee were obtained (0.67, 0.33). -- Highlights: • A saturated red OLED has been prepared. • High power efficiency and brightness were obtained. • Thickness of the device was determined as a parameter determining the overall performance. • CIE coordinates close to the standard red of the national television system committee were obtained.

  20. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  1. Hybrid white organic light-emitting devices based on phosphorescent iridium–benzotriazole orange–red and fluorescent blue emitters

    International Nuclear Information System (INIS)

    Xia, Zhen-Yuan; Su, Jian-Hua; Chang, Chi-Sheng; Chen, Chin H.

    2013-01-01

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange–red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N 1 ,C 3 ] iridium acetylacetonate, Ir(TBT) 2 (acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1′;4′,1″]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT) 2 (acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N′-(4,4′-(1E,1′E)-2,2′-(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange–red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: ► An iridium-based orange–red phosphor Ir(TBT) 2 (acac) was applied in hybrid white OLEDs. ► Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. ► Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  2. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    Science.gov (United States)

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  3. Efficient white organic light-emitting diodes based on an orange iridium phosphorescent complex

    International Nuclear Information System (INIS)

    Chen Ping; Zhao Li; Duan Yu; Zhao Yi; Xie Wenfa; Xie Guohua; Liu Shiyong; Zhang Liying; Li Bin

    2011-01-01

    Stable and efficient white light emission is obtained by mixing blue fluorescence and orange phosphorescence. The introduction of double exciton blocking layers brings about well confinement of both charge-carriers and excitons in the emission layer. By systematically adjusting blue fluorescent and orange phosphorescent emission layers thickness, carriers in emission zone are balanced, and electrically generated excitons can be efficiently utilized. One white device with power efficiency of 14.4 lm/W at 100 cd/m 2 has excellently stable spectra. The improvement of performance is attributed to efficient utilization of the excitons and more balance of charge-carriers in emission layer. - Highlights: → Stable and efficient white light emission is obtained by mixing blue fluorescence and orange phosphorescence. → White device has power efficiency of 14.4 and 10.1 lm/W obtained at 100 and 1000 cd/m 2 , respectively. → White device has excellently stable spectra over a wide range of luminance. → Singlet and triplet excitons are sufficiently utilized by fluorescent and phosphorescent materials.

  4. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer

    Science.gov (United States)

    Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young

    2014-11-01

    In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).

  5. Degradation of phosphorescent blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2009-07-01

    Development of phosphorescent materials has significantly improved the efficiency of organic light-emitting diodes (OLEDs). By using efficient red, green and blue phosphorescent emitter materials high efficient white OLEDs can be achieved. However, due to low stability of blue phosphorescent materials the lifetime of phosphorescent white OLEDs remains an issue. As a result, degradation of blue phosphorescent materials needs to be further investigated and improved. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated. For investigation of degradation process the devices were stressed with electrical current and UV-light to study the impact of charge carriers as well as excitons and exciton-polaron quenching on the stability of the blue dye.

  6. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    Directory of Open Access Journals (Sweden)

    Miao Yanqin

    2018-01-01

    Full Text Available By incorporating ultrathin (80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V–9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE of 17.82%–19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  7. Color-tunable and stable-efficiency white organic light-emitting diode fabricated with fluorescent-phosphorescent emission layers

    International Nuclear Information System (INIS)

    Yang, Su-Hua; Shih, Po-Jen; Wu, Wen-Jie; Huang, Yi-Hua

    2013-01-01

    White organic light emitting diodes (OLEDs) were fabricated for color-tunable lighting applications. Fluorescent and phosphorescent hybrid emission layers (EMLs) were used to enhance the luminance and stability of the devices, which have blue-EML/CBP interlayer/green-EML/phosphorescent-sensitized-EML/red-EML structures. The influence of the composition and structure of the EMLs on the electroluminescence properties of the devices were investigated from the viewpoint of their emission spectra. The possible exciton harvesting, diffusion, transport, and annihilation processes occurring in the EMLs were also evaluated. A maximum luminance intensity of 7400 cd/m 2 and a highly stable current efficiency of 3.2 cd/A were obtained. Good color tunability was achieved for the white OLEDs; the chromatic coordinates linearly shifted from pure white (0.300, 0.398) to cold white (0.261, 0.367) when the applied voltage was varied from 10 to 14 V. -- Highlights: • Exciton harvesting, diffusion, transport, and annihilation processes were evaluated. • The electroluminescence properties were investigated from the viewpoint of the emission spectra. • Good color tunability and stable-efficiency were achieved for the white OLEDs

  8. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or

  9. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    Science.gov (United States)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  10. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.

    Science.gov (United States)

    Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas

    2015-01-21

    We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.

  11. Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments

    Science.gov (United States)

    Grigalevicius, Saulius; Tavgeniene, Daiva; Krucaite, Gintare; Blazevicius, Dovydas; Griniene, Raimonda; Lai, Yi-Ning; Chiu, Hao-Hsuan; Chang, Chih-Hao

    2018-05-01

    Dry process-able host materials are well suited to realize high performance phosphorescent organic light-emitting diodes (OLED) with precise deposition of organic layers. We demonstrate in this study high efficiency green and blue phosphorescent OLED devices by employing 3-[bis(9-ethylcarbazol-3-yl)methyl]-9-hexylcarbazole based host material. By doping a typical green emitter of fac tris(2-phenylpyridine)iridium (Ir (ppy)3) in the compound the resultant dry-processed green device exhibited superior performance with low turn on voltage of 3.0 V and with peak efficiencies of 11.4%, 39.9 cd/A and 41.8 lm/W. When blue emitter of bis [2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium (III) was used, the resultant blue device showed turn on voltage of 2.9 V and peak efficiencies of 9.4%, 21.4 cd/A and 21.7 lm/W. The high efficiencies may be attributed to the host possessing high triplet energy level, effective host-to-guest energy transfer and effective carrier injection balance.

  12. Efficiency improvement of flexible fluorescent and phosphorescent organic light emitting diodes by inserting a spin-coating buffer layer

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Shen-Yaur; Su, Shin-Yuan; Juang, Fuh-Shyang

    2009-01-01

    We dissolved hole transport materials α-NPD and NPB in THF solvent, and spin-coated the α-NPD + THF or NPB + THF solution onto ITO anode surface to improve the luminance efficiency and lifetime of flexible fluorescent and phosphorescent organic light emitting diodes. Then the BCP and TPBi were employed as hole blocking layer (HBL) of phosphorescent device and its thickness was optimized. From the experimental results, the maximum luminance efficiency is 4.4 cd/A at 9 V of fluorescent device and 24.4 cd/A of phosphorescent device, respectively. Such an improvement in the device performance was attributed to the smoother surface and good contact between the interface of spin-coated HTL/ITO, the hole were effectively injected from the anode into the organic layer. And the deposited HTL can block excitons from diffusing into the anode to quench, thus improving the luminance efficiency and lifetime greatly.

  13. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-04-15

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function.

  14. Recombination region improvement for reduced efficiency roll-off in phosphorescent OLEDs with dual emissive layers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhu; Zhou, Shunliang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Hu, Song [Chengdu Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    High-performance phosphorescent organic light-emitting diodes (PhOLEDs) by using dual-emissive-layer (DEL) structure to reduce efficiency roll-off were fabricated. The DEL was comprised of a hole-transport-type host of N, N′-bis(naphthalen-1-yl)-N, N′-bis(phenyl)-benzidine (NPB) and a bipolar host of 4,4′-bis(carbazol-9-yl)biphenyl (CBP), which were both doped with an orange phosphorescent dopant of bis[2-(4-tert-butylphenyl)-benzothiazolato-N,C2′]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)]. After the optimization of doping concentration of the first emissive layer (FEL), the device with DEL exhibited 11% lower roll-off power efficiency than single emissive layer devices (SED) when the luminance increased from 1000 cd/m{sup 2} to 10,000 cd/m{sup 2}. The hole–electron recombination zone in DEL was illuminated by inserting an ultrathin fluorescent probe of 4-(dicyanomethylene)-2-tert-butyl-6 (1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) in different emissive regions. The performance improvement was attributed to the optimization of energy barrier and the expansion of exciton formation zone within the DEL. - Highlights: • PhOLEDs by using a dual-emissive-layer structure to reduce efficiency roll-off were fabricated. • The DED exhibited 11% lower efficiency roll-off, 57% lower turn-on voltage, and 174% higher brightness than SED. • A DCJTB fluorescent probe was inserted at different positions of DED to investigate the expansion of exciton formation zone.

  15. Enhanced life time and suppressed efficiency roll-off in phosphorescent organic light-emitting diodes with multiple quantum well structures

    Directory of Open Access Journals (Sweden)

    Ja-Ryong Koo

    2012-03-01

    Full Text Available We demonstrate red phosphorescent organic light-emitting diodes (OLEDs with multiple quantum well structures which confine triplet exciton inside an emitting layer (EML region. Five types of OLEDs, from a single to five quantum wells, are fabricated with charge control layers to produce high efficiencies, and the performance of the devices is investigated. The improved quantum efficiency and lifetime of the OLED with four quantum wells, and its suppressed quantum efficiency roll-off of 17.6%, can be described by the increased electron–hole charge balance owing to the bipolar property as well as the efficient triplet exciton confinement within each EML, and by prevention of serious triplet–triplet and/or triplet–polaron annihilation as well as the Förster self-quenching due to charge control layers.

  16. Effect of mixed hole transporting host on the mobility, Gaussian density of states and efficiencies of a heterojunction phosphorescent organic light emitting diode

    International Nuclear Information System (INIS)

    Talik, N A; Woon, K L; Yap, B K

    2016-01-01

    We present an in-depth study of the hole transport in poly(vinylcarbazole) PVK films blended with small molecule tris(4-carbazoyl-9-ylphenyl)amine (TcTa). Doping TcTa in PVK introduces shallow hole traps when the doping concentration is lower than 20 wt%. It becomes percolative at higher concentrations. The energetic disorder σ of the blended system reduces from ∼72 meV at 0 wt% TcTa to ∼41 meV at 50 wt% TcTa. A correlation between σ and the film morphologies suggests that the blending of TcTa molecules in the film does not only change the film homogeneity and roughness but also the energetic disorder. In addition to the mobility study, we fabricated a red phosphorescent organic light emitting diode with the same blending system. By doping merely 5 wt% of TcTa into PVK as mixed hole-transporting hosts, the efficiency of the deep red heterojunction phosphorescent organic light emitting diode increased from 2 cd A −1 to 4 cd A −1 , suggesting that TcTa molecules assist in hole injection. (paper)

  17. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  18. Enhancement of efficiency and stability of phosphorescent OLEDs based on heterostructured light-emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Byung Doo, E-mail: bdchin@dankook.ac.kr [Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2011-03-23

    The light-emitting efficiency and stability of a phosphorescent organic light-emitting device (OLED), whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping influenced by heterostructured emissive layers, are studied. The variation of the material combination of the heterostructured emitter, both for mixed and double layer configuration, affects the charge injection behaviour, luminous efficiency and stability. Both double and mixed emitter configurations yield low-voltage and high-efficiency behaviour (51 lm W{sup -1} at 1000 cd m{sup -2}; 30 lm W{sup -1} at 10 000 cd m{sup -2}). Such an improvement in power efficiency at elevated brightness is sufficiently universal, while the enhancement of device half-lifetime is rather sensitive to the circumstantial layout of heterostructural emitters. With an optimal mixture of hole-transport type and electron-transport type, a half-lifetime of more than 2500 h at 4000 cd m{sup -2} is obtained, which is 8 times the half-lifetime of control devices with a single emitter structure. The origin and criterion for enhancement of efficiency and lifetime are discussed in terms of the carrier transport behaviour with a specific device architecture.

  19. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  20. Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency

    OpenAIRE

    Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang

    2015-01-01

    To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4?, 4? -...

  1. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  2. Highly efficient phosphorescent blue and white organic light-emitting devices with simplified architectures

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hao, E-mail: chc@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan 32003 (China); Ding, Yong-Shung; Hsieh, Po-Wei; Chang, Chien-Ping; Lin, Wei-Chieh [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan 32003 (China); Chang, Hsin-Hua, E-mail: hhua3@mail.vnu.edu.tw [Department of Electro-Optical Engineering, Vanung University, Chung-Li, Taiwan 32061 (China)

    2011-09-01

    Blue phosphorescent organic light-emitting devices (PhOLEDs) with quantum efficiency close to the theoretical maximum were achieved by utilizing a double-layer architecture. Two wide-triplet-gap materials, 1,3-bis(9-carbazolyl)benzene and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, were employed in the emitting and electron-transport layers respectively. The opposite carrier-transport characteristics of these two materials were leveraged to define the exciton formation zone and thus increase the probability of recombination. The efficiency at practical luminance (100 cd/m{sup 2}) was as high as 20.8%, 47.7 cd/A and 31.2 lm/W, respectively. Furthermore, based on the design concept of this simplified architecture, efficient warmish-white PhOLEDs were developed. Such two-component white organic light-emitting devices exhibited rather stable colors over a wide brightness range and yielded electroluminescence efficiencies of 15.3%, 33.3 cd/A, and 22.7 lm/W in the forward directions.

  3. Highly efficient phosphorescent blue and white organic light-emitting devices with simplified architectures

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Ding, Yong-Shung; Hsieh, Po-Wei; Chang, Chien-Ping; Lin, Wei-Chieh; Chang, Hsin-Hua

    2011-01-01

    Blue phosphorescent organic light-emitting devices (PhOLEDs) with quantum efficiency close to the theoretical maximum were achieved by utilizing a double-layer architecture. Two wide-triplet-gap materials, 1,3-bis(9-carbazolyl)benzene and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, were employed in the emitting and electron-transport layers respectively. The opposite carrier-transport characteristics of these two materials were leveraged to define the exciton formation zone and thus increase the probability of recombination. The efficiency at practical luminance (100 cd/m 2 ) was as high as 20.8%, 47.7 cd/A and 31.2 lm/W, respectively. Furthermore, based on the design concept of this simplified architecture, efficient warmish-white PhOLEDs were developed. Such two-component white organic light-emitting devices exhibited rather stable colors over a wide brightness range and yielded electroluminescence efficiencies of 15.3%, 33.3 cd/A, and 22.7 lm/W in the forward directions.

  4. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    Science.gov (United States)

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    Science.gov (United States)

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism.

    Science.gov (United States)

    Xiong, Yu; Zhao, Zheng; Zhao, Wei Jun; Ma, Hui Li; Peng, Qian; He, Zi Kai; Zhang, Xue Peng; Chen, Yun Cong; He, Xue Wen; Lam, Jacky; Tang, Ben Zhong

    2018-05-08

    Pure organic materials with ultralong room temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, without heavy atoms and carbonyl or heteroatomic groups, they generally show inefficient intersystem crossing (ISC) due to the weak spin-orbit coupling (SOC). Many efforts have been made to enhance SOC but examples in realizing both efficient and ultralong RTP have been limited. Here we present a novel design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism to obtain efficient and ultralong RTP materials. The meta-isomer of carbazole-substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1%, whose performance is among the best RTP materials reported so far. Study on the structure-property relationship demonstrates that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1. This rational design will open a new avenue for exploring novel pure organic RTP materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  8. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  9. Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex.

    Science.gov (United States)

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Bin, Zhengyang; Zhang, Deqiang; Duan, Lian

    2016-02-17

    Exciplex forming cohosts have been widely adopted in phosphorescent organic light-emitting diodes (PHOLEDs), achieving high efficiency with low roll-off and low driving voltage. However, the influence of the exciplex-forming hosts on the lifetimes of the devices, which is one of the essential characteristics, remains unclear. Here, we compare the influence of the bulk exciplex and interface exciplex on the performances of the devices, demonstrating highly efficient orange PHOLEDs with long lifetime at low dopant concentration by efficient Förster energy transfer from the interface exciplex. A bipolar host, (3'-(4,6-diphenyl-1,3,5-triazin-2-yl)-(1,1'-biphenyl)-3-yl)-9-carbazole (CzTrz), was adopted to combine with a donor molecule, tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA), to form exciplex. Devices with energy transfer from the interface exciplex achieve lifetime almost 2 orders of magnitude higher than the ones based on bulk exciplex as the host by avoiding the formation of the donor excited states. Moreover, a highest EQE of 27% was obtained at the dopant concentration as low as 3 wt % for a device with interface exciplex, which is favorable for reducing the cost of fabrication. We believe that our work may shed light on future development of ideal OLEDs with high efficiency, long-lifetime, low roll-off and low cost simultaneously.

  10. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shunliang; Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(tbpbt){sub 2}Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt){sub 2}Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt){sub 2}Ir(acac) as a self-host orange emitter, indicating that (tbpbt){sub 2}Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized.

  11. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    International Nuclear Information System (INIS)

    Zhou, Shunliang; Wang, Qi; Li, Ming; Lu, Zhiyun; Yu, Junsheng

    2014-01-01

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C 2' ]iridium(III) (acetylacetonate) [(tbpbt) 2 Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt) 2 Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt) 2 Ir(acac) as a self-host orange emitter, indicating that (tbpbt) 2 Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized

  12. Hybrid white organic light-emitting diodes combining blue-fluorescent polymer and red phosphorescent Pt(II) complexes as active layer

    Energy Technology Data Exchange (ETDEWEB)

    Germino, Jose Carlos; Faleiros, Marcelo Meira; Moraes, Emmanuel Santos; Atvars, Teresa Dib Zambon, E-mail: kakagermino@hotmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Domingues, Raquel Aparecida [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Quites, Fernando Junior [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil); Freitas, Jilian Nei de [Centro de Tecnologia da Informacao Renato Archer, Campinas, SP (Brazil)

    2016-07-01

    Full text: In this work we proposed a PFO composite with two salicylidene based Pt(II) coordination compounds, the [Pt(salophen)] and [Pt(sal-3,4-ben)] (red emitters), as emissive layer (EML) for Organic Light-emitting Diodes (OLEDs), combining a blue-fluorescent polymer (PFO) with red-phosphorescent Pt(II) coordination complexes in order to obtain an efficient white electroluminescent EML for WOLEDs application. Firstly, [Pt(salophen)] and [Pt(sal-3,4-ben)] were synthesized, purified and characterized by single crystal X-ray diffraction, yielding their respective expected molecular structures. The photoluminescence properties of the devices were evaluated by steady-state (electronic absorption and emission spectroscopies) and transient (fluorescence decays and TRES) measurements. It was observed the presence of non-radiative energy transfer processes between the PFO derivative and Pt(II) complexes. Posteriorly, the Pt(II) complexes were blended with PVK at 1% mol:mol ratio and OLEDs were made, leading to red-emitting devices with high color purity for the two coordination compounds. However, the two devices present low current efficiency values. In order to improve the electroluminescence properties of Pt(II) complexes PhOLEDs, PVK host was substituted by PFO at 0.5, 1.0 and 2.5% mol:mol ratios of complex and it was observed a great improvement of their optical-electronic properties in terms of luminance, voltage, current density and current efficiency in comparison to PVK composites or pure PFO devices. At 2.5% concentration, predominant bands of Pt(II) complexes were observed at low and high voltages. For the other concentrations, a different behavior was observed: the emission bands and device color were function of applied electrical field, exhibiting a red color at lower voltages (5 to 9V) and the PFO characteristic emission between 9 and 13V, leading to a white light emission at 13V. The best results were obtained for [Pt(sal-3,4-ben)] coordination compound

  13. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off

    Science.gov (United States)

    Du, Xiaoyang; Tao, Silu; Huang, Yun; Yang, Xiaoxia; Ding, Xulin; Zhang, Xiaohong

    2015-11-01

    Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy)3 and Ir(2-phq)3 as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000-10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)2bop) in the device.

  14. High-efficiency white organic light-emitting devices with a non-doped yellow phosphorescent emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Juan; Yu Junsheng, E-mail: jsyu@uestc.edu.cn; Hu Xiao; Hou Menghan; Jiang Yadong

    2012-03-30

    Highly efficient phosphorescent white organic light-emitting devices (PHWOLEDs) with a simple structure of ITO/TAPC (40 nm)/mCP:FIrpic (20 nm, x wt.%)/bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2} Prime ] iridium (acetylacetonate) (tbt){sub 2}Ir(acac) (y nm)/Bphen (30 nm)/Mg:Ag (200 nm) have been developed, by inserting a thin layer of non-doped yellow phosphorescent (tbt){sub 2}Ir(acac) between doped blue emitting layer (EML) and electron transporting layer. By changing the doping concentration of the blue EML and the thickness of the non-doped yellow EML, a PHWOLED comprised of higher blue doping concentration and thinner yellow EML achieves a high current efficiency of 31.7 cd/A and Commission Internationale de l'Eclairage coordinates of (0.33, 0.41) at a luminance of 3000 cd/m{sup 2} could be observed. - Highlights: Black-Right-Pointing-Pointer We introduce a simplified architecture for phosphorescent white organic light-emitting device. Black-Right-Pointing-Pointer The key concept of device fabrication is combination of doped blue emissive layer (EML) with non-doped ultra-thin yellow EML. Black-Right-Pointing-Pointer Doping concentration of the blue EML and thickness of the yellow EML are sequentially adjusted. Black-Right-Pointing-Pointer High device performance is achieved due to improved charge carrier balance as well as two parallel emission mechanisms in the EMLs.

  15. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    Science.gov (United States)

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  16. Solution processed multilayer red, green and blue phosphorescent organic light emitting diodes using carbazole dendrimer as a host

    International Nuclear Information System (INIS)

    Hasan, Zainal Abidin; Woon, Kai Lin; Wong, Wah Seng; Ariffin, Azhar; Chen, Show-An

    2017-01-01

    4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl, a novel carbazole dendrimer, has been synthesized. This compound shows an excellent thermal stability with a high glass transition temperature of 283 °C and decomposition temperature of 487 °C. Density functional theory is used to investigate the frontier orbitals. It was found that the Highest Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital levels of 4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl are nearly degenerate to the next highest or lowest frontier orbitals. The electron rich outer dendrons along with Highest Occupied Molecular Orbital level of 5.24 eV as determined from cyclic voltammetry makes 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2, 2'-dimethylbiphenyl a good hole transporting material. This compound also shows a triplet energy of 2.83 eV. Solution processable multilayer red, green and blue phosphorescent organic light emitting diodes are fabricated having 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl) carbazol-9-yl)-2,2'-dimethylbiphenyl as a hole transporting host. It was found that the CIE-coordinates remain constant within a wide range of brightness.

  17. Highly efficient and simplified phosphorescence white organic light-emitting diodes based on synthesized deep-blue host and orange emitter

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Lee, Dong Hyung [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Woo Young [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Lee, Kum Hee [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of)

    2013-10-01

    The authors have demonstrated a highly efficient and stable phosphorescent white organic light-emitting diode (WOLED), which has been achieved by doping only one orange phosphorescent emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N)iridium(III) acetylacetonate into an appropriate deep blue phosphorescent host, 4,4'-bis(4-(triphenylsilyl)phenyl)-1,1'-binaphthyl as an emitting layer (EML). The WOLED has been achieved by effective confinement of triplet excitons to emit a warm white color. The optimized WOLED, with a simple structure as a hole transporting layer-EML-electron transporting layer, showed a maximum luminous efficiency of 22.38 cd/A, a maximum power efficiency of 12.01 lm/W, a maximum external quantum efficiency of 7.32%, and CIEx,y coordinates of (0.38,0.42) at 500 cd/m{sup 2}, respectively. - Highlights: • Highly efficient phosphorescent white organic light-emitting diode (WOLED) • Single emitting layer consists of synthesized deep blue host and orange emitter • The WOLED with high EL efficiencies due to efficient triplet exciton confinement.

  18. Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    Fu, Qiang; Chen, Jiangshan; Shi, Changsheng; Ma, Dongge

    2012-12-01

    The widely used hole-transporting host 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) blended with either a hole-transporting or an electron-transporting small-molecule material as a mixed-host was investigated in the phosphorescent organic light-emitting diodes (OLEDs) fabricated by the low-cost solution-process. The performance of the solution-processed OLEDs was found to be very sensitive to the composition of the mixed-host systems. The incorporation of the hole-transporting 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) into TCTA as the mixed-host was demonstrated to greatly reduce the driving voltage and thus enhance the efficiency due to the improvement of hole injection and transport. On the basis of the mixed-host of TCTA:TAPC, we successfully fabricated low driving voltage and high efficiency blue and white phosphorescent OLEDs. A maximum forward viewing current efficiency of 32.0 cd/A and power efficiency of 25.9 lm/W were obtained in the optimized mixed-host blue OLED, which remained at 29.6 cd/A and 19.1 lm/W at the luminance of 1000 cd/m(2) with a driving voltage as low as 4.9 V. The maximum efficiencies of 37.1 cd/A and 32.1 lm/W were achieved in a single emissive layer white OLED based on the TCTA:TAPC mixed-host. Even at 1000 cd/m(2), the efficiencies still reach 34.2 cd/A and 23.3 lm/W and the driving voltage is only 4.6 V, which is comparable to those reported from the state-of-the-art vacuum-evaporation deposited white OLEDs.

  19. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    Energy Technology Data Exchange (ETDEWEB)

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  20. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    International Nuclear Information System (INIS)

    Eersel, H. van; Coehoorn, R.; Bobbert, P. A.; Janssen, R. A. J.

    2014-01-01

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy) 3 ) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J 90 , the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  1. Low roll-off and high efficiency orange OLEDs using green and red dopants in an exciplex forming co-host

    Science.gov (United States)

    Lee, Sunghun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Park, Young-Seo; Kim, Jang-Joo

    2013-09-01

    We present high efficiency orange emitting OLEDs with low driving voltage and low roll-off of efficiency using an exciplex forming co-host by (1) co-doping of green and red emitting phosphorescence dyes in the host and (2) red and green phosphorescent dyes doped in the host as separate red and green emitting layers. The orange OLEDs achieved a low turn-on voltage of 2.4 V and high external quantum efficiencies (EQE) of 25.0% and 22.8%, respectively. Moreover, the OLEDs showed low roll-off of efficiency with an EQE of over 21% and 19.6% at 10,000 cd/m2, respectively. The devices displayed good orange color with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicated that both energy transfer and direct charge trapping took place in the devices.

  2. [1,2,4]Triazolo[1,5-a]pyridine as Building Blocks for Universal Host Materials for High-Performance Red, Green, Blue and White Phosphorescent Organic Light-Emitting Devices.

    Science.gov (United States)

    Song, Wenxuan; Shi, Lijiang; Gao, Lei; Hu, Peijun; Mu, Haichuan; Xia, Zhenyuan; Huang, Jinhai; Su, Jianhua

    2018-02-14

    The electron-accepting [1,2,4]triazolo[1,5-a]pyridine (TP) moiety was introduced to build bipolar host materials for the first time, and two host materials based on this TP acceptor and carbazole donor, namely, 9,9'-(2-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-CzTP) and 9,9'-(5-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (m-CzTP), were designed and synthesized. These two TP-based host materials possess a high triplet energy (>2.9 eV) and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital levels as well as the bipolar transporting feature, which permits their applicability as universal host materials in multicolor phosphorescent organic light-emitting devices (PhOLEDs). Blue, green, and red PhOLEDs based on o-CzTP and m-CzTP with the same device configuration all show high efficiencies and low efficiency roll-off. The devices hosted by o-CzTP exhibit maximum external quantum efficiencies (η ext ) of 27.1, 25.0, and 15.8% for blue, green, and red light emitting, respectively, which are comparable with the best electroluminescene performance reported for FIrpic-based blue, Ir(ppy) 3 -based green, and Ir(pq) 2 (acac)-based red PhOLEDs equipped with a single-component host. The white PhOLEDs based on the o-CzTP host and three lumophors containing red, green, and blue emitting layers were fabricated with the same device structure, which exhibit a maximum current efficiency and η c of 40.4 cd/A and 17.8%, respectively, with the color rendering index value of 75.

  3. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  4. Highly efficient and stable white organic light emitting diode base on double recombination zones of phosphorescent blue/orange emitters.

    Science.gov (United States)

    Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung

    2011-08-01

    We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.

  5. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    Science.gov (United States)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  6. High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit.

    Science.gov (United States)

    Ban, Xinxin; Sun, Kaiyong; Sun, Yueming; Huang, Bin; Ye, Shanghui; Yang, Min; Jiang, Wei

    2015-11-18

    Three solution-processable exciplex-type host materials were successfully designed and characterized by equal molar blending hole transporting molecules with a newly synthesized electron transporting material, which possesses high thermal stability and good film-forming ability through a spin-coating technique. The excited-state dynamics and the structure-property relationships were systematically investigated. By gradually deepening the highest occupied molecular orbital (HOMO) level of electron-donating components, the triplet energy of exciplex hosts were increased from 2.64 to 3.10 eV. Low temperature phosphorescence spectra demonstrated that the excessively high triplet energy of exciplex would induce a serious energy leakage from the complex state to the constituting molecule. Furthermore, the low energy electromer state, which only exists under the electroexcitation, was found as another possible channel for energy loss in exciplex-based phosphorescent organic light-emitting diodes (OLEDs). In particular, as quenching of the exciplex-state and the triplet exciton were largely eliminated, solution-processed blue phosphorescence OLEDs using the exciplex-type host achieved an extremely low turn-on voltage of 2.7 eV and record-high power efficiency of 22.5 lm W(-1), which were among the highest values in the devices with identical structure.

  7. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Aziz, Hany

    2014-01-01

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10 5  cd/m 2 is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  8. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10{sup 5} cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  9. De Novo Design of Boron-Based Host Materials for Highly Efficient Blue and White Phosphorescent OLEDs with Low Efficiency Roll-Off.

    Science.gov (United States)

    Xue, Miao-Miao; Huang, Chen-Chao; Yuan, Yi; Cui, Lin-Song; Li, Yong-Xi; Wang, Bo; Jiang, Zuo-Quan; Fung, Man-Keung; Liao, Liang-Sheng

    2016-08-10

    Borane is an excellent electron-accepting species, and its derivatives have been widely used in a variety of fields. However, the use of borane derivatives as host materials in OLEDs has rarely reported because the device performance is generally not satisfactory. In this work, two novel spiro-bipolar hosts with incorporated borane were designed and synthesized. The strategies used in preparing these materials were to increase the spatial separation of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) in the molecules, tune the connecting positions of functional groups, and incorporate specific functional groups with desirable thermal stability. Based on these designs, phosphorescent OLEDs with borane derivatives as hosts and with outstanding device performances were obtained. In particular, devices based on SAF-3-DMB/FIrpic exhibited an external quantum efficiency (EQE) of >25%. More encouragingly, the device was found to have quite a low efficiency roll-off, giving an efficiency of >20% even at a high brightness of 10000 cd/m(2). Furthermore, the EQE of the three-color-based (R + G + B) white OLED employing SAF-3-DMB as a host was also as high as 22.9% with CIE coordinates of (x, y) = (0.40, 0.48). At a brightness of 5000 cd/m(2), there was only a 3% decrease in EQE from its maximum value, implying a very low efficiency roll-off.

  10. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui; Jabbour, Ghassan E.

    2013-01-01

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices

  11. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  12. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety.

    Science.gov (United States)

    Chen, Xiwen; Liao, Jin-Long; Liang, Yongmin; Ahmed, M O; Tseng, Hao-En; Chen, Show-An

    2003-01-22

    We report a new route for the design of electroluminescent polymers by grafting high-efficiency phosphorescent organometallic complexes as dopants and charge transport moieties onto alky side chains of fully conjugated polymers for polymer light-emitting diodes (PLED) with single layer/single polymers. The polymer system studied involves polyfluorene (PF) as the base conjugated polymer, carbazole (Cz) as the charge transport moiety and a source for green emission by forming an electroplex with the PF main chain, and cyclometalated iridium (Ir) complexes as the phosphorescent dopant. Energy transfer from the green Ir complex or an electroplex formed between the fluorene main chain and side-chain carbazole moieties, in addition to that from the PF main chain, to the red Ir complex can significantly enhance the device performance, and a red light-emitting device with the high efficiency 2.8 cd/A at 7 V and 65 cd/m2, comparable to that of the same Ir complex-based OLED, and a broad-band light-emitting device containing blue, green, and red peaks (2.16 cd/A at 9 V) are obtained.

  13. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui

    2013-05-29

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices with the emissive layer consisting of multiple platinum-complex/spacer layer cells show a peak external quantum efficiency of 18.1%, which is among the best EQE values for platinum-complex based light emitting devices. Devices with an ultrathin phosphor emissive layer show stronger luminance decay with the operating time compared to the counterpart devices having a host-guest emissive layer.

  14. Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence.

    Science.gov (United States)

    Henwood, Adam F; Lesieur, Mathieu; Bansal, Ashu K; Lemaur, Vincent; Beljonne, David; Thompson, David G; Graham, Duncan; Slawin, Alexandra M Z; Samuel, Ifor D W; Cazin, Catherine S J; Zysman-Colman, Eli

    2015-05-01

    We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L')] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L' = PCy 3 , or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh 3 )]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.

  15. Investigation of phosphorescent blue organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2008-07-01

    Recently, rapid development of phosphorescent materials has significantly improved the efficiency of organic light emitting diodes (OLEDs). By using efficient phosphorescent emitter materials white OLEDs with high power efficiency values could be demonstrated. But especially blue phosphorescent devices, due to stability issues, need to be further investigated und optimized. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated and characterized to study the impact of charge carriers on device performance.

  16. Energetic Efficiency of red palm oil

    Directory of Open Access Journals (Sweden)

    Byron Jiménez

    2013-11-01

    Full Text Available The main goal of this paper is to determine the energy efficiency in the production of red palm oil (Elaeis guineensis by using the biophysical indicator EROI, postulated by the Ecological Economics. This indicator is applied to compare the energy used in the preparation of synthetic fertilizers (to fill its nutritional demands versus the energy contained in the oil. In 2009, there were 195.550 hectares of land planted with African palm in Ecuador (INEC, 2011. In addition, between 2002 and 2009, there were 2,7 million tons of red oil (FEDEPAL, 2010. It is determined that for each unit of energy consumed, 4.82 units of energy are contained in the red oil. The energy used in making pesticides for cultivation, consumed in transportation, refining, and post harvest is excluded because this other energy would drastically reduce the absolute data of the indicator, which is already inefficient for the high energy consumption it requires to generate the energy contained in the oil. On the other hand, agroecology has proven to be more efficient in the generation of energy per unit of invested energy (Altieri et. al., 2010; Moore, 2004.

  17. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host.

    Science.gov (United States)

    Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo

    2017-10-19

    With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.

  18. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  19. Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Ramanaskanda Braveenth

    2018-03-01

    Full Text Available Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9H-yl-9,9′ spirobi[fluorene] (SP1 and 2,7-di(10H-phenothiazin-10-yl-9,9′-spirobi[fluorene] (SP2, were designed and synthesized by using the Buchwald–Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W and current (38.41 cd/A efficiencies when compare with the 4,4′-bis(N-phenyl-1-naphthylaminobiphenyl (NPB-based reference device (30.33 lm/W and 32.83 cd/A. The external quantum efficiency (EQE of SP2 was 13.43%, which was higher than SP1 (13.27% and the reference material (11.45% with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies.

  20. Enhanced Electron Affinity and Exciton Confinement in Exciplex-Type Host: Power Efficient Solution-Processed Blue Phosphorescent OLEDs with Low Turn-on Voltage.

    Science.gov (United States)

    Ban, Xinxin; Sun, Kaiyong; Sun, Yueming; Huang, Bin; Jiang, Wei

    2016-01-27

    A benzimidazole/phosphine oxide hybrid 1,3,5-tris(1-(4-(diphenylphosphoryl)phenyl)-1H-benzo[d]imidazol-2-yl)benzene (TPOB) was newly designed and synthesized as the electron-transporting component to form an exciplex-type host with the conventional hole-transporting material tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Because of the enhanced triplet energy and electron affinity of TPOB, the energy leakage from exciplex-state to the constituting molecule was eliminated. Using energy transfer from exciplex-state, solution-processed blue phosphorescent organic light-emitting diodes (PHOLEDs) achieved an extremely low turn-on voltage of 2.8 V and impressively high power efficiency of 22 lm W(-1). In addition, the efficiency roll-off was very small even at luminance up to 10 000 cd m(-2), which suggested the balanced charge transfer in the emission layer. This study demonstrated that molecular modulation was an effective way to develop efficient exciplex-type host for high performanced PHOLEDs.

  1. High-efficiency and heavily doped organic light-emitting devices based on quench-resistant red iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao, Juan; Wang, Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2013-02-15

    Highly efficient red phosphorescent organic light-emitting devices had been fabricated using a new iridium complex, bis[2-(9,9-dimethyl-9H-fluoren-2-yl) benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(fbt){sub 2}Ir(acac)] as phosphor. With a high doping concentration of 15 wt%, the device exhibited a maximum luminance efficiency, power efficiency and external quantum efficiency (EQE) of 35.2 cd/A, 21.3 lm/W, 18.2%, respectively, indicating an excellent quench-resistant property of (fbt){sub 2}Ir(acac). The results are appealing towards the development of 'easy-to-make' OLEDs. It has been demonstrated that the high efficiency arises from more balanced charge carriers in the emissive layer. - Highlight: Black-Right-Pointing-Pointer We obtained efficient OLEDs based on newly synthesized quench-resistant phosphor. Black-Right-Pointing-Pointer Peak performance was obtained with 15 wt% (fbt){sub 2}Ir(acac) doped device. Black-Right-Pointing-Pointer Our devices gave one of the best performance among heavily-doped red devices. Black-Right-Pointing-Pointer Balanced carrier transport is crucial for the high performance of our devices.

  2. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China)

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  3. Controlling excitons. Concepts for phosphorescent organic LEDs at high brightness

    Energy Technology Data Exchange (ETDEWEB)

    Reineke, Sebastian

    2009-11-15

    }(acac). Compared to Ir(ppy){sub 3}, this emitter has a much smaller ground state dipole moment, suggesting that the improved performance is a result of weaker aggregation in the mixed film. The knowledge gained in the investigation of triplet-triplet annihilation is further used to develop a novel emission layer design for white organic LEDs. It comprises three phosphorescent emitters for blue, green, and red emission embedded in a multilayer architecture. The key feature of this concept is the matrix material used for the blue emitter FIrpic: Its triplet energy is in resonance with the FIrpic excited state energy which enables low operating voltages and high power efficiencies by reducing thermal relaxation. In order to further increase the device efficiency, the OLED architecture is optically optimized using high refractive index substrates and thick electron transport layers. These devices reach efficiencies which are on par with fluorescent tubes - the current efficiency benchmark for light sources. (orig.)

  4. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes

    International Nuclear Information System (INIS)

    Baldo, M.; Segal, M.

    2004-01-01

    The development of highly efficient phosphorescent molecules has approximately quadrupled the quantum efficiency of organic light emitting devices (OLEDs). By harnessing triplet as well as singlet excitons, efficient molecular phosphorescence has also enabled novel studies of exciton physics in organic semiconductors. In this review, we will summarize recent progress in understanding exciton formation and energy transfer using phosphorescent molecular probes. Particular emphasis is given to two topics of current interest: energy transfer in blue phosphorescent OLEDs, and quantifying the formation ratio of singlet to triplet excitons in small-molecular weight materials and polymers. (orig.)

  5. Degradation of phosphorescent blue organic light-emitting diodes (OLED); Degradation der phosphoreszenten blauen organischen Leuchtdioden

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu

    2011-07-01

    Phosphorescent organic materials harvest singlet and triplet excitons through inter-system crossing and improve the efficiency of organic light-emitting diodes (OLEDs). This improvement increases the potential of OLEDs, particularly white phosphorescent OLEDs (PHOLEDs), for lighting application. Although much progress has been made in the development of white PHOLEDs, the lifetime of phosphorescent emitters, especially the blue emitter, still needs to be improved. This thesis discusses the developments of blue PHOLEDs and investigations of degradation mechanisms. For development of blue PHOLEDs, two phosphorescent blue emitters were investigated: commercially available FIrpic and B1 provided by BASF. By varying the matrix and blocker materials, diode efficiency and lifetime have been investigated and improved. Blue PHOLEDs with emitter B1 show better efficiency and lifetime than devices with FIrpic. From lifetime measurement with constant DC current density, intrinsic degradation including luminance loss and voltage increase on both FIrpic and B1 PHOLEDs was observed. Photoluminescence measurement shows degradation in the emitting layers. To investigate the degradation of emitter layers, single-carrier devices with emitter systems or pure matrix materials were fabricated. Degradation on these devices was investigated by applying constant DC current, UV-irradiation and combination of both. We found that due to excited states (excitons), FIrpic molecules become unstable and polarons would enhance the degradation of FIrpic during DC operation and UV-excitation. To investigate the impact the exciton formation and exciton decay have on the degradation of FIrpic molecules, red phosphorescent emitter Ir(MDQ){sub 2}(acac) was doped in blue emitter layer TCTA:20% FIrpic. The doping concentration of Ir(MDQ){sub 2}(acac) was much lower than FIrpic to ensure that most of the exciton formation occurred on FIrpic molecules. Lower triplet energy of Ir(MDQ){sub 2}(acac) molecules

  6. Profitability and Efficiency of Red Onion Farming

    Directory of Open Access Journals (Sweden)

    Imron Rosyadi

    2014-12-01

    Full Text Available The purpose of this research is to determine and analyze the profitability and performance of onion farming marketing margins; analyze and know the parts of prices received by farmers and analyze the efficiency of onion farming in the district of Brebes. Samples taken in this study is 30 onion farmers in the district of Brebes, who settled in six villages, each village was taken 5 farmers as the research sample. These results indicate that the location of onion farming research does not provide benefits significantly to the household economy of farmers. Higher selling prices at the retail level and supermarkets do not have a significant impact on the level of profits of farming in the study area. Farming is done by farmers in the study area is inefficient. Onion marketing chain in the study area is relatively long, which consists of 4 lines of marketing.

  7. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Teng [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  8. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly Simplified Reddish Orange Phosphorescent Organic Light-Emitting Diodes Incorporating a Novel Carrier- and Exciton-Confining Spiro-Exciplex-Forming Host for Reduced Efficiency Roll-off.

    Science.gov (United States)

    Xu, Ting; Zhang, Ye-Xin; Wang, Bo; Huang, Chen-Chao; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-01-25

    A novel exciplex-forming host is applied so as to design highly simplified reddish orange light-emitting diodes (OLEDs) with low driving voltage, high efficiency, and an extraordinarily low efficiency roll-off, by combining N,N-10-triphenyl-10H-spiro [acridine-9,9'-fluoren]-3'-amine (SAFDPA) with 4,7-diphenyl-1,10-phenanthroline (Bphen) doped with trivalent iridium complex bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate)iridium(III) (Ir(MDQ) 2 (acac)). The reddish orange OLEDs achieve a strikingly high power efficiency (PE) of 31.80 lm/W with an ultralow threshold voltage of 2.24 V which is almost equal to the triplet energy level of the phosphorescent reddish orange emitting dopant. The power efficiency of the device with the exciplex-forming host is enhanced, achieving 36.2% mainly owing to the lower operating voltage by the novel exciplex forming cohost, compared with the reference device (23.54 lm/W). Moreover, the OLEDs show extraordinarily low current efficiency (CE) roll-off to 1.41% at the brightness from 500 to 5000 cd/m 2 with a maximal CE of 32.87 cd/A (EQE max = 11.01%). The devices display a good reddish orange color (CIE of (0.628, 0.372) at 500 cd/m 2 ) nearly without color shift with increasing brightness. Co-host architecture phosphorescent OLEDs show a simpler device structure, lower working voltage, and a better efficiency and stability than those of the reference devices without the cohost architecture, which helps to simplify the OLED structure, lower the cost, and popularize OLED technology.

  10. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  11. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    Science.gov (United States)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  12. Highly efficient and concentration-insensitive organic light-emitting devices based on self-quenching-resistant orange–red iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yige; Wang, Xu [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-11-15

    Orange–red phosphorescent organic light-emitting devices (PHOLEDs) with high efficiency and concentration insensitivity based on a novel iridium complex, bis[2-(biphenyl-4-yl)benzothiazole-N,C{sup 2}′]iridium(III) (acetylacetonate) [(4Phbt){sub 2}Ir(acac)], were fabricated. With the heavily doped emissive layer (EML) of 4,4′-N,N′-dicarbazolylbiphenyl (CBP): (4Phbt){sub 2}Ir(acac) in a wide and easily controlled dopant concentration range from 12 wt% to 24 wt%, a maximum power efficiency of 29 lm/W and an external quantum efficiency of >16% of the PHOLEDs were obtained, implying the insensitivity of electroluminescence (EL) properties to doping concentration. Meanwhile, a maximum power efficiency of 5.0 lm/W was achieved from a non-doped device with neat (4Phbt){sub 2}Ir(acac) as the EML, indicating a superior property of self-quenching resistance. The mechanism of direct exciton formation, in which exciton-formation regions are distributed throughout the EML, is responsible for the significant alleviation of triplet–triplet annihilation and superior EL performance. - Highlights: • Highly efficient and concentration-insensitive PHOLEDs were obtained. • The high efficiency of non-doped PHOLEDs indicated a quenching-resistant property. • The independence of EL spectra on doping concentration was observed. • The heavily doped devices were dominated by mechanism of direct exciton formation.

  13. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  14. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  15. White Organic Light-Emitting Diodes Using Two Phosphorescence Materials in a Starburst Hole-Transporting Layer

    Directory of Open Access Journals (Sweden)

    Tomoya Inden

    2012-01-01

    Full Text Available We fabricated two kinds of white organic light-emitting diodes (WOLEDs; one consisted of two emissive materials of red and blue, and the other of three emissive materials of red, green, and blue. The red and blue emissive materials were phosphorescent. We evaluated the thickness dependence of the CIE coordinate, the external quantum efficiency (EQE, and the luminance by changing the thicknesses of the Ir(btp2acac and FIrpic layers. Samples consisting of three emissive materials revealed the best CIE coordinate and the best EQE in the same sample structure. On the other hand, the samples consisting of two emissive materials revealed the best CIE coordinate and the best EQE in different structures. The best CIE coordinate of (0.33, 0.36 was observed by changing the thicknesses of the stacked active layers. The best EQE was 9.73%, which was observed in the sample consisting of different thickness of stacked active layers.

  16. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    International Nuclear Information System (INIS)

    Hong, Lin-Ann; Vu, Hoang-Tuan; Juang, Fuh-Shyang; Lai, Yun-Jr; Yeh, Pei-Hsun; Tsai, Yu-Sheng

    2013-01-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm 2 , and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  17. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Lin-Ann; Vu, Hoang-Tuan [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Juang, Fuh-Shyang, E-mail: fsjuang@seed.net.tw [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Lai, Yun-Jr [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Yeh, Pei-Hsun [Raystar Optronics, Inc., 5F No. 25, Keya Rd. Daya Township, Taichung County, Taiwan (China); Tsai, Yu-Sheng [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China)

    2013-10-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm{sup 2}, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  18. Electron-Rich 4-Substituted Spirobifluorenes: Toward a New Family of High Triplet Energy Host Materials for High-Efficiency Green and Sky Blue Phosphorescent OLEDs.

    Science.gov (United States)

    Quinton, Cassandre; Thiery, Sébastien; Jeannin, Olivier; Tondelier, Denis; Geffroy, Bernard; Jacques, Emmanuel; Rault-Berthelot, Joëlle; Poriel, Cyril

    2017-02-22

    We report herein a detailed structure-properties relationship study of the first examples of electron-rich 4-substituted spirobifluorenes for organic electronic applications, namely, 4-phenyl-N-carbazole-spirobifluorene (4-PhCz-SBF) and 4-(3,4,5-trimethoxyphenyl)-spirobifluorene (4-Ph(OMe) 3 -SBF). The incorporation of the electron-rich moieties in the ortho position of the biphenyl linkage (position C4) induces unique properties, very different from those previously described in the literature for this family of semiconductors. Both dyes can be readily synthesized, possess high triplet energies and excellent thermal stability, and their HOMO energy levels are highly increased compared to those of other 4-substituted SBFs. We also provide in this work the first rationalization of the peculiar fluorescence of 4-substituted SBFs. Finally, the present dyes have been successfully incorporated as host in green and blue phosphorescent organic light-emitting diodes with high performance either for the green (EQE of 20.2%) or the blue color (EQE of 9.6%). These performances are, to the best of our knowledge, among the highest reported to date for 4-substituted SBF derivatives.

  19. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    Science.gov (United States)

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  20. Phosphorescence and delayed fluorescence properties of fluorone dyes in bio-related films

    International Nuclear Information System (INIS)

    Penzkofer, A.; Tyagi, A.; Slyusareva, E.; Sizykh, A.

    2010-01-01

    Graphical abstract: The spectral and temporal phosphorescence and delayed fluorescence behaviour of five fluorescein dyes in gelatine, starch, and chitosan is studied and basic parameters are determined. Research highlights: → Phosphorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Phosphorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → General theory of short-pulse excited phosphorescence and delayed fluorescence is presented and relevant parameters are extracted. - Abstract: The phosphorescence and delayed fluorescence behaviour of the fluorone dyes disodium fluorescein (FL, uranine), 4,5-dibromofluorescein (DBF), eosin Y (EO), erythrosine B (ER), and rose bengal (RB) in bio-films of gelatine, starch, and chitosan at room temperature is studied. Phosphorescence and delayed fluorescence quantum yields and lifetimes were measured. The singlet-triplet dynamics is described and applied to the fluorone dyes for parameter extraction. For uranine films at room temperature no phosphorescence could be resolved. The efficiency of singlet-triplet intersystem crossing increased in the order φ ISC (DBF) ISC (EO) ISC (ER) ISC (RB) due to the heavy atom effect on spin-orbit coupling. The phosphorescence quantum yields increased in the order φ P (DBF) P (EO) P (RB) P (ER). The phosphorescence lifetimes followed the order τ P (DBF) > τ P (EO) > τ P (ER) > τ P (RB).

  1. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  2. Fluorescence and phosphorescence of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, Stanislav L., E-mail: bondarev@imaph.bas-net.by [Minsk State Higher Radioengineering College, 220005 Minsk (Belarus); Knyukshto, Valeri N. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2013-10-15

    Rutin is one of the most promising flavonoid from a pharmacological and biochemical point of view. Here we have explored its spectroscopic and photophysical properties at room temperature and 77 K using steady-state absorption-luminescence methods and pulse spectroscopy equipment. By excitation into the absorption band 1 of rutin in methanol at room temperature the normal Stokes' shifted fluorescence with a maximum at 415 nm and quantum yield of 2×10{sup −4} was revealed. However, by excitation into the bands 2 and 3 any emission wasn’t observed. At 77 K in ethanol glass we have observed fluorescence at 410 nm and phosphorescence at 540 nm for the first time. As a result the adequate energetic scheme including the lowest electronic excited singlet at 26000 cm{sup −1} and triplet at 19600 cm{sup −1} states was proposed. -- Highlights: • Rutin fluorescence and phosphorescence at 77 K were revealed for the first time. • Room temperature fluorescence is determined by maximum at 415 nm and yield of 2×10{sup −4}. • Violation of Vavilov–Kasha rule by excitation into the absorption bands 2 and 3. • Fluorescence and phosphorescence in rutin are caused by the allowed π, π{sup (⁎)} transitions.

  3. Far-red light is needed for efficient photochemistry and photosynthesis.

    Science.gov (United States)

    Zhen, Shuyang; van Iersel, Marc W

    2017-02-01

    The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Science.gov (United States)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  5. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    KAUST Repository

    Whited, Matthew T.; Djurovich, Peter I.; Roberts, Sean T.; Durrell, Alec C.; Schlenker, Cody W.; Bradforth, Stephen E.; Thompson, Mark E.

    2011-01-01

    efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable

  6. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit.

    Science.gov (United States)

    Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-07-16

    A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  8. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  9. Efficient single light-emitting layer pure blue phosphorescent organic light-emitting devices with wide gap host and matched interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunlong; Zhou, Liang, E-mail: zhoul@ciac.ac.cn; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2015-12-15

    In this work, we report the highly efficient pure blue electroluminescent (EL) device based on bis[(3,5-difluoro-4-cyanophenyl)pyridine]picolinate iridium(III) (FCNIrpic) doped 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi) film. The matched energy levels of FCNIrpic and CzSi are helpful in facilitating the trapping of carriers, while the high triplet energy of CzSi can well avoid the undesired reverse energy transfer. More importantly, the injection of holes was further accelerated by inserting 5 nm 4,4′,4″-Tri(9-carbazoyl)triphenylamine (TcTa) film between hole transport layer and lighting-emitting layer (EML) as interlayer. Consequently, EL performances were significantly enhanced attributed to wider recombination zone and better balance of holes and electrons. Interestingly, single-EML device displayed higher performances than those of double-EMLs device. Finally, pure blue EL device with the structure of ITO/MoO{sub 3} (3 nm)/TAPC (40 nm)/TcTa (5 nm)/FCNIrpic (20%): CzSi (30 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (100 nm) realized the maximum brightness, current efficiency, power efficiency and external quantum efficiency up to 12,505 cd/m{sup 2}, 36.20 cd/A, 28.42 lm/W and 16.9%, respectively. Even at the high brightness of 1000 cd/m{sup 2}, current efficiency and external quantum efficiency up to 17.40 cd/A and 8.1%, respectively, can be retained by the same device.

  10. Tetradentate Schiff base platinum(II) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices.

    Science.gov (United States)

    Che, Chi-Ming; Chan, Siu-Chung; Xiang, Hai-Feng; Chan, Michael C W; Liu, Yu; Wang, Yue

    2004-07-07

    The capabilities of readily prepared and sublimable Pt(II) Schiff base triplet emitters as OLED dopants have been examined; maximum luminous and power efficiencies and luminance of 31 cd A(-1), 14 lm W(-1), and 23,000 cd m(-2), respectively, and white EL (CIE: 0.33, 0.35) by simultaneous host/dopant emission, have been achieved.

  11. Study of different roles phosphorescent material played in different positions of organic light emitting diodes

    Science.gov (United States)

    Keke, Gu; Jian, Zhong; Jiule, Chen; Yucheng, Chen; Ming, Deng

    2013-09-01

    Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4- tert-butylphenyl)benzothiazolato- N,C2'] iridium(acetylacetonate) [( t-bt)2Ir(acac)] in different positions. The results showed ( t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without ( t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and ( t-bt)2Ir(acac), and got devices with stable white color.

  12. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    Directory of Open Access Journals (Sweden)

    Wang Hua

    2014-02-01

    Full Text Available In this paper, a novel type of white-light organic light emitting diode (OLED with high color stability was reported, in which the yellow-light emission layer of (4,4′-N,N′-dicarbazolebiphenyl (CBP : tris(2-phenylquinoline-C2,N′iridium(III (Ir(2-phq3 was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylaminopheny1]cyclohexane (TAPC : bis[4,6-(di-fluorophenyl-pyridinato-N,C2′]picolinate (FIrpic and tris[3-(3-pyridylmesityl]borane (3TPYMB:FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y coordinates only shift from (0.34, 0.37 to (0.33, 0.37 as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  13. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  14. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    Science.gov (United States)

    Hua, Wang; Du, Xiaogang; Su, Wenming; Lin, Wenjing; Zhang, Dongyu

    2014-02-01

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4'-N,N'-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N')iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  15. Host-free, yellow phosphorescent material in white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng, E-mail: osolomio.ac89g@nctu.edu.t [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan 310 (China)

    2010-11-10

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W{sup -1} at a practical brightness of 1000 cd m{sup -2} with Commission Internationale d'Echariage coordinates (CIE{sub x,y}) of (0.37, 0.47) was achieved. (fast track communication)

  16. Improvements of phosphorescent white OLEDs performance for lighting application.

    Science.gov (United States)

    Lee, Jonghee; Chu, Hye Yong; Lee, Jeong-Ik; Song, Ki-Im; Lee, Su Jin

    2008-10-01

    We developed white OLED device with high power efficiency, in which blue and orange phosphorescent emitters were used. By introduction of multi-functional interlayer which has partial doping of orange dopant inside EBL, we report WOLEDs with peak external efficiencies up to (14.1% EQE, 31.3 Im/W) without light out-coupling technique. At 1000 cd/m2, the performance achieved was 11.9% EQE, 18.7 Im/W with CIE = (0.39, 0.44). We also found that WOLED performances are related with doping ratio of the orange dopant that was inserted inside EBL.

  17. Efficient approach for bioethanol production from red seaweed Gelidium amansii.

    Science.gov (United States)

    Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A. [Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  19. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Science.gov (United States)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  20. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    International Nuclear Information System (INIS)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.; Eersel, H. van

    2016-01-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  1. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host.

    Science.gov (United States)

    Zhao, Bo; Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Wu, Hairuo; Yan, Xingwu; Jin, Fangming; Gao, Yuan; Liu, Chengyuan

    2015-05-29

    In this manuscript, we demonstrated a highly efficient DCJTB emission with delayed fluorescent exciplex TCTA:3P-T2T as the host. For the 1.0% DCJTB doped concentration, a maximum luminance, current efficiency, power efficiency and EQE of 22,767 cd m(-2), 22.7 cd A(-1), 21.5 lm W(-1) and 10.15% were achieved, respectively. The device performance is the best compared to either red OLEDs with traditional fluorescent emitter or traditional red phosphor of Ir(piq)3 doped into CBP host. The extraction of so high efficiency can be explained as the efficient triplet excitons up-conversion of TCTA:3P-T2T and the energy transfer from exciplex host singlet state to DCJTB singlet state.

  2. Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs

    Science.gov (United States)

    Niu, Quan; Blom, Paul W. M.; May, Falk; Heimel, Paul; Zhang, Minlu; Eickhoff, Christian; Heinemeyer, Ute; Lennartz, Christian; Crǎciun, N. Irina

    2017-11-01

    In state-of-the-art blue phosphorescent organic light-emitting diode (PHOLED) device architectures, electrons and holes are injected into the emissive layer, where they are carried by the emitting and hole transporting units, respectively. Using transient electroluminescence measurements, we disentangle the contribution of the electrons and holes on the transport and efficiency of both pristine and degraded PHOLEDs. By varying the concentration of hole transporting units, we show that for pristine PHOLEDs, the transport is electron dominated. Furthermore, degradation of the PHOLEDs upon electrical aging is not related to the hole transport but is governed by a decrease in the electron transport due to the formation of electron traps.

  3. REVENUE ANALYSIS AND EFFICIENCY FARMING RED CHILLI IN MINGGIR DISTRIC,T SLEMAN SUB-PROVINCE

    Directory of Open Access Journals (Sweden)

    Johan Saputro

    2013-01-01

    Full Text Available Red chili farm is potentially to develops because can increase the earning of farmer, but how much the farmer earning and factors that it’s production are not known. This research aim to know earnings of farmer of red chili, knowing factors any kind of influencing red chili production and efficiency usage of factors produce at red chili of farming. Basic method which is used in this research is descriptive analysis method. Research location determined with sampling purposive that is in District Stand aside. Farmer of sample determined with systematic random sampling and taken by 30 samples. Data analyze with: (1 revenue analysis, (2 multiple linear regression, (3 function of CobbDouglas. Result of research was indicated that farmer mean earning per hectare of red chili is IDR 80.098.297, 00 wide of factors of production of farm, seed, phonska fertilizer, cage manure, pesticide, and labor have an effect significant at 95 percent level while manure of urea have an effect not significant. Efficiency usage of factors produce inefficient red chili of farming for example wide of farm, seed, urea fertilizer, phonska fertilize, cage manure, pesticide, and labor.

  4. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping

    Science.gov (United States)

    Mitchell, Brandon; Dierolf, Volkmar; Gregorkiewicz, Tom; Fujiwara, Yasufumi

    2018-04-01

    While InGaN/GaN blue and green light-emitting diodes (LEDs) are commercially available, the search for an efficient red LED based on GaN is ongoing. The realization of this LED is crucial for the monolithic integration of the three primary colors and the development of nitride-based full-color high-resolution displays. In this perspective, we will address the challenges of attaining red luminescence from GaN under current injection and the methods that have been developed to circumvent them. While several approaches will be mentioned, a large emphasis will be placed on the recent developments of doping GaN with Eu3+ to achieve an efficient red GaN-based LED. Finally, we will provide an outlook to the future of this material as a candidate for small scale displays such as mobile device screens or micro-LED displays.

  5. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  6. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.

    Science.gov (United States)

    Bódis, Emöke; Strambini, Giovanni B; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-08-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.

  7. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  8. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    Science.gov (United States)

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  9. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures

    Science.gov (United States)

    Morales-Reyes, Zebensui; Sánchez-Zapata, José A.; Sebastián-González, Esther; Botella, Francisco; Carrete, Martina; Moleón, Marcos

    2017-02-01

    Vertebrate scavenging assemblages include two major functional groups: obligate scavengers (i.e., vultures), which depend totally on carrion and are undergoing severe declines around the globe, and facultative scavengers, which exploit carrion opportunistically and are generally ubiquitous. Our goal was to investigate the hypothesis that vultures can indirectly regulate the abundance of mesopredators (i.e., facultative scavengers) through modulating their access to carrion resources. We studied scavenging efficiency and red fox (Vulpes vulpes) abundance in two neighbouring areas of South-eastern Spain where vultures (mainly griffon vultures Gyps fulvus) are present (Cazorla) and absent (Espuña). To do so, we monitored ungulate carcasses consumption during winter and summer, and counted red fox scats along walking transects as a proxy of fox density. Our results confirmed that scavenging efficiency was higher in Cazorla and in carcasses visited by vultures. This resulted in increasing scavenging opportunities for facultative scavengers where vultures were absent. Accordingly, mean red fox abundance was higher in Espuña. These results suggest the existence of a vulture-mediated mesopredator release (i.e., an increase of mesopredator numbers following vulture loss), which could trigger important indirect ecological effects. Also, our study demonstrates that facultative scavengers are hardly able to functionally replace vultures, mainly because the former exploit carrion on a slower time scale.

  10. Blue phosphorescent mono-cyclometalated iridium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Ho Wan; Yang, Yoon A; Kim, Young Sik [Hongik University, Seoul (Korea, Republic of)

    2010-12-15

    New deep blue phosphorescent iridium(III) complexes comprised of one cyclometalate, two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(Cl), Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(NCMe){sup +}, and Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(CN), [F{sub 2}Meppy = 2-(2', 4'- difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigated the strong field effects of ancillary ligands to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of the phosphine ligand with PPh{sub 2}Me leads to more efficient deep-blue organic light-emitting devices (OLED) by thermal processing instead of through solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring, the electron-donating methyl group on the pyridyl ring, and the cyano strong field ancillary ligand increased the HOMO-LUMO gap and achieved a hypsochromic shift in the emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)-(PPh{sub 2}Me){sub 2}(H)(Cl), Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(NCMe){sup +}, and Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2-}(H)(CN) were in the ranges of 440.5, 437, 436 nm, respectively.

  11. Blue phosphorescent mono-cyclometalated iridium(III) complexes

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Yang, Yoon A; Kim, Young Sik

    2010-01-01

    New deep blue phosphorescent iridium(III) complexes comprised of one cyclometalate, two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(Cl), Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(NCMe) + , and Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(CN), [F 2 Meppy = 2-(2', 4'- difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigated the strong field effects of ancillary ligands to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of the phosphine ligand with PPh 2 Me leads to more efficient deep-blue organic light-emitting devices (OLED) by thermal processing instead of through solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring, the electron-donating methyl group on the pyridyl ring, and the cyano strong field ancillary ligand increased the HOMO-LUMO gap and achieved a hypsochromic shift in the emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)-(PPh 2 Me) 2 (H)(Cl), Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(NCMe) + , and Ir(F 2 Meppy)(PPh 2 Me) 2- (H)(CN) were in the ranges of 440.5, 437, 436 nm, respectively.

  12. Gated Detection Measurements of Phosphorescence Lifetimes

    Directory of Open Access Journals (Sweden)

    Yordan Kostov

    2004-10-01

    Full Text Available A low-cost, gated system for measurements of phosphorescence lifetimes is presented. An extensive description of the system operating principles and metrological characteristics is given. Remarkably, the system operates without optical filtering of the LED excitation source. A description of a practical system is also given and its performance is discussed. Because the device effectively suppresses high-level background fluorescence and scattered light, it is expected to find wide-spread application in bioprocess, environmental and biomedical fields.

  13. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  14. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    International Nuclear Information System (INIS)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang; Hu, Nan; Wang, Xiao; Sun, Fengbo; Duan, Yu

    2015-01-01

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C 2' ) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors

  15. Efficiency of population-dependent sulfite against Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    Longin, Cédric; Degueurce, Claudine; Julliat, Frédérique; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2016-11-01

    Brettanomyces bruxellensis is considered as a spoilage yeast encountered mainly in red wine. It is able to reduce vinylphenols from phenolic acids to ethylphenols. These volatiles are responsible for the phenolic "Brett character" described as animal, farm, horse sweat and animal leather odors. Other molecules are responsible for organoleptic deviations described as "mousiness taint". SO 2 is the product most often used by winemakers to prevent B. bruxellensis growth. Usually, the recommended molecular dose of SO 2 (active SO 2 , mSO 2 ) is highly variable, from 0.3 to 0.8mg/L. But these doses do not take into account differences of strain resistance to sulfites or population levels. Moreover, SO 2 is known as a chemical stressor inducing a viable but nonculturable (VBNC) state of B. bruxellensis. These cells, which are non-detectable by plate counting, can lead to new contamination when the amount of sulfite decreases over time. Consequently, we first assessed the effect of SO 2 levels in red wine on two strains with phenotypically different sulfite resistances. Then, we studied the relationship between amounts of SO 2 (0, 0.5, 0.9 and 1.1mg/L active SO 2 ) and population levels (10 3 , 10 4 and 10 5 cells/mL) in red wine. Yeasts were enumerated by both plate counting and flow cytometry over time using viability dye. Our results showed different SO 2 resistances according to the strain used. A relationship between yeast population level and SO 2 resistance was demonstrated: the higher the yeast concentration, the lower the efficiency of SO 2 . Under certain conditions, the VBNC state of B. bruxellensis was highlighted in red wine. Yeasts in this VBNC state did not produce 4-EP. Moreover, cells became culturable again over time. All these results provide new information enabling better management of sulfite addition during wine aging. Copyright © 2016. Published by Elsevier Ltd.

  16. Effect of host polymer blends to phosphorescence emission | Alias ...

    African Journals Online (AJOL)

    Each polymer was blended with the same ratio composition. The influences of host polymer composition to the phosphorescence emission were observed under pulsed UV excitation source of Xenon lamp. The results shows that there were changing in the phosphorescence emission and life time with difference host ...

  17. Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS

    Science.gov (United States)

    Zheng, Yan-Qiong; Yu, Jun-Le; Wang, Chao; Yang, Fang; Wei, Bin; Zhang, Jian-Hua; Zeng, Cheng-Hui; Yang, Yang

    2018-06-01

    This work shows a promising approach to improve device performance by optimizing the electron transport and hole injection layers for tetraphenyldibenzoperiflanthene (DBP):rubrene-based red fluorescent organic light-emitting diodes (OLEDs). We compared the effect of two electron transport layers (ETLs), and found that the rubrene/bathophenanthroline (Bphen) ETL-based OLED showed a much higher external quantum efficiency (EQE) (4.67%) than the Alq3 ETL-based OLED (EQE of 3.08%). The doping ratio of DBP in rubrene was tuned from 1.0 wt% to 4.5 wt%, and the 1.5 wt%-DBP:rubrene-based OLED demonstrated the highest EQE of 5.24% and lowest turn-on voltage of 2.2 V. Atomic force microscopy images indicated that 1.5 wt% DBP-doped rubrene film exhibited a regular strip shape, and this regular surface was favorable to the hole and electron recombination in the emitting layer. Finally, the sorbitol-doped poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was used to further improve the EQE; doping with 6 wt% sorbitol achieved the highest current efficiency of 7.03 cd A‑1 and an EQE of 7.50%. The significantly enhanced performance implies that the hole injection is a limiting factor for DBP:rubrene-based red fluorescent OLEDs.

  18. Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors.

    Science.gov (United States)

    Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang

    2017-11-01

    Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.

  19. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Science.gov (United States)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  20. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-09-15

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m{sup 2}, driving voltage was 4.4 V, and current density was 2.4 mA/cm{sup 2}. A white OLED component was then manufactured by doping red dopant [Os(bpftz){sub 2}(PPh{sub 2}Me){sub 2}] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE{sub x,y} of (0.31,0.35) at a luminance of 1000 cd/m{sup 2}, with a maximum luminance of 15,600 cd/m{sup 2} at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons.

  1. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-01-01

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m 2 , driving voltage was 4.4 V, and current density was 2.4 mA/cm 2 . A white OLED component was then manufactured by doping red dopant [Os(bpftz) 2 (PPh 2 Me) 2 ] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE x,y of (0.31,0.35) at a luminance of 1000 cd/m 2 , with a maximum luminance of 15,600 cd/m 2 at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons

  2. Fish with red fluorescent eyes forage more efficiently under dim, blue-green light conditions.

    Science.gov (United States)

    Harant, Ulrike Katharina; Michiels, Nicolaas Karel

    2017-04-20

    Natural red fluorescence is particularly conspicuous in the eyes of some small, benthic, predatory fishes. Fluorescence also increases in relative efficiency with increasing depth, which has generated speculation about its possible function as a "light organ" to detect cryptic organisms under bluish light. Here we investigate whether foraging success is improved under ambient conditions that make red fluorescence stand out more, using the triplefin Tripterygion delaisi as a model system. We repeatedly presented 10 copepods to individual fish (n = 40) kept under a narrow blue-green spectrum and compared their performance with that under a broad spectrum with the same overall brightness. The experiment was repeated for two levels of brightness, a shaded one representing 0.4% of the light present at the surface and a heavily shaded one with about 0.01% of the surface brightness. Fish were 7% more successful at catching copepods under the narrow, fluorescence-friendly spectrum than under the broad spectrum. However, this effect was significant under the heavily shaded light treatment only. This outcome corroborates previous predictions that fluorescence may be an adaptation to blue-green, heavily shaded environments, which coincides with the opportunistic biology of this species that lives in the transition zone between exposed and heavily shaded microhabitats.

  3. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Brian D' Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents

  4. Methyl Red Decolorization Efficiency of a Korea Strain of Aspergillus sp. Immobilized into Different Polymeric Matrices.

    Science.gov (United States)

    Kim, Beom-Su; Blaghen, Mohamed; Lee, Kang-Min

    2017-07-01

      Intensive research studies have revealed that fungal decolorization of dye wastewater is a promising replacement for the current process of dye wastewater decolorization. The authors isolated an Aspergillus sp. from the effluent of a textile industry area in Korea and assessed the effects of a variety of operational parameters on the decolorization of methyl red (MR) by this strain of Aspergillus sp. This Aspergillus sp. was then immobilized by entrapment in several polymeric matrices and the effects of operational conditions on MR decolorization were investigated again. The optimal decolorization activity of this Aspergillus sp. was observed in 1% glucose at a temperature of 37 °C and pH of 6.0. Furthermore, stable decolorization efficiency was observed when fungal biomass was immobilized into alginate gel during repeated batch experiment. These results suggest that the Aspergillus sp. isolated in Korea could be used to treat industrial wastewaters containing MR dye.

  5. Bluish-green BMes2-functionalized Pt(II) complexes for high efficiency PhOLEDs: impact of the BMes2 location on emission color.

    Science.gov (United States)

    Rao, Ying-Li; Schoenmakers, Dylan; Chang, Yi-Lu; Lu, Jia-Sheng; Lu, Zheng-Hong; Kang, Youngjin; Wang, Suning

    2012-09-03

    New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2))-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50 nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10 nm whereas a fluoro substituent blue-shifts the emission energy by about 6 nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475 nm and Φ(PL)=0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485 nm and Φ(PL)=0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100 cd m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4%, respectively, have been achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.

    Science.gov (United States)

    Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R

    2007-01-01

    Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.

  7. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Ma, Dongge, E-mail: mdg1014@ciac.jl.cn; Ding, Junqiao; Wang, Lixiang [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Leo, Karl [Tech. Univ. Dresden, Inst. Angew. Photophys., D-01062 Dresden (Germany); Qiao, Qiquan [Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Jia, Huiping; Gnade, Bruce E. [Department of Materials Science and Engineering and Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages.

  8. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Huong

    2018-02-01

    Full Text Available Integrated Agriculture Aquaculture (IAA is characteristic with diversity of small-scale production systems in the Red River Delta, Vietnam where most integrated aquaculture systems are closely associated to the VAC model, an ecosystem production that three components: garden (V, pond (A and livestock pen (C are integrated. These VAC systems effectively use all the available land, air, water and solar energy resources, and also effectively recycle by-products and waste for providing diversified agricultural products to meet the complex nutritional demands of rural communities. The IAA systems are dynamic, diverse and subject to economic and environmental changes. By investigating 167 aquaculture households, the traditional VAC, New VAC, Animal Fish (AF and Commercial Fish (FS systems are identified as four existing IAA systems. This paper presents the main characteristics and economic efficiency of these IAA systems. The study’s results indicate clear evidence that the traditional VAC system and New VAC system are the most efficient and effective models. The findings of this study have shed light on the important role of integrated aquaculture systems to food security and economic development of households and local communities. The VAC systems are likely to propose for improving household food security and developing the local economy.

  9. Improved color purity and efficiency by a coguest emitter system in doped red light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: mdg1014@ciac.jl.cn

    2007-01-15

    We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H -(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq{sub 3}) host. It was found that the C545T dopant did not by itself emit but assisted the carrier trapping from the host Alq{sub 3} to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12cd/A at a current density of 0.3mA/cm{sup 2} and 10lm/W at a current density of 0.02mA/cm{sup 2}, which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq{sub 3}, and a stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.

  10. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    Science.gov (United States)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  11. Smart responsive phosphorescent materials for data recording and security protection.

    Science.gov (United States)

    Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei

    2014-04-07

    Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.

  12. Extended OLED operational lifetime through phosphorescent dopant profile management

    Science.gov (United States)

    Forrest, Stephen R.; Zhang, Yifan

    2017-05-30

    This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.

  13. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina; Ghaffour, NorEddine; Aubry, Cyril; Amy, Gary L.

    2012-01-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  14. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina

    2012-12-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  15. Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar

    International Nuclear Information System (INIS)

    Kiniry, J.R.

    1998-01-01

    Rangeland models that simulate hydrology, soil erosion and nutrient balance can be used to select management systems which maximize profits for producers while they minimize adverse impacts on water quality. Values are needed for parameters that describe the growth of invading woody species in order to allow simulation of their competition with grasses. Three attributes useful for describing and quantifying plant growth are: the potential leaf area index (LAI) or ratio of leaf area divided by ground area; the light extinction coefficient (k) that is used to calculate the fraction of light intercepted by leaves, applying Beer’s law; and the radiation-use efficiency (RUE) or amount of dry biomass produced per unit of intercepted light. Objectives in this study were to measure LAI, k, and RUE for eastern red cedar (Juniperus virginiana L.) and honey mesquite (Prosopis glandulosa Torr. var. glandulosa), without competing plants, as a first step toward simulating their growth. Seedlings were planted in the field at Temple, Texas, USA in early 1992 and kept free of competition from herbaceous plants. During 1993, 1994 and 1995 data were collected on biomass, leaf area and intercepted photosynthetically active radiation (PAR) for individual trees. Both tree species showed exponential biomass increases. At the end of the 1995 growing season, mean LAI values were 1.16 for cedar and 1.25 for mesquite. Mean k values were 0.34 for mesquite and 0.37 for cedar. Radiation use efficiency for aboveground biomass was 1.60±0.17 (mean±standard deviation) g per MJ of intercepted PAR for cedar and 1.61±0.26 for mesquite. The rapid growth in 1995 was accompanied by greater leaf area and thus greater summed intercepted PAR. These values are critical for quantifying growth of these two species. (author)

  16. Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons

    Science.gov (United States)

    Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo

    2005-06-01

    We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.

  17. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals

    Science.gov (United States)

    Takeuchi, Toshiyuki; Zhang, Shaojuan; Negishi, Kazuya; Yoshihara, Toshitada; Hosaka, Masahiro; Tobita, Seiji

    2010-02-01

    Iridium complex, a promising organic light-emitting diode material for next generation television and computer displays, emits phosphorescence. Phosphorescence is quenched by oxygen. We used this oxygen-quenching feature for imaging tumor hypoxia. Red light-emitting iridium complex Ir(btp)2(acac) (BTP) presented hypoxia-dependent light emission in culture cell lines, whose intensity was in parallel with hypoxia-inducible factor (HIF)-1 expression. BTP was further applied to imaging five nude mouse-transplanted tumors. All tumors presented a bright BTP-emitting image as early as 5 min after the injection. The BTP-dependent tumor image peaked at 1 to 2 h after the injection, and was then removed from tumors within 24 h. The minimal BTP image recognition size was at least 2 mm in diameter. By morphological examination and phosphorescence lifetime measurement, BTP is presumed to localize to the tumor cells, not to stay in the tumor microvessels by binding to albumin. The primary problem on suse of luminescent probe for tumor imaging is its weak penetrance to deep tissues from the skin surface. Since BTP is easily modifiable, we made BTP analogues with a longer excitation/emission wavelength to improve the tissue penetrance. One of them, BTPHSA, displayed 560/720 wavelength, and depicted its clear imaging from tumors transplanted over 6-7 mm deep from the skin surface. We suggest that BTP analogues have a vast potential for imaging hypoxic lesions such as tumor tissues.

  18. High-performance blue phosphorescent OLEDs using energy transfer from exciplex.

    Science.gov (United States)

    Seino, Yuki; Sasabe, Hisahiro; Pu, Yong-Jin; Kido, Junji

    2014-03-12

    An efficient energy transfer from an exciplex between a sulfone and an arylamine derivatives to a blue phosphorescent emitter enables OLED performances among the best, of over 50 lm W(-1) at 100 cd m(-2) . The formation of the exciplex realizes a barrier-free hole-electron recombination pathway, thereby leading to high OLED performances with an extremely low driving voltage of 2.9 V at 100 cd m(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  20. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process.

    Science.gov (United States)

    Masarin, Fernando; Cedeno, Fernando Roberto Paz; Chavez, Eddyn Gabriel Solorzano; de Oliveira, Levi Ezequiel; Gelli, Valéria Cress; Monti, Rubens

    2016-01-01

    Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1

  1. Effect of frost on phosphorescence for thermographic phosphor thermometry

    Science.gov (United States)

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  2. Efficient fluorescent red, green, and blue organic light-emitting devices with a blue host of spirobifluorene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.-H. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China)], E-mail: lerongho@yuntech.edu.tw; Huang, Y.-W.; Wang, Y.-Y. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Chang, H.-Y. [EChem Hightech CO., LTD, Hsin-Chu Industrial Park, Hu-Kou, Hsin-Chu, Taiwan (China)

    2008-06-02

    Efficient fluorescent blue, green, and red (RGB) organic light-emitting devices (OLEDs) were fabricated using a blue host material of pyrimidine-containing spirobifluorene derivative 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl]-9,9'-spirobifluorene (TBPSF) doped with blue dye perylene, green dye 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l] pyrano[6,7,8-ij] quinolizin-11-one (C545T), and red dye 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB), respectively. The brightness and current efficiency of the perylene doped blue device reached 10117 cd/m{sup 2} and 2.97 cd/A. Green emission of the C545T doped device reached 8500 cd/m{sup 2} and 13.0 cd/A. Red emission of the DCJTB doped device can be as high as 9000 cd/m{sup 2} and 2.0 cd/A, respectively. High color purity of the blue (Commission Internationale de L'Eclairage (CIE{sub x,y}) coordinates (CIE, x = 0.27, y = 0.24)), green (CIE, x = 0.19, y = 0.63) and red (CIE, x = 0.62, y = 0.37) emissions were achieved for RGB dyes doped TBPSF OLEDs. High brightness, large current efficiency, and good color purity of TBPSF-based RGB OLEDs were obtained by the configuration optimization device, such as inserting the hole and electron-injection materials, and suitable dopant content and light emitting layer thickness.

  3. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Yilmaz, Neriman; Thrane, Ulf

    2013-01-01

    ., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β......Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been...... reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov...

  4. Efficiency testing of Red Lake protection dam on Rosu stream by 210Pb method

    International Nuclear Information System (INIS)

    Robert-Csaba Begy; Hedvig Simon; Edina Reizer

    2015-01-01

    The Red lake, a small lake from Romania is threatened by massive sedimentation, therefore two protection dams were constructed on Oii and Rosu brooks. The aim of this study is to get information about the variation of the retention capability of the dams using the 210 Pb method. 210 Pb, 226 Ra and 137 Cs were measured by gamma- and 210 Po by alpha spectrometry. The values for mass sedimentation are between 0.17 ± 0.03-2.3 ± 0.4 g/cm 2 y for the Red Lake and 0.21 ± 0.03-0.9 ± 0.1 g/cm 2 y for the dam lake. Due to these high values, the dam lake will fill up in 20 ± 8y and 80 % of the Red Lake in 81 ± 30y. (author)

  5. Between a humanitarian ethos and the military efficiency: the early days of the Spanish Red Cross, 1864-1876.

    Science.gov (United States)

    Arrizabalaga, Jon; García-Reyes, Juan Carlos

    2011-01-01

    Spain was officially represented at the preliminary international conference the "International Committee for the Assistance to Sick and Wounded Soldiers" (better known as the "Geneva Committee") organised at Geneva in October 1863; and joined the Red Cross one year later on the occasion of the first Geneva Convention in August 1864. This article explores the ambivalence between the humanitarian ethos and the military efficiency in the early Spanish Red Cross through the works of Nicasio Landa (1830-1891). A medical major of the Spanish Military Health Service, the co-founder of the Spanish section of the Red Cross in 1864, and its general inspector in 1867, Landa was its most active promoter, and responsible for its connections with the Geneva Committee and other national sections of this international association during its early times. He was not only an active correspondent, but also a prolific author of monographs, leaflets and articles in specialized and daily newspapers on humanitarianism and war medicine, in addition to being the founder of the Spanish Red Cross journal La Caridad en la Guerra in 1870.

  6. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    Energy Technology Data Exchange (ETDEWEB)

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been

  7. Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Han, Mingu; Wang, Jamie; Zhu, Lei; Tameh, Maliheh Shaban; Huang, Chen; Ma, Biwu

    2015-08-10

    Photoinduced structural change (PSC) is a fundamental excited-state dynamic process in chemical and biological systems. However, precise control of PSC processes is very challenging, owing to the lack of guidelines for designing excited-state potential energy surfaces (PESs). A series of rationally designed butterfly-like phosphorescent binuclear platinum complexes that undergo controlled PSC by Pt-Pt distance shortening and exhibit tunable dual (greenish-blue and red) emission are herein reported. Based on the Bell-Evans-Polanyi principle, it is demonstrated how the energy barrier of the PSC, which can be described as a chemical-reaction-like process between the two energy minima on the first triplet excited-state PES, can be controlled by synthetic means. These results reveal a simple method to engineer the dual emission of molecular systems by manipulating PES to control PSC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-01-01

    A novel red-emitting nano-phosphor of Eu 3+ -doped Gd 6 MoO 12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5 D 0 → 7 F 2 of Eu 3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd 6 MoO 12 :Eu 3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips

  9. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments.

    Directory of Open Access Journals (Sweden)

    Jens C Frisvad

    Full Text Available Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1, which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG-1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442.

  10. The Growth Rate and Efficiency of Rumen Microbial Protein Digestion of Red Clover Silage (Trifolium pratense cv. Sabatron)

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2004-01-01

    (Trifolium pratense cv. Sabatron). Red clover silage supplemented with different level of carbohydrates has been examined using the in-vitro gas production technique. Cumulative gas production, hydro.gen sulfite production, and ammonia was followed and used as indicators of microbial growth rate and extent of protein degradation. Microbial nitrogen production, VFA, and efficiency microbial production was used as indicator of nitrogen use efficiency. 15 N was used as a microbial marker to estimate the amount of nitrogen incorporation into microbial protein. Supplementation of Red clover with increasing 5 levels; 0 g; 0.625 g; 0.15 g; 0.225 g and 0.3 g of maize starch led to graded increase in microbial growth and protein degradation. This was reflected in the increasing gas production and the accumulation of hydrogen sulfite. Diurnal change in ammonia production reflected the microbial utilization of ammonia for protein synthesis. Protein microbe (P<0.001) as VFA (P<0.001) increased due to carbohydrate addition as well as utilization of nitrogen (P<0.001). There was also the efficiency of nitrogen utilization which increased significantly. This result suggested that energy supply can increased efficiency of nitrogen use in the rumen and may reduce nitrogen losses into the environment. (author)

  11. Investigation of Removal Efficiency of Nano Sized Alumina for Removal of Acid Red 18 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    M.H. Dehghani

    2014-08-01

    Full Text Available Background and Objectives: Acid Red 18 dye was one of the Azo colors that are used in textile and dyeing industries. These dyes are often toxic and carcinogenic to humans and the environment as pollution. This study was conducted with the aim of investigating on nano alumina efficiency for removal of Acid Red 18 dye from aqueous solutions. Materials and Methods: This study was carried out in the laboratory scales and effect of The initial concentration of dye (25 to 100 mg/l, pH solution (3, 7, 11, nano alumina concentration (0.1, 0.4, 1, 1.5 g/l and contact time in range 5 to 240 min on dye removal efficiency were evaluated. Also kinetic and isotherm models of adsorption process were evaluated. Results: The high removal efficiency was observed in pH=3, contact time=60 min and Adsorbent concentration of 0.4 g/L. The rate of color removal were 63/24, 50/84 and 20 percent respectively at pH of 3, 7 and 11 for the initial dye concentration of 25 mg/l and 0.4 g/l mass absorbent that showing with increasing pH removal efficiency is reduced. the studied dye absorption isotherm was fitted Langmuir model (R2=0.994 which was 83.33 mg/g for maximum adsorption. The results from kinetic studies showed that removal of the studied dye was best described by pseudo-second order kinetic model (r2=0.999. Conclusion: The present study shows nano alumina powder is promising adsorbent for removal of Acid Red 18 from aqueous solution.

  12. Role of the polymeric hole injection layer on the efficiency and stability of organic light emitting diodes with small molecular emitters

    International Nuclear Information System (INIS)

    Chin, Byung Doo

    2008-01-01

    In this paper, an improvement in the properties of the small molecular organic light emitting diode (OLED) upon application of a polymeric hole injection layer (HIL) was reported. The luminous efficiency, operating voltage and lifetime of devices with dye-doped small molecule emitters (fluorescent and phosphorescent) were found to be sensitive to the HIL/hole transport layer (HTL) combination used, where the improved injection and brightness was shown at the hole cascading structure and the longer lifetime behaviour was obtained at the hole-trapping structure. Use of a polymeric HIL significantly increased the luminous current efficiency and lifetime for both fluorescent blue and phosphorescent green/red light emitters. The polymeric HIL was effective in terms of the driving characteristics of phosphorescent OLED, since it provides higher brightness behaviour at lower current density. The apparent shade of the pixel image at light emission, which will probably induce degradation at the pixel wall interface, will be suppressed by the use of polymeric HIL. In spite of the ambiguity in the formation of such shaded pixels and their influence at the decay of OLED, intrinsic stability of polymeric HIL/anode would be advantageous for stable storage and operation of devices.

  13. An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo

    2017-11-01

    The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.

  14. Phosphorescent systems based on iridium(III) complexes

    NARCIS (Netherlands)

    Ulbricht, C.

    2009-01-01

    Phosphorescent iridium(III)-based complexes are experiencing a growing interest in a number of research fields. Aside from lighting and display technologies (i.e. OLEDs and LECs), they find use in various applications such as biolabeling, sensors, solar cells and water splitting. In particular, the

  15. Efficient and Specific Analysis of Red Blood Cell Glycerophospholipid Fatty Acid Composition

    OpenAIRE

    Klem, Sabrina; Klingler, Mario; Demmelmair, Hans; Koletzko, Berthold

    2012-01-01

    BACKGROUND: Red blood cell (RBC) n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific a...

  16. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol

    2015-09-01

    The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    Science.gov (United States)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  18. Investigation of Oxygen-Induced Quenching of Phosphorescence in Photoexcited Aromatic Molecules by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Singh, Jag J.; Eftekhari, Abe

    1996-01-01

    Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.

  19. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    Science.gov (United States)

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  20. Effect of Doping Phosphorescent Material and Annealing Treatment on the Performance of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2013-01-01

    Full Text Available A series of polymer solar cells (PSCs with P3HT:PCBM or P3HT:PCBM:Ir(btpy3 blend films as the active layer were fabricated under the same conditions. Effects of phosphorescent material Ir(btpy3 doping concentration and annealing temperature on the performance of PSCs were investigated. The short-circuit current density (Jsc and open-circuit voltage (Voc are increased by adopting P3HT:PCBM:Ir(btpy3 blend films as the active layer when the cells do not undergo annealing treatment. The increased Jsc should be attributed to the increase of photon harvesting induced by doping phosphorescent material Ir(btpy3 and the effective energy transfer from Ir(btpy3 to P3HT. The effective energy transfer from Ir(btpy3 to P3HT was demonstrated by time-resolved photoluminescence (PL spectra. The increased Voc is due to the photovoltaic effect between Ir(btpy3 and PCBM. The power conversion efficiency (PCE of PSCs with P3HT:PCBM as the active layer is increased from 0.19% to 1.49% by annealing treatment at 140°C for 10 minutes. The PCE of PSCs with P3HT:PCBM:Ir(btpy3 as the active layer is increased from 0.49% to 0.95% by annealing treatment at lower temperature at 100°C for 10 minutes.

  1. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    Science.gov (United States)

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  2. Red light for Green Paper: The EU policy on energy efficiency

    International Nuclear Information System (INIS)

    Nilsson, Mats

    2007-01-01

    The EU Green Paper on energy efficiency calls for action to decrease energy use and thus achieve increased competitiveness, fulfil the environmental targets and increase security of supply. In this comment, we examine the role the EU Commission suggest that energy efficiency, and policies supporting energy efficiency, takes. The policies and the suggestions are qualitatively elaborated upon in the light of the goal of a common European electricity market. We suggest that the rationales for the energy efficiency measures are weak, and that the suggested goals of increased competitiveness, environmental targets, and security of supply are best reached with the direct measures especially designed for each goal. Some of the energy efficiency measures may counter-act other direct policies. Further, The Green Paper measures may prove detrimental to the European Electricity market insofar as the policies suggested could lead to a policy fatigue among the electricity consumers

  3. Reducing the negative sensory impact of volatile phenols in red wine with different chitosans: Effect of structure on efficiency.

    Science.gov (United States)

    Filipe-Ribeiro, Luís; Cosme, Fernanda; Nunes, Fernando M

    2018-03-01

    "Brett character" is a negative sensory attribute acquired by red wines when contaminating Dekkera/Brettanomyces yeasts produce 4-ethylphenol and 4-ethylguaiacol, known as volatile phenols (VPs), from cinnamic acid precursors. In this study, chitins and chitosans with different structural features, namely deacetylation degree (5-91%) and molecular weight (24-466kDa) were used for the reduction of this sensory defect. Chitins and chitosans decreased 7-26% of the headspace abundance of VPs without changing their amounts in wines. The efficiency of reduction increased with the deacetylation degree and applied dose. Reduction of headspace abundance of VPs by chitosans enabled significant decreases in the negative phenolic and bitterness attributes and increased positive fruity and floral attributes. Results show that chitosan with high deacetylation degrees, including fungal chitosan, which is already approved for use in wines, is an efficient approach for reducing the negative sensory impact of VPs in red wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Are red mullet efficient as bio-indicators of mercury contamination? A case study from the French Mediterranean

    International Nuclear Information System (INIS)

    Cresson, P.; Bouchoucha, M.; Miralles, F.; Elleboode, R.; Mahé, K.; Marusczak, N.; Thebault, H.; Cossa, D.

    2015-01-01

    Highlights: • Hg was monitored in Mullus spp. from 5 French Mediterranean zones during 18 months. • All concentrations were below recommended European health safety levels. • Hg trends were consistent with environmental contamination except in Corsica. • Oligotrophy could explain the high and unexpected values in Corsica. • Biotic and abiotic parameters must been considered when using bioindicators. - Abstract: Mercury (Hg) is one of the main chemicals currently altering Mediterranean ecosystems. Red mullet (Mullus barbatus and M. surmuletus) have been widely used as quantitative bio-indicators of chemical contamination. In this study, we reassess the ability of these species to be used as efficient bio-indicators of Hg contamination by monitoring during 18 months Hg concentrations in muscle tissue of mullet sampled from 5 French Mediterranean coastal areas. Mean concentrations ranged between 0.23 and 0.78 μg g −1 dry mass for both species. Values were consistent with expected contamination patterns of all sites except Corsica. Results confirmed that red mullets are efficient bio-indicators of Hg contamination. Nevertheless, the observed variability in Hg concentrations calls for caution regarding the period and the sample size. Attention should be paid to environmental and biologic specificities of each studied site, as they can alter the bioaccumulation of Hg, and lead to inferences about environmental Hg concentrations

  5. Are red mullet efficient as bio-indicators of mercury contamination? A case study from the French Mediterranean.

    Science.gov (United States)

    Cresson, P; Bouchoucha, M; Miralles, F; Elleboode, R; Mahé, K; Marusczak, N; Thebault, H; Cossa, D

    2015-02-15

    Mercury (Hg) is one of the main chemicals currently altering Mediterranean ecosystems. Red mullet (Mullus barbatus and M. surmuletus) have been widely used as quantitative bio-indicators of chemical contamination. In this study, we reassess the ability of these species to be used as efficient bio-indicators of Hg contamination by monitoring during 18 months Hg concentrations in muscle tissue of mullet sampled from 5 French Mediterranean coastal areas. Mean concentrations ranged between 0.23 and 0.78 μg g(-1) dry mass for both species. Values were consistent with expected contamination patterns of all sites except Corsica. Results confirmed that red mullets are efficient bio-indicators of Hg contamination. Nevertheless, the observed variability in Hg concentrations calls for caution regarding the period and the sample size. Attention should be paid to environmental and biologic specificities of each studied site, as they can alter the bioaccumulation of Hg, and lead to inferences about environmental Hg concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Energy efficiency and its relationship with milk, body, and intake traits and energy status among primiparous Nordic Red dairy cattle.

    Science.gov (United States)

    Mäntysaari, P; Liinamo, A-E; Mäntysaari, E A

    2012-06-01

    Existing variation in energy efficiency and its relationship with milk yield and milk composition, body weight and body condition, feed intake, and energy status was studied in primiparous Nordic Red dairy cattle with data including 3,752 weekly records from 145 cows. Energy efficiency was defined as energy conversion efficiency (ECE) and as residual energy intake (REI) estimated based on Finnish feeding standards (REI₁) or from the current data (REI₂). The results indicated true phenotypic variation in energy efficiency of the cows. The proportion of total variance due to the animal was 0.35 for REI₁, 0.30 for REI₂, and 0.50 for ECE. The high efficiency based on ECE was associated with increased mobilization of body reserves (r = -0.50) and decreased dry matter intake (r = -0.51). With REI as an energy efficiency measure, the increased efficiency was associated with a large decrease in feed intake (REI₁: r = 0.60; REI2: r = 0.74) without any effect on body weight change (REI₁: r = 0.13; REI2: r = 0.00). Increased efficiency based on ECE and REI₁ was associated with increased milk yield (ECE: r = 0.58; REI₁: r = -0.41). A clear effect of stage of lactation on REI was found, which could be caused by true differences in utilization of metabolizable energy during lactation. However, it might also be related, in part, to the lack of knowledge of the composition of body weight change in the beginning of lactation. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  8. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Pogue, B [Dartmouth College, Hanover, NH (United States); Holt, R [Dartmouth College, Hanover, NH - New Hampshire (United States); Esipova, T; Vinogradov, S [University of Pennsylvania, Philadelphia, PA (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon)

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  9. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Jung, Kyung Yoon; Kim, Young Sik

    2010-01-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(NCMe)] + and Ir(F 2 Meppy)(PPhMe 2 ) 2 -(H)(CN), [F 2 Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe 2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)-(NCMe)] + and Ir(F 2 Meppy)(PPh-Me 2 ) 2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  10. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Ho Wan [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Jung, Kyung Yoon [International Design School for Advanced Studies, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Sik, E-mail: youngkim@hongik.ac.k [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of)

    2010-09-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}-(H)(CN), [F{sub 2}Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe{sub 2} leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)-(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPh-Me{sub 2}){sub 2} (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  11. Kinetic analysis of pulsed laser induced phosphorescence for uranium determination

    International Nuclear Information System (INIS)

    Serdeiro, Nelida H.

    2003-01-01

    The laser induced kinetic phosphorescence allows the uranium determination in different kind of matrices, with a lower detection limit than those reached by other spectroscopic methods. It involves the uranyl ions excitation by a pulsed dye-laser source, followed by temporal resolution of the phosphorescence. This method is used for the determination of trace quantities of uranium in aqueous solution, with a suitable complexant agent, without chemical separation before the analysis. The objective of this paper is to present the results of uranium determinations in different standard samples, water, soil, filter and urine, and a comparison with other methods such as fluorimetry, alpha spectrometry and mass spectrometry. Moreover, the measurement conditions, the advantages and disadvantages, the sample preparation, the interferences and the detection limit are described. (author)

  12. Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8

    Directory of Open Access Journals (Sweden)

    Canlan Jiang

    2016-10-01

    Full Text Available Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8, was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g−1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn−OH on ZIF-8 -and −SO3 or –N=N– sites in CR molecule, and the π–π interaction.

  13. Micelle-stabilized room-temperature phosphorescence with synchronous scanning

    International Nuclear Information System (INIS)

    Femia, R.A.; Love, L.J.C.

    1984-01-01

    The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables

  14. Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Deng, Ruiping; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2016-02-15

    In this study, we aim to further enhance the electroluminescence (EL) performances of trivalent europium complex Eu(TTA){sub 3}phen (TTA=thenoyltrifluoroacetone and phen=1,10-phenanthroline) by designing the device structure with stepwise energy levels. The widely used bipolar material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) was chosen as host material, while the doping concentration of Eu(TTA){sub 3}phen was optimized to be 4%. To facilitate the injection and transport of holes, MoO{sub 3} anode modification layer and 4,4′,4′′-Tris(carbazole-9-yl)triphenylamine (TcTa) hole transport layer were inserted in sequence. Efficient pure red emission with suppressed efficiency roll-off was obtained attributed to the reduction of accumulation holes, the broadening of recombination zone, and the improved balance of holes and electrons on Eu(TTA){sub 3}phen molecules. Finally, the device with 3 nm MoO{sub 3} and 5 nm TcTa obtained the highest brightness of 3278 cd/m{sup 2}, current efficiency of 12.45 cd/A, power efficiency of 11.50 lm/W, and external quantum efficiency of 6.60%. Such a device design strategy helps to improve the EL performances of emitters with low-lying energy levels and provides a chance to simplify device fabrication processes. - Highlights: • Electroluminescent performances of europium complex were further improved. • Device structure with stepwise energy levels was designed. • Better carriers' balance was realized by improving the injection and transport of holes. • The selection of bipolar host caused the broadening of recombination zone.

  15. Efficient and specific analysis of red blood cell glycerophospholipid fatty acid composition.

    Directory of Open Access Journals (Sweden)

    Sabrina Klem

    Full Text Available BACKGROUND: Red blood cell (RBC n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific analysis of RBC glycerophospholipids. The application of the new method in a DHA supplementation trial and the comparison to established markers will determine the relevance of RBC GPL as a valid fatty acid status marker in humans. METHODS: Methyl esters of glycerophospholipid fatty acids are selectively generated by a two step procedure involving methanolic protein precipitation and base-catalysed methyl ester synthesis. RBC GPL solubilisation is facilitated by ultrasound treatment. Fatty acid status in RBC glycerophospholipids and other established markers were evaluated in thirteen subjects participating in a 30 days supplementation trial (510 mg DHA/d. OUTCOME: The intra-assay CV for GPL fatty acids ranged from 1.0 to 10.5% and the inter-assay CV from 1.3 to 10.9%. Docosahexaenoic acid supplementation significantly increased the docosahexaenoic acid contents in all analysed lipid fractions. High correlations were observed for most of the mono- and polyunsaturated fatty acids, and for the omega-3 index (r = 0.924 between RBC phospholipids and glycerophospholipids. The analysis of RBC glycerophospholipid fatty acids yields faster, easier and less costly results equivalent to the conventional analysis of RBC total phospholipids.

  16. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  17. Phosphorescence quenching microrespirometry of skeletal muscle in situ

    Science.gov (United States)

    Golub, Aleksander S.; Tevald, Michael A.

    2011-01-01

    We have developed an optical method for the evaluation of the oxygen consumption (V̇o2) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po2, together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po2 values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po2 decreased rapidly and the initial slope of the ODC was used to calculate the V̇o2. Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of V̇o2. The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was V̇o2 = 123.4 ± 13.4 (SE) nl O2/cm3·s (N = 38, within 6 muscles) at a baseline interstitial Po2 of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle. PMID:20971766

  18. A precision synchrotron radiation detector using phosphorescent screens

    International Nuclear Information System (INIS)

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  19. Spin-lattice relaxation in phosphorescent triplet state molecules

    International Nuclear Information System (INIS)

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  20. Synthesis of a red electrophosphorescent heteroleptic iridium complex and its application in efficient polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang Xiuju; Xu Yunhua; Sun Yiheng; Shi Huahong; Zhu Xuhui; Cao Yong

    2007-01-01

    The preparation and characterization of a heteroleptic iridium complex [2-(benzo[b]thiophen-2-yl)pyridine]Ir(III)[2-(4H-1,2,4-triazol-3-yl) pyridine] [(Btp) 2 Ir(PZ)] were reported (2-(benzo[b]thiophen-2-yl)pyridine = Btp; 2-(4H-1,2,4-triazol-3-yl)pyridine = PZ). Electrophosphorescence was investigated in the device structure [indium-tin-oxide (ITO)/poly(ethlenedioxythiophene) (PEDOT)/poly(vinylcarbazole)(PVK)/Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl (PFO): (Btp) 2 Ir(PZ)/Ba/Al] by using this iridium complex as guest and PFO as host. The red electrophosphorescent devices showed a peak emission at approximately 604 nm and shoulder at 654 nm with the Commission International de'Eclairage (CIE) coordinates of (0.64, 0.35) and external quantum efficiency of 7.7% at a doping concentration of 8 wt.% without an electron-transporting material in the emitting layer

  1. Efficient somatic embryogenesis and molecular marker based analysis as effective tools for conservation of red-listed plant Commiphora wightii

    Directory of Open Access Journals (Sweden)

    ASHOK KUMAR PARMAR

    2014-08-01

    Full Text Available A refined and high efficiency protocol for in vitro regeneration of Commiphora wightii, a red-listed medicinal plant of medicinal importance, has been developed through optimized somatic embryogenesis pathway. Cultures from immature fruits were induced and proliferated on B5 medium supplemented with 2.26 µM 2,4-D. Embryogenic calli were obtained and then maintained for extended periods by alternately subculturing on modified MS medium supplemented with 1.11 µM BAP, 0.57 µM IBA and with 0.5% activated charcoal or without PGR every 3-4 weeks. Cyclic embryogenesis was obtained. Late torpedo and early cotyledonary stages somatic embryos were regularly harvested from PGR-free modified MS medium. It was found that percent moisture available in culture containers play a critical role in maturation and subsequent germination of somatic embryos of C. wighti. Maximum germination of more than 80% was achieved through media recycling. Somatic embryo derived plants (emblings were acclimatized. After 5 months, acclimatized plants were out-planted in experimental field. These morphologically normal plants have been surviving for over 3 years. Molecular polymorphism was clearly evident when these plants were tested using RAPD primers, making the plants suitable for use in its species restoration program.

  2. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  3. Molecular Self-Assembly of Group 11 Pyrazolate Complexes as Phosphorescent Chemosensors for Detection of Benzene

    Science.gov (United States)

    Ghazalli, N. F.; Yuliati, L.; Lintang, H. O.

    2018-01-01

    We highlight the systematic study on vapochromic sensing of aromatic vapors such as benzene using phosphorescent trinuclear pyrazolate complexes (2) with supramolecular assembly of a weak intermolecular metal-metal interaction consisting of 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). The resulting chemosensor 2(Cu) revealed positive response to benzene vapors in 5 mins by blue-shifting its emission band in 44 nm (from 616 to 572 nm) and emitted bright orange to green, where this change cannot be recovered even with external stimuli. Comparing to 2(Ag) with longer metal-metal distance (473 nm) with same sensing time and quenching in 37%, 2(Au) gave quenching in 81% from its original intensity at 612 nm with reusability in 82% without external stimuli and emitted less emissive of red-orange from its original color. The shifting phenomenon in 2(Cu) suggests diffusion of benzene vapors to inside molecules for formation of intermolecular interaction with Cu(I)-Cu(I) interaction while quenching phenomenon in 2(Au) suggests diffusion of benzene vapors to between the Au(I)-Au(I) interaction. These results indicate that suitable molecular structure of ligand and metal ion in pyrazolate complex is important for designing chemosensor in the detection of benzene vapors.

  4. Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives

    Science.gov (United States)

    Lintang, H. O.; Ghazalli, N. F.; Yuliati, L.

    2018-04-01

    We report on systematic study on vapochromic sensing of ethanol by using phosphorescent trinuclear metal pyrazolate complexes with supramolecular assembly of weak intermolecular metal-metal interactions using 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). Upon excitation at 284, the resulting complexes showed emission bands with a peak centered at 616, 473 and 612 nm for 2(Cu), 2(Ag) and 2(Au), respectively. Chemosensor 2(Cu) showed positive response to ethanol vapors in 5 mins by blue-shifting its emission band from 616 to 555 nm and emitting bright orange to green. Otherwise 2(Au) gave shifting from its emission band centered at 612 to 587 nm with Δλ of 25 nm (41%) and color changes from red-orange to light green-orange while 2(Ag) showed quenching in its original emission intensity at 473 nm in 40% with color changes from dark green to less emissive. These results demonstrate that sensing capability of chemosensor 2(Cu) with suitable molecular design of ligand and metal ion in the complex is due to the formation of a weak intermolecular hydrogen bonding interaction of O atom at the methoxy of the benzyl ring with the OH of the vapors at the outside of the molecules.

  5. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    Science.gov (United States)

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  6. Optimization of emission color and efficiency of organic light emitting diodes for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany)

    2008-07-01

    In recent years the performance of organic light emitting diodes (OLEDs) has reached a level where OLED lighting presents an interesting application target. Research activities therefore focus amongst other things on the development of high efficient and stable white light emitting devices. We demonstrate how the color coordinates can be adjusted to achieve a warm white emission spectrum, whereas the OLED stack contains phosphorescent red and green dyes combined with a fluorescent blue one. Detailed results are presented with respect to a variation of layer thicknesses and dopant concentrations of the emission layers. Furthermore the influence of various dye molecules and hence different energy level alignments between host and dopants on color and efficiency will be discussed.

  7. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M.R. Philip

    2017-06-01

    Full Text Available We report on the achievement of high efficiency green, yellow, and red InGaN/AlGaN dot-in-a-wire nanowire light-emitting diodes grown on Si(111 by molecular beam epitaxy. The peak emission wavelengths were altered by varying the growth conditions, including the substrate temperature, and In/Ga flux ratio. The devices demonstrate relatively high (>40% internal quantum efficiency at room temperature, relative to that measured at 5 K. Moreover, negligible blue-shift in peak emission spectrum associated with no efficiency droop was measured when injection current was driven up to 556 A/cm2.

  8. Synthesis and photophysical studies of blue phosphorescent Ir(III) complexes with dimethylphenylphospine.

    Science.gov (United States)

    Ham, Ho-Wan; Jung, Kyung-Yoon; Kim, Young-Sik

    2012-02-01

    New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir{(CF3)2Meppy}(PPhMe3)2(H)(L) [L = CI, NCMe, CN] [(CF3)2Meppy = 2-(3', 5'-bis-trifluoromethylphenyl)-4-methylpyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission, the trifluoromethyl group substituted on the phenyl ring and the methyl group substituted on the pyridyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift. To gain insight into the factors responsible for the emission color change and the different luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the complexes. From these results, we discuss how the ancillary ligand influences the emission peak as well as the metal to ligand charge transfer (MLCT) transition efficiency. The maximum emission spectra of Ir{(CF3)2Meppy}(PPhMe3)2(H)(Cl), [Ir{(CF3),Meppy)(PPhMe3),(H)(NCMe)]+ and Ir{(CF3)2Meppy}(PPhMe3)2(H)(CN) were in the ranges of 441, 435, 434 nm, respectively.

  9. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    KAUST Repository

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-01-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  10. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    KAUST Repository

    Dreano, Denis

    2017-05-24

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  11. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  12. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    International Nuclear Information System (INIS)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti; Wu, Chih-I

    2013-01-01

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts

  13. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots.

    Science.gov (United States)

    Lu, Xiaomei; Zhang, Jinyi; Xie, Ya-Ni; Zhang, Xinfeng; Jiang, Xiaoming; Hou, Xiandeng; Wu, Peng

    2018-02-20

    Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed a ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally resolved phosphorescence at 580 and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 μg/L, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum as well as in environmental water and soil samples was demonstrated.

  14. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    Science.gov (United States)

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse telecommunications wavelengths.

  15. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    International Nuclear Information System (INIS)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO 3 before measurement. Concentrations were determined on a mass basis (microg U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density

  16. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Directory of Open Access Journals (Sweden)

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  17. Synthesis of unsymmetric bipyridine-Pt(II) -alkynyl complexes through post-click reaction with emission enhancement characteristics and their applications as phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    Li, Yongguang; Tsang, Daniel Ping-Kuen; Chan, Carmen Ka-Man; Wong, Keith Man-Chung; Chan, Mei-Yee; Yam, Vivian Wing-Wah

    2014-10-13

    Two unsymmetric bipyridine-platinum(II)-alkynyl complexes have been synthesised by a post-click reaction. These metal complexes are found to exhibit emission enhancement properties. The photoluminescence quantum yield can be significantly increased from 0.03 in solution to 0.72 in solid-state thin films. Efficient solution-processable organic light-emitting diodes have been fabricated by utilizing these complexes as phosphorescent dopants. A high external quantum efficiency of up to 5.8% has been achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. DFT/TDDFT investigation on the electronic structures and photophysical properties of phosphorescent iridium(III) complexes with 2-(pyridin-2-yl)-benzo[d]imidazole ligand

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xiaohong, E-mail: shangxiaohong58@aliyun.com [College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012 (China); Han, Deming [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Li, Dongfeng [College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China)

    2014-03-15

    We have reported a theoretical analysis of a series of heteroleptic iridium(III) complexes (mpmi){sub 2}Ir(pybi) [mpmi=1-(4-tolyl)-3-methyl-imidazole, pybi=2-(pyridin-2-yl)-benzo[d]imidazole] (1a), (fpmi){sub 2}Ir(pybi) [fpmi=1-(4-fluoro-phenyl)-3-methyl-imidazole] (1b), (tfpmi){sub 2}Ir(pybi) [tfpmi=1-methyl-3-(4-trifluoromethyl-phenyl)-imidazole] (1c), (pypmi){sub 2}Ir(pybi) [pypmi=3-(3-methyl-imidazol)-pyrazole] (2a), (phpymi){sub 2}Ir(pybi) [phpymi=3-(3-methyl-imidazol)-5-phenyl-pyrazole] (2b), and (inpymi){sub 2}Ir(pybi) [inpymi=3-(3-methyl-imidazol)-indeno[1,2-c]pyrazole] (2c) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. By changing cyclometalated ligands, the conjugation length, and substituents of the cyclometalated ligands, one can tune the emission color from green (λ{sub em}=520 nm) to orange (λ{sub em}=592 nm). Complexes 1a, 1b, 2a, and 2b have the almost identical emission wavelength about 550 nm, while 592 nm for 1c and 520 nm for 2c are red shifted and blue shifted, respectively, relative to 1a. The calculated results indicate that, for 1b and 1c, the substituents of −F and −CF{sub 3} at the phenyl moiety cause a poor hole-injection ability compared with that of 1a. For all these complexes studied, the hole-transporting performances are better than the electron-transporting ones. The difference between reorganization energies for hole transport (λ{sub ih}) and reorganization energies for electron transport (λ{sub ie}) for complex 1c are relatively smaller, indicating that the hole and electron transfer balance could be achieved more easily in the emitting layer. The alteration of cyclometalated ligands with different conjugation lengths and substituents has an impact on the optoelectronic properties of these complexes. It is believed that the larger metal to ligand charge transfer (MLCT

  19. 3,3′-Bicarbazole-Based Host Molecules for Solution-Processed Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Jungwoon Kim

    2018-04-01

    Full Text Available Solution-processed organic light-emitting diodes (OLEDs are attractive due to their low-cost, large area displays, and lighting features. Small molecules as well as polymers can be used as host materials within the solution-processed emitting layer. Herein, we report two 3,3′-bicarbazole-based host small molecules, which possess a structural isomer relationship. 9,9′-Di-4-n-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-nBuPh and 9,9′-di-4-t-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-tBuPh exhibited similar optical properties within solutions but different photoluminescence within films. A solution-processed green phosphorescent OLED with the BCz-tBuPh host exhibited a high maximum current efficiency and power efficiency of 43.1 cd/A and 40.0 lm/W, respectively, compared to the device with the BCz-nBuPh host.

  20. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    Science.gov (United States)

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  1. Highly efficient red upconversion fluorescence emission in Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} codoped LaF{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei, E-mail: gaowei@xupt.edu.cn; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-11-15

    The Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} codoped LaF{sub 3} nanocrystals have been successfully prepared via a facile hydrothermal method. The significant enhancement in the red upconversion emission of Ho{sup 3+} is successfully obtained in LaF{sub 3}:Yb{sup 3+}/Ho{sup 3+} nanocrystals through introducing of Ce{sup 3+} under NIR excitation at 980 nm. The red-to-green emission ratio of Ho{sup 3+} is enhanced 18.9-fold with Ce{sup 3+} concentration increasing to 12%, which is due to the two efficient cross relaxation processes of {sup 5}I{sub 6} (Ho{sup 3+})+{sup 2}F{sub 5/2} (Ce{sup 3+})→{sup 5}I{sub 7} (Ho{sup 3+})+{sup 2}F{sub 7/2} (Ce{sup 3+}) and {sup 5}S{sub 2}/{sup 5}F{sub 4} (Ho{sup 3+})+{sup 2}F{sub 5/2} (Ce{sup 3+})→{sup 5}F{sub 5} (Ho{sup 3+})+{sup 2}F{sub 7/2} (Ce{sup 3+}) between Ho{sup 3+} and Ce{sup 3+} ions. The enhancement mechanism of red emission and conversion efficiency between Ho{sup 3+} and Ce{sup 3+} are investigated in detail.

  2. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd{sub 6}MoO{sub 12}:Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Wei, Donglei [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of); Huang, Yanlin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Kim, Sun Il [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of); Yu, Young Moon [Pukyong National University, LED-Marin Convergence Technology R and BD Center (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of)

    2013-09-15

    A novel red-emitting nano-phosphor of Eu{sup 3+}-doped Gd{sub 6}MoO{sub 12} was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} of Eu{sup 3+} ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd{sub 6}MoO{sub 12}:Eu{sup 3+} nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips.

  3. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  4. Hepatoprotective efficiency of methanol extract of red algae against chromium-induced oxidative damage in Wistar rats

    Directory of Open Access Journals (Sweden)

    Murugesan Subbiah

    2016-07-01

    Full Text Available Objective: To investigate the hepatoprotective activity of red algae Portieria hornemannii (Lyngbye Silva (P. hornemannii and Spyridia fusiformis Boergesen (S. fusiformis by using the chromium treated rat liver as the animal model. Methods: The extract of red algae at a dosage of 0.200 g/kg of whole body weight was orally administrated to Cr (VI intoxicated rats for 28 consecutive days. The effect of drug in rats was evaluated by comparing the degree of the production of enzymes responsible for antioxidant activity such lipid peroxidase, superoxide dismutase, catalase and reduced glutathione with Cr (VI analogs in the absence of any secondary treatment. The overall damage of liver was detected by measuring serum enzymes such as aspartate amino transferase and alanine aminotransferase activities which released into the blood from the damaged cells. Results: It was observed that these enzyme levels were noticed in the animals treated with methanol extracts of red algae (200 mg/kg through preventing the leakage of the above enzymes into the blood. The hepatoprotection obtained using LIV 52 (standard reference drug appeared relatively higher. The antihepatotoxic potential of red algae P. hornemannii and S. fusiformis might be due to their antioxidative and membrane stabilizing activities. Conclusions: Our results indicated that the extract of P. hornemannii and S. fusiformis obtained from methanol could be a promising hepatoprotective agent against chromium (VI-induced liver damage.

  5. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun

    2017-12-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  6. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun; Shang, Yuequn; Yin, Jun; de Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M.; Hedhili, Mohamed N.; Emwas, Abdul-Hamid M.; Mohammed, Omar F.; Ning, Zhijun; Bakr, Osman

    2017-01-01

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  7. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  8. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2012-06-01

    Full Text Available In this paper, we investigate the carrier injection and transport characteristics in iridium(IIIbis[4,6-(di-fluorophenyl-pyridinato-N,C2']picolinate (FIrpic doped phosphorescent organic light-emitting devices (OLEDs with oxadiazole (OXD as the bipolar host material of the emitting layer (EML. When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD.

  9. Are the unken reflex and the aposematic colouration of Red-Bellied Toads efficient against bird predation?

    Science.gov (United States)

    Caorsi, Valentina Zaffaroni; Colombo, Patrick; Abadie, Michelle; Brack, Ismael Verrastro; Dasoler, Bibiana Terra; Borges-Martins, Márcio

    2018-01-01

    Aposematic signals as well as body behaviours may be important anti-predator defences. Species of the genus Melanophryniscus are characterised by having toxic lipophilic alkaloids in the skin and for presenting a red ventral colouration, which can be observed when they perform the behaviour called the unken reflex. Both the reflex behaviour and the colouration pattern are described as defence mechanisms. However, there are currently no studies testing their effectiveness against predators. This study aimed to test experimentally if both ventral conspicuous colouration and the unken reflex in Melanophryniscus cambaraensis function as aposematic signals against visually oriented predators (birds). We simulated the species studied using three different clay toad models as follows: (a) in a normal position with green coloured bodies, (b) in the unken reflex position with green coloured body and extremities and (c) in the unken reflex position with a green body and red extremities. Models were distributed on a known M. cambaraensis breeding site and in the adjacent forest. More than half of the attacks on the models were from birds; however, there was no preference for any model type. Thus, just the presence of the red colour associated with the motionless unken reflex position does not seem to prevent attacks from potential predators. It is possible that the effective aposematic signal in Melanophryniscus is achieved through the unken reflex movement together with the subsequent exhibition of the warning colouration and the secretion of toxins. PMID:29596437

  10. Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhiyi [Optoelectronic Institute, Guilin University of Electronic Technology, Guilin 541004, Guangxi (China); Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Ma, Li [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Wang, Xiaojun, E-mail: xwang@georgiasouthern.edu [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-01-15

    Photoluminescence and phosphorescence from different recombining centers in the Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4} phosphors have been observed. By UV excitation the undoped sample presents a broad band of blue–white emission from the host defects while the Mn-doped samples show both the host and Mn{sup 2+} emissions with different phosphorescent durations. At the beginning of UV excitation after the phosphorescence has been exhausted, the fluorescent time dependence of Mn{sup 2+} exhibits a fast decay process to a constant intensity, different from the rising or charging process as the typical behavior for the common persistent phosphors. This unusual behavior was studied using electron paramagnetic resonance (EPR) spectroscopy. A decrease of the EPR signal from Mn{sup 2+} was found for the sample under UV irradiation, suggesting the occurrence of ionization of Mn{sup 2+} to Mn{sup 3+}. A slow recovering process of the ionization has also been detected, which is consistent with the observation of phosphorescence from Mn{sup 2+} doped samples. - Highlights: • Photoluminescence and phosphorescence observed from Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4}. • Unusual charging process from the common phosphors observed and analyzed. • Photo-stimulated EPR with a slow recovering process of Mn{sup 2+} ionization observed.

  11. Fundamental and future prospects of printed ambipolar fluorene-type polymer light-emitting transistors for improved external quantum efficiency, mobility, and emission pattern

    Science.gov (United States)

    Kajii, Hirotake

    2018-05-01

    In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.

  12. Effect of Förster-mediated triplet-polaron quenching and triplet-triplet annihilation on the efficiency roll-off of organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J.; Coehoorn, R., E-mail: r.coehoorn@tue.nl [Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-04-28

    We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy){sub 3}) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasing the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.

  13. High photochemical trapping efficiency in Photosystem I from the red Glade algae Chromera velia and Phaeodactylum tricornuturn

    Czech Academy of Sciences Publication Activity Database

    Belgio, Erica; Santabarbara, S.; Bína, David; Trsková, Eliška; Herbstová, Miroslava; Kaňa, Radek; Zucchelli, G.; Prášil, Ondřej

    2017-01-01

    Roč. 1858, č. 1 (2017), s. 56-63 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GA14-15728S; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392; GA ČR GBP501/12/G055; GA ČR(CZ) GA16-10088S Institutional support: RVO:61388971 ; RVO:60077344 Keywords : Chromera velia * Phaeodactylum tricornutum * Red Glade algae Subject RIV: EE - Microbiology, Virology; BO - Biophysics (BC-A) OBOR OECD: Microbiology; Biophysics (BC-A) Impact factor: 4.932, year: 2016

  14. Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Tao; Yang, Chao; Rao, Xuehui; Wang, Jide [Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 (China); Niu, Chunge, E-mail: ncg@petrochina.com.cn [Petrochemical Research Institute, Karamay Petrochemical Company, Karamay 834000 (China); Su, Xintai, E-mail: suxintai827@163.com [Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 (China)

    2014-02-15

    The iron oxide nanoparticles had been successfully synthesized via an additive-free hydrolysis process at 75 °C for 12 h. The product was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N{sub 2} adsorption–desorption. The results of XRD and N{sub 2} adsorption–desorption demonstrated that the as-prepared product was mainly α-Fe{sub 2}O{sub 3} with a large surface area of 164.1 m{sup 2} g{sup −1}. The TEM images illustrated that the as-prepared product was found to consist of a mixture of irregular spherical nanoparticles (a diameter of ∼50 nm) and nanowhiskers (a diameter of ∼50 nm and uneven length). The as-prepared product was used to investigate its promising applications in water treatment. Due to its small size and large surface area, the maximum adsorption capacities of Congo red and Cr(VI) have been determined using the Langmuir equation and found to reach up to 253.8 and 17.0 mg g{sup −1}, respectively. The facile synthesis method and the superior adsorption performance derived from the iron oxide nanoparticles display the potential applications for the removal of Congo red and Cr(VI) from aqueous solution.

  15. Studies on the photodegradation of red, green and blue phosphorescent OLED emitters

    Directory of Open Access Journals (Sweden)

    Susanna Schmidbauer

    2013-10-01

    Full Text Available The photodegradation behavior of four well-established iridium emitters was investigated. Irradiation of the samples in different solvents and under atmospheric as well as inert conditions helped to identify several pathways that can contribute to the deterioration of these compounds. Degradation via singlet oxygen or the excited states of the emitters as well as the detrimental influence of halogenated solvents are discussed for the different investigated iridium complexes. Some of the resulting degradation products could be identified by using LC–MS or other analytical techniques. The results show how even small structural changes can have a huge influence on rate and mechanism of the photodegradation. The observations from this study may help to better understand degradation processes occurring during the handling of the materials, but also during device processing and operation.

  16. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    Science.gov (United States)

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  17. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate.

    Science.gov (United States)

    Simó, Guillermo; Vila-Crespo, Josefina; Fernández-Fernández, Encarnación; Ruipérez, Violeta; Rodríguez-Nogales, José Manuel

    2017-06-28

    Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.

  18. Efficient photodegradation of Acid Red B by immobilized ferrocene in the presence of UVA and H2O2

    International Nuclear Information System (INIS)

    Nie Yulun; Hu Chun; Qu Jiuhui; Hu Xuexiang

    2008-01-01

    SiO 2 -C 2 H 4 -ferrocene (SiCFe) was synthesized by covalent grafting of ferrocene on functionalized silica gel with a -C 2 H 4 - linkage. On the basis of characterization by diffuse reflectance UV-vis spectra (DRS) and Fourier transform infrared spectra (FT-IR), ferrocene has been successfully anchored on the silica gel. Under UVA (λ max = 365 nm) irradiation, the catalyst exhibited high photocatalytic activity in the degradation of Acid Red B (ARB), especially in the presence of H 2 O 2 . Meanwhile, the catalytic activity of SiCFe was maintained effectively even after reused for 4 times without any significant destruction of ferrocene. The influence of initial solution pH and wavelength of UV light on the catalyst's activity was also investigated. Electron spin resonance (ESR) studies revealed that both ·OH and HO 2 ·/O 2 · - radicals were involved as the active species in the ARB degradation process. Furthermore, results of total organic carbon (TOC) and FT-IR analysis indicated that ARB degradation proceeded by the cleavage of -N=N-, followed by hydroxylation and opening of phenyl rings to form aliphatic acids and further oxidization of the aliphatic acids to produce carbon dioxide and water. A possible reaction mechanism was proposed on the basis of all the information obtained under various experimental conditions

  19. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    Science.gov (United States)

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution

    Science.gov (United States)

    Ghaedi, Mehrorang; Tavallali, Hossein; Sharifi, Mahdi; Kokhdan, Syamak Nasiri; Asghari, Alireza

    2012-02-01

    In this research, the potential applicability of activated carbon prepared from Myrtus communis (AC-MC) and pomegranate (AC-PG) as useful adsorbents for the removal of Congo red (CR) from aqueous solutions in batch method was investigated. The effects of pH, contact time, agitation time and amount of adsorbents on removal percentage of Congo red on both adsorbents were examined. Increase in pH up to 6 for AC-MC and pH 7 for AC-PG increase the adsorption percentage (capacity) and reach equilibrium within 30 min of contact time. Fitting the experimental data to conventional isotherm models like Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich show that the experimental data fitted very well to the Freundlich isotherm for AC-MC and Langmuir isotherm for AC-PG. Fitting the experimental data to different kinetic models such as pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion mechanism showed the applicability of a pseudo second-order with involvement of intraparticle diffusion model for interpretation of experimental data for both adsorbents. The adsorption capacity of AC-PG and AC-MC for the removal of CR was found to be 19.231 and 10 mg g -1. These results clearly indicate the efficiency of adsorbents as a low cost adsorbent for treatment of wastewater containing CR.

  1. Copolymers containing phosphorescent iridium(III) complexes obtained by free and controlled radical polymerization techniques

    NARCIS (Netherlands)

    Ulbricht, C.; Becer, C.R.; Winter, A.; Veldman, D.; Schubert, U.S.

    2008-01-01

    A methacrylate-functionalized phosphorescent Ir(III)-complex has been synthesized, characterized, and applied as a monomer in radical copolymerizations. Together with methyl methacrylate, the complex has been copolymerized under free radical polymerization conditions. Aiming for host-guest-systems,

  2. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2015-01-01

    In this study, we have undertaken efforts to find correlation between phosphorescence lifetimes of single tryptophan containing proteins and some structural indicators of protein flexibility/rigidity, such as the degree of tryptophan burial or its exposure to solvent, protein secondary and tertiary structure of the region of localization of tryptophan as well as B factors for tryptophan residue and its immediate surroundings. Bearing in mind that, apart from effective local viscosity of the protein/solvent matrix, the other factor that concur in determining room temperature tryptophan phosphorescence (RTTP) lifetime in proteins is the extent of intramolecular quenching by His, Cys, Tyr and Trp side chains, the crystallographic structures derived from the Brookhaven Protein Data Bank were also analyzed concentrating on the presence of potentially quenching amino acid side chains in the close proximity of the indole chromophore. The obtained results indicated that, in most cases, the phosphorescence lifetimes of tryptophan containing proteins studied tend to correlate with the above mentioned structural indicators of protein rigidity/flexibility. This correlation is expected to provide guidelines for the future development of phosphorescence lifetime-based method for the prediction of structural flexibility of proteins, which is directly linked to their biological function.

  3. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  4. Phosphorescence spectroscopy and its application to the study of colloidal dynamics

    NARCIS (Netherlands)

    Lettinga, M.P.

    1999-01-01

    The technique of Time-resolved phosphorescence anisotropy (TPA) has been frequently used to study rotational motions of particles on the micro- to millisecond time-scale. The interpretation of the observed TPA signals is, however, not straightforward. The theoretical description of the

  5. Wireless high-speed data transmission with phosphorescent white-light LEDs

    NARCIS (Netherlands)

    Grubor, J.; Lee, S.C.J.; Langer, K-D.; Koonen, A.M.J.; Walewski, J.

    2007-01-01

    Wireless transmission exceeding 100 Mbit/s is demonstrated using a phosphorescent white-light LED in a lighting-like scenario. The data rate was achieved by detecting the blue part of the optical spectrum and applying discrete multi-tone modulation.

  6. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Bi, Wanjun [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Wei; Xue, Tianfeng; Hu, Lili; Liao, Meisong, E-mail: liaomeisong@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Gao, Weiqing [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China)

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferred into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.

  7. Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens

    Directory of Open Access Journals (Sweden)

    Juan Macchiavello

    2014-07-01

    Full Text Available The current study examined the nutrient uptake efficiency of Ulva lactuca and Gracilaria chilensis cultivated in tanks associated with the wastewater of a land-based abalone culture. The experiments evaluated different seaweed stocking densities (1200, 1900, 2600, and 3200 g m-2 and water exchange rates (60, 80, 125, and 250 L h-1. The results show that both U. lactuca and G. chilensis were efficient in capturing and removing all of the inorganic nutrients originating from the abalone cultivation for all of the tested conditions. Furthermore, an annual experiment was performed with U. lactuca, cultivated at a stocking density of 1900 g m-2 and at a water exchanged rate of 125 L h-1, in order to evaluate seasonal changes in the nutrient uptake efficiency, productivity, and growth rate associated with the wastewater of a land-based abalone culture. The results confirmed high uptake efficiency during the entire year, equivalent to a 100% removal of the NH4, NO3, and PO4 produced by the land-based abalone culture. The growth rate and productivity of U. lactuca presented a marked seasonality, increasing from fall until summer and varying from 0.5 ± 0.2% to 2.6 ± 0.2% d-1 and 10 ± 6.1% to 73.6 ± 8.4% g m-2 d-1 for sustainable growth rate and productivity, respectively. We conclude that there is sufficient evidence that demonstrates the high possibility of changing the traditional monoculture system of abalone in Chile, to a sustainable integrated multi-trophic aquaculture system, generating positive environmental externalities, including the use of U. lactuca as a biofiltration unit.

  8. Optical study of SrAl1.7B0.3O4:Eu, R (R=Nd, Dy) pigments with long-lasting phosphorescence for industrial uses

    International Nuclear Information System (INIS)

    Sanchez-Benitez, J.; Andres, A. de; Marchal, M.; Cordoncillo, E.; Regi, M.V.; Escribano, P.

    2003-01-01

    We have studied and compared the optical properties of SrAl 1.7 B 0.3 O 4 :Eu, R (R=Nd, Dy) pigments that present long-lasting phosphorescence obtained by different synthesis techniques. Samples obtained by ceramic methods, in our laboratories and by an industrial process, present better phosphorescent properties than those obtained by sol-gel technique. Raman spectra show that grinding produces severe damage of the lattice. We have obtained and analyzed the Eu 3+ crystal field luminescence indicating that Eu 3+ is found in quite different sites comparing ceramic and sol-gel samples. Codoping, with Nd or Dy is necessary in order to reduce the Eu 3+ content, in all cases. The green luminescence band, obtained under UV illumination, can be fitted to two and three components in ceramic and sol-gel samples, respectively, due to different Eu 2+ sites. Eu-Dy samples present the longest and the most efficient phosphorescence. The time evolution of the afterglow is well described by a t -1 law, up to about 2 h, indicating that the recombination process is achieved by electron-hole tunneling

  9. Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination

    KAUST Repository

    Almashharawi, Samir

    2013-01-01

    Conventional processes are widely used as pretreatment for reverse osmosis (RO) desalination technology since its development. However, these processes require a large footprint and have some limitation issues such as difficulty to maintain a consistent silt density index, coagulation control at low total suspended solids, and management of higher waste sludge. Recently, there has been a rapid growth in the use of low-pressure membranes as pretreatment for RO systems replacing the conventional processes. However, despite the numerous advantages of using this integrated membrane system mainly providing good and stable water quality to RO membranes, many issues have to be addressed. The primary limitation is membrane fouling which reduces the permeate flux; therefore, higher pumping intensity is required to maintain a consistent volume of product. This paper aims to optimize the permeation flux and cleaning frequency by providing high permeate quality. Different low-pressure polyethersulfone membranes with different pore sizes ranging from 0.1 lm to 50 kDa were tested. Eight different filtration configurations have been applied including the variation of coagulant doses aiming to control membrane fouling. Results showed that all the configurations with/without coagulation, provided permeate with excellent water quality which improves the stability of RO performance. However, more stable fluxes with less-energy consumption were achieved by using the 0.1 lm and 100 kDa membranes with 1 mg/L FeCl3 coagulation. The use of UF membranes, having tight pores, without coagulation also proved to be an excellent option for Red Sea water RO pretreatment. © 2013 Desalination Publications.

  10. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    KAUST Repository

    Whited, Matthew T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k ST(1BDP→1Por) = 7.8×1011 s-1, kTT(3Por→3BDP) = 1.0×1010 s-1, kTT(3BDP→ 3Por) = 1.6×1010 s-1), leading to a long-lived equilibrated [3BDP][Por]=[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae. © 2010 American Chemical Society.

  11. High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used in vacuum processes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Hyong-Jun, E-mail: hkim@kongju.ac.kr [Department of Chemical Engineering, Kongju National University, Cheonan, 330-717 (Korea, Republic of)

    2012-09-30

    High efficiency phosphorescent organic light emitting diodes (OLEDs) are realized by inkjet printing based on small molecules commonly used in vacuum processes in spite of the limitation of the limited solubility. The OLEDs used the inkjet printed 5 wt.% tris(2-phenylpyridine)iridium(III) (Ir(ppy){sub 3}) doped in 4,4 Prime -Bis(carbazol-9-yl)biphenyl (CBP) as the light emitting layer on various small molecule based hole transporting layers, which are widely used in the fabrication of OLEDs by vacuum processes. The OLEDs resulted in the high power and the external quantum efficiencies of 29.9 lm/W and 11.7%, respectively, by inkjet printing the CBP:Ir(ppy){sub 3} on a 40 nm thick 4,4 Prime ,4 Double-Prime -tris(carbazol-9-yl)triphenylamine layer. The performance was very close to a vacuum deposited device with a similar structure. - Highlights: Black-Right-Pointing-Pointer Effective inkjet printed organic light emitting diode (OLED) technique is explored. Black-Right-Pointing-Pointer Solution process on commonly used hole transporting material (HTM) is demonstrated. Black-Right-Pointing-Pointer Triplet energy overlap of HTM and emitting material is the key to the performance. Black-Right-Pointing-Pointer Simple inkjet printed OLED provides the high current efficiency of 40 cd/A.

  12. Electroluminescence of organic light-emitting diodes consisting of an undoped (pbi)2Ir(acac) phosphorescent layer

    Science.gov (United States)

    Lei, Xia; Yu, Junsheng; Zhao, Juan; Jiang, Yadong

    2011-11-01

    The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.

  13. Effects of P-efficient Transgenic Rice OsPT4 on Inorganic Phosphorus Fractions in Red Soil

    Directory of Open Access Journals (Sweden)

    WEI Lin-lin

    2017-08-01

    Full Text Available In a rhizobox experiment with phosphorus(P fertilizer application and P-deficiency, planting wild-type rice(Nipp, P-efficient mutant rice(PHO2, P-efficient transgenic rice(OsPT4 were chosen to evaluate effects of phosphorus efficient transgenic rice on inorganic phosphorus in the rhizosphere and non-rhizosphere soil. The obtained results were summarized as follows:(1Significant higer dry weight and P accumulation were observed in OsPT4 and PHO2 than in Nipp, but lower total P and inorganic phosphorus observed in OsPT4 and PHO2 than in Nipp;(2The concentrations of inorganic phosphorus fractions in the rhizosphere and non-rhizosphere soil were sorted as follows:O-P > Fe-P > Al-P > Ca-P, and the order of inorganic phosphorus fractions adapted to three rice materials;(3When added phosphorus fertilizer, the concents of rhizospheric Al-P, Fe-P and non-rhizospheric Ca-P in three rice materials had no significant difference. The concents of rhizospheric soil O-P and Ca-P in OsPT4 and PHO2 were significantly inferior to Nipp, and their concents of non-rhizospheric soil Al-P, Fe-P and O-P were significantly lower than Nipp. When added no phosphorus fertilizer, the concents of rhizospheric Al-P, O-P, Ca-P and non-rhizosphere Al-P, Ca-P in three rice materials had no significant difference, and the concents of rhizosphere Fe-P and non-rhizosphere soil Fe-P, O-P in OsPT4 and PHO2 were significantly lower than Nipp, but rhizosphere Ca-P was significantly higher than Nipp.

  14. Evaluation of marking efficiency of different alizarin red S concentrations on body fish structures in Oreochromis niloticus (Perciformes: Cichlidae juveniles

    Directory of Open Access Journals (Sweden)

    Ana L. Ibáñez

    2013-03-01

    Full Text Available The use of alizarin red S (ARS marked tilapias could provide valuable fisheries management information to evaluate fish stocking events and may facilitate aquaculture management practices. As a new technique in fishes, the aim of this study was to compare and evaluate the chemical marks produced in tilapia juveniles by ARS through two treatments: 1 12 hours of immersion and 2 immersion after osmotic induction. This was analyzed at three concentrations: 50, 75 and 100mg/l, and in three structures: otoliths, fish scales and caudal fin rays of Oreochromis niloticus juveniles. After three culture months 80% of specimens were analyzed and significant differences (pEl uso de alizarina roja S (ARS para marcar tilapias podría proporcionar información valiosa para el manejo de su pesquería. Para evaluar pesquerías acuaculturales manejadas con siembras o repoblamientos de peces se comparó y evaluó la marca producida por la alizarina roja S, empleando dos tratamientos: 1 Inmersión en ARS durante 12h; e 2 Inmersión en ARS después de un choque osmótico. El análisis se realizó a tres concentraciones: 50, 75 y 100mg/l y en tres estructuras: otolitos, escamas y radios de la aleta caudal de Oreochromis niloticus. Ochenta por ciento de los ejemplares fueron cultivados durante tres meses y analizados posteriormente. Los resultados mostraron diferencias entre las concentraciones de la marca para el tratamiento de 12h de inmersión mientras que no hubo diferencias entre las concentraciones para el tratamiento con inducción osmótica. Se encontraron diferencias en la intensidad de la marca entre los tratamientos para otolitos y radios de las aletas pero para las escamas no hubo diferencias significativas. Todas las concentraciones produjeron marcas (desde débiles a intensas, sin embargo la concentración de 100mg/l no produjo marcas débiles. El tratamiento por inducción osmótica presentó mayores niveles de mortalidad. Después de ocho meses de

  15. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea.

    Science.gov (United States)

    He, Peimin; Xu, Shannan; Zhang, Hanye; Wen, Shanshan; Dai, Yongjing; Lin, Senjie; Yarish, Charles

    2008-02-01

    The bioremediation capability and efficiency of large-scale Porphyra cultivation in the removal of inorganic nitrogen and phosphorus from open sea area were studied. The study took place in 2002-2004, in a 300 ha nori farm along the Lusi coast, Qidong County, Jiangsu Province, China, where the valuable rhodophyte seaweed Porphyra yezoensis has been extensively cultivated. Nutrient concentrations were significantly reduced by the seaweed cultivation. During the non-cultivation period of P. yezoensis, the concentrations of NH4-N, NO2-N, NO3-N and PO4-P were 43-61, 1-3, 33-44 and 1-3 micromol L(-1), respectively. Within the Porphyra cultivation area, the average nutrient concentrations during the Porphyra cultivation season were 20.5, 1.1, 27.9 and 0.96 micromol L(-1) for NH4-N, NO2-N, NO3-N and PO4-P, respectively, significantly lower than in the non-cultivation season (p0.05). The highest tissue nitrogen content, 7.65% in dry wt, was found in December and the lowest value, 4.85%, in dry wt, in April. The annual biomass production of P. yezoensis was about 800 kg dry wt ha(-1) at the Lusi Coast in 2003-2004. An average of 14708.5 kg of tissue nitrogen and 2373.5 kg of tissue phosphorus in P. yezoensis biomass were harvested annually from 300 ha of cultivation from Lusi coastal water. These results indicated that Porphyra efficiently removed excess nutrient from nearshore eutrophic coastal areas. Therefore, large-scale cultivation of P. yezoensis could alleviate eutrophication in coastal waters economically.

  16. Novel concepts for high-efficiency white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Gregor

    2007-07-01

    This work deals with novel concepts to realize high efficiency white OLEDs by combining fluorescent blue and phosphorescent green and orange emitters. A key point determining the maximum efficiency possible, as well as the device structure to be chosen to reach high efficiency, is the triplet exciton energy of the fluorescent blue emitter. If its triplet state is lower than that of the phosphorescent emitters, mutual exciton quenching can occur. This problem is solved by the first concept with spatial separation of the fluorescent blue from the phosphorescent emitters by a large-gap exciton blocking layer. To still realize exciton generation on both sides, the interlayer has to be ambipolar. On the other hand, if the triplet exciton energy of the fluorescent blue is higher than that of at least one of the phosphorescent emitters, appropriate arrangement of the emission layers makes a separation layer obsolete, since phosphorescence quenching does not occur anymore. Moreover, the intrinsically non-radiative triplet excitons of the fluorescent blue emitter may be harvested by the phosphor for light emission, which means that even 100% internal quantum efficiency is possible. The last chapter 6 deals with this second concept, where the main issue is to simultaneously achieve exciton harvesting as complete as possible and a balanced white emission spectrum by appropriately distributing singlet and triplet excitons to the used emitters. All emitters used in this work are commercially available and their molecular structure is disclosed in order to make the results transparent. (orig.)

  17. A Zero-Dimensional Organic Seesaw-Shaped Tin Bromide with Highly Efficient Strongly Stokes-Shifted Deep-Red Emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chenkun [College of Engineering, Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering; Lin, Haoran [College of Engineering, Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering; Shi, Hongliang [Beihang Univ., Beijing (China). Dept. of Physics; Tian, Yu [Materials Science and Engineering Program, Florida State University, Tallahassee FL 32306 USA; Pak, Chongin [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Shatruk, Michael [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Zhou, Yan [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Djurovich, Peter [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry; Du, Mao-Hua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division, Center for Radiation Detection Materials and Systems; Ma, Biwu [College of Engineering, Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering; Beihang Univ., Beijing (China). Dept. of Physics; Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry

    2017-12-21

    The synthesis and characterization is reported of (C9NH20)2SnBr4, a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr42-) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C9NH20+). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. Furthermore, the unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals to exhibit the intrinsic properties of individual SnBr42- species, and 2) the seesaw structure then enables a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.

  18. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    Science.gov (United States)

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  19. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions.

    Science.gov (United States)

    Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge

    2014-03-12

    By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuehua; Zhang, Mengke [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Xinwen, E-mail: iamxwzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lai, Wenyong, E-mail: iamwylai@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Huang, Wei [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2017-06-15

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  1. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    International Nuclear Information System (INIS)

    Chen, Yuehua; Zhang, Mengke; Zhang, Xinwen; Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli; Lai, Wenyong; Huang, Wei

    2017-01-01

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  2. Effects of shrimp head meal in the diets on growth, feed efficiency and pigmentation of sex-reversed red tilapia, Oreochromis niloticus x O. mossambicus

    Directory of Open Access Journals (Sweden)

    Pimolrat, P.

    2006-09-01

    Full Text Available Shrimp head meal (SHM was used to replace fish meal as a protein source in practical diets for sexreversed red tilapia (Oreochromis niloticus x O. mossambicus at 0, 25, 50, 75 and 100% of fish meal protein or 0, 6.92, 13.84, 20.76 and 27.68% by weight of diet respectively. Catfish feed that contained protein content 37.22±0.10% was included as a reference diet. The experimental diets were fed to the fish with mean initial weight of 3.13±0.05 g for 8 weeks in 70 l aquaria. The results showed that weight gain and specific growth rate of fish fed 50% of fishmeal protein replacement or diet 3 was not significant by different from those of fish on control diet (p>0.05. The data of feed intake, feed conversion ratio and productive protein value of fish fed diet 3 were equal to those fed control diet (p>0.05. The lowest growth rate and feed efficiency showed on fish fed 100% of fishmeal protein replacement. The production cost of fish fed diet 3 was equal to those fed the control diet and the reference diet (p>0.05. Total carotenoid content in fish skin was significantly highest (p<0.05 in fish fed 100% of fishmeal protein replacement diet. The result indicates that the use of SHM at the level of 50% replacement or 13.84% by weight of diet is a potential protein source in sex-reversed red tilapia diet.

  3. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  4. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  5. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system

    Science.gov (United States)

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 °C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (Δ Ip) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot -1 (or 0.0040-0.80 ng ml -1 with a sample volume of 0.4 μl). The regression equation of working curve can be expressed as Δ Ip = 13.12 + 0.4839 CSe(IV) (fg spot -1) ( n = 6), with correlation coefficient r = 0.9991 and a detection limit of 0.28 fg spot -1 (corresponding to a concentration range of 7.0 × 10 -13 g ml -1 Se(IV), n = 11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml -1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  6. Determination of DNA by solid substrate room temperature phosphorescence enhancing method based on the Morin.SiO2 luminescent nanoparticles-Pd system as a phosphorescence probe

    International Nuclear Information System (INIS)

    Liu Jiaming; Yang Tianlong; Gao Fei; Hu Lixiang; He Hangxia; Liu Qinying; Liu Zhenbo; Huang Xiaomei; Zhu Guohui

    2006-01-01

    Sodium carbonate (Na 2 SiO 3 ) as the precursor, was mixed with Morin organic dye to synthesize silicon dioxide luminescent nanoparticles containing Morin (Morin.SiO 2 ) by sol-gel method. The particle sizes of SiO 2 .nH 2 O and Morin.SiO 2 were both 50 nm, measured with TEM (transmission electron microscope). Morin.SiO 2 modified by HS-CH 2 COOH could be dissolved by water. In the HMTA (hexamethylenetetramine)-HCl buffer solution, Pd 2+ could coordinate with Morin in Morin.SiO 2 to form complex Pd 2+ -Morin.SiO 2 , which could emit phosphorescence on polyamide membrane. And DNA (deoxyribonucleic acid) could cause a sharp enhancement of the room temperature phosphorescence (RTP) intensity of complex Pd 2+ -Morin.SiO 2 . Thus a new method of solid substrate room temperature phosphorescence (SS-RTP) enhancing for the determination of DNA was established based on the Morin.SiO 2 luminescent nanoparticles-Pd system as a phosphorescence probe. The ΔIp is directly proportional to the content of DNA in the range of 4.00-1000.0 fg spot -1 (corresponding concentration: 0.010-2.50 ng ml -1 ). The regression equation of working curve was ΔIp = 21.13 + 0.2076m DNA (fg spot -1 ) (r = 0.9990) and the detection limit was 0.61 fg spot -1 (corresponding concentration: 1.5 pg ml -1 ). This method had a wide linear range, high sensitivity, convenience, rapidity and only a little sample was needed. Samples containing 0.10 and 25.0 ng ml -1 DNA were measured repeatedly for 11 times and RSDs were 3.2 and 4.1% (n = 11), respectively, which indicated that the method had a good repeatability. Disturbance of common ions, such as Mg 2+ , K + , and Ca 2+ , was small, and there was no disturbance in the presence of protein and RNA. This method has been applied to the determination of DNA in nectar successfully

  7. Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian

    2018-03-01

    A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.

  8. A specific Tween-80-Rhodamine S-MWNTs phosphorescent reagent for the detection of trace calcitonin

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiaming, E-mail: zzsyliujiaming@163.com [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Huang Xiaomei; Zhang Lihong; Zheng Zhiyong [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000 (China); Lin Xuan; Zhang Xiaoyang; Jiao Li; Cui Malin [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Jiang Shulian [Fujian Provincial Bureau of Quality and Technical Supervision, Zhangzhou, 363000 (China); Lin Shaoqin [Department of Biochemistry, Fujian Education College, Fuzhou 350001 (China)

    2012-09-26

    Graphical abstract: A new Tween-80-Rhodamine S-water-soluble multi-walled carbon nanotubes (Tween-80-Rhod.S-MWNTs-EDC-NHS, TRMEN) phosphorescent labelling reagent was developed. High sensitive solid substrate room temperature phosphorescence immunoassay (SSRTPIA) for the determination of calcitonin (CT) in human serum and the prediction of human diseases based on the TRMEN could be used to label anti-calcitonin antibody (Ab{sub CT}) to form the TRMEN-Ab{sub CT} labelling product, which could take high specific immunoreaction with CT causing that the {Delta}I{sub p} of the system was linear to the content of CT. Moreover, the reaction mechanisms of both labelling Ab{sub CT} by TRMEN and SSRTPIA for the determination of trace CT were discussed. This research not only provides a new hormones analysis method, but also expands the application field of MWNTs and promotes the development of SSRTP and IA. --Highlights: Black-Right-Pointing-Pointer A Tween-80-Rhodamine S-multi-walled carbon nanotubes labelling reagent was developed. Black-Right-Pointing-Pointer The phosphorescence immunoassay was established for the determination of calcitonin. Black-Right-Pointing-Pointer This method has been applied to determine CT and the prediction of diseases. Black-Right-Pointing-Pointer The structure of MWNTs was characterized with SEM and IR. Black-Right-Pointing-Pointer The mechanisms for both determining trace CT and labelling Ab{sub CT} were discussed. - Abstract: The present study proposed a simple sensitive and specific immunoassay for the quantification of calcitonin (CT) in human serum with water-soluble multi-walled carbon nanotubes (MWNTs). The -COOH group of MWNTs could react with the -NH- group of rhodamine S (Rhod.S) molecules to form Rhod.S-MWNTs, which could emit room temperature phosphorescence (RTP) on acetate cellulose membrane (ACM) and react with Tween-80 to form micellar compound. Tween-80-Rhod.S-MWNTs (TRM), as a phosphorescent labelling reagent, could

  9. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    Science.gov (United States)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  10. The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S

    Science.gov (United States)

    Yang, Jia-Ying; Jiang, Xin-Yu; Jiao, Fei-Peng; Yu, Jin-Gang

    2018-04-01

    A contrastive work on the removal of two organic dyes, alizarin yellow R (AYR) and alizarin red S (ARS), was carried out by utilizing pentaerythritol modified multi-walled carbon nanotubes (ox-MWCNT-PER) as a highly efficient adsorbent. Various characterization methods such as scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, the Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS), were applied for revealing the physical and chemical properties of the as-prepared material. In addition, the adsorption kinetics, isotherms and thermodynamic parameters were also discussed. The results showed that the time required to achieve the adsorption equilibrium for both dyes was about 30 min, and the increase in temperature was not favorable to the adsorption process. It was worth noting that the adsorption capacity of ox-MWCNT-PER towards ARS dye was more significant than that towards AYR dye. And the maximum adsorption capacities for ARS and AYR were 257.73 mg g-1 and 45.39 mg g-1, respectively. The possible adsorption mechanism was also proposed, and the synergistic effects of the hydrogen bonding and the π-π electron stacking interactions between the adsorbents and adsorbates both contributed to the adsorption. It could be proposed that the ox-MWCNT-PER nanocomposite might have some positive effects in removing organic dyes from water treatment in the future.

  11. Radiation dosimetry by optically stimulated phosphorescence of CaF2:Mn

    International Nuclear Information System (INIS)

    Bernhardt, R.

    1974-01-01

    In addition to the light emission which occurs in TL, trapped electrons in CaF 2 :Mn can also be released by stimulation with visible and UV light. The measurement of stimulated light emission is disturbed by illumination. But there is an optically-stimulated phosphorescence, which permits to separate measurement of stimulated light emission and illumination. A theory is given. During illumination a part of the released electrons are captured by flat traps, which are emptied at room temperature. A dose dependent signal can be measured at a defined time after the stimulating pulse of visible light. Dosimeters (CaF 2 :Mn teflon disks) were illuminated by the light of a tungsten lamp. The dose response curve was found to be linear from 1 to 10 5 rads. The response curve obtained for optical stimulation was similar to the TL-response curve. Fading of the optically-stimulated signal was higher than TL-fading. Repeated readings of a single sample are possible. The number of readings is dependent on illumination conditions. Accuracy of sample to sample was about 3.5% (standard deviation). There are two background signals. (1) Post-irradiation phosphorescence occurs. Flat traps are also filled after 60 Co gamma excitation. The measurement of the signal is possible after decay of post-irradiation phosphorescence. (2) There is an optically-excited phosphorescence, which also occurs if all trapped electrons are released. The lower limit of dose measurements is given by deviations of optically-excited emission and the dark-current of the photomultiplier tube. (author)

  12. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    OpenAIRE

    Worsfold, P. J.; Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each mainfold and results are presented for the determination of the four trace metals i...

  13. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    OpenAIRE

    Salert, Beatrice Ch. D.; Wedel, Armin; Grubert, Lutz; Eberle, Thomas; Anémian, Rémi; Krueger, Hartmut

    2012-01-01

    This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obta...

  14. Effective lattice stabilization of gadolinium aluminate garnet (GdAG via Lu3+ doping and development of highly efficient (Gd,LuAG:Eu3+ red phosphors

    Directory of Open Access Journals (Sweden)

    Jinkai Li, Ji-Guang Li, Zhongjie Zhang, Xiaoli Wu, Shaohong Liu, Xiaodong Li, Xudong Sun and Yoshio Sakka

    2012-01-01

    Full Text Available The metastable garnet lattice of Gd3Al5O12 is stabilized by doping with smaller Lu3+, which then allows an effective incorporation of larger Eu3+ activators. The [(Gd1−xLux1−yEuy]3Al5O12 (x = 0.1–0.5, y = 0.01–0.09 garnet solid solutions, calcined from their precursors synthesized via carbonate coprecipitation, exhibit strong luminescence at 591 nm (the 5D0 → 7F1 magnetic dipole transition of Eu3+ upon UV excitation into the charge transfer band (CTB at ~239 nm, with CIE chromaticity coordinates of x = 0.620 and y = 0.380 (orange-red. The quenching concentration of Eu3+ was estimated at ~5 at.% (y = 0.05, and the quenching was attributed to exchange interactions. Partial replacement of Gd3+ with Lu3+ up to 50 at.% (x = 0.5 while keeping Eu3+ at the optimal content of 5 at.% does not significantly alter the peak positions of the CTB and 5D0 → 7F1 emission bands but slightly weakens both bands owing to the higher electronegativity of Lu3+. The effects of processing temperature (1000–1500 °C and Lu/Eu contents on the intensity, quantum efficiency, lifetime and asymmetry factor of luminescence were thoroughly investigated. The [(Gd0.7Lu0.30.95Eu0.05]3Al5O12 phosphor processed at 1500 °C exhibits a high internal quantum efficiency of ~83.2% under 239 nm excitation, which, in combination with the high theoretical density, favors its use as a new type of photoluminescent and scintillation material.

  15. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  16. Spectral structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V. Ya., E-mail: degoda@univ.kiev.ua [Taras Shevchenko Kyiv National University, Physics Department, 03680 Kyiv (Ukraine); Pavlova, N. Yu., E-mail: pavlovan7@gmail.com [The National Pedagogical Dragomanov University, Pyrogova 9, 01601 Kyiv (Ukraine); Podust, G.P., E-mail: vasylenkog379@gmail.com [Taras Shevchenko Kyiv National University, Physics Department, 03680 Kyiv (Ukraine); Sofiienko, A.O., E-mail: asofienko@gmail.com [University of Bergen, Allegaten 55, PO Box 7803, 5020 Bergen (Norway)

    2015-05-15

    This work presents the extensive experimental studies of the X-ray stimulated luminescence, conductivity, phosphorescence and electric current relaxation, and the thermally stimulated luminescence and conductivity of monocrystalline ZnSe. It was found that the luminescence emission band with a maximum at 635 nm is a combination of at least three emission bands and that the appropriate recombination centres implement both electronic and hole recombination mechanisms. We propose an energy model of the traps and recombination centres in monocrystalline ZnSe and show that the majority of the generated free electrons and holes recombine in the luminescence centres with an estimated probability of 94.3% and that only a small fraction (5.7%) of generated charge carriers are accumulated in traps during the X-ray excitation of the ZnSe sample. - Highlights: • ZnSe has intensive X-ray luminescence and phosphorescence in the spectral range from 600 nm to 1000 nm. • We measured the phosphorescence of ZnSe for different wavelengths of 591 nm, 635 nm and 679 nm. • The dominant emission band of ZnSe with a maximum at 635 nm is a combination of at least three emission bands. • We propose and verify an energy model of the traps and recombination centres in monocrystalline ZnSe.

  17. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    Science.gov (United States)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  18. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of chemical degradation mechanism of phosphorescent organic light emitting devices by laser-desorption/ionization time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo de Moraes, Ines; Scholz, Sebastian; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany)

    2010-07-01

    Phosphorescent organic light emitting diodes (OLEDs) have attracted much interest for their potential application in full color flat-panel displays and as an alternative lighting source. However, low efficiency, and the short operation lifetime, in particular in the case of blue emitting devices, are the major limitations for the current OLEDs commercialization. In order to overcome these limitations, a deep knowledge about the aging and the degradation mechanism is required. Our work focuses on the chemical degradation mechanism of different iridium based emitter materials like FIrpic (light blue) and Ir(ppy)3 (green), commonly used in OLEDs. For this purpose, the devices were aged by electrical driving until the luminance reached 6% of the initial luminance. The laser-desorption/ionization time-of-flight mass spectrometry was used to determine specific degradation pathways.

  20. In silico evaluation of highly efficient organic light-emitting materials

    Science.gov (United States)

    Kwak, H. Shaun; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang; Gavartin, Jacob; Dixon, Steve; Halls, Mathew D.

    2016-09-01

    Design and development of highly efficient organic and organometallic dopants is one of the central challenges in the organic light-emitting diodes (OLEDs) technology. Recent advances in the computational materials science have made it possible to apply computer-aided evaluation and screening framework directly to the design space of organic lightemitting diodes (OLEDs). In this work, we will showcase two major components of the latest in silico framework for development of organometallic phosphorescent dopants - (1) rapid screening of dopants by machine-learned quantum mechanical models and (2) phosphorescence lifetime predictions with spin-orbit coupled calculations (SOC-TDDFT). The combined work of virtual screening and evaluation would significantly widen the design space for highly efficient phosphorescent dopants with unbiased measures to evaluate performance of the materials from first principles.

  1. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Jensen, Hans Jørgen Aagaard

    2012-01-01

    A theoretical characterization of the phosphorescence decay traces of a prototypical platinum (II) organic chromophore has been conducted. The phosphorescence wavelength and radiative lifetime are predicted to equal 544 nm and 160 μs, respectively. The third triplet state is assigned as participa...

  2. Palladium(0) NHC complexes : a new avenue to highly efficient phosphorescence

    OpenAIRE

    Henwood, Adam Francis; Lesieur, Mathieu; Bansal, Ashu Kumar; Lemaur, Vincent; Beljonne, David; Thompson, David G.; Graham, Duncan; Slawin, Alexandra Martha Zoya; Samuel, Ifor David William; Cazin, Catherine S.J.; Zysman-Colman, Eli

    2015-01-01

    The authors are grateful to the Royal Society (University Research Fellowship to CSJC and Wolfson Research Merit Award for IDWS) and to EPSRC (grant: EP1J01771X) for financial support. EZ-C thanks the University of St Andrews for funding. We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L’)] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L’ = PCy3, or IPr and SIPr NHC ligands. The photophysical properties of...

  3. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Wei [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wang, Fang [School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wei, Yanli; Wang, Li; Liu, Qiaoling; Dong, Wenjuan [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Shuang, Shaomin, E-mail: smshuang@sxu.edu.cn [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mmfchoi@gmail.com [Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR (China)

    2015-01-26

    Highlights: • A turn-on phosphorescence quantum dots probe for histidine is fabricated. • High sensitivity, good selectivity and low interference are achieved. • Histidine in urine samples can be easily detected by the phosphorescence probe. - Abstract: We report a turn-on phosphorescence probe for detection of histidine based on Co{sup 2+}-adsorbed N-acetyl-L-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co{sup 2+} attributing to the adsorption of Co{sup 2+} onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co{sup 2+} with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.

  4. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  5. Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron β-Diketonate Materials.

    Science.gov (United States)

    Liu, Tiandong; Zhang, Guoqing; Evans, Ruffin E; Trindle, Carl O; Altun, Zikri; DeRosa, Christopher A; Wang, Fang; Zhuang, Meng; Fraser, Cassandra L

    2018-02-06

    Difluoroboron β-diketonates (BF 2 bdks) show both fluorescence (F) and room-temperature phosphorescence (RTP) when confined to a rigid matrix, such as poly(lactic acid). These materials have been utilized as optical oxygen sensors (e.g., in tumors, wounds, and cells). Spectral features include charge transfer (CT) from the major aromatic donor to the dioxaborine acceptor. A series of naphthyl-phenyl dyes (BF 2 nbm) (1-6) were prepared to test heavy-atom placement effects. The BF 2 nbm dye (1) was substituted with Br on naphthyl (2), phenyl (3), or both rings (4) to tailor the fluorescence/phosphorescence ratio and RTP lifetime-important features for designing O 2 sensing dyes by means of the heavy atom effect. Computational studies identify the naphthyl ring as the major donor. Thus, Br substitution on the naphthyl ring produced greater effects on the optical properties, such as increased RTP intensity and decreased RTP lifetime compared to phenyl substitution. However, for electron-donating piperidyl-phenyl dyes (5), the phenyl aromatic is the major donor. As a result, Br substitution on the naphthyl ring (6) did not alter the optical properties significantly. Experimental data and computational modeling show the importance of Br position. The S 1 and T 1 states are described by two singly occupied MOs (SOMOs). When both of these SOMOs have substantial amplitude on the heavy atom, passage from S 1 to T 1 and emission from T 1 to S 0 are both favored. This shortens the excited-state lifetimes and enhances phosphorescence. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  7. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  8. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  9. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiling; Li, Yang, E-mail: msliyang@scut.edu.cn; Qin, Xixi; Chen, Ruchun; Wu, Dakun; Liu, Shijian; Qiu, Jianrong, E-mail: qjr@scut.edu.cn

    2015-11-15

    Recently, long persistent phosphors (LPPs) have been considered to be the most prominent candidates for biomedical applications. However, the LPPs suffer from a dramatic decrease in luminescence intensity after incorporation into the tissue. Therefore, it is very necessary to develop the more competitive LPPs and acquire the reproducible tissue imaging. Here, we propose and experimentally demonstrate an effective bifunctional La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor with the interesting characteristic of near-infrared long persistent phosphorescence and NIR-to-NIR Stokes luminescence. Cr{sup 3+} and Nd{sup 3+} ions are simultaneously selected as the emission centers in order to take advantage of the remarkable phosphorescence properties of Cr{sup 3+}, and the appropriate energy level characteristic of NIR-excitation band (808 nm) and NIR-emission (1064 nm), and the ability as the brilliant auxiliary to create more efficient defects of Nd{sup 3+}. The efficient dual-modal emission is, accordingly utilized to realize the convenient, high-resolution global detection and local imaging. - Highlights: • Dual mode phosphor with NIR long afterglow and NIR-to-NIR Stokes luminescence. • Increasing the persistent duration due to the codoping of Nd. • Avoiding the noteworthy overheating effect due to the strong absorption at 980 nm.

  10. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho

    2009-11-23

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture), absorption of red photons by the sensitizer transfers an electron into TiO2 and a hole into the electrolyte. Blue photons absorbed by the ERD are transferred by FRET to the sensitizer. Chemical Equitation Presentation © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Spatial distributions of the red palm mite, Raoiella indica (Acari: Tenuipalpidae) on coconut and their implications for development of efficient sampling plans

    DEFF Research Database (Denmark)

    Roda, A.; Nachman, G.; Hosein, F.

    2012-01-01

    The red palm mite (Raoiella indica), an invasive pest of coconut, entered the Western hemisphere in 2004, then rapidly spread through the Caribbean and into Florida, USA. Developing effective sampling methods may aid in the timely detection of the pest in a new area. Studies were conducted...... to provide and compare intra tree spatial distribution of red palm mite populations on coconut in two different geographical areas, Trinidad and Puerto Rico, recently invaded by the mite. The middle stratum of a palm hosted significantly more mites than fronds from the upper or lower canopy and fronds from...

  12. Phosphorescent heterobimetallic complexes involving platinum(iv) and rhenium(vii) centers connected by an unsupported μ-oxido bridge.

    Science.gov (United States)

    Molaee, Hajar; Nabavizadeh, S Masoud; Jamshidi, Mahboubeh; Vilsmeier, Max; Pfitzner, Arno; Samandar Sangari, Mozhgan

    2017-11-28

    Heterobimetallic compounds [(C^N)LMe 2 Pt(μ-O)ReO 3 ] (C^N = ppy, L = PPh 3 , 2a; C^N = ppy, L = PMePh 2 , 2b; C^N = bhq, L = PPh 3 , 2c; C^N = bhq, L = PMePh 2 , 2d) containing a discrete unsupported Pt(iv)-O-Re(vii) bridge have been synthesized through a targeted synthesis route. The compounds have been prepared by a single-pot synthesis in which the Pt(iv) precursor [PtMe 2 I(C^N)L] complexes are allowed to react easily with AgReO 4 in which the iodide ligand of the starting Pt(iv) complex is replaced by an ReO 4 - anion. In these Pt-O-Re complexes, the Pt(iv) centers have an octahedral geometry, completed by a cyclometalated bidentate ligand (C^N), two methyl groups and a phosphine ligand, while the Re(vii) centers have a tetrahedral geometry. Elemental analysis, single crystal X-ray diffraction analysis and multinuclear NMR spectroscopy are used to establish their identities. The new complexes exhibit phosphorescence emission in the solid and solution states at 298 and 77 K, which is an uncommon property of platinum complexes with an oxidation state of +4. According to DFT calculations, we found that this emission behavior in the new complexes originates from ligand centered 3 LC (C^N) character with a slight amount of metal to ligand charge transfer ( 3 MLCT). The solid-state emission data of the corresponding cycloplatinated(iv) precursor complexes [PtMe 2 I(C^N)L], 1a-1d, pointed out that the replacement of I - by an ReO 4 - anion helps enhancing the emission efficiency besides shifting the emission wavelengths.

  13. Room temperature phosphorescence in the liquid state as a tool in analytical chemistry

    International Nuclear Information System (INIS)

    Kuijt, Jacobus; Ariese, Freek; Brinkman, Udo A.Th.; Gooijer, Cees

    2003-01-01

    A wide-ranging overview of room temperature phosphorescence in the liquid state (RTPL ) is presented, with a focus on recent developments. RTPL techniques like micelle-stabilized (MS)-RTP, cyclodextrin-induced (CD)-RTP, and heavy atom-induced (HAI)-RTP are discussed. These techniques are mainly applied in the stand-alone format, but coupling with some separation techniques appears to be feasible. Applications of direct, sensitized and quenched phosphorescence are also discussed. As regards sensitized and quenched RTP, emphasis is on the coupling with liquid chromatography (LC) and capillary electrophoresis (CE), but stand-alone applications are also reported. Further, the application of RTPL in immunoassays and in RTP optosensing - the optical sensing of analytes based on RTP - is reviewed. Next to the application of RTPL in quantitative analysis, its use for the structural probing of protein conformations and for time-resolved microscopy of labelled biomolecules is discussed. Finally, an overview is presented of the various analytical techniques which are based on the closely related phenomenon of long-lived lanthanide luminescence. The paper closes with a short evaluation of the state-of-the-art in RTP and a discussion on future perspectives

  14. Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration.

    Science.gov (United States)

    Pham, Ted D; Wallace, Douglas C; Burke, Peter J

    2016-07-09

    It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles' functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects. However, available technologies require significant quantities of mitochondria. Here, we develop a technology to assay the respiration of a single mitochondrion. Our "micro-respirometer" consists of micron sized chambers etched out of borofloat glass substrates and coated with an oxygen sensitive phosphorescent dye Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) mixed with polystyrene. The chambers are sealed with a polydimethylsiloxane layer coated with oxygen impermeable Viton rubber to prevent diffusion of oxygen from the environment. As the mitochondria consume oxygen in the chamber, the phosphorescence signal increases, allowing direct determination of the respiration rate. Experiments with coupled vs. uncoupled mitochondria showed a substantial difference in respiration, confirming the validity of the microchambers as single mitochondrial respirometers. This demonstration could enable future high-throughput assays of mitochondrial respiration and benefit the study of mitochondrial functional heterogeneity, and its role in health and disease.

  15. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    Science.gov (United States)

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Steady-state fluorescence and phosphorescence spectroscopic studies of bacterial luciferase tryptophan mutants.

    Science.gov (United States)

    Li, Z; Meighen, E A

    1994-09-01

    Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.

  17. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    International Nuclear Information System (INIS)

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  18. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    Science.gov (United States)

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  19. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    Science.gov (United States)

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  20. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart

    NARCIS (Netherlands)

    Balestra, Gianmarco M.; Aalders, Maurice C. G.; Specht, Patricia A. C.; Ince, Can; Mik, Egbert G.

    2015-01-01

    Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of

  1. Stereoselective Binding of Flurbiprofen Enantiomers and their Methyl Esters to Human Serum Albumin Studied by Time-Resolved Phosphorescence

    NARCIS (Netherlands)

    mr. Lammers, I.; Lhiaubet-Vallet, V.; Jimenez, M.C.; Ariese, F.; Miranda, M.A.; Gooijer, C.

    2012-01-01

    The interaction of the nonsteroidal anti-inflammatory drug flurbiprofen (FBP) with human serum albumin (HSA) hardly influences the fluorescence of the protein's single tryptophan (Trp). Therefore, in addition to fluorescence, heavy atom-induced room-temperature phosphorescence is used to study the

  2. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  3. Determination of macromolecular exchange and PO2 in the microcirculation: a simple system for in vivo fluorescence and phosphorescence videomicroscopy

    Directory of Open Access Journals (Sweden)

    Torres L.N.

    2001-01-01

    Full Text Available We have developed a system with two epi-illumination sources, a DC-regulated lamp for transillumination and mechanical switches for rapid shift of illumination and detection of defined areas (250-750 µm² by fluorescence and phosphorescence videomicroscopy. The system permits investigation of standard microvascular parameters, vascular permeability as well as intra- and extravascular PO2 by phosphorescence quenching of Pd-meso-tetra (4-carboxyphenyl porphine (PORPH. A Pechan prism was used to position a defined region over the photomultiplier and TV camera. In order to validate the system for in vivo use, in vitro tests were performed with probes at concentrations that can be found in microvascular studies. Extensive in vitro evaluations were performed by filling glass capillaries with solutions of various concentrations of FITC-dextran (diluted in blood and in saline mixed with different amounts of PORPH. Fluorescence intensity and phosphorescence decay were determined for each mixture. FITC-dextran solutions without PORPH and PORPH solutions without FITC-dextran were used as references. Phosphorescence decay curves were relatively unaffected by the presence of FITC-dextran at all concentrations tested (0.1 µg/ml to 5 mg/ml. Likewise, fluorescence determinations were performed in the presence of PORPH (0.05 to 0.5 mg/ml. The system was successfully used to study macromolecular extravasation and PO2 in the rat mesentery circulation under controlled conditions and during ischemia-reperfusion.

  4. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements

    NARCIS (Netherlands)

    Mik, Egbert G.; van Leeuwen, Ton G.; Raat, Nicolaas J.; Ince, Can

    2004-01-01

    This study describes the use of two-photon excitation phosphorescence lifetime measurements for quantitative oxygen determination in vivo. Doubling the excitation wavelength of Pd-porphyrin from visible light to the infrared allows for deeper tissue penetration and a more precise and confined

  5. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...

  6. The influence of different cyclometalated ligand substituents and ancillary ligand on the phosphorescent properties of iridium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing; Li, Yuanyuan; Wang, Xin; Wang, Li, E-mail: chemwangl@henu.edu.cn; Zhang, Jinglai, E-mail: zhangjinglai@henu.edu.cn

    2016-07-01

    Four iridium(III) complexes, (dfpmpy){sub 2}Ir(pic), (1), (dfpmpy){sub 2}Ir(EO{sub 2}-pic) (2), (dfpmpy){sub 2}Ir(pic-N-O) (3), and (dfpmpy){sub 2}Ir(EO{sub 2}-pic-N-O) (4) (dfpmpy = 2-(2,4-difluorophenyl)-4-methylpyridine, pic = picolinic acid, EO{sub 2}-pic = 4-(2-ethoxyethoxy) picolinic acid, pic-N-O = picolinic acid N-oxide, and EO{sub 2}-pic-N-O = 4-(2-ethoxyethoxy) picolinic acid N-oxide) are investigated by means of the density functional theory/time-dependent density functional theory (DFT/TD-DFT) to explore the influence of the ancillary ligand on the electronic structures, phosphorescent properties, and organic light-emitting diode (OLED) performance. Employing pic-N-O and EO{sub 2}-pic-N-O as the ancillary ligands would decrease the vertical energy and result in the red-shifted wavelength. Then, other four iridium(III) complexes (2a-2d) (See Scheme 1) are designed by introduction of the phenyl and −CHO substituents on the pyridine ring and phenyl ring of complex 2, respectively. As compared with complex 2, theoretical results show that newly designed complexes 2a-2c might be potential candidates for blue-emitting phosphors with better/comparable quantum yield and Δλ. Moreover, the performance of complexes 2a and 2c, i.e., introducing phenyl on the para-position of pyridine ring and phenyl ring in dfpmpy ligand, are better than that of 2b. - Highlights: • The structure-property relationship of Ir(III) complexes are investigated. • The effect of different substituents/positions on properties is explored. • Do the emissions follow the Kasha or non-Kasha scenario? • Newly possible blue-emitting Ir(III) complexes are theoretically designed.

  7. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    Science.gov (United States)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  8. Product (RED)

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2011-01-01

    ) and the consumers who buy iconic brand products to help ‘distant others’. While in many other forms of causumerism, labels or certification systems ‘prove’ that a product is just, in RED, aid celebrities provide the proof. From the consumer point of view both labels and celebrities provide a similar simplification...... of complex social, economic, and environmental processes. At the same time, we argue that there are important distinctions as well—labels and certifications are ultimately about improving the conditions of production, whereas RED is about accepting existing production and trade systems and donating......(PRODUCT)RED™ (hereafter RED) is a cobranding initiative launched in 2006 by the aid celebrity Bono to raise money from product sales to support The Global Fund to Fight AIDS, Tuberculosis and Malaria. In this paper we argue that RED is shifting the boundaries of ‘causumerism’ (shopping...

  9. Start-up story: IP and access challenges: introducing RedLink Network – a new community-based registry to create efficiencies for libraries

    Directory of Open Access Journals (Sweden)

    Kent Anderson

    2017-03-01

    Full Text Available A major pain point for librarians and publishers is the work involved in keeping authentication credentials (IP addresses, Shibboleth and link resolvers current and ensuring their accuracy. Yet, the infrastructure of the internet has solved similar problems like this before. RedLink Network is a free, community-driven platform, run by a public benefit company. It allows librarians to broadcast their access credentials and branding, track uptake across their publishers and platforms, and solve access issues collaboratively. It also enables mapping of hierarchies (consortia and subsidiaries. This article describes what inspired the creation of RedLink Network, how it benefits librarians and publishers and, ultimately, how it can help ensure access for students, researchers and knowledge workers.

  10. Transient behaviour of the mechanoluminescence induced by impulsive deformation of fluorescent and phosphorescent crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Mahobia, S.K.; Jha, P.; Kuraria, R.K.; Kuraria, S.R.; Baghel, R.N.; Thaker, S.

    2008-01-01

    When a crystal is fractured impulsively by the impact of a moving piston, then initially the mechanoluminescence (ML) intensity increases quadratically with time, attains a peak value and later on it decreases with time. Considering that the solid state ML and gas discharge ML are excited due to the charging and subsequent production of electric field near the tip of moving cracks, expressions are derived for the transient ML intensity I, time t m and intensity I m corresponding to the peak of ML intensity versus time curve, respectively, the total ML intensity I T , and for fast and slow decays of the ML intensity. It is shown that the decay time for the fast decrease of the ML intensity after t m , is related to the decay time of the strain rate of crystals, and the decay time of slow decay of ML, only observed in phosphorescent crystals, is equal to the decay time of phosphorescence. The value of t m decreases with the increasing impact velocity, I m increases with the increasing impact velocity, and I T initially increases and then it tends to attain a saturation value for higher values of the impact velocity. The values of t m , I m and I T increase linearly with the thickness, area of cross-section and volume of the crystals, respectively. So far as the rise, attainment of ML peak, and fast decay of ML are concerned, there is no any significant difference in the time-evolution of solid state ML, gas discharge ML, and the ML emission consisting of both the solid state ML and gas discharge ML. From the time-dependence of ML, the values of the time-constant for decrease of the surface area created by the movement of a single crack, the time-constant for the decrease of strain rate of crystals, and the decay time of phosphorescence of crystals can be determined. A good agreement is found between the theoretical and experimental results. The importance of fracto ML induced by impulsive deformation of crystals is discussed

  11. Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection

    International Nuclear Information System (INIS)

    Traviesa-Alvarez, J.M.; Costa-Fernandez, J.M.; Pereiro, R.; Sanz-Medel, A.

    2007-01-01

    A fast and simple flow-through optosensor was designed and characterized for the direct screening of four tetracycline (TCC) antibiotics (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in water and bovine milk samples. The proposed optosensor provides rapid binary yes/no overall responses, being appropriate for the screening of this family of antibiotics above or below a pre-set concentration threshold. The experimental set-up is based on a flow-injection manifold coupled on-line to a phosphorescence detector. Aliquots of the samples are pretreated with Eu(III) to form room temperature phosphorescent metal chelates and injected in the flow manifold. Those chelates are then on-line retained on a conventional flow-cell (packed with polymeric Amberlite XAD-4 particles) which is placed inside the cell holder of the phosphorimeter. After the emission is registered, the antibiotic-metal complexes are eluted from the packed resin with 1 M HCl (for milk samples a second regeneration step, using methanol, should be performed). A sample throughput of about 20 samples per hour was obtained. Optimum experimental conditions include a pH 9, a Eu(III) concentration of 2 x 10 -4 M and 8 mM sodium sulphite as chemical deoxygenant. The phosphorescence emitted by the europium-TCC complexes was measured at 394 and 617 nm for excitation and emission wavelengths, respectively. The unreliability region, given by the probability of false positives and false negatives, respectively (set at 5% in both cases) was in the range between 0.2 and 11.6 nM for detection of tetracyclines in water samples (at a cut-off level of 4 nM) and in the range between 165 and 238 nM for detection of tetracyclines in milk (cut-off level fixed at the normative EU level of 200 nM). Finally, the applicability of the proposed screening optosensor was tested for the reliable control of tetracyclines in contaminated and uncontaminated water and milk samples

  12. Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Traviesa-Alvarez, J M [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Costa-Fernandez, J M [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Pereiro, R [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Sanz-Medel, A [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain)

    2007-04-18

    A fast and simple flow-through optosensor was designed and characterized for the direct screening of four tetracycline (TCC) antibiotics (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in water and bovine milk samples. The proposed optosensor provides rapid binary yes/no overall responses, being appropriate for the screening of this family of antibiotics above or below a pre-set concentration threshold. The experimental set-up is based on a flow-injection manifold coupled on-line to a phosphorescence detector. Aliquots of the samples are pretreated with Eu(III) to form room temperature phosphorescent metal chelates and injected in the flow manifold. Those chelates are then on-line retained on a conventional flow-cell (packed with polymeric Amberlite XAD-4 particles) which is placed inside the cell holder of the phosphorimeter. After the emission is registered, the antibiotic-metal complexes are eluted from the packed resin with 1 M HCl (for milk samples a second regeneration step, using methanol, should be performed). A sample throughput of about 20 samples per hour was obtained. Optimum experimental conditions include a pH 9, a Eu(III) concentration of 2 x 10{sup -4} M and 8 mM sodium sulphite as chemical deoxygenant. The phosphorescence emitted by the europium-TCC complexes was measured at 394 and 617 nm for excitation and emission wavelengths, respectively. The unreliability region, given by the probability of false positives and false negatives, respectively (set at 5% in both cases) was in the range between 0.2 and 11.6 nM for detection of tetracyclines in water samples (at a cut-off level of 4 nM) and in the range between 165 and 238 nM for detection of tetracyclines in milk (cut-off level fixed at the normative EU level of 200 nM). Finally, the applicability of the proposed screening optosensor was tested for the reliable control of tetracyclines in contaminated and uncontaminated water and milk samples.

  13. Improved electron injection and transport by use of baking soda as a low-cost, air-stable, n-dopant for solution-processed phosphorescent organic light-emitting diodes

    Science.gov (United States)

    Earmme, Taeshik; Jenekhe, Samson A.

    2013-06-01

    Sodium bicarbonate (baking soda, NaHCO3) is found to be an efficient low-cost, air-stable, and environmentally friendly n-dopant for electron-transport layer (ETL) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). A 2.0-fold enhancement in power efficiency of blue PhOLEDs is observed by use of NaHCO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) ETL. The bulk conductivity of NaHCO3-doped BPhen film is increased by 5 orders of magnitude. Enhanced performance of PhOLEDs is similarly observed by use of NaHCO3-doped 1,3,5-tris(m-pyrid-3-yl-phenyl)benzene ETL. These results demonstrate that sodium bicarbonate is an effective n-dopant in organic electronics.

  14. Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Murawski, Caroline, E-mail: caroline.murawski@iapp.de; Fuchs, Cornelius; Hofmann, Simone; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS Scotland (United Kingdom)

    2014-09-15

    We investigate the properties of N,N′-[(Diphenyl-N,N′-bis)9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2′,7,7′-tetrakis(N,N′-di-p-methylphenylamino)-9,9′-spirobifluorene (Spiro-TTB), and N,N′-di(naphtalene-1-yl)-N,N′-diphenylbenzidine (NPB). The influence of 2,2′-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4 wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35 .1 lm/W (74 .0 lm/W) at 1000 cd/m{sup 2} and reach a very high brightness of 10 000 cd/m{sup 2} at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs.

  15. Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes.

    Science.gov (United States)

    Kondrashina, Alina V; Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2013-09-07

    Measurement of cell oxygenation and oxygen consumption is useful for studies of cell bioenergetics, metabolism, mitochondrial function, drug toxicity and common pathophysiological conditions. Here we present a new platform for such applications which uses commercial multichannel biochips (μ-slides, Ibidi) and phosphorescent O2 sensitive probes. This platform was evaluated with both extracellular and intracellular O2 probes, several different cell types and treatments including mitochondrial uncoupling and inhibition, depletion of extracellular Ca(2+) and inhibition of V-ATPase and histone deacetylases. The results show that compared to the standard microwell plates currently used, the μ-slide platform provides facile O2 measurements with both suspension and adherent cells, higher sensitivity and reproducibility, and faster measurement time. It also allows re-perfusion and multiple treatments of cells and multi-parametric analyses in conjunction with other probes. Optical measurements are conducted on standard fluorescence readers and microscopes.

  16. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  17. A Multifunctional Biomaterial with NIR Long Persistent Phosphorescence, Photothermal Response and Magnetism.

    Science.gov (United States)

    Wu, Yiling; Li, Yang; Qin, Xixi; Qiu, Jianrong

    2016-09-20

    There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3 Ga2 SnO8 : Cr(3+) , Nd(3+) , Gd(3+) with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging-guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Matrix perdeuteration effects on the 3ππ→S0 phosphorescence of p-chlorobenzaldehyde at 4.2degreeK. I. Phenomenology

    International Nuclear Information System (INIS)

    Khalil, O.S.; Goodman, L.

    1976-01-01

    The effect of matrix perdeuteration and variation of cooling rate on the phosphorescence vibrational structure of p-chlorobenzaldehyde (PCB) are studied in methylcyclohexane (MCH) and p-xylene. PCB shows very different phosphorescence spectra in slowly cooled MCH-h 14 and MCH-d 14 , generally broad spectra in fast cooled samples, and a mixture of the two phosphorescences (observed in the slow cooled sample) in intermediate cooled MCH-d 14 . In p-xylene, no change in the phosphorescence vibrational structure is observed on matrix perdeuteration. These observations are interpreted by postulating two crystalline modifications for methylcyclohexane, one of them stable in slowly cooled MCH-h 14 , the other stable in slowly cooled MCH-d 14 . The spectra of PCB is different in the two modifications. The anomalous response of the PCB phosphorescence vibrational structure to the crystalline modifications of MCH is indicative of a large degree of distortability in its 3 ππ* state. The distortability is interpreted as originating from vibrational--electronic interactions between the closely spaced 3 ππ*-- 3 nπ* states. Support for this view is found in the phosphorescence spectra of various deuterated derivatives of PCB in perprotonated and perdeuterated MCH. The apparent distortability of the emitting state varies with the extent of deuteration

  19. Red Sirius

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, D Ya

    1976-01-01

    A hypothesis is proposed explaining the assumption that Sirius changed its colour from red in the second century to pale blue in the tenth century A.D. The hypothesis is based on the possibility of transformation of a Sirius satellite (Sirius B) from a red giant in the past to a white dwarf in the present. Such a transformation would have been accompanied by an explosion of Sirius B, which is clearly visible from the Earth. The fact that the increase in Sirius brightness by 4-5 units is not reflected in historical chronicles is attributed to the degradation of sciences in Europe in 4-10 centuries.

  20. Easily controlled dye doped phosphorescent OLEDs with evaporation rate in single furnace

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Malek; Janghouri, Mohammad; Mohajerani, Ezeddin, E-mail: e-mohajerani@sbu.ac.ir

    2015-04-15

    Electrical and optical characteristic, surface morphology and energy transfer of Ir(ppy){sub 3}:PtTPP were studied as a function of thermal evaporation rate. We have investigated the effect of various evaporation rates for mixture of dyes using single furnace method. When the deposition rate increased from 0.5 to 5 Ǻ/s, the luminescence efficiency, current density and energy transfer of OLED increased. AFM measurements showed that the surface roughness of the Ir(ppy){sub 3}:PtTPP films decreased with increasing deposition rates. These blends show excellent red emitting guest–host system with easier deposition rate control. - Highlights: • Thermal evaporation rate is used to control the doping by using single furnace. • The advantages of using single furnace are discussed. • It is shown that the evaporation rate also affects the surface roughness.

  1. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  2. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  3. The use of room temperature phosphorescence for the determination of uranium in tin-tailings mineral samples

    International Nuclear Information System (INIS)

    Meor Yusof bin Meor Sulaiman

    1988-01-01

    The possibility of using phosphorescence technique in determining uranium in mineral samples and its comparison with that of fluorescence using high carbonate flux is presented. Samples used are tin-tailings mineral such as monazite, xenotime, ilmenite and zircon. The calibration graph obtained shows a linear relationship between the concentration range of 0-55 ppm U. From here, analysis of the standard showed that the result obtained and that of the certified value are consistent. HN0 3 :H 2 SO 4 (1:3) and phosphoric acid leaching methods are tried and the results show that phosphoric acid is the better method for phosphate mineral. Comparison of the results obtained from this technique and that of the direct and extraction methods of fluorimetry are also made. Phosphorescence is found to be a better method in determining uranium in this type of samples. (author)

  4. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  5. Origin of colour stability in blue/orange/blue stacked phosphorescent white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, Sung Hyun; Jang, Jyongsik; Yook, Kyoung Soo; Lee, Jun Yeob

    2009-01-01

    The origin of colour stability in phosphorescent white organic light-emitting diodes (PHWOLEDs) with a blue/orange/blue stacked emitting structure was studied by monitoring the change in a recombination zone. A balanced recombination zone shift between the blue and the orange light-emitting layers was found to be responsible for the colour stability in the blue/orange/blue stacked PHWOLEDs.

  6. A new analytical application of nylon-induced room-temperature phosphorescence: Determination of thiabendazole in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531 (2000) Rosario (Argentina); Escandar, G.M. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531 (2000) Rosario (Argentina)]. E-mail: gescanda@fbioyf.unr.edu.ar

    2006-06-30

    This paper discusses the first analytical determination of the widely used fungicide thiabendazole by nylon-induced phosphorimetry. Nylon was investigated as a novel solid-matrix for inducing room-temperature phosphorescence of thiabendazole, which was enhanced under the effect of external heavy-atom salts. Among the investigated salts, lead(II) acetate was the most effective in yielding a high phosphorescence signal. An additional enhancement of the phosphorescence emission was attained when the measurements were carried out under a nitrogen atmosphere. There was only a moderate increase in the presence of cyclodextrins. The room-temperature phosphorescence lifetimes of the adsorbed thiabendazole were measured under different working conditions and, in all cases, two decaying components were detected. On the basis of the obtained results, a very simple and sensitive phosphorimetric method for the determination of thiabendazole was established. The analytical figures of merit obtained under the best experimental conditions were: linear calibration range from 0.031 to 0.26 {mu}g ml{sup -1} (the lowest value corresponds to the quantitation limit), relative standard deviation, 2.4% (n = 5) at a level of 0.096 {mu}g ml{sup -1}, and limit of detection calculated according to 1995 IUPAC Recommendations equal to 0.010 {mu}g ml{sup -1} (0.03 ng/spot). The potential interference from common agrochemicals was also studied. The feasibility of determining thiabendazole in real samples was successfully evaluated through the analysis of spiked river, tap and mineral water samples.

  7. Lipophilic phosphorescent gold(I) clusters as selective probes for visualization of lipid droplets by two-photon microscopy

    Czech Academy of Sciences Publication Activity Database

    Koshel, E. I.; Cheluskin, P. S.; Melnikov, A. S.; Serdobintsev, P. Y.; Stolbovaia, A. Y.; Saifitdinova, A. F.; Scheslavskiy, V. I.; Chernyavskiy, Oleksandr; Gaginskaya, E. R.; Koshevoy, I. O.; Tunik, S. P.

    2017-01-01

    Roč. 332, Jan 1 (2017), s. 122-130 ISSN 1010-6030 R&D Projects: GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 Keywords : polynuclear gold-alkynyl cluster * lipophilic probe * phosphorescence * adipocyte * two-photon microscopy * PLIM Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Medical laboratory technology (including laboratory samples analysis Impact factor: 2.625, year: 2016

  8. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    International Nuclear Information System (INIS)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-01-01

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device. It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors. A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component. A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML). New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  9. Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D4)-Acceptor(A) Conjugates, and Application in Data Security Protection.

    Science.gov (United States)

    Bhatia, Harsh; Bhattacharjee, Indranil; Ray, Debdas

    2018-06-25

    Purely organic biluminescent materials are of great interest due to the involvement of both singlet and long-lived triplet emissions, which have been used in bio-imaging and organic light-emitting diodes. We show two molecules 3,4,5,6-tetraphenyloxy-phthlonitrile (POP) and 3,4,5,6-tetrakis-p-tolyloxy-phthalonitrile (TOP), in which POP was found to exhibit fluorescence and persistent room-temperature green phosphorescence (pRTGP) in the amorphous and crystal states. Both POP and TOP show aggregation induced emission in tetrahydrofuran-water mixture. We found in single crystal X-ray analysis that intra-and inter molecular lp(O)•••π interactions along with (π(C=C)•••π(C≡N), hydrogen bond (H-B), and C-H•••π interactions induce head-to-tail slipped-stacked arrangement in POP. In addition, X-ray structure of TOP with slipped-stack arrangement induced by only (π(C=C)•••π(C≡N) and H-B interactions, shows dim afterglow only in crystals. These indicate that more number of non-covalent interactions may reinforce relatively efficient inter system crossing that leads to pRTGP even in the amorphous state of POP. Given the unique green afterglow feature in amorphous state of POP, document security protection application is achievable.

  10. A novel greenish yellow-orange red Ba3Y4O9:Bi(3+),Eu(3+) phosphor with efficient energy transfer for UV-LEDs.

    Science.gov (United States)

    Li, Kai; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2015-12-21

    A series of novel color-tunable Ba3Y4O9:Bi(3+),Eu(3+) phosphors were prepared for the first time via the high-temperature solid-state reaction route. The effect of Bi(3+) concentration on the emission intensity of Ba3Y4O9:Bi(3+) was investigated. The emission spectra of the Ba3Y4O9:Bi(3+),Eu(3+) phosphors present both a greenish yellow band of Bi(3+) emission centered at 523 nm, and many characteristic emission lines of Eu(3+), derived from the allowed (3)P1-(1)S0 transition of the Bi(3+) ion and the (5)D0-(7)FJ transition of the Eu(3+) ion, respectively. The energy transfer phenomenon from Bi(3+) to Eu(3+) ions is observed under UV excitation in Bi(3+), Eu(3+) co-doped Ba3Y4O9 phosphors, and their transfer mechanism is demonstrated to be a resonant type via dipole-quadrupole interaction. The critical distance between Bi(3+) and Eu(3+) for the energy transfer effect was calculated via the concentration quenching and spectral overlap methods. Results show that color tuning from greenish yellow to orange red can be realized by adjusting the mole ratio of Bi(3+) and Eu(3+) concentrations based on the principle of energy transfer. Moreover, temperature-dependent PL properties, CIE chromaticity coordinates and quantum yields of Ba3Y4O9:Bi(3+),Eu(3+) phosphors were also supplied. It is illustrated that the as-prepared Ba3Y4O9:Bi(3+),Eu(3+) phosphors can be potential candidates for color-tunable phosphors applied in UV-pumped LEDs.

  11. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I).

    Science.gov (United States)

    Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten

    2007-09-18

    The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.

  12. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    International Nuclear Information System (INIS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-01-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A −1 , 81.22 lm W −1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m −2 to 10 000 cd m −2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density–voltage ( J – V ) characteristics of the electron-only devices. In particular, by comparing the J – V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m −2 to 10870 cd m −2 , as is beneficial to the lighting application. (paper)

  13. High-efficiency tris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting.

    Science.gov (United States)

    Pérez-Bolívar, César; Takizawa, Shin-ya; Nishimura, Go; Montes, Victor A; Anzenbacher, Pavel

    2011-08-08

    Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    International Nuclear Information System (INIS)

    Li, Xiang-Long; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian; Ouyang, Xinhua; Ge, Ziyi

    2016-01-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A"−"1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1′:4′, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A"−"1 and a maximum power efficiency of 38.6 lm W"−"1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers. (paper)

  15. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    Science.gov (United States)

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  16. Phosphorescent quantum dots/ethidium bromide nanohybrids based on photoinduced electron transfer for DNA detection.

    Science.gov (United States)

    Bi, Lin; Yu, Yuan-Hua

    2015-04-05

    Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phosphorescent quantum dots/doxorubicin nanohybrids based on photoinduced electron transfer for detection of DNA.

    Science.gov (United States)

    Miao, Yanming; Zhang, Zhifeng; Gong, Yan; Yan, Guiqin

    2014-09-15

    MPA-capped Mn-doped ZnS QDs/DXR nanohybrids (MPA: 3-mercaptopropionic acid; QDs: quantum dots; DXR: cetyltrimethyl ammonium bromide) were constructed via photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for detection of DNA. DXR as a quencher will quench the RTP of Mn-doped ZnS QDs via PIET, thereby forming Mn-doped ZnS QDs/DXR nanohybrids and storing RTP. With the addition of DNA, it will be inserted into DXR and thus DXR will be competitively desorbed from the surface of Mn-doped ZnS QDs, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this, a new method for DNA detection was built. The sensor for DNA has a detection limit of 0.039 mg L(-1) and a linear range from 0.1 to 14 mg L(-1). The present QDs-based RTP method does not need deoxidants or other inducers as required by conventional RTP detection methods, and avoids interference from autofluorescence and the scattering light of the matrix that are encountered in spectrofluorometry. Therefore, this method can be used to detect the DNA content in body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Thompson, J.; Arima, V.; Matino, F.; Cingolani, R.; Blyth, R.I.R.

    2005-01-01

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C 2 ), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C 2 )picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C 3 )-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N 6,7 edge indicates that the Ir 5d states are hybridised with the π orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films

  19. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  20. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  1. Optical properties of phosphorescent nano-silicon electrochemically doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, Bernard [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mentek, Romain; Koshida, Nobuyoshi [Tokyo University A and T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2012-12-15

    Hybrid thin films consisting of oxidized nano-silicon doped with terbium have been fabricated. Nano-silicon was formed by electrochemical etching of silicon wafers. Terbium was incorporated into nano-silicon pores by electrochemical deposition. Different oxidizing thermal treatments were applied to the films. The samples treated by high-pressure water vapor annealing (HWA) exhibited strong blue emission with a phosphorescent component, as previously reported by our group. The low temperature (260 C) HWA also led to strong emission from Tb{sup 3+} ions, whereas typical high temperature (900 C) treatment generally used to activate Tb{sup 3+} ions in silicon-based materials led to less luminescent samples. Spectroscopic and dynamic analyses suggest that terbium was incorporated as a separate oxide phase in the pores of the porous nano-silicon. The PL of the terbium phase and nano-silicon phase exhibit different temperature and excitation power dependences suggesting little optical or electronic interaction between the two phases. The luminescence of terbium is better activated at low temperature (260 C) than at high temperature (900 C). The hybrid material may find some applications in photonics, for instance as a display material. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. [Float-Lux srl., via Ravenna 14, 73100 Lecce (Italy); Arima, V. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Matino, F. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Cingolani, R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Blyth, R.I.R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy)]. E-mail: rob.blyth@unile.it

    2005-07-30

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C{sup 2}), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C{sup 2})picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C{sup 3})-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N{sub 6,7} edge indicates that the Ir 5d states are hybridised with the {pi} orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films.

  3. Arene-Inserted Extended Germa[n]pericyclynes: Synthesis, Structure, and Phosphorescence Properties.

    Science.gov (United States)

    Tanimoto, Hiroki; Mori, Junta; Ito, Shunichiro; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Tanaka, Kazuo; Chujo, Yoshiki; Kakiuchi, Kiyomi

    2017-07-26

    This report describes the synthesis and characterization of arene-inserted extended (ArEx) germa[n]pericyclynes composed of germanium and 1,4-diethynylbenzene units. These novel cyclic germanium-π unit materials were synthesized with diethynylbenzene and germanium dichloride. X-ray crystallographic analysis revealed their structures, and the planar conformation of ArEx germa[4]pericyclyne along with the regular aromatic rings. UV/Vis absorption spectra and fluorescence emission spectra showed considerably unique and highly improved character compared to previously reported germa[n]pericyclynes. Even in the absence of transition metal components, phosphorescence emissions were observed, and the emission lifetimes were dramatically improved. ArEx germa[n]pericyclynes showed high photoluminescence quantum yields, whereas low photoluminescence quantum yields were observed for acyclic compounds. Density functional theory calculations show delocalized orbitals between skipped alkyne units through a germanium tether, and an increase in the HOMO energy level, leading to a small HOMO-LUMO energy gap. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study on the paper substrate room temperature phosphorescence of theobromine, caffeine and theophylline and analytical application

    Science.gov (United States)

    Chuan, Dong; Yan-Li, Wei; Shao-Min, Shuang

    2003-05-01

    Paper substrate room temperature phosphorescence (RTP) of theobromine (TB), caffeine (CF) and theophylline (TP) were investigated. The method is based on fast speed quantitative filter paper as substrate and KI-NaAc as heavy atom perturber. Various factors affecting their RTP were discussed in detail. Under the optimum experimental conditions, the linear dynamic range, limit of detection (LOD), and relative standard deviation (R.S.D.) were 14.41˜576.54 ng per spot, 1.14 ng per spot, 4.8% for TB, 5.44˜699.08 ng per spot, 0.78 ng per spot, 1.56% for CF, 7.21˜360.34 ng per spot, 1.80 ng per spot, 3.80% for TP, respectively. The first analytical application for the determination of these compounds was developed. The recovery of standard samples added to commercial products chocolate, tea, coffee and aminophylline is in the range 92.80-106.08%. The proposed method was successfully applied to real sample analysis without separation.

  5. Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5 : Eu2+ and Sr3SiO5 : Eu2+, Dy3+ phosphors

    International Nuclear Information System (INIS)

    Sun Xiaoyuan; Zhang Jiahua; Zhang Xia; Luo Yongshi; Wang Xiaojun

    2008-01-01

    We report the observation of long lasting yellow phosphorescence and photostimulated luminescence (PSL) in Sr 3 SiO 5 : Eu 2+ and Sr 3 SiO 5 : Eu 2+ , Dy 3+ phosphors. The decay patterns of phosphorescence and thermoluminescence curves demonstrate that introduction of Dy 3+ into Sr 3 SiO 5 : Eu 2+ can generate a large number of shallow traps and deep traps. The generated deep traps prolong the phosphorescence up to 6 h after UV irradiation. The PSL is studied under 808 nm excitation. Slow rising and falling edges of the emission in Sr 3 SiO 5 : Eu 2+ , Dy 3+ are observed, showing a retrapping process by the generated shallow traps due to co-doping Dy 3+ .

  6. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    Science.gov (United States)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  7. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    International Nuclear Information System (INIS)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  8. Efficient green and red up-conversion emissions in Er/Yb co-doped TiO{sub 2} nanopowders prepared by hydrothermal-assisted sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de chimie industrielle, Ecole Nationale d’ingénieurs de Sfax, Université de Sfax, 3018 Sfax (Tunisia); Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, 3 Parvis Louis Néel, BP 257, 38016 Grenoble (France)

    2016-08-15

    In this work, erbium and ytterbium co-doped titanium dioxide (Er–Yb:TiO{sub 2}) nanopowders have been successfully prepared by hydrothermal-assisted sol–gel method using supercritical drying of ethyl alcohol and annealing at 500 °C for 1 h. Nanopowders were prepared with fixed 5 mol% Erbium concentration and various Ytterbium concentrations of 5 and 10 mol%. The powders were characterized by studying their structural, morphology and photo-luminescent properties. The annealing treatment at 500 °C was found to enhance the crystallinity of the TiO{sub 2} anatase structure and the upconversion (UC) emission of the nanopowders. UC emissions were investigated under 980 nm excitation, and the Er–Yb:TiO{sub 2} nanopowders exhibited the intense green (520–570 nm) and red (640–690 nm) upconverted emissions of Er ions originating from an efficient Yb–Er energy transfer process. The absolute upconversion quantum yield (UC-QY) of each nanopowders was measured for the UC emissions centered at 525, 550 and 655 nm at varying excitation power densities. UC-QY analysis has revealed that 5 mol% Er–5 mol% Yb:TiO{sub 2} nanopowders possess the highest total quantum yield of 2.8±0.1% with a power density of 16.7 W/cm{sup 2}. These results make these nanopowders promising materials for efficient upconversion in photonic applications.

  9. Determination of DNA by solid substrate room temperature phosphorescence enhancing method based on the Morin.SiO{sub 2} luminescent nanoparticles-Pd system as a phosphorescence probe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiaming [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China)]. E-mail: zzsyliujiaming@163.com; Yang Tianlong [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Gao Fei [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Hu Lixiang [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); He Hangxia [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Liu Qinying [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Liu Zhenbo [Department of Orthopedics and Traumatology, Fujian College of Chinese Medicine, Fuzhou 350003 (China); Huang Xiaomei [Department of Food and Chemical Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Zhu Guohui [Department of Food and Chemical Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China)

    2006-03-02

    Sodium carbonate (Na{sub 2}SiO{sub 3}) as the precursor, was mixed with Morin organic dye to synthesize silicon dioxide luminescent nanoparticles containing Morin (Morin.SiO{sub 2}) by sol-gel method. The particle sizes of SiO{sub 2}.nH{sub 2}O and Morin.SiO{sub 2} were both 50 nm, measured with TEM (transmission electron microscope). Morin.SiO{sub 2} modified by HS-CH{sub 2}COOH could be dissolved by water. In the HMTA (hexamethylenetetramine)-HCl buffer solution, Pd{sup 2+} could coordinate with Morin in Morin.SiO{sub 2} to form complex Pd{sup 2+}-Morin.SiO{sub 2}, which could emit phosphorescence on polyamide membrane. And DNA (deoxyribonucleic acid) could cause a sharp enhancement of the room temperature phosphorescence (RTP) intensity of complex Pd{sup 2+}-Morin.SiO{sub 2}. Thus a new method of solid substrate room temperature phosphorescence (SS-RTP) enhancing for the determination of DNA was established based on the Morin.SiO{sub 2} luminescent nanoparticles-Pd system as a phosphorescence probe. The {delta}Ip is directly proportional to the content of DNA in the range of 4.00-1000.0 fg spot{sup -1} (corresponding concentration: 0.010-2.50 ng ml{sup -1}). The regression equation of working curve was {delta}Ip = 21.13 + 0.2076m{sub DNA} (fg spot{sup -1}) (r = 0.9990) and the detection limit was 0.61 fg spot{sup -1} (corresponding concentration: 1.5 pg ml{sup -1}). This method had a wide linear range, high sensitivity, convenience, rapidity and only a little sample was needed. Samples containing 0.10 and 25.0 ng ml{sup -1} DNA were measured repeatedly for 11 times and RSDs were 3.2 and 4.1% (n = 11), respectively, which indicated that the method had a good repeatability. Disturbance of common ions, such as Mg{sup 2+}, K{sup +}, and Ca{sup 2+}, was small, and there was no disturbance in the presence of protein and RNA. This method has been applied to the determination of DNA in nectar successfully.

  10. Description of temperature dependence of phosphorescence attenuation kinetics of rose Bengal dye at presence of anthracene on the silica heterogeneous surface by the exponential regression method

    International Nuclear Information System (INIS)

    Karstina, S.G.; Markova, M.P.

    2002-01-01

    In the work rose Bengal dye (triplet energy donor) and aromatic hydrocarbon anthracene (triplet energy acceptor) were selected in the capacity of examined substances. The substances were sorption on the SiO 2 porous surface. Measurement have been conducted on the laser device allowing to register of examined composition phosphorescence with time resolution 300 ns at wave length 710 nm. In the result of attenuation kinetic analysis for rose Bengal phosphorescence the empiric formula allowing describing processes of luminescence damping on the heterogeneous surfaces with fractal structure was derived

  11. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    Science.gov (United States)

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  12. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoxiao; Li, Fushan, E-mail: fushanli@hotmail.com; Wu, Wei; Guo, Tailiang, E-mail: gtl_fzu@hotmail.com

    2014-03-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm.

  13. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    International Nuclear Information System (INIS)

    Wu, Xiaoxiao; Li, Fushan; Wu, Wei; Guo, Tailiang

    2014-01-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm

  14. Human Red Cells With Paroxysmal Nocturnal Haemoglobinuria ...

    African Journals Online (AJOL)

    The purified cells were used as hosts for the culture of P.falciparum in vitro. Results show that GPI-linked molecules on the red cell surface are not required for the efficient entry of the parasites, and that the PNH red cells are competent to sustain the growth of P.falciparum. Nigerian Quarterly Journal of Hospital Medicine Vol ...

  15. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    Science.gov (United States)

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing

  16. PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification.

    Science.gov (United States)

    Golub, Aleksander S; Pittman, Roland N

    2008-06-01

    In phosphorescence quenching microscopy (PQM), the multiple excitation of a reference volume produces the integration of oxygen consumption artifacts caused by individual flashes. We analyzed the performance of two types of PQM instruments to explain reported data on Po2 in the microcirculation. The combination of a large excitation area (LEA) and high flash rate produces a large oxygen photoconsumption artifact manifested differently in stationary and flowing fluids. A LEA instrument strongly depresses Po2 in a motionless tissue, but less in flowing blood, creating an apparent transmural Po2 drop in arterioles. The proposed model explains the mechanisms responsible for producing apparent transmural and longitudinal Po2 gradients in arterioles, a Po2 rise in venules, a hypothetical high respiration rate in the arteriolar wall and mesenteric tissue, a low Po2 in lymphatic microvessels, and both low and uniform tissue Po2. This alternative explanation for reported paradoxical results of Po2 distribution in the microcirculation obviates the need to revise the dominant role of capillaries in oxygen transport to tissue. Finding a way to eliminate the photoconsumption artifact is crucial for accurate microscopic oxygen measurements in microvascular networks and tissue. The PQM technique that employs a small excitation area (SEA) together with a low flash rate was specially designed to avoid accumulated oxygen photoconsumption in flowing blood and lymph. The related scanning SEA instrument provides artifact-free Po2 measurements in stationary tissue and motionless fluids. Thus the SEA technique significantly improves the accuracy of microscopic Po2 measurements in the microcirculation using the PQM.

  17. Shedding light on the photophysical properties of newly designed platinum(II) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters from a theoretical viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jieqiong [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Wang, Li, E-mail: chemwangl@henu.edu.cn [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Wang, Xin [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); He, Chaozheng, E-mail: hecz2013@nynu.edu.cn [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061 (China); Zhang, Jinglai, E-mail: zhangjinglai@henu.edu.cn [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2015-08-01

    The phosphorescent properties of three synthesized and three new designed platinum(II) complexes are focused on in this work. To reveal their structure–property relationships, a density functional theory/time-dependent density functional theory (DFT/TDDFT) investigation is performed on the geometric and electronic structures, absorption and emission spectra. The electroluminescent (EL) properties are evaluated by the ionization potential (IP), electron affinity (EA), and reorganization energy (λ). Furthermore, the radiative rate constant (k{sub r}) is qualitatively elucidated by various factors including the strength of the SOC interaction between the higher-lying singlet excited states (S{sub n}) and the T{sub 1} state, the oscillator strength (f) of the S{sub n} states that can couple with the T{sub 1} state, and the energy separation between the coupled states. A combined analysis of various elements that could affect the phosphorescent efficiency is beneficial to exploring efficient triplet phosphors in OLEDs. Consequently, complexes Pt-1 and 1 would be more suitable blue-emitting phosphorescent materials with balance of EL properties and acceptable quantum yields. - Graphical abstract: Display Omitted - Highlights: • The absorption and phosphorescence spectra of Pt(II) complexes are investigated. • Their Φ{sub em}, IP, EA, and reorganization energy are compared. • Three new Pt(II) complexes are designed.

  18. Observation of the energy transfer sequence in an organic host–guest system of a luminescent polymer and a phosphorescent molecule

    Energy Technology Data Exchange (ETDEWEB)

    Basel, Tek; Sun, Dali; Gautam, Bhoj; Valy Vardeny, Z., E-mail: val@physics.utah.edu

    2014-11-15

    We used steady state optical spectroscopies such as photoluminescence and photoinduced absorption (PA), and magnetic-field PA (MPA) for studying the energy transfer dynamics in films and organic light emitting diodes (OLED) based on host–guest blends with different guest concentrations of the fluorescent polymer poly-[2-methoxy, 5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEHPPV-host), and phosphorescent molecule PtII-tetraphenyltetrabenzoporphyrin [Pt(tpbp); guest]. We show that the energy transfer process between the excited states of the host polymer and guest molecule takes a ‘ping-pong’ type sequence, because the lowest guest triplet exciton energy, E{sub T}(guest), lies higher than that of the host, E{sub T}(host). Upon photon excitation the photogenerated singlet excitons in the host polymer chains first undergo a Förster resonant energy transfer process to the guest singlet manifold, which subsequently reaches E{sub T}(guest) by intersystem crossing. Because E{sub T}(guest)>E{sub T}(host) there is a subsequent Dexter type energy transfer from E{sub T}(guest) to E{sub T}(host). This energy transfer sequence has profound influence on the photoluminescence and electroluminescence emission spectra in both films and OLED devices based on the MEHPPV-Pt(tpbp) system. - Highlights: • We studied electroluminescence of OLEDs based on host–guest blends. • The emission efficiency decreases with the guest concentration. • We found a dominant Dexter energy transfer from the triplet(guest) to triplet(host). • Energy transfer occurs from the host to guest and back to the host again.

  19. Observation of the energy transfer sequence in an organic host–guest system of a luminescent polymer and a phosphorescent molecule

    International Nuclear Information System (INIS)

    Basel, Tek; Sun, Dali; Gautam, Bhoj; Valy Vardeny, Z.

    2014-01-01

    We used steady state optical spectroscopies such as photoluminescence and photoinduced absorption (PA), and magnetic-field PA (MPA) for studying the energy transfer dynamics in films and organic light emitting diodes (OLED) based on host–guest blends with different guest concentrations of the fluorescent polymer poly-[2-methoxy, 5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEHPPV-host), and phosphorescent molecule PtII-tetraphenyltetrabenzoporphyrin [Pt(tpbp); guest]. We show that the energy transfer process between the excited states of the host polymer and guest molecule takes a ‘ping-pong’ type sequence, because the lowest guest triplet exciton energy, E T (guest), lies higher than that of the host, E T (host). Upon photon excitation the photogenerated singlet excitons in the host polymer chains first undergo a Förster resonant energy transfer process to the guest singlet manifold, which subsequently reaches E T (guest) by intersystem crossing. Because E T (guest)>E T (host) there is a subsequent Dexter type energy transfer from E T (guest) to E T (host). This energy transfer sequence has profound influence on the photoluminescence and electroluminescence emission spectra in both films and OLED devices based on the MEHPPV-Pt(tpbp) system. - Highlights: • We studied electroluminescence of OLEDs based on host–guest blends. • The emission efficiency decreases with the guest concentration. • We found a dominant Dexter energy transfer from the triplet(guest) to triplet(host). • Energy transfer occurs from the host to guest and back to the host again

  20. Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms

    NARCIS (Netherlands)

    Bezemer, Rick; Faber, Dirk J.; Almac, Emre; Kalkman, Jeroen; Legrand, Matthieu; Heger, Michal; Ince, Can

    2010-01-01

    Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO(2))

  1. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal: Evidence for exciplex formation in the  1Au and  3Au states

    NARCIS (Netherlands)

    IJzendoorn, van L.J.; Allamandola, L.J.; Baas, F.; Koernig, S.; Greenberg, J.M.

    1986-01-01

    Laser-induced fluorescence (¿1Au¿¿1Ag) and phosphorescence (¿3Au¿¿1Ag) as well as absorption and excitation spectra of glyoxal in Ar, N2, and CO matrices have been measured at 12 K. Supplementary infrared absorption spectra have also been taken. Although the dominant band in the absorption and

  2. Blue photoluminescence and long lasting phosphorescence properties of a novel chloride phosphate phosphor: Sr5(PO4)3Cl:Eu2+

    International Nuclear Information System (INIS)

    Wu, Chuanqiang; Zhang, Jiachi; Feng, Pengfei; Duan, Yiming; Zhang, Zhiya; Wang, Yuhua

    2014-01-01

    A novel blue emitting long lasting phosphorescence phosphor Sr 5 (PO 4 ) 3 Cl:Eu 2+ is synthesized by solid state method at 1223 K in reducing atmosphere. The afterglow emission spectrum shows one broad band centered at 441 nm due to the 5d–4f transition of Eu 2+ at six coordinated Sr(II) sites and the color coordinates are calculated to be (0.149, 0.095) which is close to the light blue region. The excitation band is in 240–430 nm and partly overlaps the solar irradiation on Earth's surface. The long lasting phosphorescence of the optimal sample doping by 0.1 mol%Eu 2+ can be recorded for about 1040 s (0.32 mcd/m 2 ). Thermoluminescence shows that there are at least three types of traps corresponding to peaks at 340 K, 382 K, 500 K, respectively. The filling and fading experiments reveal that the traps in Sr 5 (PO 4 ) 3 Cl:Eu 2+ are independent. The shallow traps (340 K) essentially contribute to the visible long lasting phosphorescence, while the deep traps (382 K and 500 K) are proved to be very stable. Thus, the Sr 5 (PO 4 ) 3 Cl:Eu 2+ material shows potential applications as not only a long lasting phosphorescence phosphor, but also an optical storage material. -- Highlights: • The blue long lasting phosphorescence of Sr 5 (PO 4 ) 3 Cl:Eu 2+ is first reported. • Filling and fading experiments are carried out for revealing natures of traps. • The afterglow mechanism for independent traps of Sr 5 (PO 4 ) 3 Cl:Eu 2+ is proposed

  3. UV Thermoluminescence and Phosphorescence Properties of Mg2+ and Nd3+ Doped Nanostructured Al2O3

    International Nuclear Information System (INIS)

    Bitencourt, J F S; Goncalves, K A; Tatumi, S H; Marcos, P J B

    2010-01-01

    Mg 2+ and Nd 3+ doped aluminium oxide samples were produced by polymer calcination method. Mg 2+ doped samples did not exhibited significant fluorescence emission, using IR (LED, emission centered at 862nm) or green (Xe-lamp plus optical filter, emission centered at 520 nm) sources. Nonetheless, high thermostimulated luminescence was detected, with high emission peak at 190 0 C. A nanoscopic layer (about 50 nm width) of magnesium spinel was observed by Transmission Electronic Microscopy (TEM) for 2.61mol% doped sample; this layer can be the responsible for TL enhancement. Nd 3+ doped sample exhibited low phosphorescence emission in the UV (Schott U-340) using IR source. TL peaks were detected at 185 and 265 0 C; the intermediary peak showed the highest emission. Occurrence of NdAl and NdAl 2 structures were detected in 5 mol% doped sample and NdAl 2 and NdAl 4 structures in 10 mol% doped sample.

  4. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    Science.gov (United States)

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  5. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    International Nuclear Information System (INIS)

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young

    2014-01-01

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  6. Red blood cell production

    Science.gov (United States)

    ... bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming a cell called a proerythroblast, it will develop into a new red blood cell. The formation of a red blood ...

  7. Investigation of six-membered carbocyclic compounds as a molecular switch block of room temperature phosphorescence in nondeoxygenated {beta}-cyclodextrin solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hairong; Wei Yansheng; Jin Weijun; Liu Changsong

    2003-05-07

    An aerated aqueous solution, intense room temperature phosphorescence (RTP) of nitrogen heterocyclic compounds (NHCs) and polyaromatic hydrocarbons (PAHs) can be observed when micro amounts of six-membered carbocyclic compounds (6-MCCs) are introduced in {beta}-cyclodextrin ({beta}-CD) solution. In order to find the predominating factors of the enhanced phosphorescence observed with this novel approach, 22 typical phosphors of NHCs and PAHs were carefully screened and served as model compounds. The role of the inner heavy atom, the substituent group and the host-guest molecules space-matching on the RTP of different phosphors were investigated. The results demonstrated that the enhancement effects of cyclohexane, bromocyclohexane and cyclohexanol for the RTP of NHCs and PAHs have precedence over traditional halide alkanes such as 1,2-dibromoethane (DBE), exhibiting an obvious sequence as following: cyclohexane > bromocyclohexane > cyclohexanol. This new approach compared with other RTP methods is simple, convenient and fast.

  8. Investigation of six-membered carbocyclic compounds as a molecular switch block of room temperature phosphorescence in nondeoxygenated β-cyclodextrin solution

    International Nuclear Information System (INIS)

    Zhang Hairong; Wei Yansheng; Jin Weijun; Liu Changsong

    2003-01-01

    An aerated aqueous solution, intense room temperature phosphorescence (RTP) of nitrogen heterocyclic compounds (NHCs) and polyaromatic hydrocarbons (PAHs) can be observed when micro amounts of six-membered carbocyclic compounds (6-MCCs) are introduced in β-cyclodextrin (β-CD) solution. In order to find the predominating factors of the enhanced phosphorescence observed with this novel approach, 22 typical phosphors of NHCs and PAHs were carefully screened and served as model compounds. The role of the inner heavy atom, the substituent group and the host-guest molecules space-matching on the RTP of different phosphors were investigated. The results demonstrated that the enhancement effects of cyclohexane, bromocyclohexane and cyclohexanol for the RTP of NHCs and PAHs have precedence over traditional halide alkanes such as 1,2-dibromoethane (DBE), exhibiting an obvious sequence as following: cyclohexane > bromocyclohexane > cyclohexanol. This new approach compared with other RTP methods is simple, convenient and fast

  9. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Progress of OLED devices with high efficiency at high luminance

    Science.gov (United States)

    Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong

    2014-03-01

    Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.

  11. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  12. Inquiring into Red/Red Inquiring

    Directory of Open Access Journals (Sweden)

    Ken Gale

    2013-05-01

    Full Text Available This layered account of an inquiry into ‘red’ emerged out of a collective biography workshop. In the middle of the Wiltshire countryside, an international and interdisciplinary group of scholars gathered together to write and make other things and marks on paper that asked questions of, and into, the spaces between words, people, things and their environments. We did not set out to workshop or write into or paint ‘red’ but, rather, it was red that slipped in, uninvited, and painted and wrote us. Red arose as a blush or a stain seeping amongst us that became referenced obliquely by material objects, metaphors and fairytales. The stain spread, became noticeable through our weekend together and beyond it, creating another (bright red artery vein of connection to write with.

  13. Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor.

    Science.gov (United States)

    Shu, Tong; Su, Lei; Wang, Jianxing; Lu, Xin; Liang, Feng; Li, Chenzhong; Zhang, Xueji

    2016-06-07

    Chemical etching of gold by thiols has been known to be capable of generating nonluminescent gold(I) complexes, e.g., in size-focusing synthesis of atomically precise gold nanoclusters (GNCs). These nonluminescent gold(I) complexes have usually been considered as useless or worthless byproducts. This study shows a promising potential of thiol etching of GNCs to prepare novel water-soluble and phosphorescent gold(I) materials for sensing application. First, cysteamine-induced etching of GNCs is used to produce nonluminescent oligomeric gold(I)-thiolate complexes. Then, cadmium ion induces the aggregation of these oligomeric complexes to produce highly water-soluble ultrasmall intra-aggregates. These intra-aggregates can phosphoresce both in dilute aqueous solutions and in the solid phase. Studies on the effect of pH on their phosphorescent emission reveal the importance of the interaction between the amino groups of the ligands and cadmium ion for their phosphorescent emission property. Furthermore, Cu(2+) ion is found to quickly quench the phosphorescent emission of the intra-aggregates and simultaneously cause a Cu(2+)-concentration-dependent peak wavelength shift, enabling the establishment of a novel colorimetric sensor for sensitive and selective visual sensing of Cu(2+).

  14. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brianâ E.; Moon, Soo-Jin; Baranoff, Etienne; Nà ¼ esch, Frank; McGehee, Michaelâ D.; Grà ¤ tzel, Michael; Nazeeruddin, Mohammadâ K.

    2009-01-01

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture

  15. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  16. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    Science.gov (United States)

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  17. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses

    International Nuclear Information System (INIS)

    Lerman, S.

    1987-01-01

    In vitro [UV absorption, fluorescence, phosphorescence, and nuclear magnetic resonance (NMR)] spectroscopic studies on the normal human lens demonstrate age-related changes which can be correlated with biochemical and photobiologic mechanisms occurring during our lifetime. Chronic cumulative UV exposure results in an age-related increase of photochemically induced chromophores and in color of the lens nucleus. This enables the lens to filter the incident UV radiation, thereby protecting the underlying aging retina from UV photodamage. We have measured the age-related increase in lens fluorescence in vivo on more than 300 normal subjects (1st to 9th decade) by UV slitlamp densitography. These data show a good correlation with the in vitro lens fluorescence studies reported previously and demonstrate that molecular photodamage can be monitored in the lens. In vitro NMR (human and animal lenses) and in vivo experiments currently in progress are rapidly elucidating the physicochemical basis for transparency and the development of light scattering areas. Surface scanning NMR can monitor organophosphate metabolism in the ocular lens in vivo as well as in vitro. These studies demonstrate the feasibility of using biophysical methods (optical spectroscopy and NMR analyses) to delineate age-related parameters in the lens, in vivo as well as in vitro. 46 references

  18. Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

    Directory of Open Access Journals (Sweden)

    Pascal R. Ewen

    2014-11-01

    Full Text Available The improvement of molecular electronic devices such as organic light-emitting diodes requires fundamental knowledge about the structural and electronic properties of the employed molecules as well as their interactions with neighboring molecules or interfaces. We show that highly resolved scanning tunneling microscopy (STM and spectroscopy (STS are powerful tools to correlate the electronic properties of phosphorescent complexes (i.e., triplet emitters with their molecular structure as well as the local environment around a single molecule. We used spectroscopic mapping to visualize several occupied and unoccupied molecular frontier orbitals of Pt(II complexes adsorbed on Au(111. The analysis showed that the molecules exhibit a peculiar localized strong hybridization that leads to partial depopulation of a dz² orbital, while the ligand orbitals are almost unchanged. We further found that substitution of functional groups at well-defined positions can alter specific molecular orbitals without influencing the others. The results open a path toward the tailored design of electronic and optical properties of triplet emitters by smart ligand substitution, which may improve the performance of future OLED devices.

  19. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material

    Science.gov (United States)

    Duan, H.; Dong, Y. Z.; Huang, Y.; Hu, Y. H.; Chen, X. S.

    2016-01-01

    Electronic structures of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material are investigated using first-principles calculations. Si vacancies are too high in energy to play any role in the persistent luminescence of Sr2MgSi2O7 phosphor. Mg vacancies form easier than Sr vacancies as a result of strain relief. Among all the vacancies, O1 vacancies stand out as a likely candidate because they are the most favorable in energy and introduce an empty triply degenerate state just below the CBM and a fully-occupied singlet state at ~1 eV above the VBM, constituting in this case effective hole trap level and electron trap levels, respectively. Mg vacancies are unlikely to explain the persistent luminescence because of its too shallow electron trap level but they may compensate the hole trap associated with O1 vacancies. We yield consistent evidence for the defect physics of these vacancy defects on the basis of the equilibrium properties of Sr2MgSi2O7, total-energy calculations, and electronic structures. The persistent luminescence mechanism of Sr2MgSi2O7:Eu2+, Dy3+ phosphor is also discussed based on our results for O1 vacancies trap center. Our results provide a guide to more refined experiments to control intrinsic traps, whereby probing synthetic strategies toward new improved phosphors.

  20. High efficiency and stable white OLED using a single emitter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian [Arizona State Univ., Tempe, AZ (United States). School of Mechanical, Aerospace, Chemical and Materials Engineering

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-based white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.

  1. Phosphorescent Molecularly Doped Light-Emitting Diodes with Blended Polymer Host and Wide Emission Spectra

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available Stable green light emission and high efficiency organic devices with three polymer layers were fabricated using bis[2-(4′-tert-butylphenyl-1-phenyl-1H-benzoimidazole-N,C2′] iridium(III (acetylacetonate doped in blended host materials. The 1 wt% doping concentration showed maximum luminance of 7841 cd/cm2 at 25.6 V and maximum current efficiency of 9.95 cd/A at 17.2 V. The electroluminescence spectra of devices indicated two main peaks at 522 nm and 554 nm coming from phosphor dye and a full width at half maximum (FWHM of 116 nm. The characteristics of using blended host, doping iridium complex, emission spectrum, and power efficiency of organic devices were investigated.

  2. Bright, Multi-responsive, Sky-Blue Platinum(II) Phosphors Based on a Tetradentate Chelating Framework.

    Science.gov (United States)

    Liu, Lijie; Wang, Xiang; Wang, Nan; Peng, Tai; Wang, Suning

    2017-07-24

    A new class of highly efficient and stable, blue-phosphorescent Pt II complexes based on a tetradentate chelating framework has been found to exhibit highly sensitive and reversible responses to multiple external stimuli including temperature, pressure, and UV irradiation with distinct phosphorescent color switching-from blue to red or white. Intermolecular excimer formation is the main origin of this intriguing multi-response phenomenon. Highly efficient singlet-oxygen sensitization by the Pt II compounds yields UV-light-induced phosphorescence enhancement and color switching. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Next generation red teaming

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Red Teaming is can be described as a type of wargaming.In private business, penetration testers audit and test organization security, often in a secretive setting. The entire point of the Red Team is to see how weak or otherwise the organization's security posture is. This course is particularly suited to CISO's and CTO's that need to learn how to build a successful Red Team, as well as budding cyber security professionals who would like to learn more about the world of information security. Teaches readers how to dentify systemic security issues based on the analysis of vulnerability and con

  4. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    Energy Technology Data Exchange (ETDEWEB)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V [Immanuel Kant Baltic Federal University, Kaliningrad (Russian Federation); Konstantinova, E I; Slezhkin, V A [Kaliningrad State Technical University, Kaliningrad (Russian Federation)

    2015-10-31

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)

  5. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    International Nuclear Information System (INIS)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V; Konstantinova, E I; Slezhkin, V A

    2015-01-01

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)

  6. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots.

    Science.gov (United States)

    Tang, Dandan; Zhang, Jinyi; Zhou, Rongxin; Xie, Ya-Ni; Hou, Xiandeng; Xu, Kailai; Wu, Peng

    2018-05-10

    Overexpression and crystallization of uric acid have been recognized as the course of hyperuricemia and gout, which is produced via xanthine oxidase (XOD)-catalyzed oxidation of xanthine. Therefore, the medicinal therapy of hyperuricemia and gout is majorly based on the inhibition of the XOD enzymatic pathway. The spectroscopic nature of xanthine and uric acid, namely both absorption (near the ultraviolet region) and emission (non-fluorescent) characteristics, hinders optical assay development for XOD analysis. Therefore, the state-of-the-art analysis of XOD and the screening of XOD inhibitors are majorly based on chromatography. Here, we found the near ultraviolet absorption of uric acid overlapped well with the absorption of a large bandgap semiconductor quantum dots, ZnS. On the other hand, the intrinsic weak fluorescence of ZnS QDs can be substantially improved via transition metal ion doping. Therefore, herein, we developed an inner filter effect-based assay for XOD analysis and inhibitor screening with Mn-doped ZnS QDs. The phosphorescence of Mn-doped ZnS QDs could be quenched by uric acid generated from xanthine catabolism by XOD, leading to the phosphorescence turn-off detection of XOD with a limit of detection (3σ) of 0.02 U L-1. Furthermore, the existence of XOD inhibitors could inhibit the XOD enzymatic reaction, resulting in weakened phosphorescence quenching. Therefore, the proposed assay could also be explored for the facile screening analysis of XOD inhibitors, which is important for the potential medicinal therapy of hyperuricemia and gout.

  7. Eficiência do óxido de fenbutatin sobre formas móveis do ácaro vermelho europeu (Panonychus ulmi Koch. em macieira Efficience evaluation of fenbutatin oxide on control of red mite (Panonychus ulmi Koch. on apple tree

    Directory of Open Access Journals (Sweden)

    Ivan Francisco Dressler da Costa

    1997-06-01

    Full Text Available O objetivo deste experimento foi avaliar a eficiência do Óxido de Fenbutatin, no controle das formas móveis do ácaro vermelho europeu. Realizou-se um ensaio em pomar de macieira, cv. Fuji, na Empresa Florense, em Lagoa Vermelha, RS, na safra de 1993/94. Os resultados demonstraram que todas as doses utilizadas foram eficientes, até os trinta dias após a aplicação.The objective of this experiment was to evaluate the efficience of Fenbutatin Oxide for controlling mobile forms of red mite ( Panonichus ulmi Koch.. An experiment was conducted in apple orchard cv. Fuji, in Lagoa Vermelha county, RS, Brazil, in 1993/94. The results indicated that all treatments with Fenbutatin Oxide were efficients at 30 days after application.

  8. Astrophysics of Red Supergiants

    Science.gov (United States)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  9. red flour beetle

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... 2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan. 3Department of ... most important energy source around the globe ... T. castaneum (red flour beetle) samples were collected from rice.

  10. RED-ML

    DEFF Research Database (Denmark)

    Xiong, Heng; Liu, Dongbing; Li, Qiye

    2017-01-01

    using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on Machine learning (pronounced as "red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also take advantage of matched genomic variant information when available...... accurately detect novel RNA editing sites without relying on curated RNA editing databases. We have also made this tool freely available via GitHub . We have developed a highly accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data....... With the availability of RED-ML, it is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the RNA editing research community and has profound impact to accelerate our understanding of this intriguing posttranscriptional modification process....

  11. Oenology: red wine procyanidins and vascular health.

    Science.gov (United States)

    Corder, R; Mullen, W; Khan, N Q; Marks, S C; Wood, E G; Carrier, M J; Crozier, A

    2006-11-30

    Regular, moderate consumption of red wine is linked to a reduced risk of coronary heart disease and to lower overall mortality, but the relative contribution of wine's alcohol and polyphenol components to these effects is unclear. Here we identify procyanidins as the principal vasoactive polyphenols in red wine and show that they are present at higher concentrations in wines from areas of southwestern France and Sardinia, where traditional production methods ensure that these compounds are efficiently extracted during vinification. These regions also happen to be associated with increased longevity in the population.

  12. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Hirai, Hiroki; Nakajima, Kiichi; Nakatsuka, Soichiro; Shiren, Kazushi; Ni, Jingping; Nomura, Shintaro; Ikuta, Toshiaki; Hatakeyama, Takuji

    2015-11-09

    The development of a one-step borylation of 1,3-diaryloxybenzenes, yielding novel boron-containing polycyclic aromatic compounds, is reported. The resulting boron-containing compounds possess high singlet-triplet excitation energies as a result of localized frontier molecular orbitals induced by boron and oxygen. Using these compounds as a host material, we successfully prepared phosphorescent organic light-emitting diodes exhibiting high efficiency and adequate lifetimes. Moreover, using the present one-step borylation, we succeeded in the synthesis of an efficient, thermally activated delayed fluorescence emitter and boron-fused benzo[6]helicene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  14. Color tunability in green, red and infra-red upconversion emission in Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} with potential application for improvement of efficiency in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz G.A.; Rocha, Leonardo A.; Buarque, Juliana M.M. [Laboratório de Materiais Inorgânicos Fotoluminescentes e Polímeros Biodegradáveis (LAFOP), Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Gonçalves, Rogéria Rocha [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil); Nascimento Jr, Clébio S. [Laboratório de Química Teórica e Computacional – (LQTC), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2015-03-15

    The preparation of Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the precipitation method using ammonium hydroxide as a precursor is presented. By X-ray diffraction the materials show the phase-type of fluorite structure and the crystallite sizes were calculated by the Scherrer's equation. No other phase was observed evincing that the rare earth ions were inserted into the fluorite phase as substitutional or interstitial dopants. The microstrain calculated by the Williamson–Hall method do not show significant changes in their values, indicating that the inclusion of rare earths does not causes structural changes in the CeO{sub 2} used as a host matrix. All material showed intense upconversion emission at red and green region under excitation with diode laser at 980 nm. The color of emission changes from green to red with increasing excitation power pump. The materials showed suitable photoluminescent properties for applications as a laser source, solar cells, and great emitter at 800 nm. - Highlights: • Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the simple way. • Intense upconversion emission regions and the tunability of emission color by the laser power pump. • The materials showed suitable photoluminescent properties for different applications.

  15. Highly efficient red-emitting BaMgBO3F:Eu3+,R+ (R: Li, Na, K, Rb) phosphor for near-UV excitation synthesized via glass precursor solid-state reaction

    Science.gov (United States)

    Shinozaki, Kenji; Akai, Tomoko

    2017-09-01

    Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.

  16. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  17. A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo.

    Science.gov (United States)

    Li, Guanying; Lin, Qian; Sun, Lingli; Feng, Changsheng; Zhang, Pingyu; Yu, Bole; Chen, Yu; Wen, Ya; Wang, Hui; Ji, Liangnian; Chao, Hui

    2015-01-01

    Endogenous hypochlorite ion (ClO(-)) is a highly reactive oxygen species (ROS) that is produced from hydrogen peroxide and chloride ions catalyzed by myeloperoxidase (MPO). And mitochondrion is one of the major sources of ROS including ClO(-). In the present work, a two-photon phosphorescent probe for ClO(-) in mitochondria was developed. An iridium(III) complex bearing a diaminomaleonitrile group as ClO(-) reactive moiety specifically responded to ClO(-) over other ions and ROSs. When the probe was reacted with ClO(-) to form an oxidized carboxylate product, a significant enhancement in phosphorescence intensity was observed under one-photon (402 nm) and two-photon (750 nm) excitation, with a two-photon absorption cross-section of 78.1 GM at 750 nm. More importantly, ICP-MS results and cellular images co-stained with Mito-tracker Green demonstrated that this probe possessed high specificity for mitochondria. This probe was applied in the one- and two-photon imaging of ClO(-) in vitro and in vivo. The results suggested endotoxin lipopolysaccharide (LPS) induced ClO(-) mostly generated in the liver of zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging.

    Science.gov (United States)

    Chen, Min; Lei, Zhen; Feng, Wei; Li, Chunyan; Wang, Quan-Ming; Li, Fuyou

    2013-06-01

    The phosphorescent silver(I)-gold(I) cluster complex [CAu6Ag2(dppy)6](BF4)4 (N1) selectively stains the nucleolus, with a much lower uptake in the nucleus and cytoplasm, and exhibits excellent photostability. This Ag-Au cluster, which has a photoluminescent lifetime of microseconds, is particularly attractive as a probe in applications of time-gated microscopy. Investigation of the pathway of cellular entry indicated that N1 permeates the outer membrane and nuclear membrane of living cells through an energy-dependent and non-endocytic route within 10 min. High concentrations of N1 in the nucleolus have been quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy coupled with an energy dispersive X-ray analysis (TEM-EDXA), which also helped to elucidate the mechanism of the specific staining. Intracellular selective staining may be correlated with the microenvironment of the nucleolus, which is consistent with experiments conducted at different phases of the cell cycle. These results prove that N1 is a very attractive phosphorescent staining reagent for visualizing the nucleolus of living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Theoretical study on the electronic structures and phosphorescent properties of a series of iridium(III) complexes with the different positional N-substitution in the pyridyl moiety

    Energy Technology Data Exchange (ETDEWEB)

    Han, Deming; Hao, Fengqi [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Tian, Jian [Clean Energy Technology Laboratory, Changchun University of Science and Technology, Changchun 130022 (China); Pang, Chunying; Li, Jingmei [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhao, Lihui, E-mail: zhaolihui@yahoo.com [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China)

    2015-03-15

    The geometry structures, electronic structures, absorption and phosphorescent properties of a series of iridium(III) complexes with the different N-substitution cyclometalating ligand and the same benzyldiphenylphosphine auxiliary ligand have been theoretically investigated by using the density functional theory method. The lowest energy absorption wavelengths are located at 378 nm for A, 430 nm for B, 411 nm for C, 436 nm for D, and 394 nm for E. The introduction of N atom substitution at 1-, 2-, 3-, and 4-positions on the pyridyl moiety of complex A leads to an obvious redshifted absorption. The lowest energy emissions for complexes A–E are localized at 450, 409, 438, 483, and 429 nm, respectively, simulated in CH{sub 2}Cl{sub 2} medium at M052X level. Ionization potential and electron affinity have been calculated to evaluate the injection abilities of holes and electrons into these complexes. For complex C, the calculated results showed that it can possibly possess the larger radiative decay rate (k{sub r}) value than those of other four complexes. It is anticipated that the theoretical studies can provide valuable information for designing new phosphorescent metal complexes of organic light-emitting diodes. - Highlights: • Five Ir(III) complexes have been theoretically investigated. • The effect of N-substitution cyclometalating ligand has been studied. • The complex C possibly possesses the largest radiative decay rate value.

  20. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    Science.gov (United States)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  1. When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes.

    Science.gov (United States)

    Daniels, Ruth E; Culham, Stacey; Hunter, Michael; Durrant, Marcus C; Probert, Michael R; Clegg, William; Williams, J A Gareth; Kozhevnikov, Valery N

    2016-04-28

    A new family of eight dinuclear iridium(iii) complexes has been prepared, featuring 4,6-diarylpyrimidines L(y) as bis-N^C-coordinating bridging ligands. The metal ions are also coordinated by a terminal N^C^N-cyclometallating ligand L(X) based on 1,3-di(2-pyridyl)benzene, and by a monodentate chloride or cyanide. The general formula of the compounds is {IrL(X)Z}2L(y) (Z = Cl or CN). The family comprises examples with three different L(X) ligands and five different diarylpyrimidines L(y), of which four are diphenylpyrimidines and one is a dithienylpyrimidine. The requisite proligands have been synthesised via standard cross-coupling methodology. The synthesis of the complexes involves a two-step procedure, in which L(X)H is reacted with IrCl3·3H2O to form dinuclear complexes of the form [IrL(X)Cl(μ-Cl)]2, followed by treatment with the diarylpyrimidine L(y)H2. Crucially, each complex is formed as a single compound only: the strong trans influence of the metallated rings dictates the relative disposition of the ligands, whilst the use of symmetrically substituted tridentate ligands eliminates the possibility of Λ and Δ enantiomers that are obtained when bis-bidentate units are linked through bridging ligands. The crystal structure of one member of the family has been obtained using a synchrotron X-ray source. All of the complexes are very brightly luminescent, with emission maxima in solution varying over the range 517-572 nm, according to the identity of the ligands. The highest-energy emitter is the cyanide derivative whilst the lowest is the complex with the dithienylpyrimidine. The trends in both the absorption and emission energies as a function of ligand substituent have been rationalised accurately with the aid of TD-DFT calculations. The lowest-excited singlet and triplet levels correlate with the trend in the HOMO-LUMO gap. All the complexes have quantum yields that are close to unity and phosphorescence lifetimes - of the order of 500 ns - that are

  2. Clover, Red (Trifolium pretense)

    Science.gov (United States)

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover, an important ...

  3. Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs.

    Science.gov (United States)

    Jayabharathi, Jayaraman; Ramanathan, Periyasamy; Karunakaran, Chockalingam; Thanikachalam, Venugopal

    2016-01-01

    Efficient hole transport materials based on novel fused methoxynaphthyl phenanthrimidazole core structure were synthesised and characterized. Their device performances in phosphorescent organic light emitting diodes were investigated. The high thermal stability in combination with the reversible oxidation process made promising candidates as hole-transporting materials for organic light-emitting devices. Highly efficient Alq3-based organic light emitting devices have been developed using phenanthrimidazoles as functional layers between NPB [4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl] and Alq3 [tris(8-hydroxyquinoline)aluminium] layers. Using the device of ITO/NPB/4/Alq3/LiF/Al, a maximum luminous efficiency of 5.99 cd A(-1) was obtained with a maximum brightness of 40,623 cd m(-2) and a power efficiency of 5.25 lm W(-1).

  4. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport

    Science.gov (United States)

    Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2003-06-01

    High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.

  5. Ammunition production in the USSR in 20-30 years of 20th century and efficiency of the Red Army in the eve and during of the Great Patriotic War

    Directory of Open Access Journals (Sweden)

    Андрей Николаевич Балыш

    2010-12-01

    Full Text Available The role of Ammunition Industry in connection with action variation at the first part of 20th century is analyzed in the present paper. It is studied how the New Economic Policy (NEP influenced onto the development of ammunition industry and respective branches of heavy industry. For the first time several manufacturing peculiarities of ammunition main elements (by example of ammunition bodies in the eve of the Great Patriotic War are analyzed on the base of archival documents and the role of these peculiarities in fighting efficiency of the Soviet forces during the Second World War is studied.

  6. Aluminium leaching from red mud by filamentous fungi.

    Science.gov (United States)

    Urík, Martin; Bujdoš, Marek; Milová-Žiaková, Barbora; Mikušová, Petra; Slovák, Marek; Matúš, Peter

    2015-11-01

    This contribution investigates the efficient and environmentally friendly aluminium leaching from red mud (bauxite residue) by 17 species of filamentous fungi. Bioleaching experiments were examined in batch cultures with the red mud in static, 7-day cultivation. The most efficient fungal strains in aluminium bioleaching were Penicillium crustosum G-140 and Aspergillus niger G-10. The A. niger G-10 strain was capable to extract up to approximately 141 mg·L(-1) of aluminium from 0.2 g dry weight red mud. Chemical leaching with organic acids mixture, prepared according to A. niger G-10 strain's respective fungal excretion during cultivation, proved that organic acids significantly contribute to aluminium solubilization from red mud. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Skin quality in red potatoes

    Science.gov (United States)

    Attractive appearance is a highly desirable characteristic of fresh market red-skinned potatoes. The ideal red potato has a rich, uniform, deep red color. Color fading, netting, browning, and discoloration caused by skinning and disease decrease marketability and may reduce profits to growers and pa...

  8. Red alder potential in Alaska

    Science.gov (United States)

    Allen Brackley; David Nicholls; Mike Hannan

    2010-01-01

    Over the past several decades, red alder has established itself as a commercially important species in the Pacific Northwest. Once considered a weed species, red alder now commands respect within many markets, including furniture, architectural millwork, and other secondary manufactured products. Although red alder's natural range extends to southeast Alaska, an...

  9. Unusual Circularly Polarized and Aggregation-Induced Near-Infrared Phosphorescence of Helical Platinum(II) Complexes with Tetradentate Salen Ligands.

    Science.gov (United States)

    Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng

    2018-05-17

    A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intersystem-crossing and phosphorescence rates in fac-Ir{sup III}(ppy){sub 3}: A theoretical study involving multi-reference configuration interaction wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany); Wüllen, Christoph van [Fachbereich Chemie and Forschungszentrum OPTIMAS, Technical University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern (Germany)

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the

  11. Red giants seismology

    Science.gov (United States)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  12. Multiplicar la red

    Directory of Open Access Journals (Sweden)

    John Young

    2015-01-01

    Full Text Available La tecnología comunicacional nos ha conducido precipitadamente a una existencia completamente nueva. En la carrera por crear una sociedad sustentable, una "red de redes mundiales" de computadoras personales que puedan ofrecer la primera esperanza real de acelerar ampliamente las comunicaciones. Las redes computacionales no solo sirven como un sistema de comunicación interactivo, rápido sino también como una herramienta de investigación de poderes insospechados.

  13. Calcification–carbonation method for red mud processing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruibing [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Laboratory for Simulation and Modelling of Particulate Systems, Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Zhang, Tingan, E-mail: zhangta@smm.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Liu, Yan; Lv, Guozhi; Xie, Liqun [School of Metallurgy, Northeastern University, Shenyang 110819 (China)

    2016-10-05

    Highlights: • A new approach named calcification–carbonation method for red mud processing is proposed. • The method can prevent emission of red mud from alumina production and is good for the environment. • Thermodynamics characteristics were investigated. • The method was verified experimentally using a jet-flow reactor. - Abstract: Red mud, the Bayer process residue, is generated from alumina industry and causes environmental problem. In this paper, a novel calcification–carbonation method that utilized a large amount of the Bayer process residue is proposed. Using this method, the red mud was calcified with lime to transform the silicon phase into hydrogarnet, and the alkali in red mud was recovered. Then, the resulting hydrogarnet was decomposed by CO{sub 2} carbonation, affording calcium silicate, calcium carbonate, and aluminum hydroxide. Alumina was recovered using an alkaline solution at a low temperature. The effects of the new process were analyzed by thermodynamics analysis and experiments. The extraction efficiency of the alumina and soda obtained from the red mud reached 49.4% and 96.8%, respectively. The new red mud with <0.3% alkali can be used in cement production. Using a combination of this method and cement production, the Bayer process red mud can be completely utilized.

  14. Red Emitting Phenyl-Polysiloxane Based Scintillators for Neutron Detection

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Marchi, Tommaso; Gramegna, Fabiana; Cinausero, Marco; Carturan, Sara; Collazuol, Gianmaria

    2013-06-01

    In this work, the performances of new red emitting phenyl- substituted polysiloxane based scintillators are described. Three dyes were dispersed in a phenyl-polysiloxane matrix in order to shift the scintillation wavelength towards the red part of the visible spectrum. PPO, Lumogen Violet (BASF) and Lumogen Red (BASF) were mixed to the starting resins with different wt. % and the analysis of the different samples was performed by means of fluorescence measurements. The scintillation yield to alpha particles at the different dye ratios was monitored by detecting either the full spectrum or the red part of the emitted light. Finally, thin red scintillators with selected compositions were coupled to Avalanche Photodiode sensors, which are usually characterized by higher efficiency in the red part of the spectrum. An increased light output of about 17% has been obtained comparing the red scintillators to standard blue emitting systems. Preliminary results on the detection of fast neutrons with the APD-red scintillator system are also presented. (authors)

  15. The FIRST-2MASS Red Quasar Survey

    International Nuclear Information System (INIS)

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-01-01

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a ∼ 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that ∼> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K (le) 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%

  16. 8-Quinolineboronic acid as a potential phosphorescent molecular switch for the determination of alpha-fetoprotein variant for the prediction of primary hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiaming, E-mail: zzsyliujiaming@163.com [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Li Feiming [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Liu Zhenbo [Third Hospital of Xiamen, Xiamen 316000 (China); Lin Changqing [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Lin Shaoqin [Department of Biochemistry, Fujian Education College, Fuzhou 350001 (China); Lin Liping [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Wang Xinxing [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Li Zhiming [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China)

    2010-03-24

    8-Quinolineboronic acid phosphorescent molecular switch (8-QBA-PMS) in the 'off' state emitted weak room temperature phosphorescence (RTP) of 8-QBA on the acetylcellulose membrane (ACM) with the perturbation of Pb{sup 2+}. When 8-QBA-PMS was used to label concanavalin agglutinin (Con A) to form 8-QBA-PMS-Con A based on the reaction between -OH of 8-QBA-PMS and -COOH of Con A, 8-QBA-PMS turned 'on' automatically due to its structure change, and RTP of the system increased 2.7 times. Besides, -NH{sub 2} of 8-QBA-PMS-Con A could carry out affinity adsorption (AA) reaction with the -COOH of alpha-fetoprotein variant (AFP-V) to form the product Con A-AFP-V-Con A-8-QBA-PMS containing -NH-CO- bond, causing the RTP of the system to further increase. Moreover, the amount of AFP-V was linear to the {Delta}I{sub p} of the system in the range of 0.012-2.40 (fg spot{sup -1}). Thus, a new affinity sensitive adsorption solid substrate room temperature phosphorimetry using 8-QBA-PMS as labelling reagent (8-QBA-PMS-AASSRTP) for the determination of AFP-V was proposed with the detection limit (LD) of 9 x 10{sup -15} g mL{sup -1}. It had been used to determine AFP-V in human serum with the results agreeing with enzyme-link immunoassay (ELISA), showing promise for the prediction of PHC due to the intimate association between AFP-V and primary hepatocellular carcinoma (PHC). The mechanism of the promethod was also discussed.

  17. 8-Quinolineboronic acid as a potential phosphorescent molecular switch for the determination of alpha-fetoprotein variant for the prediction of primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu Jiaming; Li Feiming; Liu Zhenbo; Lin Changqing; Lin Shaoqin; Lin Liping; Wang Xinxing; Li Zhiming

    2010-01-01

    8-Quinolineboronic acid phosphorescent molecular switch (8-QBA-PMS) in the 'off' state emitted weak room temperature phosphorescence (RTP) of 8-QBA on the acetylcellulose membrane (ACM) with the perturbation of Pb 2+ . When 8-QBA-PMS was used to label concanavalin agglutinin (Con A) to form 8-QBA-PMS-Con A based on the reaction between -OH of 8-QBA-PMS and -COOH of Con A, 8-QBA-PMS turned 'on' automatically due to its structure change, and RTP of the system increased 2.7 times. Besides, -NH 2 of 8-QBA-PMS-Con A could carry out affinity adsorption (AA) reaction with the -COOH of alpha-fetoprotein variant (AFP-V) to form the product Con A-AFP-V-Con A-8-QBA-PMS containing -NH-CO- bond, causing the RTP of the system to further increase. Moreover, the amount of AFP-V was linear to the ΔI p of the system in the range of 0.012-2.40 (fg spot -1 ). Thus, a new affinity sensitive adsorption solid substrate room temperature phosphorimetry using 8-QBA-PMS as labelling reagent (8-QBA-PMS-AASSRTP) for the determination of AFP-V was proposed with the detection limit (LD) of 9 x 10 -15 g mL -1 . It had been used to determine AFP-V in human serum with the results agreeing with enzyme-link immunoassay (ELISA), showing promise for the prediction of PHC due to the intimate association between AFP-V and primary hepatocellular carcinoma (PHC). The mechanism of the promethod was also discussed.

  18. Phosphorescence Control Mediated by Molecular Rotation and Aurophilic Interactions in Amphidynamic Crystals of 1,4-Bis[tri-(p-fluorophenyl)phosphane-gold(I)-ethynyl]benzene.

    Science.gov (United States)

    Jin, Mingoo; Chung, Tim S; Seki, Tomohiro; Ito, Hajime; Garcia-Garibay, Miguel A

    2017-12-13

    Here we present a structural design aimed at the control of phosphorescence emission as the result of changes in molecular rotation in a crystalline material. The proposed strategy includes the use of aurophilic interactions, both as a crystal engineering tool and as a sensitive emission probe, and the use of a dumbbell-shaped architecture intended to create a low packing density region that permits the rotation of a central phenylene. Molecular rotor 1, with a central 1,4-diethynylphenylene rotator linked to two gold(I) triphenylphosphane complexes, was prepared and its structure confirmed by single-crystal X-ray diffraction, which revealed chains mediated by dimeric aurophilic interactions. We showed that green-emitting crystals exhibit reversible luminescent color changes between 298 and 193 K, which correlate with changes in rotational motion determined by variable-temperature solid-state 2 H NMR spin-echo experiments. Fast two-fold rotation with a frequency of ca. 4.00 MHz (τ = 0.25 μs) at 298 K becomes essentially static below 193 K as emission steadily changes from green to yellow in this temperature interval. A correlation between phosphorescence lifetimes and rotational frequencies is interpreted in terms of conformational changes arising from rotation of the central phenylene, which causes a change in electronic communication between the gold-linked rotors, as suggested by DFT studies. These results and control experiments with analogue 2, possessing a hindered tetramethylphenylene that is unable to rotate in the crystal, suggest that the molecular rotation can be a useful tool for controlling luminescence in the crystalline state.

  19. Phosphorescence In Bacillus Spores

    National Research Council Canada - National Science Library

    Reinisch, Lou; Swartz, Barry A; Bronk, Burt V

    2003-01-01

    .... Our present work attempts to build on this approach for environmental applications. We have measured a change in the fluorescence spectra of suspensions of Bacillus bacteria between the vegetative bacteria and their spores at room temperature...

  20. Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials

    KAUST Repository

    Yang, Xiaohui

    2010-08-24

    The synthesis, photophysical, and electrochemical characterization of macromolecules, consisting of an emissive platinum complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core, is reported. Organic light-emitting devices based on these POSS materials exhibit a peak external quantum efficiency of ca. 8%, which is significantly higher than that of the analogous devices with a physical blend of the platinum complexes and a polymer matrix, and they represent noticeable improvement in the device efficiency of solution-processable phosphorescent excimer devices. Furthermore, the ratio of monomer and excimer/aggregate electroluminescent emission intensity, as well as the device efficiency, increases as the platinum complex moiety presence on the POSS macromolecules decreases. © 2010 American Chemical Society.

  1. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

    Science.gov (United States)

    Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo

    2015-12-01

    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

  2. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  3. RedNemo

    DEFF Research Database (Denmark)

    Alkan, Ferhat; Erten, Cesim

    2017-01-01

    is their erroneous nature; they contain false-positive interactions and usually many more false-negatives. Recently, several computational methods have been proposed for network reconstruction based on topology, where given an input PPI network the goal is to reconstruct the network by identifying false...... material including source code, useful scripts, experimental data and the results are available at http://webprs.khas.edu.tr/∼cesim/Red Nemo. tar.gz CONTACT: cesim@khas.edu.tr Supplementary information: Supplementary data are available at Bioinformatics online....

  4. Deep Red (Profondo Rosso)

    CERN Multimedia

    Cine Club

    2015-01-01

    Wednesday 29 April 2015 at 20:00 CERN Council Chamber    Deep Red (Profondo Rosso) Directed by Dario Argento (Italy, 1975) 126 minutes A psychic who can read minds picks up the thoughts of a murderer in the audience and soon becomes a victim. An English pianist gets involved in solving the murders, but finds many of his avenues of inquiry cut off by new murders, and he begins to wonder how the murderer can track his movements so closely. Original version Italian; English subtitles

  5. Red DirCom

    Directory of Open Access Journals (Sweden)

    Joan Costa

    2007-01-01

    Full Text Available Catorce países congregados de manera activa, a través de una plataforma de encuentro donde se comparten conocimiento y experiencias en la gestión estratégica de la comunicación en las organizaciones. La red reconoce en el DirCom una figura clave del desarrollo corporativo en el nuevo contexto de los negocios, impulsa la exigencia ética a través de la formación y consolida la proyección profesional para posicionar la gestión integral del DirCom en Iberoamérica.

  6. SimCP3—An Advanced Homologue of SimCP2 as a Solution-Processed Small Molecular Host Material for Blue Phosphorescence Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Yi-Ting Lee

    2016-09-01

    Full Text Available We have overcome the synthetic difficulty of 9,9′,9′′,9′′′,9′′′′,9′′′′′-((phenylsilanetriyltris(benzene-5,3,1-triylhexakis(9H-carbazole (SimCP3 an advanced homologue of previously known SimCP2 as a solution-processed, high triplet gap energy host material for a blue phosphorescence dopant. A series of organic light-emitting diodes based on blue phosphorescence dopant iridium (III bis(4,6-difluorophenylpyridinatopicolate, FIrpic, were fabricated and tested to demonstrate the validity of solution-processed SimCP3 in the device fabrication.

  7. Electric grid in Spain: a private network of optical fiber with national coverage; Red electrica de Espana: una red privada de fibra optica con cobertura nacional

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.

    1995-12-31

    Red Electrica constructed a grid with optical fiber in 1989 for the grids of 400-220 Kv. In 1995 the length of the grid will be of 6.600 Km. This grid supplies the telecommunication advanced services and contributes in the efficiency and quality of different tasks of Red Electrica.

  8. Near-UV and blue wavelength excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} high efficiency red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A. [Smart Lighting Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Dutta, P.S., E-mail: duttap@rpi.edu [Smart Lighting Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2015-05-15

    Red phosphors with narrow emission around 615 nm (with FWHM~5–10 nm) having chemical compositions of A{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} (A=Mg, Sr) have been found to exhibit the highest luminescence amongst the molybdate–tungstate family when excited by sources in the 380–420 nm wavelength range. Thus they are most suitable for enhancing color rendering index and lowering color temperature in phosphor converted white LEDs (pc-WLEDs) with near-UV/blue LED excitation sources. The excitation band edge in the near UV/blue wavelength in the reported phosphor has been attributed to the coordination environment of the transition metal ion (Mo{sup 6+}, W{sup 6+}) and host crystal structure. Furthermore the quantum efficiency of the phosphors has been enhanced by adjusting activator concentration, suitable compositional alloying using substitutional alkaline earth metal cations and charge compensation mechanisms. - Graphical abstract: The charge transfer excitation of orthorhombic Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} is significantly higher than tetragonal CaMoO{sub 4}: Eu{sup 3+} phosphors making Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} prime candidates for fabrication of warm white phosphor-converted LEDs. - Highlights: • LED excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} phosphors were synthesized. • These phosphors are 10 times more intense than CaMoO{sub 4}: Eu{sup 3+} red phosphors. • Their intensity and efficiency were enhanced by materials optimization techniques. • Such techniques include compositional alloying, charge compensation, etc.

  9. Red - take a closer look.

    Directory of Open Access Journals (Sweden)

    Vanessa L Buechner

    Full Text Available Color research has shown that red is associated with avoidance of threat (e.g., failure or approach of reward (e.g., mating depending on the context in which it is perceived. In the present study we explored one central cognitive process that might be involved in the context dependency of red associations. According to our theory, red is supposed to highlight the relevance (importance of a goal-related stimulus and correspondingly intensifies the perceivers' attentional reaction to it. Angry and happy human compared to non-human facial expressions were used as goal-relevant stimuli. The data indicate that the color red leads to enhanced attentional engagement to angry and happy human facial expressions (compared to neutral ones - the use of non-human facial expressions does not bias attention. The results are discussed with regard to the idea that red induced attentional biases might explain the red-context effects on motivation.

  10. Listening to Red

    Directory of Open Access Journals (Sweden)

    Sinazo Mtshemla

    Full Text Available Following a distinction John Mowitt draws between hearing (and phonics, and listening (and sonics, this article argues that the dominant notion of listening to sound was determined by the disciplinary framework of South African history and by the deployment of a cinematic documentary apparatus, both of which have served to disable the act of listening. The conditions of this hearing, and a deafness to a reduced or bracketed listening (Chion via Schaeffer that would enable us to think the post in post-apartheid differently, is thus at the centre of our concerns here. We stage a series of screenings of expected possible soundtracks for Simon Gush's film and installation Red, simultaneously tracking the ways that sound - and particularly music and dialogue - can be shown to hold a certain way of thinking both the political history of South Africa and the politics of South African history. We conclude by listening more closely to hiss and murmur in the soundtrack to Red and suggest this has major implications for considering ways of thinking and knowing.

  11. Red Teaming: Past and Present

    National Research Council Canada - National Science Library

    Longbine, David F

    2008-01-01

    .... Key aspects of the Army red teaming definition are its emphasis on independent thinking, challenging organizational thinking, incorporating alternative perspectives, and incorporating alternative analysis...

  12. Tests of two convection theories for red giant and red supergiant envelopes

    Science.gov (United States)

    Stothers, Richard B.; Chin, Chao-Wen

    1995-01-01

    Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.

  13. International red meat trade.

    Science.gov (United States)

    Brester, Gary W; Marsh, John M; Plain, Ronald L

    2003-07-01

    The maturation of the US beef and pork markets and increasing consumer demands for convenience, safety, and nutrition suggests that the beef and pork industries must focus on product development and promotion. New marketing arrangements are developing that help coordinate production with consumer demands. The relative high levels of incomes in the United States are likely to increase the demands for branded products rather than increase total per capita consumption. Foreign markets represent the greatest opportunity for increased demand for commodity beef and pork products. Increasing incomes in developing countries will likely allow consumers to increase consumption of animal-source proteins. Real prices of beef and pork have declined substantially because of sagging domestic demand and increasing farm-level production technologies. Increasing US beef and pork exports have obviated some of the price declines. Pork attained a net export position from a quantity perspective in 1995. The United States continues to be a net importer of beef on a quantity basis but is close to becoming a net exporter in terms of value. By-products continue to play a critical role in determining the red meat trade balance and producer prices. The United States, however, must continue to become cost, price, and quality competitive with other suppliers and must secure additional market access if it is to sustain recent trade trends. Several trade tensions remain in the red meat industry. For example, mandated COOL will undoubtedly have domestic and international effects on the beef and pork sectors. Domestically, uncertainty regarding consumer demand responses or quality perceptions regarding product origin, as well as added processor-retailer costs will be nontrivial. How these factors balance out in terms of benefits versus costs to the industry is uncertain. From an international perspective, some beef and pork export suppliers to the United States could view required labeling as a

  14. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  15. In vivo red blood cell compatibility testing using indium-113m tropolone-labeled red blood cells

    International Nuclear Information System (INIS)

    Morrissey, G.J.; Gravelle, D.; Dietz, G.; Driedger, A.A.; King, M.; Cradduck, T.D.

    1988-01-01

    In vivo radionuclide crossmatch is a method for identifying compatible blood for transfusion when allo- or autoantibodies preclude the use of conventional crossmatching techniques. A technique for labeling small volumes of donor red blood cells with [/sup 113m/In]tropolone is reported. The use of /sup 113m/In minimizes the accumulation of background radioactivity and the radiation dose especially so when multiple crossmatches are performed. Labeling red cells with [/sup 113m/In]tropolone is faster and easier to perform than with other radionuclides. Consistently high labeling efficiencies are obtained and minimal /sup 113m/In activity elutes from the labeled red blood cells. A case study involving 22 crossmatches is presented to demonstrate the technique. The radiation dose equivalent from /sup 113m/In is significantly less than with other radionuclides that may be used to label red cells

  16. Volume tables for red alder.

    Science.gov (United States)

    Floyd A. Johnson; R. M. Kallander; Paul G. Lauterbach

    1949-01-01

    The increasing importance of red alder as a commercial species in the Pacific Northwest has prompted the three agencies listed above to pool their tree measurement data for the construction of standard regional red alder volume tables. The tables included here were based on trees from a variety of sites and form classes. Approximately one quarter of the total number of...

  17. Skeleton decay in red cedar

    Science.gov (United States)

    Kevin T. Smith; Jessie A. Glaeser

    2013-01-01

    Eastern red cedar (Juniperus virginiana) is a common tree species throughout the eastern United States and the Great Plains. Although “cedar” is in the common name, the scientifc name shows a botanical kinship to the juniper species of the American southwest. Red cedar can survive and thrive within a broad range of soil conditions, seasonal...

  18. Influência de sais e do pH da água na eficiência de imazethapyr + imazapic no controle de arroz-vermelho Influence of salts and water pH on the efficiency of imazethapyr + imazapic for red rice control

    Directory of Open Access Journals (Sweden)

    D.M. Sanchotene

    2007-01-01

    Full Text Available Na safra agrícola de 2004/2005, em Santa Maria/RS, foi realizado um experimento com o objetivo de avaliar a influência de sais e do pH da água de diferentes fontes de abastecimento de pulverizadores (água de fonte mineral, água de açude e água de poço artesiano sobre a eficiência de imazethapyr (75 g L-1 + imazapic (25 g L-1 no controle de arroz-vermelho (Oryza sativa. No preparo da calda para pulverização do herbicida, foi utilizada água na sua condição original e água acidificada com ácido cítrico até pH 4,5. Foi verificado que os tratamentos com água de pH 4,5 proporcionaram maior eficiência da mistura (imazethapyr + imazapic no controle do arroz-vermelho do que com águas alcalinas (pH 9,4 e 8,7. Todos os tratamentos herbicidas causaram intoxicação às plantas do arroz cultivado. Entretanto, nos tratamentos em que se utilizou água alcalina, foi observada recuperação mais rápida das plantas de arroz, cultivar IRGA 422 CL.This research was carried out in Santa Maria/RS during the 2004/2005 crop season to evaluate the influence of salts and water pH on different sources of spray suppliers (mineral water, dam water and artesian well water on imazethapyr (75 g L-1 + imazapic (25 g L-1 efficiency in red rice control. Thus, water under original condition and acidified water with citric acid to pH 4,5 have been used to prepare the herbicide solutions. It has been verified that the treated plots with water at pH 4,5 showed better action of imazethapyr (75 g L-1 + imazapic (25 g L-1 in the red rice control than alkaline water with pH 9,4 and 8,7. All the treatments with herbicide presented intoxication in the rice. Nevertheless, the treatments with alkaline water showed a fast recuperation in rice plants (IRGA 422CL.

  19. Development of northern red oak rooted cutting and enrichment planting systems

    Science.gov (United States)

    Matthew H. Gocke; Jamie Schuler; Daniel J. Robison; Barry Goldfarb

    2005-01-01

    Enrichment planting may provide an efficient means to establish elite northern red oak (Quercus rubra L.) genotypes in recently harvested natural forests. However, planting northern red oak (NRO) seedlings into natural stands has proven difficult in the past, especially when competition and other stress factors are not controlled.

  20. The search for red AGN with 2MASS

    Science.gov (United States)

    Cutri, R. M.; Nelson, B. O.; Kirkpatrick, J. D.; Huchra, J. P.; Smith, P. S.

    2001-01-01

    We present the results of a simple, highly efficient 2MASS color-based survey that has already discovered 140 previously unknown red AGN and QSOs. These objects are near-infrared-bright and relatively nearby; the media redshift of the sample is z=0.25, and all but two have z<0.7.

  1. Fluorescence and room temperature phosphorescence of 6-bromo-2-naphthol in {beta}-cyclodextrin solution and its selective molecular recognition for cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhai Yanqiang; Zhang Shuzhen; Xie Jianwei; Liu Changsong

    2003-10-08

    The room temperature phosphorescence (RTP) and fluorescence behavior of 6-bromo-2-naphthol (BN) in water and {beta}-cyclodextrin ({beta}-CD) aerated aqueous solution was investigated. The study of fluorescence behavior at different pH values indicated that three kinds of species of BN (protonated, uncharged and anionic species) formed 1:1 inclusion complexes with {beta}-CD, and RTP and fluorescence emission depended on the pH of the solution. The inclusion complex constants were 430{+-}25 l mol{sup -1} (pH 1.80), 840{+-}25 l mol{sup -1} (pH 5.80), 1850{+-}75 l mol{sup -1} (pH 11.50), respectively. Experimental results elucidated that RTP of the BN/{beta}-CD/cyclohexane solution came from the protonated and uncharged species of BN, but not from the anionic species, though the inclusion constant of the anionic species of BN with {beta}-CD was larger than that of the other two species of BN Selective molecular recognition of BN/{beta}-CD as an RTP sensor for 28 small organic molecules was studied, it was shown that BN/{beta}-CD could be develop as a new RTP sensor with high selectivity molecular recognition ability for cyclohexane.

  2. Fluorescence and room temperature phosphorescence of 6-bromo-2-naphthol in β-cyclodextrin solution and its selective molecular recognition for cyclohexane

    International Nuclear Information System (INIS)

    Zhai Yanqiang; Zhang Shuzhen; Xie Jianwei; Liu Changsong

    2003-01-01

    The room temperature phosphorescence (RTP) and fluorescence behavior of 6-bromo-2-naphthol (BN) in water and β-cyclodextrin (β-CD) aerated aqueous solution was investigated. The study of fluorescence behavior at different pH values indicated that three kinds of species of BN (protonated, uncharged and anionic species) formed 1:1 inclusion complexes with β-CD, and RTP and fluorescence emission depended on the pH of the solution. The inclusion complex constants were 430±25 l mol -1 (pH 1.80), 840±25 l mol -1 (pH 5.80), 1850±75 l mol -1 (pH 11.50), respectively. Experimental results elucidated that RTP of the BN/β-CD/cyclohexane solution came from the protonated and uncharged species of BN, but not from the anionic species, though the inclusion constant of the anionic species of BN with β-CD was larger than that of the other two species of BN Selective molecular recognition of BN/β-CD as an RTP sensor for 28 small organic molecules was studied, it was shown that BN/β-CD could be develop as a new RTP sensor with high selectivity molecular recognition ability for cyclohexane

  3. Highly selective manganese-doped zinc sulfide quantum dots based label free phosphorescent sensor for phosphopeptides in presence of zirconium (IV).

    Science.gov (United States)

    Gong, Yan; Fan, Zhefeng

    2015-04-15

    We report a room-temperature phosphorescence (RTP) sensor for phosphopeptides based on zirconium (IV)-modulated mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs). This sensor incorporates the advantages of the well-known Zr(4+)-phosphopeptide affinity pair and the RTP properties of doped QDs. The RTP of Mn-doped ZnS QDs capped with MPA can be effectively quenched by Zr(4+). The high affinity of phosphopeptides to Zr(4+) enables the dissociation of the ion from the surface of MPA-capped ZnS QDs, thereby forming a stable complex with phosphopeptides in the solution, and recovering the RTP of the QDs. The Zr(4+)-induced RTP quenching and subsequent phosphopeptide-induced RTP recovery for MPA-capped ZnS QDs provide a solid basis for the present RTP sensor based on QDs for the detection of phosphopeptides. The detection limit for phosphopeptides is 0.9ngmL(-1), the relative standard deviations is 2.5%, and the recovery of urine and serum samples with phosphopeptides addition rangs from 96% to 105% at optimal conditions. The proposed method was successfully applied to biological fluids and obtained satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Exploitation of phosphorescent labelling reagent of fullerol-fluorescein isothiocyanate and new method for the determination of trace alkaline phosphatase as well as forecast of human diseases

    International Nuclear Information System (INIS)

    Liu Jiaming; Huang Xiaomei; Liu Zhenbo; Lin Shaoqin; Li Feiming; Gao Fei; Li Zhiming; Zeng Liqing; Li Lianying; Ouyang Ying

    2009-01-01

    A new phosphorescent labelling reagent consisting of fullerol, fluorescein isothiocyanate and N,N-dimethylaniline (F-ol-(FITC) n -DMA) was developed. The mode of action is based on the reactivity of the active -OH group in F-ol with the -COOH group of FITC to form an F-ol-(FITC) n -DMA complex containing several FITC molecules. F-ol-(FITC) n -DMA increased the number of luminescent molecules in the biological target of WGA-AP-WGA-F-ol-(FITC) n -DMA (WGA and AP are wheat germ agglutinin and alkaline phosphatase, respectively) which improved the sensitivity using solid substrate room temperature phosphorimetry (SSRTP) detection. The proposed method provided high sensitivity and strong specificity for WGA-AP. The limit of detection (LD) was 0.15 ag AP spot -1 for F-ol and 0.097 ag AP spot -1 for FITC in F-ol-(FITC) n -DMA, which was lower than the method using single luminescent molecules of F-ol-DMA and FITC-DMA to label WGA (0.20 ag AP spot -1 for F-ol-DMA and 0.22 ag AP spot -1 for FITC-DMA). Results for the determination of AP in human serum were in good agreement with those obtained by enzyme-linked immunosorbent assay. The mechanism of F-ol-(FITC) n -DMA labelling of WGA was discussed.

  5. Mycoremediation of congo red dye by filamentous fungi.

    Science.gov (United States)

    Bhattacharya, Sourav; Das, Arijit; G, Mangai; K, Vignesh; J, Sangeetha

    2011-10-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l) in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  6. Mycoremediation of Congo red dye by filamentous fungi

    Directory of Open Access Journals (Sweden)

    Sourav Bhattacharya

    2011-12-01

    Full Text Available Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  7. Romantic red: red enhances men's attraction to women.

    Science.gov (United States)

    Elliot, Andrew J; Niesta, Daniela

    2008-11-01

    In many nonhuman primates, the color red enhances males' attraction to females. In 5 experiments, the authors demonstrate a parallel effect in humans: Red, relative to other achromatic and chromatic colors, leads men to view women as more attractive and more sexually desirable. Men seem unaware of this red effect, and red does not influence women's perceptions of the attractiveness of other women, nor men's perceptions of women's overall likeability, kindness, or intelligence. The findings have clear practical implications for men and women in the mating game and, perhaps, for fashion consultants, product designers, and marketers. Furthermore, the findings document the value of extending research on signal coloration to humans and of considering color as something of a common language, both within and across species. (c) 2008 APA, all rights reserved.

  8. The red supergiant population in the Perseus arm

    Science.gov (United States)

    Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-04-01

    We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.

  9. Flexible Photonics: Polymer LEDs Made from Monochromatic Red Emitting Lanthanide/Polymer Blends. Phase 1

    National Research Council Canada - National Science Library

    O'Regan, Marie

    1999-01-01

    .... Spectrally pure, red emitting flexible LEDs have been fabricated. Close to a four-fold increase in device efficiency is obtained when a suitable lanthanide complex is blended with the semi-conducting host polymer...

  10. Genome-scale Evaluation of the Biotechnological Potential of Red Sea Bacilli Strains

    KAUST Repository

    Othoum, Ghofran K.

    2018-01-01

    production of industrial enzymes has encouraged the screening of new environments for efficient microbial cell factories. The unique ecological niche of the Red Sea points to the promising metabolic and biosynthetic potential of its microbial system. Here

  11. Red Yeast Rice: An Introduction

    Science.gov (United States)

    ... rice are used in food products in Chinese cuisine, including Peking duck. Others have been sold as ... Medicine . 2010;170(19):1722–1727. Halbert SC, French B, Gordon RY, et al. Tolerability of red ...

  12. Infra-red process for colour fixation on fabrics

    International Nuclear Information System (INIS)

    Raymond, D.J.; Biau, D.

    1983-01-01

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc ... They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for colour fixation on fabrics. Shorter production cycles and energy saving are the main results

  13. "Congo" red: out of Africa?

    Science.gov (United States)

    Steensma, D P

    2001-02-01

    Congo red is the essential histologic stain for demonstrating the presence of amyloidosis in fixed tissues. To the best of my knowledge, nothing has been written about why the stain is named "Congo." To understand the etymology and history of the Congo red histologic stain. Primary sources were consulted extensively, including 19th-century corporate documents, newspapers, legal briefs, patents, memoirs, and scientific papers. Sources were obtained from multiple university libraries and German corporate archives. To Europeans in 1885, the word Congo evoked exotic images of far-off central Africa known as The Dark Continent. The African Congo was also a political flashpoint during the Age of Colonialism. "Congo" red was introduced in Berlin in 1885 as the first of the economically lucrative direct textile dyes. A patent on Congo red was filed by the AGFA Corporation of Berlin 3 weeks after the conclusion of the well-publicized Berlin West Africa Conference. During these important diplomatic talks, German Chancellor Otto von Bismarck presided over a discussion of free trade issues in the Congo River basin. A challenge to AGFA's Congo red patent led to a precedent-setting decision in intellectual property law. The Congo red stain was named "Congo" for marketing purposes by a German textile dyestuff company in 1885, reflecting geopolitical current events of that time.

  14. Construction and application of Red5 cluster based on OpenStack

    Science.gov (United States)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  15. [Establishment and identification of mouse lymphoma cell line EL4 expressing red fluorescent protein].

    Science.gov (United States)

    Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin

    2010-02-01

    This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.

  16. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  17. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  18. Silvical characteristics of red maple (Acer rubrum)

    Science.gov (United States)

    Russell J. Hutnik; Harry W. Yawney

    1961-01-01

    Red maple (Acer rubrum L.) is also known as Carolina red maple, scarlet maple, soft maple, swamp maple, water maple, and white maple. Taxonomists recognize several varieties of red maple. The most common is Drummond red maple (Acer rubrum var. drummondii (Hook, & Arn.) Sarg.).

  19. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    Science.gov (United States)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  20. Radiation degradation of Congo Red in aqueous solution

    International Nuclear Information System (INIS)

    Ma Hongjuan; Wang Min; Yang Ruiyuan; Wang Wenfeng; Shen Zhongqun; Yao Side

    2006-01-01

    About one-half of the dyes used in textile industry are azo dyes, and as a consequence a lot of azo dyes are released into the environment with industrial wastewater. Because of complex structures of the dyes, biological, physical and chemical treatments of dye effluents are inefficient. In this study, radiation degradation of Congo Red in aqueous solutions was investigated in different reaction systems. Both pulsed radiolysis and laser flash photolysis experiments were carried out for better understandings of degradation mechanisms involved in the treatments. Congo Red solutions saturated by air, N 2 O, O 2 , N 2 O or N 2 and added with tert-butanol were irradiated to 0-14.8 kGy. The absorption spectra, degradation efficiency, TOC (total organic carbon) removal and pH changes of the solutions were investigated. The main radiolytic products from Congo Red samples irradiated in steady-state were determined by HPLC-MS. And probable reaction mechanisms were proposed. Effects of primary species from water radiolysis, such as e aq - , . OH and . O 2 . /HO 2 . on the degradation behavior of the dye were discussed. Below 5 kGy in γ-rays irradiation, the bleaching efficiency of Congo Red was (N 2 +tert-butanol) >O 2 >air>N 2 O>N 2 . Complete degradation of Congo Red was observed at 4.0, 5.5 and 10.2 kGy irradiation of the aqueous solutions saturated by N 2 with tert-butanol added, O 2 and N 2 O, respectively. With just oxidative or reductive species, highly conjugated part of Congo Red molecules could be destroyed. While oxidative species produced from water radiolysis could oxidize the Congo Red more effectively, making the dye to break into fatty acids and CO 2 finally. In the solution saturated with N 2 and air, the primary active species were both of oxidative and reductive and the highly conjugated part of Congo Red molecules could not be destroyed completely up to 14.8 kGy of γ-ray irradiation. It was more difficult to achieve high TOC removal in comparison with

  1. A novel approach in red mud neutralization using cow dung.

    Science.gov (United States)

    Patel, Sucharita; Pal, Bhatu Kumar; Patel, Raj Kishore

    2018-05-01

    In this study, cow dung was identified as a neutralizing agent for red mud (RM). Present research estimated a significant reduction in pH value of red mud (10 g) from 10.28 to 8.15 and reduction in alkalinity of ~148 mg/L from ~488 mg/L by adding 80 g of cow dung in 40 days of anaerobic condition. XRD results exhibit a high intensity of quartz and found new compound, the calcium carbide. The acid neutralizing capacity (ANC) of NRM reduces to ~0.87 from ~1.506 mol H + /kg. Based on the resultant research, present study proposes cow dung as an efficient neutralizing agent for reducing the pH and alkalinity in the red mud.

  2. Cyclometalated N-heterocyclic carbene iridium(iii) complexes with naphthalimide chromophores: a novel class of phosphorescent heteroleptic compounds.

    Science.gov (United States)

    Lanoë, Pierre-Henri; Chan, Jonny; Groué, Antoine; Gontard, Geoffrey; Jutand, Anny; Rager, Marie-Noelle; Armaroli, Nicola; Monti, Filippo; Barbieri, Andrea; Amouri, Hani

    2018-03-06

    A series of cyclometalated N-heterocyclic carbene complexes of the general formula [Ir(C^N) 2 (C^C:)] has been prepared. Two sets of compounds were designed, those where (C^C:) represents a bidentate naphthalimide-substituted imidazolylidene ligand and (C^N) = ppy (3a), F2ppy (4a), bzq (5a) and those where (C^C:) represents a naphthalimide-substituted benzimidazolylidene ligand and (C^N) = ppy (3b), F2ppy (4b), bzq (5b). The naphthalimide-imidazole and naphthalimide-benzimidazole ligands 1a,b and the related imidazolium and benzimidazolium salts 2a,b were also prepared and fully characterized. The N-heterocyclic carbene Ir(iii) complexes have been characterized by NMR spectroscopy, cyclic voltammetry and elemental analysis. Moreover, the molecular structures of one imidazolium salt and four Ir(iii) complexes were determined by single-crystal X-ray diffraction. The structures provide us with valuable information, most notably the orientation of the naphthalimide chromophore with respect to the N-heterocyclic carbene moiety. All compounds are luminescent at room temperature and in a frozen solvent at 77 K, exhibiting a broad emission band that extends beyond 700 nm. The presence of the naphthalimide moiety changes the character of the lowest excited state from 3 MLCT to 3 LC, as corroborated by DFT and TD-DFT calculations. Remarkably, replacing imidazole with a benzimidazole unit improves the quantum yields of these compounds by decreasing the k nr values which is an important feature for optimized emission performance. These studies provide valuable insights about a novel class of N-heterocyclic carbene-based luminescent complexes containing organic chromophores and affording metal complexes emitting across the red-NIR range.

  3. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  4. Preparation Of Pure Vanadium Pentoxide From Red Cake

    International Nuclear Information System (INIS)

    ZAREH, M.M.; EL-HAZEK, M.N; BU ZAID, A.H.M; MOHAMED, H.S.

    2010-01-01

    The red cake, extracted from petroleum ash by acid leaching, contains some impurities such as iron, nickel, zinc, Cr and Cu. For purification the red cake, vanadium in the red cake was taken into solution by treating the red cake with soda ash solution at 90 o C, S /L 1/10 and leaching time of 6 h. The obtained leaching efficiency of vanadium reached 99 %. The solution was clarified by filtration and slurred with solid ammonium sulphate (50g/l) and ammonium chloride (50 g/l). The pH of the slurry was kept at 8-9 by adding ammonium hydroxide. Ammonium metavanadate was crystallized from the slurry at room temperature and during the crystallization step, the slurry was kept under mild agitation. The reaction between the sodium vanadate and ammonium sulphate led to the formation of ammonium metavanadate (AMV) 98.35 % (atomic adsorption techniques). The AMV crystals were separated from the residual liquor by filtration, washed with 5% ammonium chloride solution then dried at 100 o C. Over 98.35 % of the vanadium contained in the red cake was recovered by this way as AMV. Thermal decomposition of AMV at 350 o C 1 h yielded 99.32 % pure vanadium pentoxide.

  5. K{sub 2}MnF{sub 5}·H{sub 2}O as reactant for synthesizing highly efficient red emitting K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors by a modified cation exchange approach

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tao, E-mail: danbaiht@126.com; Wang, Jun; Lang, Tianchun; Tu, Mingjing; Peng, Lingling

    2016-11-01

    As reactant for synthesizing K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors, the cross-shaped and cuboid-shaped K{sub 2}MnF{sub 5}·H{sub 2}O powders were prepared by the simple chemical method. Based on the reaction mechanism, oxidizing K{sub 2}MnF{sub 5}·H{sub 2}O (Mn{sup 3+}) to Mn{sup 4+} by KMnO{sub 4} (Mn{sup 7+}), a modified cation exchange approach for synthesizing highly efficient red emitting K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphor was proposed. The obtained K{sub 2}TiF{sub 6}:Mn{sup 4+} (2.7–5.3 at.%) phosphors have the size of 30–80 μm with a rough surface, their emission spectra consist of five narrow bands extending from 580 to 660 nm with the strongest peak at 634.8 nm, whose relative emitting intensity depends on the molar ratio of KMnO{sub 4} to K{sub 2}MnF{sub 5}·H{sub 2}O (the platform value = 3.2), and two broad excitation bands are peaking at ∼365 nm and ∼460 nm. The internal quantum yield of our synthesized K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors is up to 82.5%, which is higher than the commercial CaAlSiN{sub 3}:Eu{sup 2+} value, their excitation bands peak at ∼460 and ∼365 nm are consistent with those of Y{sub 3}A{sub 5}O{sub 12}:Ce{sup 3+} phosphors and their emission bands are more suitable for the sensitivity curve of photopic human vision. In addition, our synthesized phosphors show better thermal quenching properties. These findings show a large potential of the synthesized K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors for commercialization. - Highlights: • We synthesize the cross-shaped and cuboid-shaped K{sub 2}MnF{sub 5}·H{sub 2}O. • K{sub 2}MnF{sub 5}·H{sub 2}O is as a reactant for synthesizing K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors. • K{sub 2}TiF{sub 6}:Mn{sup 4+} will improve the current white LED with high CRI for indoor lighting.

  6. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  7. Metabolism of radiocaesium in red grouse

    International Nuclear Information System (INIS)

    Moss, R.; Horrill, A.D.

    1996-01-01

    Red grouse eat a natural diet mostly of heather, a dwarf shrub which accumulates radiocaesium. Captive grouse were fed a diet, comprising 60% heather contaminated with Chernobyl radiocaesium, containing about 1500 Bq kg -1 of radiocaesium. Intake and excretion of radiocaesium reached equilibrium after 20-23 days and its biological half-life was 10-11 days, with about 23% of the radiocaesium in the diet being absorbed by the bird. Transfer coefficients for both captives and wild birds were about 10 days kg -1 . Radiocaesium activity concentrations in wild birds reflected those in their diet and it is suggested that the sampling of birds shot for sport could form an efficient means of monitoring radiocaesium levels in heather-dominated uplands in the UK. (Author)

  8. Red Plague Control Plan (RPCP)

    Science.gov (United States)

    Cooke, Robert W.

    2010-01-01

    SCOPE: Prescribes the minimum requirements for the control of cuprous / cupric oxide corrosion (a.k.a. Red Plague) of silver-coated copper wire, cable, and harness assemblies. PURPOSE: Targeted for applications where exposure to assembly processes, environmental conditions, and contamination may promote the development of cuprous / cupric oxide corrosion (a.k.a. Red Plague) in silver-coated copper wire, cable, and harness assemblies. Does not exclude any alternate or contractor-proprietary documents or processes that meet or exceed the baseline of requirements established by this document. Use of alternate or contractor-proprietary documents or processes shall require review and prior approval of the procuring NASA activity.

  9. Red de senderos universitarios inteligentes

    OpenAIRE

    Ibarra-Berrocal, I.J.; Romero, J.; Pérez, J.

    2017-01-01

    Introducción: El Proyecto de red de senderos universitarios inteligentes UR se inspira en tres realidades, la red de senderos europeos ya existentes y su importancia en el fomento de la actividad deportiva y los hábitos saludables, la creciente importancia de la implantación, intercambio y difusión de políticas y planes de acción en materia de sostenibilidad ambiental en el ámbito universitario europeo, y por último, el uso y desarrollo de infraestructuras y aplicaciones, cada vez más impresc...

  10. Seguridad en una red universitaria

    OpenAIRE

    Bernal España, Juan Antonio

    2014-01-01

    Las redes de comunicaciones son muy importantes para las empresas. Se solicita una red de altas prestaciones que pueda llevar muchos sistemas sobre ella (cámaras de seguridad, video, voz, datos, SCADA, wifi). Ahora también necesitamos que la red sea segura. Cuando hablamos de seguridad no solo nos referimos a evitar ataques o virus, también hablamos de cómo puede afectarnos el incendio de un centro de proceso de datos. Basándonos en la ISO 27001:2013 daremos las principales pau...

  11. High efficiency electrophosphorescence from bilayer organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Minghang; Lin, Ming-Te; Shepherd, Nigel D [Department of Material Science and Engineering, University of North Texas, Denton, TX (United States); Chen, Wei-Hsuan; Oswald, Iain; Omary, Mohammad [Department of Chemeistry, University of North Texas, Denton, TX (United States)

    2011-09-14

    An electron mobility of 2.7 x 10{sup -5} cm{sup 2} V{sup -1} s{sup -1} was measured for the phosphorescent emitter bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)(Pt(ptp)2), which prompted its evaluation as both the emissive layer and electron transport layer in organic light emitting diodes with a simple bilayer structure. Power and external quantum efficiencies of 54.0 {+-} 0.2 lm W{sup -1} and 15.9% were obtained, which as far as we could ascertain are amongst the highest reported values for bilayer devices. We ascribe the high device efficiency to the combination of the high electron mobility, short excited-state lifetime (117 ns) and high luminescence quantum yield (60%) of the bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II). The colour temperature of the devices was 2855 K at 5 V, which places the emission in the 'warm' light spectral region.

  12. Nonlinear analysis of RED - a comparative study

    International Nuclear Information System (INIS)

    Jiang Kai; Wang Xiaofan; Xi Yugeng

    2004-01-01

    Random Early Detection (RED) is an active queue management (AQM) mechanism for routers on the Internet. In this paper, performance of RED and Adaptive RED are compared from the viewpoint of nonlinear dynamics. In particular, we reveal the relationship between the performance of the network and its nonlinear dynamical behavior. We measure the maximal Lyapunov exponent and Hurst parameter of the average queue length of RED and Adaptive RED, as well as the throughput and packet loss rate of the aggregate traffic on the bottleneck link. Our simulation scenarios include FTP flows and Web flows, one-way and two-way traffic. In most situations, Adaptive RED has smaller maximal Lyapunov exponents, lower Hurst parameters, higher throughput and lower packet loss rate than that of RED. This confirms that Adaptive RED has better performance than RED

  13. Nonlinear analysis of RED - a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kai; Wang Xiaofan E-mail: xfwang@sjtu.edu.cn; Xi Yugeng

    2004-09-01

    Random Early Detection (RED) is an active queue management (AQM) mechanism for routers on the Internet. In this paper, performance of RED and Adaptive RED are compared from the viewpoint of nonlinear dynamics. In particular, we reveal the relationship between the performance of the network and its nonlinear dynamical behavior. We measure the maximal Lyapunov exponent and Hurst parameter of the average queue length of RED and Adaptive RED, as well as the throughput and packet loss rate of the aggregate traffic on the bottleneck link. Our simulation scenarios include FTP flows and Web flows, one-way and two-way traffic. In most situations, Adaptive RED has smaller maximal Lyapunov exponents, lower Hurst parameters, higher throughput and lower packet loss rate than that of RED. This confirms that Adaptive RED has better performance than RED.

  14. Efficient Algorithms for a Family of Matroid Intersection Problems

    National Research Council Canada - National Science Library

    Gabow, Harold N; Tarjan, Robert E

    1982-01-01

    .... its efficiency is demonstrated by implementations on specific matroids. In all cases but one, the running time matches the best-known algorithm for the problem without the red element constraint...

  15. Germination of red alder seed.

    Science.gov (United States)

    M.A. Radwan; D.S. DeBell

    1981-01-01

    Red alder seeds were collected from six locations throughout the natural range of the species. Each seed lot was obtained from a single tree, and the seeds were used to determine germination with and without stratification treatment. Irrespective of treatment, germination varied significantly (P

  16. Red light running camera assessment.

    Science.gov (United States)

    2011-04-01

    In the 2004-2007 period, the Mission Street SE and 25th Street SE intersection in Salem, Oregon showed relatively few crashes attributable to red light running (RLR) but, since a high number of RLR violations were observed, the intersection was ident...

  17. Red Teaming: Past and Present

    Science.gov (United States)

    2008-05-22

    cultural and ethnocentric bias, and a focus on fully exploring alternatives. The purpose of this monograph is to examine historical and...Planning and Orders Production, introduces red team principles into the army problem solving method.14 Additionally, TRADOC staffed and funded the...organization, incorporating alternative perspectives in an attempt to eliminate cultural and ethnocentric bias, and a focus on fully exploring

  18. The red-blue conundrum

    DEFF Research Database (Denmark)

    Nørtoft, Mikkel Johansen

    2017-01-01

    Plants from the Rubiaceae family (Rubia, Galium, and Asperula) are often grouped together as madder because they have been used for dyeing red since at least the Bronze Age. The English plant name madder can be traced through the Germanic language all the way back to Proto-Indo-European (PIE), as...

  19. Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence.

    Science.gov (United States)

    Li, Huanhuan; Bi, Ran; Chen, Ting; Yuan, Kai; Chen, Runfeng; Tao, Ye; Zhang, Hongmei; Zheng, Chao; Huang, Wei

    2016-03-23

    The concept of limiting the triplet exciton formation to fundamentally alleviate triplet-involved quenching effects is introduced to construct host materials for highly efficient and stable blue phosphorescent organic light-emitting diodes (PhOLEDs). The low triplet exciton formation is realized by small triplet exciton formation fraction and rate with high binding energy and high reorganization energy of triplet exciton. Demonstrated in two analogue molecules in conventional donor-acceptor molecule structure for bipolar charge injection and transport with nearly the same frontier orbital energy levels and triplet excited energies, the new concept host material shows significantly suppressed triplet exciton formation in the host to avoid quenching effects, leading to much improved device efficiencies and stabilities. The low-voltage-driving blue PhOLED devices exhibit maximum efficiencies of 43.7 cd A(-1) for current efficiency, 32.7 lm W(-1) for power efficiency, and 20.7% for external quantum efficiency with low roll-off and remarkable relative quenching effect reduction ratio up to 41%. Our fundamental solution for preventing quenching effects of long-lived triplet excitons provides exciting opportunities for fabricating high-performance devices using the advanced host materials with intrinsically small triplet exciton formation cross section.

  20. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).

    Science.gov (United States)

    Kram, R; Dawson, T J

    1998-05-01

    As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.

  1. Study of neutral red interaction with DNA by resolution of rank deficient multi-way fluorescence data

    DEFF Research Database (Denmark)

    Moghaddam, Fatemeh Ghasemi; Kompany Zare, Mohsen; Gholami, Somayeh

    2012-01-01

    The interaction of neutral red (NR) as an efficient anticancer drug with DNA was studied under physiological pH condition. Three-way data array were recorded by measuring excitation-emission fluorescence during the titration of neutral red with DNA at constant pH. The acid-base equilibrium constant...

  2. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-01

    started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore

  3. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Duarte, Carlos M.; Irigoien, Xabier

    2016-01-01

    Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week

  4. Juggling Efficiency

    DEFF Research Database (Denmark)

    Andersen, Rikke Sand; Vedsted, Peter

    2015-01-01

    on institutional logics, we illustrate how a logic of efficiency organise and give shape to healthcare seeking practices as they manifest in local clinical settings. Overall, patient concerns are reconfigured to fit the local clinical setting and healthcare professionals and patients are required to juggle...... efficiency in order to deal with uncertainties and meet more complex or unpredictable needs. Lastly, building on the empirical case of cancer diagnostics, we discuss the implications of the pervasiveness of the logic of efficiency in the clinical setting and argue that provision of medical care in today......'s primary care settings requires careful balancing of increasing demands of efficiency, greater complexity of biomedical knowledge and consideration for individual patient needs....

  5. Red Assembly: the work remains

    Directory of Open Access Journals (Sweden)

    Leslie Witz

    Full Text Available This issue of Kronos is dedicated to Terry Flynn, assistant curator at the Ann Bryant Art Gallery, who was instrumental in the successful installing of 'Red Assembly' there in 2015. Friend, colleague, artist and inspiration. Hamba Kahle. The work that emerged from the encounter with Red, an art installation by Simon Gush and his collaborators, in the workshop 'Red Assembly', held in East London in August 2015, is assembled here in Kronos, the journal of southern African histories based at the University of the Western Cape, and previously in parallax, the cultural studies journal based at the University of Leeds published in May 2016. What is presented there and here is not simply more work, work that follows, or even additional works. Rather, it is the work that arises as a response to a question that structured our entire project: does Red, now also installed in these two journals, have the potential to call the discourse of history into question? This article responds to this question through several pairings: theft - gift; copy - rights; time - history; kronos - chronos. Here we identify a reversal in this installation of the gift into the commodity, and another with regard to conventional historical narratives which privilege the search for sources and origins. A difference between (the historian's search for origination and (the artist's originality becomes visible in a conversation between and over the historic and the artistic that does not simply try to rescue History by means of the work of art. It is in this sense that we invite the displacements, detours, and paths made possible through Simon Gush's Red, the 'Red Assembly' workshop and the work/gift of installation and parallaxing. To gesture beyond 'histories' is the provocation to which art is neither cause nor effect. Thinking with the work of art, that is, grasping thought in the working of art, has extended the sense of history's limit and the way the limit of history is

  6. Red alder: a state of knowledge.

    Science.gov (United States)

    Robert L. Deal; Constance A. Harrington

    2006-01-01

    In March 23-25, 2005, an international symposium on red alder was held at the University of Washington Center for Urban Horticulture in Seattle, WA. The symposium was entitled "Red alder: A State of Knowledge" and brought together regional experts to critically examine the economic, ecological and social values of red alder. The primary goal of the symposium...

  7. Red and green fluorescence from oral biofilms

    NARCIS (Netherlands)

    Volgenant, C.M.C.; Hoogenkamp, M.A.; Krom, B.P.; Janus, M.M.; ten Cate, J.M.; de Soet, J.J.; Crielaard, W.; van der Veen, M.H.

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis.

  8. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    Jandl, J.; Novosad, J.; Francova, J.; Prochazka, H.

    1989-01-01

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134 Cs+ 137 Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134 Cs+ 137 Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  9. Allergic reactions in red tattoos

    DEFF Research Database (Denmark)

    Hutton Carlsen, K; Køcks, M; Sepehri, M

    2016-01-01

    to be feasible for chemical analysis of red pigments in allergic reactions. Raman spectroscopy has a major potential for fingerprint screening of problematic tattoo pigments in situ in skin, ex vivo in skin biopsies and in tattoo ink stock products, thus, to eliminate unsafe ink products from markets.......AIM: The aim of this study was to assess the feasibility of Raman spectroscopy as a screening technique for chemical characterisation of tattoo pigments in pathologic reacting tattoos and tattoo ink stock products to depict unsafe pigments and metabolites of pigments. MATERIALS/METHODS: Twelve...... dermatome shave biopsies from allergic reactions in red tattoos were analysed with Raman spectroscopy (A 785-nm 300 mW diode laser). These were referenced to samples of 10 different standard tattoo ink stock products, three of these identified as the culprit inks used by the tattooist and thus by history...

  10. Supplementation of Red Betel Leaf (Piper Crocatum) in Dairy Cattle Feed on Fermentation Characteristics by in Vitro

    OpenAIRE

    Prayitno, Caribu Hadi; Suwarno, Suwarno; Sarwanto, Doso; Hidayatun, Dinar; Solihah, Ma'ratul

    2016-01-01

    The aim of this study was to assess the impact and efficiency of red betel leaf’s extract supplementation in the diet of dairy cattle on fermentation characteristics by in vitro.  The research method was experiment by using completely randomized design.  The treatments that were tested were R1: basal feed, R2:  R1 + 15 ppm of  red betel  leaf (Piper crocatum) extract, R3: R1 + 30 ppm of  red betel leaf (Piper crocatum) extract, R4: R1 + 45 ppm of red betel leaf (Piper crocatum) extract, R5: R...

  11. Red fox sightings in Rome

    Directory of Open Access Journals (Sweden)

    Bruno Cignini

    1997-12-01

    Full Text Available Abstract In this study preliminary data on the presence of Red fox in Rome (an area of 360 km² within the Rome ringroad. G.R.A. since 1980 are presented. The data were mapped on a UTM 1 sq. km. grid. Data were analysed and correlated, for each City district, with the prevalent environment (green, built-up, river-side areas and with the density of inhabitants.

  12. Resveratrol: Chemoprevention with red wine

    OpenAIRE

    Arısan, Elif Damla; Palavan-Ünsal, Narçin

    2007-01-01

    According to epidemiological studies, western diet has disadvantages because of cancer prevalence more than Mediterranean or Asia people who consume more vegetables and fruits. Resveratrol (trans-3,4,5-trihydroxystilbene) which is highly found in grapes, berries has received attention for its potential chemopreventive and antitumor effects in experimental systems. Because of high resveratrol content, researchers noted that red wine has multidimensional benefits for ...

  13. Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices

    International Nuclear Information System (INIS)

    Song, Hongjoo; Lee, Seonghoon

    2007-01-01

    We produced core-shell (CdSe)ZnSe quantum dots by direct colloidal chemical synthesis and the surface-passivation method-an overcoating of the core CdSe with a larger-bandgap material ZnSe. The (CdSe)ZnSe quantum dots(QDs) play the role of a colour conversion centre. We call these quantum dots nanophosphors. We fabricated red light emitting hybrid devices of (CdSe)ZnSe QDs and a near-UV GaN LED by combining red light emitting (CdSe)ZnSe quantum dots (as a colour conversion centre) with a near-UV(NUV) GaN LED chip (as an excitation source). A few good red phosphors have been known for UV excitation wavelengths, and red phosphors for UV excitation have been sought for a long time. Here we tested the possibility of using (CdSe)ZnSe QDs as red nanophosphors for UV excitation. The fabricated red light emitting hybrid device of (CdSe)ZnSe and a NUV GaN LED chip showed a good luminance. We demonstrated that the (CdSe)ZnSe quantum dots were promising red nanophosphors for NUV excitation and that a red LED made of QDs and a NUV excitation source was a highly efficient hybrid device

  14. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed

    Science.gov (United States)

    Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2014-07-01

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

  15. Sorption behavior of congo red on different plant leaves (abstract)

    International Nuclear Information System (INIS)

    Khan, M.I.; Mirza, M.L.; Zafar, S.; Khalid, N.

    2011-01-01

    Batch adsorption studies were carried out to evaluate the potential of different plant leaves (Bougainvillaea Glabra and Citrus Sinensis) for the removal of Congo red dye from aqueous solution by optimizing different parameters such as effect of shaking time, adsorbent dose, initial adsorbate concentration, temperature etc. The experimental data was subjected to different types of isotherm models such as Freundlich, Langmuir and Dubinin-Radushkevich. The maximum adsorption capacity was calculated and was comparable for both the leaves through Freundlich isotherm by using the optimized parameters of weight and time at room temperature. The sorption mean free energy from Dubinin-Radushkevich isotherm was also determined and compared. Pseudo-first and Pseudo-second order kinetics models were tested for the adsorption of Congo red on plant leaves powder. The experimental data fitted well for Pseudo-second order model. The uptake of Congo red was also studied with the variation of temperature. Thermodynamic parameters have been calculated. The results indicate that the plant leaves of Bougainvilia Glabra and Citrus Sinensis are efficient adsorbents for Congo red dye from aqueous solutions and can be used for wastewater management. (author)

  16. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Science.gov (United States)

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    phosphorescent molecule, we demonstrate an increase in the exciton diffusion length of a polymer from 4 to 9 nm. If researchers can identify suitable phosphorescent dopants, this method could be employed with other materials. The carrier transport from the junction to the contacts is markedly different for a bulk heterojunction cell than for planar junction cells. Unlike for bulk heterojunction cells, the open-circuit voltage of planar-junction cells is independent of the contact work functions, as a consequence of the balance of drift and diffusion currents in these systems. This understanding helps to guide the development of new materials (particularly donor materials) that can further boost the efficiency of single-junction cells to 10%. With multijunction architectures, we expect that efficiencies of 12-16% could be attained, at which point organic photovoltaic cells could become an important renewable energy source.

  17. Batch efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schwickerath, Ulrich; Silva, Ricardo; Uria, Christian, E-mail: Ulrich.Schwickerath@cern.c, E-mail: Ricardo.Silva@cern.c [CERN IT, 1211 Geneve 23 (Switzerland)

    2010-04-01

    A frequent source of concern for resource providers is the efficient use of computing resources in their centers. This has a direct impact on requests for new resources. There are two different but strongly correlated aspects to be considered: while users are mostly interested in a good turn-around time for their jobs, resource providers are mostly interested in a high and efficient usage of their available resources. Both things, the box usage and the efficiency of individual user jobs, need to be closely monitored so that the sources of the inefficiencies can be identified. At CERN, the Lemon monitoring system is used for both purposes. Examples of such sources are poorly written user code, inefficient access to mass storage systems, and dedication of resources to specific user groups. As a first step for improvements CERN has launched a project to develop a scheduler add-on that allows careful overloading of worker nodes that run idle jobs.

  18. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  19. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  20. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt; Narasimhan, Meena L.; Merzaban, Jasmeen; Bressan, Ray A.; Weller, Steve; Gehring, Christoph A

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.