WorldWideScience

Sample records for efficient oil-field produced

  1. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  2. Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M

    1968-08-01

    Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.

  3. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  4. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  5. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  6. Producing Biosurfactants from Purified Microorganisms Obtained from Oil-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarian

    2010-09-01

    Full Text Available Contamination of soil by crude oil can pose serious problems to ecosystems. Soil washing by solutions containing biosurfactants is one of the most efficient methods for the remediation of contaminated soil by crude oil because it removes not only the crude oil but also heavy metals. In this study, five soil samples were taken from fields exposed to oil compounds over the years in order to produce biosurfactants from microorganisms that were capable of degrading oil compounds. Sixteen such microorganisms were isolated. After cultivation, their emulsification strength was examined using E24 test. From among the experimental microorganisms, a gram-negative and rod-shape microorganism called A-12 showed the greatest value of the E24 test index (36%. For each liter of the culture medium containing 365 mg of microorganisms, 3 gr of the biosurfactant compound was produced and separated as dried powder. The purified biosurfactant was used in the soil washing process. Also, the insulated microorganisms were capable of degrading crude oil floating on wastewaters.

  7. Intrastate conflict in oil producing states: A threat to global oil supply?

    International Nuclear Information System (INIS)

    Toft, Peter

    2011-01-01

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: → Oil shortfall during intrastate conflict is not a given. → Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. → Examination of four characteristics of intrastate conflict in oil producing countries. → Marginal significance related to large producers and production shortfall.

  8. Intrastate conflict in oil producing states: A threat to global oil supply?

    Energy Technology Data Exchange (ETDEWEB)

    Toft, Peter, E-mail: peter.toft@ec.europa.eu [Institute for Energy, Joint Research Centre of the European Commission, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-11-15

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: > Oil shortfall during intrastate conflict is not a given. > Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. > Examination of four characteristics of intrastate conflict in oil producing countries. > Marginal significance related to large producers and production shortfall.

  9. Innovative technologies for managing oil field waste

    International Nuclear Information System (INIS)

    Veil, J.A.

    2003-01-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  10. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  11. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  12. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    Science.gov (United States)

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  13. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  14. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  15. A laboratory dispersant effectiveness test which reflects dispersant efficiency in the field

    International Nuclear Information System (INIS)

    Lunel, T.; Wood, P.

    1996-01-01

    Oil dispersion efficiencies of surfactants, from laboratory dispersion tests and field data were compared and calibrated. Data from an oil spill, where dispersants were used as a major part of the response, was analysed. The data was accumulated through the monitoring of the dispersant operation of the Sea Empress spill incident, in which Forties Blend oil was spilled at sea. This detailed data set was used to calibrate existing laboratory dispersant tests, and to devise a new International Dispersant Effectiveness Test. The objective was to create a comprehensive guide to decision making on whether and when to start a dispersant spraying operation. The dispersion efficiencies obtained from the laboratory dispersant tests were compared with field data. Flume tests produced the highest percentage of dispersed oil for all the dispersal tests. However, it was emphasised that the total percentage of oil dispersed should not be the only measure of dispersant effectiveness, since it does not distinguish between the contribution of natural and chemically enhanced dispersion. 9 refs., 1 tab., 9 figs

  16. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    Science.gov (United States)

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  17. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  18. Efficient way of importing crude oil from oil producing countries - A review on diversification policy of crude oil import

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dal Sok [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    Since the second oil crisis, the government has operated the import diversification support program to reduce the risk of crude oil import from Middle-East region and to raise the ability of dealing with the risk. This study tried to seek policy trends in future through reviewing the market environment related to the crude oil import diversification policy and the goal, instrument and effect of the policy. The supply and demand of crude oil and the price are influenced by market system in the world oil market and there are various types of crude oil trading available to both sellers and buyers. There is a probability that the suspension of supply in a certain area could be led to the price issue rather than the physical use of crude oil. In addition, the advantage of price with long-term contract of crude oil was abolished since the price of crude oil imported by term contract has been linked to spot prices. As a result, it is shown that the potential benefit from crude oil import diversification policy is reduced although political and social insecurity still exists in Middle-East region. Therefore, it is desirable to maintain the existing support program until the amount of stored oil reaches the optimum level and to help private enterprises determine the import considering economical efficiency and risk. (author). 36 refs., 5 figs., 23 tabs.

  19. Dalhart's only Permian field gets best oil well

    International Nuclear Information System (INIS)

    Land, R.

    1992-01-01

    This paper reports that activity is picking up in Proctor Ranch oil field in the northwestern Texas panhandle, the only Permian producing field in the lightly drilled Dalhart basin. During the last 2 1/2 months, the field has a new operator and a new producing well, the best of five drilled since discovery in 1990. Corlena Oil Co., Amarillo, acquired the field from McKinney Oil Co. in May and tested its first well in early July. The 1-64 Proctor, 18 miles west of Channing, pumped at rates as high as 178 bd of oil and 6 b/d of water from Permian Wolfcamp dolomite perforations at 4,016-29 ft. Corlena plans to drill another well south of the field soon. The lease requires that the next well be spudded by early November. The field appears to be combination structural-stratigraphic trap in which the dolomite pinches out against the Bravo Domes-Oldham nose to the west

  20. Efficiency of preliminary discharge of stratum water in Tuymazinskoe oil field

    Science.gov (United States)

    Almukhametova, E. M.; Akimov, A. V.; Kalinina, S. V.; Fatkullin, I. F.; Gizetdinov, I. A.

    2017-10-01

    The high water content of oil is a common occurrence for many Russian fields at the late stage of development. Due to the elimination of associated water in oil, the overload of field pipelines often takes place. Products are often collected by a one-pipe system, which means that the formation water is discharged using special plants PWDS. Research workers have made it clear that the complexity of production “BashNIPIneft” and OGPD “Tuymazaneft” on Tuimazy field was due to the fact that the collection of production, in most cases, uses a centralized system, which loses its advantages when there is a large content of water in the emulsions. Research has indicated that the reagents, used in the field, proved to be ineffective, as the oil of Devonian formations is heavily saturated with paraffins. But, ultimately, the most effective agents for the destruction of emulsions have been nonetheless identified. This paper describes the implementation of the system of track discharge of formation water, which is currently in use for many oil companies not only in Russia but also worldwide.

  1. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  2. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  3. Oil and gas-fuelled high-efficiency boilers still going strong; Oel und Gas - Brennwert setzt sich weiter durch

    Energy Technology Data Exchange (ETDEWEB)

    Donnerbauer, R.

    2007-07-15

    High-efficiency boilers are going strong. They are generally used in gas boilers and are now conquering the gas boiler field as well. Producers are advertising their high energy efficiency, as was reflected at the ISH 2007. Further, the option of bio-natural gas and bio-oil provides an image of high sustainability. (orig.)

  4. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  5. Geology and development of oil fields in Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The anthology is dedicated to the geology, geophysics, hydrodynamics, and development of oil fields in Western Siberia. The articles on geological, industrial-geophysical and theoretical mathematical studies make recommendations and suggest measures to improve procedures for calculating oil reserves, to increase development efficiency and raise oil output.

  6. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  7. Thermal properties and burning efficiency of crude oils and refined fuel oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Alva, Wilson Ulises Rojas; Mindykowski, Pierrick Anthony

    2017-01-01

    The thermal properties and burning efficiencies of fresh and weathered crude oils and a refined fuel oil were studied in order to improve the available input data for field ignition systems for the in-situ burning of crude oil on water. The time to ignition, surface temperature upon ignition, heat......-cooled holder for a cone calorimeter under incident heat fluxes of 0, 5, 10, 20, 30, 40 and 50 kW/m2. The results clearly showed that the weathered oils were the hardest to ignite, with increased ignition times and critical heat fluxes of 5-10 kW/m2. Evaporation and emulsification were shown...

  8. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  9. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  10. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  11. Yemen - the next big player? [as an oil producer

    International Nuclear Information System (INIS)

    Roberts, J.

    1993-01-01

    1993 should be the year in which United Yemen finally starts to fulfil its potential as a significant oil producer. In recession for three years, the country desperately needs the revenues and has spared no effort in its attempt to provide the right financial climate within which international oil companies can operate. But the last three years, in terms of revenues from actual oil production, have been disastrous, with production from the much-touted Shabwa fields persistently deferred and with the overall climate for the oil industry clouded by a border dispute with Saudi Arabia that prompted at least one western major, BP, to suspend operations for a while. (author)

  12. Oil Depletion and the Energy Efficiency of Oil Production: The Case of California

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-10-01

    Full Text Available This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI. I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from 6.5 to 3.5 (measured as megajoules (MJ delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining. Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut.

  13. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  14. Purification of produced waters in oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Niyazov, R S; Baikov, U M

    1970-01-01

    Experience has shown that a single step water-conditioning process cannot be used to prepare Bashkirian produced waters for underground injection. In the single-step process, the water is passed through horizontal or vertical settling basins to remove solids. This system does not work when suspended solids increase above 200 to 500 mg/liter. The required quality of injection water can be obtained by filtering the water through sand at flow velocities of 5 to 10 m/hr. The filter has a sand layer 0.6 to 1 m thick, composed of 0.35 to 1.0 mm sand. Water entering the filters should not contain more than 100 to 150 mg/liter of oil products. The filters are backwashed at velocity of 10 to 15 m/hr and rates of 12 to 16 liters/sec sq m for 10 to 15 min. Clean water is used in backwashing. When surfactant is added to the backwash water, the filter cycle lasts longer.

  15. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    Science.gov (United States)

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Consuming the world's energy: Update series. Energy efficiency trends in oil countries

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This issue of Energy Detente addresses energy efficiency in selected oil producing countries over time and compare the varying effects of important crude oil price changes. As economies around the world heighten their benefits from conservation and efficient use of energy, oil producers will be crucial examples not only for their own sakes, but for consuming countries dependent upon their exports. In this sense, their potential for leadership and vision seems greater than ever. Specifically, 6 oil-exporting countries are featured: Australia, Kuwait, Indonesia, Nigeria, the United Kingdom, and Venezuela. This issue also presents the following: (1) the ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of February 21, 1992; and (2) the ED Fuel Price/Tax Series for countries of the Eastern Hemisphere, February, 1992 edition

  17. Plans to revive oil fields in Venezuela on track

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports on the three operating units of Venezuela's state owned oil company Petroleos de Venezuela SA which will begin receiving bids Feb. 28 from companies interested in operating 55 inactive oil fields in nine producing areas of Venezuela. Francisco Pradas, Pdvsa executive in charge of the program, the the company expects 88 companies or combines of foreign and domestic private companies to participate in the bidding. The program, announced last year, aims to reactivate production in marginal oil fields. It will involve the first direct participation by private companies in Venezuela's oil production since nationalization in 1976

  18. Corruption and reduced oil production: An additional resource curse factor?

    International Nuclear Information System (INIS)

    Al-Kasim, Farouk; Søreide, Tina; Williams, Aled

    2013-01-01

    Prominent contributions to the resource curse literature suggest weak governance and corruption are important factors behind the wide welfare variations observed among oil producing countries. How weak governance and corruption influence revenue management and expenditure decisions, as well as the possible welfare benefits derived from oil, are broadly discussed. How they impact upon volumes of oil produced has, however, attracted little attention. This paper combines a review of the resource curse and oil production literatures with findings from qualitative interviews with oil sector experts to appreciate the feasibility of connections between corruption and oil production below its potential. We make particular reference to environments where regulatory institutions or political accountability are weak and focus primarily on producer government and oil firm relations. Drawing on insights from geology, political science and economics, we suggest suboptimal production solutions can impact volumes of oil actually produced and create constraints on long term revenues for oil producing countries. We argue greater disclosure of information on oil production efficiency on a field-by-field and country-by-country basis will assist further investigation of the relationships between corruption and volumes of oil produced. - Highlights: ► We combine a literature review with qualitative interviews with oil experts. ► We focus on feasible connections between corruption and oil production levels. ► We suggest suboptimal production solutions can impact volumes of oil produced. ► Corruption may reinforce suboptimal oil production. ► More data on oil production efficiency by field and country will assist research

  19. Venezuela slates second oil field revival round

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Venezuela will accept bids under a second round next year from private foreign and domestic companies for production contracts to operate marginal active as well as inactive oil fields. The first such round came earlier this year, involving about 55 other marginal, inactive fields. It resulted in two contractors signed with domestic and foreign companies. It represented the first time since nationalization of the petroleum industry in Venezuela in 1976 that private companies were allowed to produce oil in the country. A public bid tender was expected at presstime last week

  20. Oil and Gas field code master list 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  1. Oil and gas field code master list 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  2. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  3. Effect of paraffin saturation in a crude oil on operation of a field

    Energy Technology Data Exchange (ETDEWEB)

    Trebin, G F; Kapyrin, Yu V

    1968-11-01

    Both theoretical and practical studies in recent years have shown that in planning operational procedures for an oil field, the paraffin saturation of the crude oil must be considered. If the crude oil is essentially saturated with paraffin at reservoir condition, then paraffin deposition can occur around the well and in the well. Temperature in the reservoir can be lowered by 2 mechanisms: (1) by injection of water below reservoir temperature, and (2) by expansion of produced gas and consequent cooling of the produced oil. Possible application of these principles to several Soviet oil fields is discussed. In the Uzen field, a preliminary investigation is under way to test the feasibility of heating the injection water to prevent paraffin deposition in the reservoir.

  4. Computational Flow Dynamic Simulation of Micro Flow Field Characteristics Drainage Device Used in the Process of Oil-Water Separation

    Directory of Open Access Journals (Sweden)

    Guangya Jin

    2017-01-01

    Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  6. Flood offers new hope for marginal oil fields

    Energy Technology Data Exchange (ETDEWEB)

    1966-03-14

    The economics of producing a marginal Cardium sand oil field in west-central Alberta have been greatly improved by introduction of an inexpensive waterflood pressure maintenance and secondary recovery project. Canadian Gridoil Ltd. is now in full operation at its Willesden Green Cardium Unit No. 5. Of the 8.1 million bbl estimated original oil in place, only 9% would have been recoverable by primary depletion. The waterflood is calculated to add 13%, for ultimate recovery of 22% or 1.8 million bbl. This waterflood installation is considered a prototype of economical and profitable pressure maintenance systems which can be built to advantage in marginal oil fields in Alberta. Ultimate returns in the form of increased oil production and more than doubled oil recovery will be immensely greater than the capital investment of $195,000 in the facilities. Assuming GOR control and full well allowables, the entire capital cost should be paid out within 3 years. Life of the field is estimated at not less than 25 years.

  7. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  8. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  9. Producers and oil markets

    International Nuclear Information System (INIS)

    Greaves, W.

    1993-01-01

    This article attempts an assessment of the potential use of futures by the Middle East oil producers. It focuses on Saudi Arabia since the sheer size of Saudi Arabian sales poses problems, but the basic issues discussed are similar for the other Middle East producers. (Author)

  10. Field experiments with subsurface releases of oil and and dyed water

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Strom, T.

    1998-01-01

    A field experiment with a subsurface release of oil and air was carried out in June 1996 close to the Frigg Field in the North Sea area. One of the purposes of this sea trial was to increase the knowledge concerning the behaviour of the oil and gas during a subsurface blowout. This was done by releasing oil and air at 106 meters depth with a realistic gas oil ratio (GOR=67) and release velocity of the oil. In addition to the oil release, several releases with dyed water and gas (GOR=7 - 65) were performed. Important and unique data were collected during these subsurface releases. In particular, the experiments with the dyed water releases combined with air turned out to be an efficient way of obtaining field data for the behaviour of subsurface plumes. The main conclusions from analysis for the data collected are: the field methodology used to study blowout releases in the field appears to be appropriate. The use of dyed water to determine the performance of the subsurface plume proved out to be an efficient way to obtain reliable and useful data. The behaviour of the subsurface plume is very sensitive to gas flow rates. For low gas flow rates, the plume did not reach the sea surface at all due to the presence of stratification in the ambient water. Some discrepancies were found between a numerical model for subsurface releases and field results. These discrepancies are pointed out, and recommendations for possible model improvements are given. (author)

  11. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real

  12. Microbiological techniques for paraffin reduction in producing oil wells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheimer, C. H.; Hiebert, F. K.

    1989-04-01

    Alpha Environmental has completed an eighteen month field oriented, cooperative research program with the US Department of Energy to demonstrate a new economically viable process using petroleum degrading microorganisms, a biocatalyst, formation water and inorganic nutrients to recover residual oil from reservoirs. Alpha's mixed community of microorganisms decomposes crude oil to produce detergents, CO/sub 2/, and new cells, thus mechanically and chemically releasing oil from reservoir pores. The naturally-occurring bacteria utilized in this project were previously selected by screening and isolating microorganisms from soils contaminated with crude oil and petroleum products. The activity and level of salt tolerance (to 20% salinity) of the bacteria is enhanced by a biocatalyst, previously developed by Alpha Environmental. Field evidence suggests that the biocatalyst provides catalytic oxygen to the microorganisms in the reservoir, which augments low levels of in-situ molecular oxygen. 25 refs., 10 figs., 6 tabs.

  13. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    Science.gov (United States)

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other

  14. User community vs. producer innovation development efficiency

    DEFF Research Database (Denmark)

    Hienerth, Christoph; von Hippel, Eric; Jensen, Morten Berg

    2014-01-01

    In this paper we report upon a first empirical exploration of the relative efficiency of innovation development by product users vs. product producers. In a study of over 50 years of product innovation in the whitewater kayaking field, we find users in aggregate were approximately 3× more efficie...

  15. Dynamic characterization of oil fields, complex stratigraphically using genetic algorithms

    International Nuclear Information System (INIS)

    Gonzalez, Santiago; Hidrobo, Eduardo A

    2004-01-01

    A novel methodology is presented in this paper for the characterization of highly heterogeneous oil fields by integration of the oil fields dynamic information to the static updated model. The objective of the oil field's characterization process is to build an oil field model, as realistic as possible, through the incorporation of all the available information. The classical approach consists in producing a model based in the oil field's static information, having as the process final stage the validation model with the dynamic information available. It is important to clarify that the term validation implies a punctual process by nature, generally intended to secure the required coherence between productive zones and petrophysical properties. The objective of the proposed methodology is to enhance the prediction capacity of the oil field's model by previously integrating, parameters inherent to the oil field's fluid dynamics by a process of dynamic data inversion through an optimization procedure based on evolutionary computation. The proposed methodology relies on the construction of the oil field's high-resolution static model, escalated by means of hybrid techniques while aiming to preserve the oil field's heterogeneity. Afterwards, using an analytic simulator as reference, the scaled model is methodically modified by means of an optimization process that uses genetic algorithms and production data as conditional information. The process's final product is a model that observes the static and dynamic conditions of the oil field with the capacity to minimize the economic impact that generates production historical adjustments to the simulation tasks. This final model features some petrophysical properties (porosity, permeability and water saturation), as modified to achieve a better adjustment of the simulated production's history versus the real one history matching. Additionally, the process involves a slight modification of relative permeability, which has

  16. Modelling the oil producers: Capturing oil industry knowledge in a behavioural simulation model

    International Nuclear Information System (INIS)

    Morecroft, J.D.W.; Van der Heijden, K.A.J.M.

    1992-01-01

    A group of senior managers and planners from a major oil company met to discuss the changing structure of the oil industry with the purpose of improving group understanding of oil market behaviour for use in global scenarios. This broad ranging discussion led to a system dynamics simulation model of the oil producers. The model produced new insights into the power and stability of OPEC (the major oil producers' organization), the dynamic of oil prices, and the investment opportunities of non-OPEC producers. The paper traces the model development process, starting from group discussions and leading to working simulation models. Particular attention is paid to the methods used to capture team knowledge and to ensure that the computer models reflected opinions and ideas from the meetings. The paper describes how flip-chart diagrams were used to collect ideas about the logic of the principal producers' production decisions. A sub-group of the project team developed and tested an algebraic model. The paper shows partial model simulations used to build confidence and a sense of ownership in the algebraic formulations. Further simulations show how the full model can stimulate thinking about producers' behaviour and oil prices. The paper concludes with comments on the model building process. 11 figs., 37 refs

  17. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  18. Modern efficient methods of steel vertical oil tanks clean-up

    Directory of Open Access Journals (Sweden)

    Nekrasov Vladimir

    2016-01-01

    Full Text Available The legislative base of the Russian Federation operating in the field of operation of tanks and tank parks is considered, and consecutive stages of technological process of cleaning of vertical steel tanks from oil ground deposits are presented. In work shortcomings of existing most widespread electromechanical mixers are described when using a hydraulic method of removal and prevention of formation of ground deposits in tanks with oil and oil products. For the purpose of increase of efficiency, reliability and decrease in power consumption of washout of oil ground deposits in tanks the new design of system of funneled washout and prevention of formation of deposits is offered.

  19. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  20. Determining Factors for Economic Efficiency in the Organic Olive Oil Sector

    Directory of Open Access Journals (Sweden)

    Enrique Bernal Jurado

    2017-05-01

    Full Text Available Spain looms large worldwide in organic olive oil production. However, this productive potential contrasts with the low internal consumption of the product. This situation makes Spain a world leader in its export. Companies in this sector have clear deficiencies, which must be corrected to ensure their survival over time. In this context, the aim of this study is to analyse the level of efficiency, in economic terms, of organic olive oil producers and to identify the factors explaining the best organizational practices. To do so, Data Envelopment Analysis (DEA and Qualitative Comparative Analysis (QCA have been used. The results reveal low levels of economic efficiency and the variables determining said efficiency.

  1. Three Essays on National Oil Company Efficiency, Energy Demand and Transportation

    Science.gov (United States)

    Eller, Stacy L.

    This dissertation is composed of three separate essays in the field of energy economics. In the first paper, both data envelopment analysis and stochastic production frontier estimation are employed to provide empirical evidence on the revenue efficiency of national oil companies (NOCs) and private international oil companies (IOCs). Using a panel of 80 oil producing firms, the analysis suggests that NOCs are generally less efficient at generating revenue from a given resource base than IOCs, with some exceptions. Due to differing firm objectives, however, structural and institutional features may help explain much of the inefficiency. The second paper analyzes the relationship between economic development and the demand for energy. Energy consumption is modeled using panel data from 1990 to 2004 for 50 countries spanning all levels of development. We find the relationship between energy consumption and economic development corresponds to the structure of aggregate output and the nature of derived demand for electricity and direct-use fuels in each sector. Notably, the evidence of non-constant income elasticity of demand is much greater for electricity demand than for direct-use fuel consumption. In addition, we show that during periods of rapid economic development, one in which the short-term growth rate exceeds the long-run average, an increase in aggregate output is met by less energy-efficient capital. This is a result of capital being fixed in the short-term. As additional, more efficient capital stock is added to the production process, the short-term increase in energy intensity will diminish. In the third essay, we develop a system of equations to estimate a model of motor vehicle fuel consumption, vehicle miles traveled and implied fuel efficiency for the 67 counties of the State of Florida from 2001 to 2008. This procedure allows us to decompose the factors of fuel demand into elasticities of vehicle driving demand and fuel efficiency. Particular

  2. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  3. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water.

    Science.gov (United States)

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O

    2004-07-01

    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system.

  4. Use of remote sensing and ground control in monitoring oil fields in Alabama

    Energy Technology Data Exchange (ETDEWEB)

    La Moreaux, P E; Muzikar, R [ed.

    1978-01-01

    Present and future water pollution problems resulting from oil field operations in Alabama are analyzed. An outline of a program of data collection and interpretation necessary to determine and evaluate solutions to these problems is presented. A method of adequate monitoring of the oil and gas fields in Alabama to protect against pollution of its valuable surface and groundwater supplies is described. Samples of brine are continuously collected and analyzed from sources representing all water producing horizons in the oil fields. A network of observation wells has been established in oil fields to periodically determine changes in the chemical quality of groundwaters. Water samples from wells adjacent to all major saltwater evaporation pits have been collected and analyzed for possible changes in chemical quality. Discharge measurements are made on streams adjacent to all oil fields. Periodic aerial photographs are being made of each field. Preliminary administrative reports are regularly prepared on each problem in the oil fields and remedial or disciplinary actions are taken by the Oil and Gas Board.

  5. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  6. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  7. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  8. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  9. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mirnezami

    2015-07-01

    Full Text Available The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhouse gas emissions—for example, the Kyoto 1998 agreement—seems to have had no effect on oil consumption in oil-producing countries.

  10. The feasibility of the gas micro-turbines application in the heavy oil produced from onshore mature fields; A viabilidade do uso de micro-turbinas a gas em campos maduros onshore de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    This article presents a synthesis of the fast advances in micro co-generation technology and their possible applications in fields of petroleum. The subject is focus of a research of the authors and the preliminary results indicate a potential of contributing for the optimization of mature fields of heavy oil. In general, this technology involves smaller environmental impact and produces better efficiency in those uses that require heat and electricity. An application interesting it is the use of gas micro-turbines, operating in co-generation in a (heavy) oil fields onshore, where it is possible increment of the production to the if it uses the steam injection as method of secondary recovery. The idea of using the heat to improve the productivity of the wells and to increase the recovery factor is almost as old as the industry of the petroleum. The technique consists of heating up the oil to reduce his/her viscosity and to facilitate the drainage. Nowadays, the use of the steam injection is usual in fields of heavy oils (degree API <20), high viscosity (> 500 cp), reservoirs no deep (<1300 m) and net pay in the interval from 5 to 50 m. The innovation, here, is the use of a group of micro-turbines moved to gas (no rare, burned in the flare) to generate the steam 'in loco' (near to the well) and electricity for own consumption or even commercialization. This article presents a case study of the economical potential the use of four gas micro-turbines, operating in micro cogeneration, in a field of 6,6 km{sup 2} in the Brazilian Northeast. (author)

  11. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  12. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  13. Ready or Not: Namibia As a Potentially Successful Oil Producer

    Directory of Open Access Journals (Sweden)

    Andrzej Polus

    2015-01-01

    Full Text Available The primary objective of this paper is to assess whether Namibia is ready to become an oil producer. The geological estimates suggest that the country may possess the equivalent of as many as 11 billion barrels of crude oil. If the numbers are correct, Namibia would be sitting on the second-largest oil reserves in sub-Saharan Africa, and exploitation could start as soon as 2017. This clearly raises the question of whether Namibia is next in line to become a victim of the notorious “resource curse.” On the basis of critical discourse analysis and findings from field research, the authors have selected six dimensions of the resource curse and contextualised them within the spheres of Namibian politics and economy. While Namibia still faces a number of important challenges, our findings offer little evidence that the oil will have particularly disruptive effects.

  14. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Grigg, Reid B.

    2002-01-01

    A three-year contract, DOE Contract No. DE-FG26-01BC15364 ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering January 1, 2002 through June 30, 2002 that covers the second and third fiscal quarters of the project's first year. Paper SPE 75178, ''Cost Reduction and Injectivity Improvements for CO 2 Foams for Mobility Control,'' has been presented and included in the proceedings of the SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, producer survey on injectivity, and surfactant adsorption on quarried and reservoir core

  15. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction

    DEFF Research Database (Denmark)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gomez Muñoz, Beatriz

    2016-01-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Rece...

  16. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  17. Non-Invasive Rapid Harvest Time Determination of Oil-Producing Microalgae Cultivations for Biodiesel Production by Using Chlorophyll Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yaqin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2015-10-05

    For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, and C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  18. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  19. Improving the clean-up efficiency of field soil contaminated with diesel oil by the application of stabilizers.

    Science.gov (United States)

    Chang, Yoon-Young; Roh, Hoon; Yang, Jae-Kyu

    2013-01-01

    Fenton-like oxidation in the presence of stabilizers has been applied in batch and column reactors to treat field soils contaminated with diesel oil. Citrates, ethylene diamine tetra-acetic acid (EDTA), ethylene diamine disuccinic acid (EDDS) and phosphates were assessed as stabilizers. The stability of hydrogen peroxide in the soil was evaluated by varying the concentration of each stabilizer and hydrogen peroxide. In a batch test, the residual concentration of hydrogen peroxide was shown to be directly related to the concentration of these stabilizers. Citrate showed the greatest stabilizing effect of the four stabilizers for hydrogen peroxide and 0.05 M was selected as the optimum dosage. In order to investigate the effect of stabilizer on the efficiency of removal of total petroleum hydrocarbons (TPH) in a column reactor, 30 mL of each stabilizer solution at pH 3 and containing 15% hydrogen peroxide was injected. The batch result confirmed that the greatest TPH removal took place in the presence of citrate in a column reactor. The order of TPH removal in the presence of stabilizers was: citrate > H3PO4 > EDDS > EDTA. TPH removal was affected by the concentration of stabilizer and the initial concentration of TPH. When 0.05 M citrate solution containing 15% hydrogen peroxide was applied to four field soils and an artificially contaminated soil, similar or better TPH removal was observed in the field soils compared to the artificially contaminated soil. This result suggests that Fenton-like oxidation with stabilizer can be effective in restoring field soils contaminated with diesel oil.

  20. Reserve growth of the world's giant oil fields

    Science.gov (United States)

    Klett, T.R.; Schmoker, J.W.

    2005-01-01

    Analysis of estimated total recoverable oil volume (field size) of 186 well-known giant oil fields of the world (>0.5 billion bbl of oil, discovered prior to 1981), exclusive of the United States and Canada, demonstrates general increases in field sizes through time. Field sizes were analyzed as a group and within subgroups of the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC countries. From 1981 through 1996, the estimated volume of oil in the 186 fields for which adequate data were available increased from 617 billion to 777 billion bbl of oil (26%). Processes other than new field discoveries added an estimated 160 billion bbl of oil to known reserves in this subset of the world's oil fields. Although methods for estimating field sizes vary among countries, estimated sizes of the giant oil fields of the world increased, probably for many of the same reasons that estimated sizes of oil fields in the United States increased over the same time period. Estimated volumes in OPEC fields increased from a total of 550 billion to 668 billion bbl of oil and volumes in non-OPEC fields increased from 67 billion to 109 billion bbl of oil. In terms of percent change, non-OPEC field sizes increased more than OPEC field sizes (63% versus 22%). The changes in estimated total recoverable oil volumes that occurred within three 5-year increments between 1981 and 1996 were all positive. Between 1981 and 1986, the increase in estimated total recoverable oil volume within the 186 giant oil fields was 11 billion bbl of oil; between 1986 and 1991, the increase was 120 billion bbl of oil; and between 1991 and 1996, the increase was 29 billion bbl of oil. Fields in both OPEC and non-OPEC countries followed trends of substantial reserve growth.

  1. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  2. Oil and Gas Field Locations, Geographic NAD83, LDNR (2007) [oil_gas_fields_LDNR_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS layer consists of oil and gas field approximate center point locations (approximately 1,800). Oil and gas fields not assigned a center point by the DNR...

  3. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    Science.gov (United States)

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  4. Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for bio-diesel production by using Chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Yaqin eQiao

    2015-10-01

    Full Text Available For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II (PSII, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  5. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    OpenAIRE

    Seyed Reza Mirnezami

    2015-01-01

    The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhou...

  6. Field Engineers' Scheduling at Oil Rigs: a Case Study

    Directory of Open Access Journals (Sweden)

    Y. S. Usmani

    2012-02-01

    Full Text Available Oil exploration and production operations face a number of challenges. Professional planners have to design solutions for various practical problems or issues. However, the time consumed is often very extensive because of the large number of possible solutions. Further, the matter of choosing the best solution remains. The present paper investigates a problem related to leading companies in the energy and chemical manufacturing sector of the oil and gas industry. Each company’s field engineers are expensive and valuable assets. Therefore, an optimized roster is rather important. In the present paper, the objective is to design a field engineers’ schedule which would be both feasible and satisfying towards the various demands of rigs, with minimum operational cost to the company. An efficient and quick optimization technique is presented to schedule the shifts of field engineers.

  7. Study notes separability of oil company profitability, efficiency

    International Nuclear Information System (INIS)

    Thompson, R.G.

    1993-01-01

    In recent years, the large publicly traded oil companies have been restructuring and downsizing to improve efficiency. Newly developed decision theory forces one to question the widely held singular focus on efficiency because improving efficiency will not necessarily improve profits. This is especially likely in the oil industry, where price volatility is the norm. Because its products are so basic, its price volatility typically ripples widely throughout the economy. In light of this, efficiency and profitability in the oil industry require separate treatment. More specifically, the efficient are not necessarily the most profitable; conversely, the most profitable are not necessarily the most efficient. Such a decoupling of efficiency and profitability requires a totally new look at business strategy. In the face of highly variable prices, firms can no longer depend on the long-accepted duality norm between profits and efficiency

  8. Water control for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.C.; Mody, B.; Pace, J.

    1981-11-01

    Gains in recovery efficiency in W. Texas oil and gas fields have been realized as a result of applying 4 different chemical processes, either singly or in combination. Each of the 4 chemical processes has been tailored to meet specific reservoir requirements. Complete plugging of high flow capacity channels can be accomplished, and the high water production portion of a producing zone can be sealed by injection of gel-forming chemicals into the matrix. Both floodwater diversion and water-oil mobility ratio improvement can be attained by in situ polymerization of a one-stage polymer bank in the reservoir. In producing wells, the water-oil production ratio can be favorably changed by treating certain formulations with a nonplugging polymer which tends to restrict water flow but not oil. One feature which each of the 4 processes has in common is the ability to invade deeply into matrix which may produce long lasting results. A description of each process is presented with various placement techniques used to obtain optimum results. Data from fields which have benefited from these treatments are presented. The work describes what may be expected with each of these proven processes based on field results.

  9. Investigating oiled birds from oil field waste pits

    International Nuclear Information System (INIS)

    Gregory, D.G.; Edwards, W.C.

    1991-01-01

    Procedures and results of investigations concerning the oiling of inland raptors, migratory water-fowl and other birds are presented. Freon washings from the oiled birds and oil from the pits were analyzed by gas chromatography. In most instances the source of the oil could be established by chromatographic procedures. The numbers of birds involved (including many on the endangered species list) suggested the need for netting or closing oil field waste pits and mud disposal pits. Maintaining a proper chain of custody was important

  10. Reserve Growth in Oil Fields of West Siberian Basin, Russia

    Science.gov (United States)

    Verma, Mahendra K.; Ulmishek, Gregory F.

    2006-01-01

    Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which

  11. Canadian Occidental joins Hunt as Yemen oil producer

    International Nuclear Information System (INIS)

    Gurney, J.

    1994-01-01

    On 23 September 1993, the Canadian Occidental Petroleum Company initiated the export of 120,000 b/d (barrels a day) of low sulphur, medium gravity crude oil from its Masila Block concession in Yemen. The oil is transported from Masila via a pipeline built by CanOxy and its partners to a new terminal at Ash Shihr, near Mukalla, in the Gulf of Aden. CanOxy is the third operator oil company to produce oil commercially in Yemen. The first, the Hunt Oil Company, began production in December 1987 and its output now totals about 187,000 b/d. The second, Nimir Petroleum, a Saudi venture which took over the facilities developed in the 1980s by two Soviet companies, is currently producing about 10,000 b/d and expects to increase its output to 25,000 b/d during this year. (Author)

  12. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    data that contains information on the properties of a sample. We can analyze the data acquisition from the detectors and get the information on size, shape, etc. This is why we choose SANS as our research tool. The world's top energy problems are security concerns, climate concerns and environmental concerns. So far, oil (37%) is still the No.1 fuel in world energy consumption (Oil 37%, Coal 25%, Bio-fuels 0.2%, Gas 23%, Nuclear 6%, Biomass 4%, Hydro 3%, Solar heat 0.5%, Wind 0.3%, Geothermal 0.2% and Solar photovoltaic 0.04%). Even more and more alternative energy: bio-fuels, nuclear and solar energy will be used in the future, but nuclear energy has a major safety issue after the Japanese Fukushima I nuclear accidents, and other energies contribute only a small percent. Thus, it is very important to improve the efficiency and reduce the population of petroleum products. There is probably one thing that we can all agree on: the world's energy reserves are not unlimited. Even though it is limited, only 30% of the oil reserves is conventional oil, so in order to produce, transport, and refine of heavy crude oil without wasting huge amounts of energy, we need to reduce the viscosity without using high temperature stream heating or diluent; As more and more off-shore oil is exploited at that we need reduce the viscosity without increasing temperature. The whole petroleum consumed in U.S. in 2009 was 18.7 million barrels per day and 35% of all the energy we consumed. Diesel is one of the very important fossil fuel which is about 20% of petroleum consumed. Most of the world's oils are non-conventional, 15 % of heavy oil, 25 % of extra heavy oil, 30 % of the oil sands and bitumen, and the conventional oil reserves is only 30%. The oil sand is closely related to the heavy crude oil, the main difference being that oil sands generally do not flow at all. For efficient energy production and conservation, how to lower the liquated fuel and crude oil viscosity is a very important

  13. Feasibility to apply the steam assisted gravity drainage (SAGD) technique in the country's heavy crude-oil fields

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Orjuela, Jaime

    2004-01-01

    The steam assisted gravity drainage (SAGD) processes are one of the most efficient and profitable technologies for the production of heavy crude oils and oil sands. These processes involve the drilling of a couple of parallel horizontal wells, separated by a vertical distance and located near the oil field base. The upper well is used to continuously inject steam into the zone of interest, while the lower well collects all resulting fluids (oil, condensate and formation water) and takes them to the surface (Butler, 1994). This technology has been successfully implemented in countries such as Canada, Venezuela and United States, reaching recovery factors in excess of 50%. This article provides an overview of the technique's operation mechanism and the process most relevant characteristics, as well as the various categories this technology is divided into, including all its advantages and limitations. Furthermore, the article sets the oil field's minimal conditions under which the SAGD process is efficient, which conditions, as integrated to a series of mathematical models, allow to make forecasts on production, thermal efficiency (ODR) and oil to be recovered, as long as it is feasible (from a technical point of view) to apply this technique to a defined oil field. The information and concepts compiled during this research prompted the development of software, which may be used as an information, analysis and interpretation tool to predict and quantify this technology's performance. Based on the article, preliminary studies were started for the country's heavy crude-oil fields, identifying which provide the minimum conditions for the successful development of a pilot project

  14. A Study on the efficient alleviation of domestic oil price at international oil crisis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ku [Korea Energy Economics Institute, Euiwang (Korea)

    1999-01-01

    For alleviating domestic oil price when the international oil crisis happens, the government has been reacted directly such as using stored oil or alleviation fund. Although the release of stored oil works for short-term depending on the type of crisis, concerning that most of oil crisis had been resulted in temporary supply reduction rather than long-term supply suspension, utilizing the domestic alleviation fund is regarded more economical than storing oil. However, it has been suggested to compare efficiencies of alleviation fund and a futures market regarding the perspectives that using alleviation fund is more inefficient than utilizing a futures market. Moreover, the direct management by government is less efficient than indirect management. As an efficient way to alleviate domestic oil price at international oil crisis, this study presents an effective utilization of trading in futures of crude oil. There is a high probability of occurrence of this kind of oil crisis by judging from the world political situation and the trend of oil market. In such a case, the government as a crude oil importer should minimize the stored oil and utilize a futures market effectively. The subject of alleviating oil price by trading in futures is an oil supplier, such as oil refining companies or oil importers not the government as a prerequisite. Furthermore, the government should approve to include appropriate cost for preparing oil price alleviation in the oil price and it is required that such a government policy should be consistent. (author). 41 refs., 3 figs., 15 Tabs.

  15. Research needs to maximize economic producibility of the domestic oil resource

    International Nuclear Information System (INIS)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L.; Dauben, D.L.

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K ampersand A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs

  16. Research needs to maximize economic producibility of the domestic oil resource

    Energy Technology Data Exchange (ETDEWEB)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Dauben, D.L. (K and A Energy Consultants, Inc., Tulsa, OK (United States))

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  17. Change in the flow curves of non-Newtonian oils due to a magnetic field

    International Nuclear Information System (INIS)

    Veliev, F.G.

    1979-01-01

    The effect of a variable magnetic field on the rheological properties of non-Newtonian fluids is evaluated. Bituminous pitch oils were analyzed by recording the flow curves Q.Q(Δp) - the dependence of the volumetric flow rate on the pressure gradient - with and without a field. The results obtained indicate that variable magnetic fields can produce obvious changes in the rheological properties of bituminous pitch oils, although they are nonmagnetoactive and practically electrically nonconducting

  18. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    OpenAIRE

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil) were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis ...

  19. A changing world. A changing industry. Session cost efficient solutions for field development. A step forward (Paper G1)

    International Nuclear Information System (INIS)

    Taranger, K.P.

    1994-01-01

    Oil companies in Norway and the oil related industry are presently in the middle of a one year long, and quite substantial, efficiency-process named NORSOK. The NORSOK has the objective of finding more cost- and time-efficient ways of exploiting oil and gas from the Norwegian Continental Shelf. The paper discusses the industrial participation in the NORSOK working groups. It presents the changes to be foreseen as a result of experience gained, through previous projects as well as efficiency processes, and which will be applied to the planning and execution of two current field development projects, namely the Vigdis field in the North Sea and the Midgard field in the Haltenbanken area

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  1. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    Science.gov (United States)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  2. Design and development of a high efficiency tank for crude oil dehydration (i)

    International Nuclear Information System (INIS)

    Forero, Jorge Enrique; Ortiz Olga Patricia; Narino, Fredy Abelardo

    2008-01-01

    This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the ECOPETROL S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular. This system does not exhibit the typical limitations shown by treatment traditional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of ≤ 1% to very high levels ≥ 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used

  3. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  4. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  5. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  6. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Development of the new field of usage of Orinoco oil for fuel of gas turbine combined power generation; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Gasu tabin fukugo hatsuden nenryo muke Orinoko oil no shin yoto kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of spreading the usage of Orinoco crude oil which is suffering from sluggishness in the export and heightening the economical efficiency in Venezuela, research cooperation was made for a project for reduction of the power cost and environmental loads in Japan by producing the advanced gas turbine use fuel oil from Orinoco oil and exporting it to Japan. In this project, conducted were the technical verification that the gas turbine use fuel oil (GTF) can be produced from Orinoco oil and the economical verification based on the result thereof. As a result of the technical verification, it was confirmed that from the Orinoco crude oil which is heavy, high in sulfur and high in heavy metal concentration, a refined oil satisfying the following properties of the advanced gas turbine fuel oil could be trial-produced using the distilling unit, SDA unit, desulfurizer and de-metaling unit: vanadium concentration: 0.5 wtppm or below; sodium + potassium concentration: 1.0 wtppm or below; viscosity: 20 cSt or below at 135 degrees C. Further, from the economical verification, the good result was obtained that the price was lower than the LNG price and the domestic price of A heavy oil/C heavy oil. (NEDO)

  7. Earth's field NMR detection of oil under arctic ice-water suppression

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

  8. Effective use of complex secondary recovery methods in operation of small oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, M R; Akulov, V P; Khutorov, A M

    1966-11-01

    The North Sokhs Field, located in the southern part of the Fergen depression, is composed of many horizons and has an anticlinal structure. The eighth horizon has highest oil saturation, with an average porosity of 17% and permeability of 80 md. Poor oil recovery was initially obtained from this horizon because the basic producing mechanism was solution gas drive. In 1961, when reservoir pressure was 94 kg/cmU2D and gas factor was 700-800mU3D/ton, pressure maintenance was initiated by injection of gas to the structure. Gas injection improved oil recovery considerably; however, high gas-oil ratios appeared in several wells. Next, peripheral water injection was started, and continued simultaneously with gas injection. The simultaneous injection of gas and water almost doubled oil production. Because of continued, high produced gas/oil ratios, gas injection was eventually discontinued, while water injection was continued. Water injection is building up reservoir pressure and improving oil recovery.

  9. Mixed Field Modification of Thermally Cured Castor Oil Based Polyurethanes

    International Nuclear Information System (INIS)

    Mortley, A.

    2006-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanatee (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of accumulated doses (0.0-3.0 MGy) produced by the mixed ionizing field of the SLOWPOKE-2 research reactor. The physico-mechanical properties of COPU, unirradiated and irradiated, were characterized by mechanical tests. Increased bond formation resulting from radiation-induced crosslinking was confirmed by favorable increases in mechanical properties and by solid-state 13 C -NMR and FTIR spectra

  10. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  11. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields

    International Nuclear Information System (INIS)

    Lazar, I.; Dobrota, S.; Voicu, A.; Stefanescu, M.; Sandulescu, L.; Petrisor, I.G.

    1999-01-01

    During oil production and processing activities, significant quantities of oily sludge are produced. The sludge represents not only an environmental pollution source but also occupies big spaces in storage tanks. Romania, an experienced European oil-producing and processing country, is faced with environmental problems generated by oily sludge accumulations. Many such accumulations are to be submitted to bioremediation processes based on the hydrocarbon degradation activity of naturally occurring, selectively isolated bacteria. In this paper the results concerning a laboratory screening of several natural bacterial consortia and laboratory tests to establish the performance in degradation of hydrocarbons contained in oily sludges from Otesti oil field area, are presented. As a result of the laboratory screening, we selected six natural bacterial consortia (BCSl-I 1 to BCSl-I 6 ) with high ability in degradation of hydrocarbons from paraffinic and non-paraffinic asphaltic oils (between 25.53%-64.30% for non-paraffinic asphaltic oil and between 50.25%-72.97% for paraffinic oil). The laboratory tests proved that microbial degradation of hydrocarbons contained in oily sludge from Otesti oil field area varied from 16.75% to 95.85% in moving conditions (Erlenmeyers of 750 ml on rotary shaker at 200 rpm) and from 16.85% to 51.85% in static conditions (Petri dishes Oe 10 cm or vessels of 500 ml)

  12. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  13. Problems in operation of gas-oil condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Martos, V N

    1966-12-01

    This is a review of various methods used to deplete gas-oil condensate reservoirs. Four depletion techniques are discussed: (1) natural depletion without injection of fluids into the reservoir; (2) depletion accompanied by gas cycling; (3) depletion in which the gas cap is separated from the oil by water injected into the reservoir, a method in which each part of the reservoir is produced essentially independently of the other; and (4) depletion in which reservoir temperature is raised above the cricondentherm point by in-situ combustion, so that gas and oil form a single phase. This method is prospective, and has not been tried in the field. Advantages and disadvantages of each method are discussed. It is concluded that a gas condensate reservoir can be depleted most economically only if some secondary energy is added. (13 refs.)

  14. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  15. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  16. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  17. Exploring oil market dynamics: a system dynamics model and microworld of the oil producers

    Energy Technology Data Exchange (ETDEWEB)

    Morecroft, J.D.W. [London Business School (United Kingdom); Marsh, B. [St Andrews Management Institute, Fife (United Kingdom)

    1997-11-01

    This chapter focuses on the development of a simulation model of global oil markets by Royal Dutch/Shell Planners in order to explore the implications of different scenarios. The model development process, mapping the decision making logic of the oil producers, the swing producer making enough to defend the intended price, the independents, quota setting, the opportunists, and market oil price and demand are examined. Use of the model to generate scenarios development of the model as a gaming simulator for training, design of the user interface, and the value of the model are considered in detail. (UK)

  18. Energetic Efficiency of red palm oil

    Directory of Open Access Journals (Sweden)

    Byron Jiménez

    2013-11-01

    Full Text Available The main goal of this paper is to determine the energy efficiency in the production of red palm oil (Elaeis guineensis by using the biophysical indicator EROI, postulated by the Ecological Economics. This indicator is applied to compare the energy used in the preparation of synthetic fertilizers (to fill its nutritional demands versus the energy contained in the oil. In 2009, there were 195.550 hectares of land planted with African palm in Ecuador (INEC, 2011. In addition, between 2002 and 2009, there were 2,7 million tons of red oil (FEDEPAL, 2010. It is determined that for each unit of energy consumed, 4.82 units of energy are contained in the red oil. The energy used in making pesticides for cultivation, consumed in transportation, refining, and post harvest is excluded because this other energy would drastically reduce the absolute data of the indicator, which is already inefficient for the high energy consumption it requires to generate the energy contained in the oil. On the other hand, agroecology has proven to be more efficient in the generation of energy per unit of invested energy (Altieri et. al., 2010; Moore, 2004.

  19. Maximizing probable oil field profit: uncertainties on well spacing

    International Nuclear Information System (INIS)

    MacKay, J.A.; Lerche, I.

    1997-01-01

    The influence of uncertainties in field development costs, well costs, lifting costs, selling price, discount factor, and oil field reserves are evaluated for their impact on assessing probable ranges of uncertainty on present day worth (PDW), oil field lifetime τ 2/3 , optimum number of wells (OWI), and the minimum (n-) and maximum (n+) number of wells to produce a PDW ≥ O. The relative importance of different factors in contributing to the uncertainties in PDW, τ 2/3 , OWI, nsub(-) and nsub(+) is also analyzed. Numerical illustrations indicate how the maximum PDW depends on the ranges of parameter values, drawn from probability distributions using Monte Carlo simulations. In addition, the procedure illustrates the relative importance of contributions of individual factors to the total uncertainty, so that one can assess where to place effort to improve ranges of uncertainty; while the volatility of each estimate allows one to determine when such effort is needful. (author)

  20. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  1. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  2. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  3. Produced water reuse aiming reinjection; Reuso de agua produzida visando reinjecao

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Hora, Jairo Maynard da Fonseca; Guilherme, Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    As an oil reservoir goes aging, the BSW (water and solid content associated to the crude oil ) from the produced oil increase acutely. As this associated water is isolated from the crude oil, it presents several contaminants with concentrations above to that specified in the environmental norms for its discharge. Attending the environmental legislation, some times, is very difficult and can even enable the entire project. As the reservoir becomes old, enhance techniques are necessary to maintain the oil producing. A common recovery mechanism, called secondary recovery, is the water injection. Commonly the water for secondary recovery is not easily available. The main objective of this work is present a treatment system for produced water used in a specific field in the Northwest region. This treatment involves reinjection of this water after filtration. We will have a high environmental benefited, avoiding the discharge of produced water, highly toxic, and at the same time enhanced the oil production. In this work, we develop a method to modify the physical chemistry characteristics of the produced water and increase the treatment process efficiency. (author)

  4. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  5. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  6. Technical and economic feasibility study of flue gas injection in an Iranian oil field

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2015-09-01

    The main aim of this research is to investigate various gas injection methods (N2, CO2, produced reservoir gas, and flue gas in one of the northern Persian gulf oil fields by a numerical simulation method. Moreover, for each scenario of gas injection technical and economical considerations are took into account. Finally, an economic analysis is implemented to compare the net present value (NPV of the different gas injection scenarios in the aforementioned oil field.

  7. Efficiency of crude oil markets: Evidences from informational entropy analysis

    International Nuclear Information System (INIS)

    Ortiz-Cruz, Alejandro; Rodriguez, Eduardo; Ibarra-Valdez, Carlos; Alvarez-Ramirez, Jose

    2012-01-01

    The role of crude oil as the main energy source for the global economic activity has motivated the discussion about the dynamics and causes of crude oil price changes. An accurate understanding of the issue should provide important guidelines for the design of optimal policies and government budget planning. Using daily data for WTI over the period January 1986–March 2011, we analyze the evolution of the informational complexity and efficiency for the crude oil market through multiscale entropy analysis. The results indicated that the crude oil market is informationally efficient over the scrutinized period except for two periods that correspond to the early 1990s and late 2000s US recessions. Overall, the results showed that deregulation has improved the operation of the market in the sense of making returns less predictable. On the other hand, there is some evidence that the probability of having a severe US economic recession increases as the informational efficiency decreases, which indicates that returns from crude oil markets are less uncertain during economic downturns. - Highlights: ► Entropy concepts are used to characterize crude oil prices. ► An index of market efficiency is introduced. ► Except for periods of economic recession, the crude oil market is informationally efficient.

  8. English-Chinese oil field dictionary. [English-Chinese

    Energy Technology Data Exchange (ETDEWEB)

    Gow, S [comp.

    1979-01-01

    In this edition the original English-Chinese Oil Field Dictionary was modified line by line and major additions and deletions were made. A total of 37,000 terms and phrases were collected. The following disciplines were included: petroleum geology, earth physics and detection, well prospecting and measuring, development of oil fields, oil recovery, oil storage and transport, etc. In addition, a limited number of common scientific terms, phrases and terminologies were also included.

  9. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  10. Emerald oil field on production in North Sea

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Midland and Scottish Energy Ltd. (MSE) has placed Emerald oil field on stream in the U.K. North Sea with a floating production unit. Initial production, from two satellite wells, will be used to commission facilities. Three water injection wells have been unplugged and are ready for start-up. MSE will place a central cluster of wells-five producers and one water injector-on stream during the next few weeks. Production will build to an expected 25,000 b/d from 35 million bbl of reserves. Field development has undergone an unusually large number of setbacks and changes

  11. Oil and gas field development: an NOC perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kronman, George [Halliburton Energy Services (United States). Landmark Division

    2004-07-01

    Every day, oil companies around the world face real-life field development and management problems like the ones described above. Making timely and well-informed field development decisions are among the most important decisions the management of any oil company can make. The field development phase of the oil and gas life cycle extends from the discovery of a hydrocarbon deposit through initial production. It also includes revitalization of mature and marginal fields. Field development projects require the greatest level of cross-disciplinary integration and the largest investment decisions in the entire oil field life cycle. The ultimate economic success or failure of most fields is set by the quality of decisions made during field development. Oil companies take many different approaches to field development based on unique business drivers, their asset portfolio mix and risk tolerance, access to data and experienced manpower, adoption of technology, availability of capital, ownership, management style and so on. This paper focuses on understanding and addressing the particular field development challenges facing NOCs today. (author)

  12. Bootstrapped efficiency measures of oil blocks in Angola

    International Nuclear Information System (INIS)

    Barros, C.P.; Assaf, A.

    2009-01-01

    This paper investigates the technical efficiency of Angola oil blocks over the period 2002-2007. A double bootstrap data envelopment analysis (DEA) model is adopted composed in the first stage of a DEA-variable returns to scale (VRS) model and then followed in the second stage by a bootstrapped truncated regression. Results showed that on average, the technical efficiency has fluctuated over the period of study, but deep and ultradeep oil blocks have generally maintained a consistent efficiency level. Policy implications are derived.

  13. Potential use of produced oil sample analysis to monitor SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Petroleum International, Calgary, AB (Canada); Wollen, C. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[OPTI-Nexen Inc., Calgary, AB (Canada); Yang, P.; Fustic, M. [Nexen Petroleum International, Calgary, AB (Canada)

    2008-10-15

    Oil viscosity and compositional gradients can affect the performance of steam injection recovery processes. In this study, reservoir simulations were conducted to investigate the effects of viscosity variation with depth on steam assisted gravity drainage (SAGD) processes and produced oil characteristics. The 2-D reservoir model consisted of a reservoir with a 40 m clean sand matrix, overtopped with interbedded shales and sand. The oil phase was comprised of 2 pseudo-components representing top and bottom bitumens. Viscosities and concentrations of the pseudo-components were calculated using linear mixing rules. Four different viscosity distribution scenarios were examined. Conceptual 3-D models were then constructed to examine the characteristics of produced oil samples in scenarios with shale barriers extending down the well directions and blocking parts of the reservoir. Results from the simulations showed that produced oil characteristics are related to the in situ profiles of reservoir flow barriers. Produced oil characteristics can be used in conjunction with oil rates, surface heave and other data to predict steam chamber development and detect the presence of baffles and barriers. The relationship between the SAGD steam chamber and variations in produced fluid characteristics were accurately characterized by the simulations. It was concluded that the approach can be used to monitor SAGD steam chamber growth. 10 refs., 1 tab., 19 figs.

  14. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources

    Directory of Open Access Journals (Sweden)

    Juliana Guerra de Oliveira

    2013-02-01

    Full Text Available Biosurfactants are chemical molecules produced by the microorganisms with potential for application in various industrial and environmental sectors. The production parameters and the physicochemical properties of a biosurfactant synthesized by Bacillus pumilus using different concentrations of vinasse and waste frying oil as alternative carbon sources were analyzed. The microorganism was able to grow and produce a biosurfactant using both the residues. The surface tension was reduced up to 45 mN/m and the maximum production of crude biosurfactant was 27.7 and 5.7 g/l for vinasse and waste frying oil, respectively, in concentration of 5%. The critical micelle concentration (CMC results of 1.5 and 0.2 g/l showed the efficiency of the biosurfactant produced on both the substrates. The results showed that the alternative substrates could be used for the production of an efficient biosurfactant by B. pumilus. These properties have potential for industrial and environmental applications.

  15. Treatment of Oily Wastewater Produced From Old Processing Plant of North Oil Company

    Directory of Open Access Journals (Sweden)

    Dr. Faris Hammoodi Al-Ani

    2012-03-01

    Full Text Available The main objectives of this research were to study and analyses oily wastewater characteristics originating from old-processing plant of North Oil Company and to find a suitable and simple method to treat the waste so it can be disposed off safely. The work consists of two stages; the first was the study of oily wastewater characteristics and its negative impacts. The results indicated that oil and grease were the most dominant pollutant with concentration range between 1069 – 3269.3 mg/l that must be removed; other pollutants were found to be within Iraqi and EPA standards. The next stage was the use of these characteristics to choose the proper technology to treat that wastewater. This stage was divided into two stages: the first stage was a jar tests to find the optimum doses of alum, lime and powdered activated carbon (PAC. The second stage was the treatment by a batch pilot plant constructed for this purpose employing the optimum doses as determined from the first stage to treat the waste using a flotation unit followed by a filtration-adsorption unit. The removal efficiencies of flotation unit for oil and grease, COD, and T.S.S found to be 0.9789, 0.974, and 0.9933, respectively, while the removal efficiency for T.D.S was very low 0.0293. From filtration – adsorption column the removal efficiencies of oil and grease, T.D.S, COD, and T.S.S were found to be 0.9486, 0.8908, 0.6870, and 0.7815, respectively. The overall removal efficiencies of pilot plant were 0.9986, 0.8939, 0.9921, and 0.9950, respectively. The results indicated that this type of treatment was the simplest and most effective method that can be used to treat produced oily wastewater before disposal

  16. Oil and gas field code master list, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  17. Kashagan oil field development. Kazakhstan

    International Nuclear Information System (INIS)

    Urbaniak, D.; Gerebizza, E.; Wasse, G.; Kochladze, M.

    2007-12-01

    Based on our research and field investigations of the Kashagan oil field development and relevant infrastructure in the Atyrau and Mangistau regions of Kazakhstan (cities and vicinities of Aktau, Atash, Atyrau, Bautino, Bolashak, Karabatan and Koshanai) evidence has been collected that raises serious concerns about environmental, social and health effects of this oil field development - such as sulphur emissions and storage which may pose serious threats for the communities close to the Kashagan oil facilities and for the Caspian Sea environment. Furthermore, since becoming the single Operator of the North Caspian Sea Production Sharing Agreement (PSA), the Agip Kazakhstan North Caspian Operating Company N.V. (Agip KCO) has failed to release all information available on the environmental, health and social impacts of its operations in the Kashagan oil field. As requested by the local communities and required by Constitution of Kazakhstan Republic and Aarhus Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters ratified by Kazakhstan in 2001, such information must be made available. There is also a growing concern among the civil society that the European Commission through its officials is publicly expressing support to European oil companies' members of the Agip KCO despite their failure to fulfil basic environmental regulations. This continued support contradicts the European Union's fundamental values and frequent statements related to Human Rights and Sustainable Development. Thousands of people have already been relocated in the region because of sulphur emissions and other highly poisonous chemicals such as mercaptans, which are present at very high levels in Northern Caspian oil. Unprotected storage of large quantities of sulphur is also recognised as a major cause of acid rain on a global level. This Report implores Agip KCO to release all available and required information on the

  18. Application of bio-huff-`n`-puff technology at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  19. Measuring efficiency of international crude oil markets: A multifractality approach

    Science.gov (United States)

    Niere, H. M.

    2015-01-01

    The three major international crude oil markets are treated as complex systems and their multifractal properties are explored. The study covers daily prices of Brent crude, OPEC reference basket and West Texas Intermediate (WTI) crude from January 2, 2003 to January 2, 2014. A multifractal detrended fluctuation analysis (MFDFA) is employed to extract the generalized Hurst exponents in each of the time series. The generalized Hurst exponent is used to measure the degree of multifractality which in turn is used to quantify the efficiency of the three international crude oil markets. To identify whether the source of multifractality is long-range correlations or broad fat-tail distributions, shuffled data and surrogated data corresponding to each of the time series are generated. Shuffled data are obtained by randomizing the order of the price returns data. This will destroy any long-range correlation of the time series. Surrogated data is produced using the Fourier-Detrended Fluctuation Analysis (F-DFA). This is done by randomizing the phases of the price returns data in Fourier space. This will normalize the distribution of the time series. The study found that for the three crude oil markets, there is a strong dependence of the generalized Hurst exponents with respect to the order of fluctuations. This shows that the daily price time series of the markets under study have signs of multifractality. Using the degree of multifractality as a measure of efficiency, the results show that WTI is the most efficient while OPEC is the least efficient market. This implies that OPEC has the highest likelihood to be manipulated among the three markets. This reflects the fact that Brent and WTI is a very competitive market hence, it has a higher level of complexity compared against OPEC, which has a large monopoly power. Comparing with shuffled data and surrogated data, the findings suggest that for all the three crude oil markets, the multifractality is mainly due to long

  20. Model improves oil field operating cost estimates

    International Nuclear Information System (INIS)

    Glaeser, J.L.

    1996-01-01

    A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis

  1. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    Science.gov (United States)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  2. Testing the evolution of crude oil market efficiency: Data have the conn

    International Nuclear Information System (INIS)

    Zhang, Bing; Li, Xiao-Ming; He, Fei

    2014-01-01

    Utilising a time-varying GAR (1)-TGARCH (1,1) model with different frequency data, we investigate the weak-form efficiency of major global crude oil spot markets in Europe, the US, the UAE and China for the period from December 2001 to August 2013. Our empirical results with weekly data indicate that all four markets have reached efficiency with few brief inefficient periods during the past decade, whereas the daily crude oil returns series suggest intermittent and inconsistent efficiency. We argue that the weekly Friday series fit the data better than the average series in autocorrelation tests. The evidence suggests that all four markets exhibit asymmetries in return-volatility reactions to different information shocks and that they react more strongly to bad news than to good news. The 2008 financial crisis has significantly affected the efficiency of oil markets. Furthermore, a comovement phenomenon and volatility spillover effects exist among the oil markets. Policy recommendations consistent with our empirical results are proposed, which address three issues: implementing prudential regulations, establishing an Asian pricing centre and improving transparency in crude oil spot markets. - Highlights: • We adopt a time-varying model to test the weak-form efficiency of crude oil markets. • Weekly oil returns series have been extremely efficient during the past decade. • Daily oil returns series have presented intermittent and inconsistent efficiency. • Oil markets react asymmetrically to different information shocks. • Policy recommendations are proposed according to the degree of efficiency

  3. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Oil producers facing a common challenge

    International Nuclear Information System (INIS)

    Galal, E.E.

    1992-01-01

    Among the numerous challenges facing our modern world, perhaps the most urgent and dominant are energy related. From the perspective of developing countries they are, in order of priorities, development, energy security and environment. Oil covers above 38% of the global commercial energy needs and gas about 20%. In some commanding sectors of the economy, like transport, oil is for now virtually the irreplaceable source of energy. In addition, oil and gas are two valuable primary materials of the chemical industry. It also happens that oil consumption is one of the sources of environmental pollution through the emission of CO 2 . Utilisation of the world's finite fossil energy resources (88% of total commercial energy) in the service of development reflects all the negative attributes of the mismanagement of the global economy, exemplified by waste, inefficiency, unfair terms of trade, market instability and short-sighted policies. These serious inequities have been further compounded by the growing menace of environmental and climatic degradation. In dealing with the interactions between these three complex systems, i.e., energy, environment and development, it is important for oil producers to delineate their priorities clearly, if they are to disentangle credible common goals for an international convention. (author)

  5. Selection and application of microorganisms to improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.F.; Moreira, R.S.; Almeida, R.C.C.; Guimaraes, A.K.; Carvalho, A.S. [Laboratorio de Biotecnologia e Ecologia de Microrganismos da Universidade Federal da Bahia, Avenida Reitor Miguel Calmon, s/n, Vale do Canela, CEP 41.160-100 Salvador BA (Brazil); Quintella, C.; Esperidia, M.C.A. [Instituto de Quimica da Universidade Federal da Bahia, Rua Barao de Geremoabo, s/n, Campus Universitario de Ondina, CEP 40.170-290, Salvador BA (Brazil); Taft, C.A. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, Urca, 22290-180, Rio de Janeiro (Brazil)

    2004-08-01

    Microbial enhanced oil recovery (Meor) is an incontestably efficient alternative to improve oil recovery, especially in mature fields and in oil reservoirs with high paraffinic content. This is the case for most oil fields in the Reconcavo basin of Bahia, Brazil. Given the diverse conditions of most oil fields, an approach to apply Meor technology should consider primarily: (i) microbiological studies to select the appropriate microorganisms and (ii) mobilization of oil in laboratory experiments before oil field application. A total of 163 bacterial strains, selectively isolated from various sources, were studied to determine their potential to be used in Meor. A laboratory microbial screening based on physiological and metabolic profiles and growth rates under conditions representative for oil fields and reservoirs revealed that 10 bacterial strains identified as Pseudomonas aeruginosa (2), Bacillus licheniformis (2), Bacillus brevis (1), Bacillus polymyxa (1), Micrococcus varians (1), Micrococcus sp. (1), and two Vibrio species demonstrated potential to be used in oil recovery. Strains of B. licheniformis and B. polymyxa produced the most active surfactants and proved to be the most anaerobic and thermotolerant among the selected bacteria. Micrococcus and B. brevis were the most salt-tolerant and polymer producing bacteria, respectively, whereas Vibrio sp. and B. polymyxa strains were the most gas-producing bacteria. Three bacterial consortia were prepared with a mixture of bacteria that showed metabolic and technological complementarity and the ability to grow at a wide range of temperatures and salinity characteristics for the oil fields in Bahia, Brazil. Oil mobilization rates in laboratory column experiments using the three consortia of bacteria varied from 11.2 to 18.3 % [v/v] of the total oil under static conditions. Consortia of B. brevis, B. icheniformis and B. polymyxa exhibited the best oil mobilization rates. Using these consortia under anaerobic

  6. Energy efficiency measures for offshore oil and gas platforms

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter; Elmegaard, Brian

    2016-01-01

    Oil and gas platforms are energy-intensive systems – each facility uses from a few to several hundreds MW of energy, depending on the petroleum properties, export specifications and field lifetime. Several technologies for increasing the energy efficiency of these plants are investigated in this work. They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphase expanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the power plant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Significant energy savings and reductions in CO_2-emissions are depicted, reaching up to 15–20%. However, they strongly differ from one facility to another, which suggests that generic improvements can hardly be proposed, and that thorough techno-economic analyses should be conducted for each plant. - Highlights: • Energy efficiency measures for offshore platforms are assessed. • Energy savings and reductions in CO_2-emissions can reach up to 15-20%. • They differ strongly depending on the oil type, operating conditions and strategies.

  7. Technology transfer to US oil producers: A policy tool to sustain or increase oil production

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, W. T.

    1990-03-01

    The Department of Energy provided the Interstate Oil Compact Commission with a grant to identify and evaluate existing technology transfer channels to operators, to devise and test improvements or new technology transfer channels and to make recommendations as to how the Department of Energy's oil and gas technology transfer methods could be improved. The IOCC conducted this effort in a series of four tasks: a structural analysis to characterize the oil producing industry according to operator production size class, geographic location, awareness and use of reservoir management technologies, and strategies for adding reserves and replacing produced reserves; targeted interviews conducted with some 300 oil and gas industry participants to identify current technology transfer channels and their relative usefulness for various classes of industry participants; a design and testing phase, in which the IOCC critiqued the current technology transfer structure, based on results of the structural analysis and targeted interviews, and identified several strategies for improvement; and an evaluation of existing state outreach programs to determine whether they might provide a model for development of additional outreach programs in other producing states.

  8. Palm oil based polymer materials obtained by ROMP: study by low field NMR

    International Nuclear Information System (INIS)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S.

    2015-01-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  9. Exploratory assessment of the economic gains of a pre-salt oil field in Brazil

    International Nuclear Information System (INIS)

    Araujo Rodrigues, Larissa; Luís Sauer, Ildo

    2015-01-01

    In recent years, Brazil has made public several oil discoveries located in deep waters, below the salt layer. Discoveries are steadily enhancing national reserves and have brought the country into a new role in the global oil industry. This paper aims at investigating the economic gains that could be expected from a Brazilian oil field in the pre-salt region. Analyses were conducted based on the Libra field, the largest oil discovery in Brazil until now, with approximately 10 billion barrels. The results were calculated for different scenarios of oil prices, companies' arrangements and regulatory regimes. The findings suggest that economic gains could be higher for the Brazilian Government if the oil production were conducted under a service contract scheme. However, considering the current production-sharing regime in force for pre-salt areas, economic gains could be higher if a bidding process was conducted, ensuring for the Brazilian Government a higher participation in the oil to be produced. Additionally, the results demonstrate that under the current rules applied for the production-sharing regime, the government quota of oil has decreased over time, putting at risk economic results. - Highlights: • The paper investigates the economic gains of a pre-salt oil field in Brazil. • Government earnings could be higher under a service contract scheme. • The first production-sharing regime bid did not encourage competition. • Under the production-sharing rules government quota of oil decreases over time.

  10. Testing efficiency and unbiasedness in the oil market

    International Nuclear Information System (INIS)

    Moosa, I.A.; Al-Loughani, N.

    1994-03-01

    This paper presents some empirical evidence on speculative efficiency or unbiasedness in the crude oil futures market and some related issues. On the basis of monthly observations on spot and futures prices of the WTI crude oil, several tests are carried out on the relevant hypotheses. The evidence suggests that futures prices are neither unbiased nor efficient forecasters of spot prices. Furthermore, a GARCH-M(1,1) model reveals the existence of a time-varying risk premium. (author)

  11. Description and discussion of governmental participations for companies producing oil and gas in marginal fields; Descricao e discussao do regime tributario e participacoes governamentais para empresas produtoras de petroleo e gas em campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo, Antonio Sergio [Universidade Salvador (UNIFACS), BA (Brazil); Rodrigues, Jose Allankardec Fernandes [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Rodrigues, Livia da Silva Modesto [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Universidade Salvador (UNIFACS), BA (Brazil); Fundacao Visconde de Cairu, Salvador, BA (Brazil); Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    This article reports taxing and government participation in oil and gas extraction in peripheral fields as defined by the Agencia Nacional de Petroleo, Gas Natural e Combustivel (ANP) and the need to discuss the essence of the contributing capacity as a means to take into account the characteristics of this specific niche in gas and oil production. Their own particular policies distinguish them from other segments. The analysis is founded on the Aristotelian view which treats equals equally and unequals unequally. The analysis shows these companies' present situation and makes it clear that taxing in Brazil acts as an obstacle to the development of several sectors, including the small oil and gas production sector. Also worth mentioning is, besides taxes in the oil business, there is also the incidence of financial indemnity established by the Petroleum Law, illustrating an analysis of this legislation. Initially, when peripheral fields are still seen as great opportunities (according to the regulatory definition adopted by the ANP), mainly because of the high price of the barrel of oil (over US$ 100 ) the weight of taxes may not be a critical factor. However, when marginal oil wells do not attract interest in the average independent producer, the only mechanisms capable of extending the activity, and as a consequence, the positive impacts generated in producing communities, may well be tax relief and government involvement. The method used was a reference research and technical visits to leasers of concessions at peripheral fields. The present study will continue with the object of showing econometric models by simulating the impact taxing has on marginal production projects at different stages of maturity. (author)

  12. Sub-Sahara's second largest oil producer

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, C

    1991-05-01

    With the prospects for peace in Angola following the settlement of the civil war, the oil producing potential for the country is briefly reviewed. Topics covered include the problems of economic growth and development because of the civil war and communist ideology, US foreign policy, production sharing, military expenditure and economic planning. (UK).

  13. Oil and Gas Field Code Master List 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  14. Plans for first oil production revived in two Sudanese fields

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A Vancouver, British Columbia, independent and its Sudanese partner have filed a development plan with the government of Sudan to produce an initial 40,000 b/d from Heglig and Unity oil fields in Sudan. Arakis Energy Corp., and the private Sudanese company State Petroleum Corp. (SPC) want to begin the first commercial hydrocarbon production in the destitute, war torn country. They are picking up where Chevron Corp. left off after years of grappling with an ambitious, costly - and ultimately futile - effort to export crude-oil from Sudan. After finding almost 300 million bbl of oil in Sudan during the early 1980s, Chevron scuttled a $2 billion project to export 50,000 b/d of Sudanese crude in 1986. It drilled 90 wells and sank more than $1 billion into the project. But it dropped the plan, citing the 1986 collapse of oil prices and concerns over security after repeated guerrilla attacks delayed work. The paper details the project

  15. Operational Aspects of Fiscal Policy in Oil-Producing Countries

    OpenAIRE

    Steven A Barnett; Rolando Ossowski

    2002-01-01

    Oil-producing countries face challenges arising from the fact that oil revenue is exhaustible, volatile, and uncertain, and largely originates from abroad. Reflecting these challenges, the paper proposes some important general principles for the formulation and assessment of fiscal policy in these countries. The main findings can be summarized in some key guidelines: the non-oil balance should feature prominently in the formulation of fiscal policy; it should generally be adjusted gradually; ...

  16. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  17. The role of JANAF oil pipeline in the efficiency increase and Croatian Energy system's globalisation

    International Nuclear Information System (INIS)

    Sekulic, G.; Diminic, V.; Baranovic, K.; Rukavina, K.

    1999-01-01

    In the past 20 years of its operation, JANAF has contributed not only to the domestic refineries' costs decrease and the improvement of their efficiency but also to the internationalisation of the Croatian energy system and its globalisation. The implementation of new JANAF development projects in co-operation with international companies would intensity the JANAF connection to the European oil pipeline network and improve the oil supply safety of domestic refineries. New projects would at the same time enable oil export from Russia and other FSU states to the international oil market, such as oil transport from the INA oil fields in Russia. The JANAF development projects would help evaluate the existing capacities and infrastructure in terms of quality. They would be realised according to the principles of Energy Charter Treaty, the new Croatian energy system legislation and Energy Strategy. (author)

  18. Testing market efficiency of crude palm oil futures to European participants

    OpenAIRE

    Liu, Xing

    2009-01-01

    Palm oil is the most consumed and traded vegetable oils in the EU and the world. Increasing non-food uses for vegetable oils in especially feedstock of biofuels in recent years have caused the price volatility to rise in both EU and global market. The most efficient pricing of crude palm oil (CPO) is to found on Bursa Malaysia (BMD), and it provides by far the world’s most liquid palm oil contract. The goal of this study is to investigate CPO futures market efficiency of BMD for the European ...

  19. Corrosion behavior of Cu Al Ni shape memory alloy in an oil land field produced fluid; Corrosao da liga com memoria de forma CuAlNi em fluido produzido de campo terrestre de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ricardo Estefany Aquino [PETROBRAS S.A., Aracaju/Maceio, SE/AL (Brazil). Unidade de Negocios SE-AL; Cruz, Maria Clara Pinto; Figueiredo, Renan T.; Souza, Luciete da Paixao; Araujo, Paulo M.M. [Universidade Tiradentes (UNIT), Aracaju, SE (Brazil)

    2008-07-01

    The corrosion behavior of the CuAlNi shape memory alloy in oil landfield produced groundwater was investigated with polarization curve and mass loss measurements, the latter carried out by immersion in laboratory and field tests. The physico-chemical analysis of five types of oil landfield produced groundwater showed the presence of H{sub 2}S and CO{sub 2}, high salinity, chloride, sulfide and iron ions and relatively neutral pH. The results from electrochemical tests in aerated produced groundwater, in the range of salinity encountered, suggested that the corrosion rate increases at higher saline concentrations. The results from field tests with corrosion test specimens showed a moderate to severe corrosion rate and suggested, in the other hand, that corrosion rates were influenced not only by salinity and oxidizing ions present in the flowing fluid, but also by solid materials in suspension, the fluid's temperature, and the flow velocity. This research is part of a major project which aims to develop couplings for landfield produced fluid transportation pipe connections without welded nor threaded joints. (author)

  20. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  1. ECOLOGICAL REGIONALIZATION METHODS OF OIL PRODUCING AREAS

    Directory of Open Access Journals (Sweden)

    Inna Ivanovna Pivovarova

    2017-01-01

    Full Text Available The paper analyses territory zoning methods with varying degrees of anthropogenic pollution risk. The summarized results of spatial analysis of oil pollution of surface water in the most developed oil-producing region of Russia. An example of GIS-zoning according to the degree of environmental hazard is presented. All possible algorithms of cluster analysis are considered for isolation of homogeneous data structures. The conclusion is made on the benefits of using combined methods of analysis for assessing the homogeneity of specific environmental characteristics in selected territories.

  2. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  3. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  4. Mixed field radiation modification of polyurethanes based on castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, A.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: aba.mortley@rmc.ca

    2006-07-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing {sup 13}C-NMR and FTIR spectra. (author)

  5. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Mortley, A.; Bonin, H.W.; Bui, V.T.

    2006-01-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13 C-NMR and FTIR spectra. (author)

  6. Fluid diversion in oil recovery

    International Nuclear Information System (INIS)

    Nimir, Hassan B.

    1999-01-01

    In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)

  7. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  8. Information asymmetries, information externalities, oil companies strategies and oil exploration information efficiency

    International Nuclear Information System (INIS)

    Nyouki, E.

    1998-07-01

    Both for economics (in general) and energy economics matters, it is important to reach oil exploration efficiency. To achieve this aim, a pragmatic approach is to use the concept of information efficiency which means that the different tracts have to be drilled in the decreasing order of estimated profitabilities, estimations being made on the basis of the best (in the sense of reliability) available information. What does 'best available information' mean? It corresponds either to the information held by the most experienced oil companies (due to the existence of information asymmetries to the profit of these companies), or to information revealed by the drilling and which allows to revise probabilities of success on neighboring tracts with similar geological features (due to the existence of information externalities). In consideration of these information asymmetries and externalities, we will say that exploration is information efficient when. -- on the one hand, initial exploration choices are directed by the most experienced companies, - and, on the other hand, during the drilling phase, in the face of the information externality, companies adopt a sequential drilling, i.e. excluding both over-investment and strategic under-investment. The topic we deal with in this thesis is then to know if oil companies, when they are put in normal competition conditions, are likely to make emerge a state of information efficiency in exploration, the analysis being conducted theoretically and empirically. (author)

  9. Crude oil He and Ar isotopic characteristics and their geochemical significance: an example from the Gangxi oil field in the Huanghua depression

    Directory of Open Access Journals (Sweden)

    S. Chenpeng

    2005-06-01

    Full Text Available Sampled from the Gangxi oil field in the Huanghua depression, Bohaiwan Basin, the crude oil He and Ar isotopic compositions and their geochemical significance were investigated. The result shows that i the 3He/4He values of the six oil samples free from air contamination indicate a mantle helium contribution ranging between 13.9% and 32.8% and averaging 24.1%, which means that the Gangxi oil field once had a tectonic background of the mantle-derived helium input and higher geothermal flow with an average of 75.0 mWm-2; ii deduced from the 40Ar/36Ar aging effect the Gangxi oil should be derived from the Tertiary; iii water injection is the main reason for the air contamination for the Gangxi oil noble gases and the relations between 3He/4He and 4He/20Ne as well as 40Ar/36Ar and 4He/20Ne are of an applicative potential in estimating the water injection effect and the connectivity of producing formations. The search for the crude oil He and Ar isotopes provides a new approach to inferring natural gas and oil sources, tectonic backgrounds, geothermal flow and water injection effect.

  10. Problems in waterflooding fields containing paraffinic crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, A G; Lyutin, L V; Perevalov, V G

    1968-11-01

    When Caspian seawater is injected into the Uzen field reservoir, the temperature of the reservoir oil can be lowered 10/sup 0/ to 20/sup 0/C below initial reservoir temperature. Because Uzen crude oil is saturated with paraffin, the cold injection water can deposit paraffin in the formation and reduce oil recovery. In a related study, it was shown that the lower temperature should not adversely affect capillary and wettability behavior of the crude oil in the reservoir. Oil recovery was found to be essentially independent of water composition. However, fresh water is easier to handle in injection systems than brines. Several studies have shown that oil recovery from Uzen field should be increased by use of hot injection water. Various methods of heating the water are discussed. To reduce corrosivity and scaling of hot brine, sodium hexametaphosphate is added in concentrations of 2 to 15 mg/liter. It is concluded that it would be practical to use hot injection water in this field.

  11. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  12. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  13. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  14. A Non-sulfided flower-like Ni-PTA Catalyst that Enhances the Hydrotreatment Efficiency of Plant Oil to Produce Green Diesel

    Science.gov (United States)

    Liu, Jing; Chen, Pan; Deng, Lihong; He, Jing; Wang, Luying; Rong, Long; Lei, Jiandu

    2015-01-01

    The development of a novel non-sulfided catalyst with high activity for the hydrotreatment processing of plant oils, is of high interest as a way to improve the efficient production of renewable diesel. To attempt to develop such a catalyst, we first synthesized a high activity flower-like Ni-PTA catalyst used in the hydrotreatment processes of plant oils. The obtained catalyst was characterized with SEM, EDX, HRTEM, BET, XRD, H2-TPR, XPS and TGA. A probable formation mechanism of flower-like Ni(OH)2 is proposed on the basis of a range of contrasting experiments. The results of GC showed that the conversion yield of Jatropha oil was 98.95%, and the selectivity of C11-C18 alkanes was 70.93% at 360 °C, 3 MPa, and 15 h−1. The activity of this flower-like Ni-PTA catalyst was more than 15 times higher than those of the conventional Ni-PTA/Al2O3 catalysts. Additionally, the flower-like Ni-PTA catalyst exhibited good stability during the process of plant oil hydrotreatment. PMID:26503896

  15. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  16. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge.

    Science.gov (United States)

    Liu, Wuxing; Wang, Xiaobing; Wu, Longhua; Chen, Mengfang; Tu, Chen; Luo, Yongming; Christie, Peter

    2012-06-01

    Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to treat oily sludge and the recovery efficiencies of oil from oily sludge were determined. The oil recovery efficiencies of different isolates ranged from 39% to 88%. Bacterial isolate BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues. Copyright © 2012. Published by Elsevier Ltd.

  17. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  18. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  19. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A., E-mail: mmhushari@moe.gov.qa [Radiation and Chemical Protection Department, Ministry of Environment, Doha (Qatar)

    2015-07-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  20. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    International Nuclear Information System (INIS)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A.

    2015-01-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H ex , D , and Ra eq ), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H ex , D , and Ra eq ), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  1. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  2. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  3. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  4. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  5. The oil field chemists role during field abandonment

    Energy Technology Data Exchange (ETDEWEB)

    Read, P.A.; Alfsnes, K.

    1996-12-31

    During the next ten years an increasing number of redundant oil and gas production facilities are scheduled for decommissioning on the Norwegian continental shelf. The oil field chemists role in this connection is discussed. Many of the facilities are large combined drilling and production platforms, others no more than field control centres. Their construction materials and methods are very varied, ranging from steel jackets to concrete gravity structures. Many sub sea templates and flow lines will be targeted for removal. An initial review of a simple production platform has revealed the presence of almost 800 chemical substances. The environmental fate of the materials is needed for estimating the best possible environmental option for the disposal of installations and their contents

  6. Thermal stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk

    Directory of Open Access Journals (Sweden)

    FLAVIA POP

    Full Text Available The physical and chemical characteristics and thermal stability of butter oil produced from non-pasteurized and pasteurized sheep’s milk were studied. Thermal stability of samples was estimated by using the accelerated shelf-life testing method. Samples were stored at 50, 60 and 70oC in the dark and the reaction was monitored by measuring peroxide, thiobarbituric acid and free fatty acid values. The peroxide and thiobarbituric acid values increased as the temperature increased. The increase of acid values of the two samples was not significant. A slight increase in free fatty acid value showed that hydrolytic reactions were not responsible for the deterioration of butter oil samples in thermal stability studies. When compared, butter oil produced from pasteurized sheep’s milk has higher thermal stability than butter oil produced from non-pasteurized sheep’s milk. Although butter oil produced from non-pasteurized milk was not exposed to any heat treatment, the shelf-life of this product was lower than the shelf-life of butter oil produced from pasteurized sheep’s milk. Therefore, heat treatment for pasteurization did not affect the thermal stability of butter oil.

  7. RADARSAT SAR data assessment of oil lakes in the Greater Burgan Oil Field, Kuwait

    International Nuclear Information System (INIS)

    Kwarteng, A. Y.; Al-Ajmi, D.; Singhroy, V.; Saint-Jean, R.

    1997-01-01

    RADARSAT images recorded in different beam modes were processed and used to assess the oil lakes in the Burgan oil field in Kuwait created by the fire setting of oil wells by the retreating Iraqi forces in the 1990-1991 Gulf War. The images were geometrically registered to each other and used as input to a change detection program. The main interest was to map and differentiate between the oil lakes, tarmats, vegetation, buried oil lakes, and also to evaluate the usefulness of RADARSAT's beam modes in characterizing such features. Results of the RADARSAT imagery analysis were compared to similar studies using optical and SIR-C/X-SAR data. Initially, there have approximately 300 oil lakes covering an area of about 49 sq km. Twenty-one million barrels of oil were recovered and exported; about one million barrels of unrecoverable oil was left in the oil fields. Since then most of the oil has evaporated, dried up to form tarmats, or has been covered by a veneer of sand and is no longer visible on the surface

  8. Comparative analysis between horizontal and vertical heater treaters: identification and analysis of efficiency variables for oil treatment; Analise comparativa entre tratadores termicos horizontais e verticais: levantamento de variaveis criticas a eficiencia do processamento primario do oleo cru

    Energy Technology Data Exchange (ETDEWEB)

    Venancio, Fabricio de Queiroz; Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    The Brazilian onshore oil and gas production scenario has undergone changes with the maturity of fields and the prioritization of investments towards offshore projects. Added to the issue of lack of investment issue, the increasing production of formation water, which has already exceeded the production of the oil itself. With that comes the need to study the efficiency of process stages. It is common to find oil treatment plants (ETOS) limiting production operations due to lack of capacity to deal with increasing volumes of produced water. The critical moment of an ETO in onshore operations is the 'breaking' of emulsion (water in oil) usually performed by heater treaters. This article offers a comparative analysis between horizontal (TTH) and vertical (TTV) heater treaters, indicating the main variables and demonstrating opportunities for internalization of traditional and innovative technologies in horizontal systems that result in energy efficiency, optimization of the specification of oil (for marketing) and reduced operating costs. (author)

  9. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    Science.gov (United States)

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  10. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  11. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Science.gov (United States)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  12. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  13. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  14. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  15. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    Science.gov (United States)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  16. Investigation of the biofuel flue and producer gases cleaning efficiency using ESP

    Science.gov (United States)

    Poškas, Robertas; Sirvydas, Arūnas; Poškas, Povilas; Striūgas, Nerijus; Pedišius, Nerijus; Valinčius, Vitas

    2017-11-01

    The use of biofuel has been increasing in Europe over the last years, and the reason for that is acceptable cost and the least negative impact on the environment. However, NOx and emissions of fine particulates are important, and biofuel is still a disadvantage compared to oil and natural gas fired systems. Usually, flue gas is filtered in multicyclones or fibre filters before discharge into the atmosphere. Yet, in the case of fine particulates, the filters of such type do not show high effectiveness, thus electrostatic precipitators are used. In this comparative study on biofuel (wood pellets), the collection efficiency of solid particles from a class 3 boiler (50 kW) and from a gasification unit (100 kW) was investigated. Although releases of solid particles from modern boilers are low, a combination of such a boiler with an electrostatic precipitator may reduce the releases of particles to the minimum, and the collection efficiency of the electrostatic precipitator obtained during the investigation was 98-99%. There is a big difference in particle concentrations comparing the systems with flue gas and producer gas. As the working conditions in the test section with producer gas were harder, it led to lower efficiency of the electrostatic precipitator ( 75%).

  17. Investigation of the biofuel flue and producer gases cleaning efficiency using ESP

    Directory of Open Access Journals (Sweden)

    Poškas Robertas

    2017-01-01

    Full Text Available The use of biofuel has been increasing in Europe over the last years, and the reason for that is acceptable cost and the least negative impact on the environment. However, NOx and emissions of fine particulates are important, and biofuel is still a disadvantage compared to oil and natural gas fired systems. Usually, flue gas is filtered in multicyclones or fibre filters before discharge into the atmosphere. Yet, in the case of fine particulates, the filters of such type do not show high effectiveness, thus electrostatic precipitators are used. In this comparative study on biofuel (wood pellets, the collection efficiency of solid particles from a class 3 boiler (50 kW and from a gasification unit (100 kW was investigated. Although releases of solid particles from modern boilers are low, a combination of such a boiler with an electrostatic precipitator may reduce the releases of particles to the minimum, and the collection efficiency of the electrostatic precipitator obtained during the investigation was ~98-99%. There is a big difference in particle concentrations comparing the systems with flue gas and producer gas. As the working conditions in the test section with producer gas were harder, it led to lower efficiency of the electrostatic precipitator (~75%.

  18. Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process

    Directory of Open Access Journals (Sweden)

    Sri Kadarwati

    2015-02-01

    Full Text Available Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni at various reaction temperatures (400-500oC in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO32.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion

  19. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  20. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios

    International Nuclear Information System (INIS)

    Castanheira, Érica Geraldes; Acevedo, Helmer; Freire, Fausto

    2014-01-01

    Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N 2 O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (−3.0 to 5.3 kg CO 2 eq kg −1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

  1. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  2. The influence of magnetic fields on crude oils viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia

    2009-07-01

    The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  4. Simulation studies of steam-propane injection for the Hamaca heavy oil field

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, G.J.; Mamora, D.D. [Texas A and M Univ., Austin, TX (United States)

    2003-07-01

    Laboratory experiments have been conducted at Texas A and M University to examine the use of steam additives such as propane, methane and nitrogen to improve the production of heavy oils and increase steam recovery efficiency. In particular, the use of steam-propane injection for heavy Hamaca crude oil with API gravity of 9.3 and viscosity of 25,000 cp at 50 degrees C was examined. Experimental runs involved the injection of steam or propane into injection cells at a constant rate, temperature and cell outlet pressure. The experimental results suggest that the use of steam-propane injection may translate to reduction of fuel costs for field injections. Initially, propane-steam injection resulted in a two-month oil production acceleration compared to pure steam injection. A significant gain in discounted revenue and savings in steam injection costs could be realized. The study also showed the oil product rate peak with steam-propane injection was much higher than that with pure steam injection. The oil production acceleration increases with increasing propane content. Oil recovery at the end of a five-year forecast period increases by 6.7 per cent of original oil in place (OOIP) compared to 2.3 per cent OOIP with pure steam injection. 12 refs., 6 tabs., 28 figs.

  5. A review of the evaluation of TENORM levels at the produced water lagoon of the Minagish oil field using high-resolution gamma-ray spectrometry

    Science.gov (United States)

    Shams, H. M.; Bradley, D. A.; Alshammari, H.; Regan, P. H.

    2017-11-01

    An evaluation of the specific activity concentrations associated with technologically enhanced naturally occurring radioactive materials (TENORM) and anthropogenic radionuclides has been undertaken as part of a systematic study to provide a radiological map of the outer boundary of the produced water lagoon located in the Minagish oil field in the south west of the State of Kuwait. The lagoon contains material from the discharge of produced water which is a by-product of oil production in the region. The lagoon samples were prepared and placed into sealed, marinelli beakers for a full gamma-ray spectrometric analysis using a high-resolution, low-background, high-purity germanium detection systems at the University of Surrey Environmental Radioactivity Laboratory. Of particular interest are the calculation of the activity concentrations associated with members of the decay chains following decays of the primordial radionuclides of the 238U chain (226Ra, 214Pb, 214Bi) and the 232Th chain (228Ra, 228Ac, 212Pb, 212Bi, 208Tl), and the enhanced concentrations of radium isotopes. This conference paper presents an overview summary of the experimental samples which have been measured and the analysis techniques applied, including isotopic correlation plots across the sample region. The result shows the expected significant increase in 226Ra (and progeny) concentrations compared to the NORM values previously reported by our group for the overall terrain in Kuwait.

  6. Oil price risk management in the 1990s - issues for producers and lenders

    International Nuclear Information System (INIS)

    Lambert, S.

    1994-01-01

    Oil prices have exhibited considerable volatility over the past five or ten years and the management of oil price risk has become an important factor in underpinning the viability of many oil producing operations from both a lender's and investor's perspective. Various oil based hedging products are now available to protect against such volatility, ranging from products which fix forward prices to option based arrangements which set a floor price but retain some (or all) of the potential upside. These products have particular relevance for petroleum companies with limited financial resources or who are looking to limit recourse to particular assets/cash flows. There are a number of techniques which can be successfully combined to mitigate oil price volatility and the most relevant of these to a producer are discussed. The recent development of the Tapis swap and option markets, which have provided flexibility to Australasian producers, is also discussed. Oil based financial products can also be used as a method of funding (e.g. for a development or acquisition) as an alternative to traditional cash based borrowing structures, thus creating a natural hedge against oil price movements. It is estimated that the use of such structures, coupled with a well structured revenue hedging program, can enhance a project's attractiveness from a lender's perspective (particularly with respect to protection against down side movements in oil price) and/or provide greater certainty of returns to producers. A case study of a recent commodity risk management based financing is presented. 1 fig., 6 tabs

  7. Hydraulic Fracturing of 403 Shallow Diatomite Wells in South Belridge Oil Field, Kern County, California, in 2014

    Science.gov (United States)

    Wynne, D. B.; Agusiegbe, V.

    2015-12-01

    We examine all 403 Hydraulic Fracture (HF) jobs performed by Aera Energy, LLC, in the South Belridge oil field, Kern County, CA in 2014. HFs in the South Belridge oil field are atypical amongst North American plays because the reservoir is shallow and produced via vertical wells. Our data set constitutes 88% of all HF jobs performed in CA oil fields in calendar-2014. The South Belridge field produces 11% of California's oil and the shallow HFs performed here differ from most HFs performed elsewhere. We discuss fracture modeling and methods and summary statistics, and modelled dimensions of fractures and their relationships to depth and reservoir properties. The 403 HFs were made in the diatomite-dominated Reef Ridge member of the Monterey Formation. The HFs began at an average depth of 1047 feet below ground (ft TVD) and extended an average of 626 ft vertically downward. The deepest initiation of HF was at 2380 ft and the shallowest cessation was at 639 ft TVD. The average HF was performed using 1488 BBL (62,496 gallons) of water. The HFs were performed in no more than 6 stages and nearly all were completed within one day. We (1) compare metrics of the South Belridge sample group with recent, larger "all-CA" and nationwide samples; and (2) conclude that if relationships of reservoir properties, well completion and HF are well understood, shallow diatomite HF may be optimized to enhance production while minimizing environmental impact.

  8. Degradation of petroleum hydrocarbons by oil field isolated bacterial ...

    African Journals Online (AJOL)

    A mixed consortium was prepared with 15 bacteria isolated by enrichment technique from the sample collected from an oil contaminated site. This consortium was incubated with crude oil to investigate the metabolic capability of bacteria. The degradation efficiency of the isolates in consortium was checked with 2% crude oil ...

  9. Crude oil options market found to be efficient

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the U.S. crude oil options market operates efficiently and does not overreact. The authors, with the JFK School of Government, studied the crude oil options market under a Department of Energy grant. The current market was created in November 1986 when the New York Mercantile Exchange introduced an options contract for delivery of West Texas intermediate crude futures. it has grown greatly since then

  10. Weathering of oils at sea: model/field data comparisons

    International Nuclear Information System (INIS)

    Daling, Per S.; Stroem, Tove

    1999-01-01

    The SINTEF Oil Weathering Model (OWM) has been extensively tested with results from full-scale field trials with experimental oil slicks in the Norwegian NOFO Sea trials in 1994 and 1995 and the AEA 1997 trials in UK. The comparisons between oil weathering values predicted by the model and ground-truth obtained from the field trials are presented and discussed. Good laboratory weathering data of the specific oil as input to the model is essential for obtaining reliable weathering predictions. Predications provided by the SINTEF-OWM enable oil spill personnel to estimate the most appropriate 'window of opportunity' for use of chemical dispersants under various spill situations. Pre-spill scenario analysis with the SINTEF Oil Spill Contingency and Response (OSCAR) model system, in which the SINTEF-OWM is one of several components, has become an important part of contingency plans as well as contingency training of oil spill personnel at refineries, oil terminals and offshore installations in Norway. (Author)

  11. Research on heavy oil degradation by four thermophilic bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, M.; Chen, Q.; Liu, Z.; Li, Y. [Ocean Univ. of China, Qingdao, Shandong (China)

    2009-07-01

    The Shengli oilfield is the second largest onshore oil field in China, with a crude oil output of approximately 30 million tons per year. The large quantities of wastewater that are produced during thermal recovery methods have posed a challenge in terms of water reuse, reinjection and discharge. The important aspect of wastewater treatment is the removal of residual heavy oil. Biological methods are considered to be efficient in solving this problem. This paper reported on a study in which 4 thermophilic microorganisms which had the ability to biodegrade heavy oil were screened from heavy oil wastewater in the Shengli oilfield. Their degradation to heavy oil was discussed and the suitable biodegradation conditions of these bacteria were investigated. The study showed that the degrading efficiency of heavy oil by the 4 bacteria was up to 42.0, 47.6, 55.6 and 43.4 per cent in the wastewater which contained 500 mg per litre of heavy oil, respectively. The crude oil samples were analyzed using gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS) before and after degradation. The single 4 strains demonstrated strong biodegradability to normal alkanes and aromatics, and the average degrading efficiency was about 50 and 35 per cent. The degrading efficiency of the mixed 4 strains was better than the single ones, particularly for the poor biodegradable hydrocarbons such as phenanthrenes and fluorines. 21 refs., 2 tabs., 17 figs.

  12. Crude oil market efficiency and modeling. Insights from the multiscaling autocorrelation pattern

    International Nuclear Information System (INIS)

    Alvarez-Ramirez, Jose; Alvarez, Jesus; Solis, Ricardo

    2010-01-01

    Empirical research on market inefficiencies focuses on the detection of autocorrelations in price time series. In the case of crude oil markets, statistical support is claimed for weak efficiency over a wide range of time-scales. However, the results are still controversial since theoretical arguments point to deviations from efficiency as prices tend to revert towards an equilibrium path. This paper studies the efficiency of crude oil markets by using lagged detrended fluctuation analysis (DFA) to detect delay effects in price autocorrelations quantified in terms of a multiscaling Hurst exponent (i.e., autocorrelations are dependent of the time scale). Results based on spot price data for the period 1986-2009 indicate important deviations from efficiency associated to lagged autocorrelations, so imposing the random walk for crude oil prices has pronounced costs for forecasting. Evidences in favor of price reversion to a continuously evolving mean underscores the importance of adequately incorporating delay effects and multiscaling behavior in the modeling of crude oil price dynamics. (author)

  13. Crude oil market efficiency and modeling. Insights from the multiscaling autocorrelation pattern

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ramirez, Jose [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D.F., 09340 (Mexico); Departamento de Economia, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D.F., 09340 (Mexico); Alvarez, Jesus [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D.F., 09340 (Mexico); Solis, Ricardo [Departamento de Economia, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D.F., 09340 (Mexico)

    2010-09-15

    Empirical research on market inefficiencies focuses on the detection of autocorrelations in price time series. In the case of crude oil markets, statistical support is claimed for weak efficiency over a wide range of time-scales. However, the results are still controversial since theoretical arguments point to deviations from efficiency as prices tend to revert towards an equilibrium path. This paper studies the efficiency of crude oil markets by using lagged detrended fluctuation analysis (DFA) to detect delay effects in price autocorrelations quantified in terms of a multiscaling Hurst exponent (i.e., autocorrelations are dependent of the time scale). Results based on spot price data for the period 1986-2009 indicate important deviations from efficiency associated to lagged autocorrelations, so imposing the random walk for crude oil prices has pronounced costs for forecasting. Evidences in favor of price reversion to a continuously evolving mean underscores the importance of adequately incorporating delay effects and multiscaling behavior in the modeling of crude oil price dynamics. (author)

  14. Formation of the oil composition of the Yu0 Bazhenov formation, Salym oil field

    Directory of Open Access Journals (Sweden)

    E.V. Soboleva

    2017-05-01

    Full Text Available The Bazhenov horizon of Western Siberia has been studied in considerable detail from different perspectives and different methods, a large number of studies have been devoted to a wide range of issues related to the lithological composition of rocks, their reservoir properties, the study of organic matter, properties and composition of oil at various analytical levels, and many others. This work is devoted to restoring conditions for the formation of oil properties and composition of the Yu0 Salym oil field, based mainly on the geochemical aspects of the study of oil changes both in area and in the section within the productive layer of Salym structure, using some geological data, such as structural plan for the reflecting horizon B (the roof of the Bazhenov formation, having a complex configuration, reservoir temperatures and pressure, well flow rates, and others. There is no single reservoir at the Salym field in the Yu0 formation. For the conclusions of the geological-geochemical interpretation, a sampling of 61 samples of oil from exploration, appraisal and production wells of the initial stages of production was used, since in the future when oil is extracted, the ecology in the deposits changes, and 21 samples of oil from other fields in the West Siberian oil and gas basin. Conventionally, three types of oils are distinguished, differing in their physicochemical parameters, group hydrocarbon and molecular composition. It was suggested that in addition to the own organic matter of the Bazhenov formation, hydrocarbon fluids of the Vasyugan, Tyumen formations and possibly Paleozoic rocks were involved in the formation of the oil composition. The flow of light liquid hydrocarbons and gases occurred along the zones of faults of different genesis and duration of existence.

  15. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  16. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  17. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  18. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Englander, Jacob; Bharadwaj, Sharad

    2013-01-01

    It has been argued that the oil sands industry is not energy efficient: comparatively large energy inputs are required per unit of energy output from oil sands operations. Unfortunately, quantitative work to date in this area has suffered from poor data availability and uncertain methods. We apply a new methodology and new dataset to compute ERRs (energy return ratios) for the oil sands industry. We collected monthly oil sands energy consumption and output data from 1970 to 2010. Current oil sands operations have mine mouth NERs (net energy returns) of about 6 GJ output per GJ of energy consumed and point of use energy returns of about 3 GJ/GJ. Long-term trends show oil sands operations becoming significantly more efficient: point of use NER increased from about 1 GJ/GJ in 1970 to 3 GJ/GJ in 2010. These energy returns are lower than those observed in historical conventional oil operations, but low energy returns are not likely to hinder development of oil sands operations due to the large resource in place and the ability for largely self-fueled pathways to return significant amounts of energy to society for every unit of external energy supplied. - Highlights: • Oil sands operations have become significantly more energy efficient over the history of the industry. • Oil sands production is largely fueled with energy from the bitumen resource itself, making external energy returns high. • Oil sands production is still significantly less efficient than conventional oil production

  19. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  20. Economic efficiency or self-sufficiency: alternative strategies for oil consumers?

    International Nuclear Information System (INIS)

    Heal, D.W.

    1992-01-01

    The ideal energy source is low cost (efficient) and reliable (secure). The high price and perceived political unreliability of Middle East oil supplies prompted a nearly worldwide trend towards energy self-sufficiency. Gains in energy efficiency, which have been most marked in the OECD, are permanent and, prompted by environmental concern, probably progressive. But the opportunity that is still available to low cost oil suppliers to regain lost markets will only be realized if those supplies are demonstrably reliable. (author)

  1. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    Science.gov (United States)

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers.

  2. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Immersion piston for producing crude oil and liquids from boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, I; Hornyos, J

    1967-02-09

    When using a free piston to pump an oil well, oil and gas accumulates above and below the piston; upon venting the gas pressure above the piston, the gas pressure below it drives the piston and the oil above it to the surface. In the past, such pistons were too heavy and did not run tight in the tubing, causing loss of efficiency and high gas consumption. According to this invention, the piston is made of aluminum or plastic; it consists of at least 2 parts flexibly connected by wire rope or plastic strings, and is equipped with a labyrinth gasket and a paraffin scraper. (3 claims)

  4. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of safflower and effective use. The ways of processing safflower seed to obtain oil. It is the most productive and promising method for processing seeds of safflower scheme press extruder. Described compression step in the processing of safflower seeds scheme press extruder. Crucial processing technology safflower seeds have two fundamental rheological characteristics of viscosity and elasticity, which depend on the structure of the raw material, the molecular weight distribution, and processing conditions such as temperature, pressure and flow rate. The dependence of the density of its safflower cake moisture concluded that with humidity increase the particle density increases, due to the swelling of colloids grain. Furthermore, the dependence of shear stress and the effective viscosity versus shear rate, it is concluded that with increasing shear rate influence of temperature on the viscosity gradient weakens. The article shows the study of the prospects of the extrusion process in the presence of the ultrasound field and the creation of equipment that takes into account these properties. The use of ultrasound significantly reduces energy consumption and necessary to prevent the molding ion safflower seeds, improves product quality.

  5. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  6. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  7. Pigments in Extra-Virgin Olive Oils Produced in Tuscany (Italy) in Different Years

    Science.gov (United States)

    Lazzerini, Cristina; Domenici, Valentina

    2017-01-01

    Pigments are responsible for the color of olive oils, and are an important ingredient that is directly related to the quality of this food. However, the concentration of pigments can vary significantly depending on the climate conditions, harvesting time, and olive cultivars. In this work, we quantified the main pigments in several extra-virgin olive oils produced from a blend of three cultivars (Moraiolo, Frantoio, and Leccino) typical of Tuscany (Italy) harvested in three different years: 2012, 2013, and 2014. Pigments—namely, β-carotene, lutein, pheophytin A, and pheophytin B—were quantified by a method based on the mathematical analysis of the near ultraviolet-visible absorption spectra of the oils. Data were analyzed by a multivariate statistical approach. The results show that the pigments’ content of extra-virgin olive oils produced in 2014 can be well distinguished with respect to previous years. This can be explained by the anomalous climate conditions, which strongly affected Italy and, in particular, Tuscany, where the olives were harvested. This study represents an interesting example of how pigment content can be significant in characterizing olive oils. Moreover, this is the first report of pigment quantification in extra-virgin olive oils produced in Tuscany. PMID:28353651

  8. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    International Nuclear Information System (INIS)

    Campaner, N.; Yenikeyeff, S.

    2008-01-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the relative strength of the investment

  9. Naturally occurring radioactive materials (NORM) wastes in oil fields are a radiological problem, but they are useful tools

    International Nuclear Information System (INIS)

    Othman, Ibrahim; Al-Masri, Mohammad Said

    2008-01-01

    Produced water, scales and sludges associated with the production of oil and gas contains enhanced concentrations of radium isotopes. Uncontrolled disposal of these wastes could lead to environmental pollution and thus to radiation exposure of members of the public. In the present work, radium isotopes in scales accumulated in oil field equipment, and produced water have been used for dating the deposited scales, studying between wells interactions and water flooding processes in addition to dating contaminated soils in the Syrian oil fields. The 228 Ra/ 226 Ra activity ratio in scales can be considered a fingerprint of the Th/U mass ratio in the geological formation of the reservoir. The 228 Ra/ 226 Ra activity ratio variations were found to reflect the variability of the Th/U mass ratio of the geological formation, suggesting two different source rock types found in the Syrian oil fields. The calculated mean Th/U mass ratio for these two possible types of source rock were 2.4 and 5.78. In addition, the 228 Ra/ 226 Ra mean activity ratio was also used to estimate the age of some deposited scales in tubulars; the results were compared with the 224 Ra/ 228 Ra activity ratio dating method. Moreover, 228 Ra/ 226 Ra, 224 Ra/ 228 Ra and 210 Pb/ 226 Ra activities ratios in contaminated soils due to disposal of production water were used to date contaminated sites at the oil fields; the results have been found to be in agreement with the actual disposal date. The methods can be used by the regulatory body to assess any uncontrolled disposal of such waste. (author)

  10. The efficiency of the crude oil markets: Evidence from variance ratio tests

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Amelie, E-mail: acharles@audencia.co [Audencia Nantes, School of Management, 8 route de la Joneliere, 44312 Nantes (France); Darne, Olivier, E-mail: olivier.darne@univ-nantes.f [LEMNA, University of Nantes, IEMN-IAE, Chemin de la Censive du Tertre, 44322 Nantes (France)

    2009-11-15

    This study examines the random walk hypothesis for the crude oil markets, using daily data over the period 1982-2008. The weak-form efficient market hypothesis for two crude oil markets (UK Brent and US West Texas Intermediate) is tested with non-parametric variance ratio tests developed by [Wright J.H., 2000. Alternative variance-ratio tests using ranks and signs. Journal of Business and Economic Statistics, 18, 1-9] and [Belaire-Franch J. and Contreras D., 2004. Ranks and signs-based multiple variance ratio tests. Working paper, Department of Economic Analysis, University of Valencia] as well as the wild-bootstrap variance ratio tests suggested by [Kim, J.H., 2006. Wild bootstrapping variance ratio tests. Economics Letters, 92, 38-43]. We find that the Brent crude oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994-2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil market in the sense of making returns less predictable.

  11. The efficiency of the crude oil markets. Evidence from variance ratio tests

    International Nuclear Information System (INIS)

    Charles, Amelie; Darne, Olivier

    2009-01-01

    This study examines the random walk hypothesis for the crude oil markets, using daily data over the period 1982-2008. The weak-form efficient market hypothesis for two crude oil markets (UK Brent and US West Texas Intermediate) is tested with non-parametric variance ratio tests developed by [Wright J.H., 2000. Alternative variance-ratio tests using ranks and signs. Journal of Business and Economic Statistics, 18, 1-9] and [Belaire-Franch J. and Contreras D., 2004. Ranks and signs-based multiple variance ratio tests. Working paper, Department of Economic Analysis, University of Valencia] as well as the wild-bootstrap variance ratio tests suggested by [Kim, J.H., 2006. Wild bootstrapping variance ratio tests. Economics Letters, 92, 38-43]. We find that the Brent crude oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994-2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil market in the sense of making returns less predictable. (author)

  12. The efficiency of the crude oil markets. Evidence from variance ratio tests

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Amelie [Audencia Nantes, School of Management, 8 route de la Joneliere, 44312 Nantes (France); Darne, Olivier [LEMNA, University of Nantes, IEMN-IAE, Chemin de la Censive du Tertre, 44322 Nantes (France)

    2009-11-15

    This study examines the random walk hypothesis for the crude oil markets, using daily data over the period 1982-2008. The weak-form efficient market hypothesis for two crude oil markets (UK Brent and US West Texas Intermediate) is tested with non-parametric variance ratio tests developed by [Wright J.H., 2000. Alternative variance-ratio tests using ranks and signs. Journal of Business and Economic Statistics, 18, 1-9] and [Belaire-Franch J. and Contreras D., 2004. Ranks and signs-based multiple variance ratio tests. Working paper, Department of Economic Analysis, University of Valencia] as well as the wild-bootstrap variance ratio tests suggested by [Kim, J.H., 2006. Wild bootstrapping variance ratio tests. Economics Letters, 92, 38-43]. We find that the Brent crude oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994-2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil market in the sense of making returns less predictable. (author)

  13. Study Of The Physicochemical Analysis Of Biodiesel Produced From Waste Vegetable Oil.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-07-01

    Full Text Available The study of the physicochemical analysis of biodiesel produced from waste vegetable oil in Sedi Minna Nigeria was carried out in order to ascertain the quality of the biodiesel produced as regards physical and chemical parameters which include visual appearance colour cloud point flash point and cetane index diesel index kinematic velocity calorific value. Biodiesel is a renewable resource that can replace petroleum diesel which comes from fossil fuels that are limited and will be exhausted in the near future. Biodiesel can be made from the transesterification of vegetable oils animal fat greases and oil crops such as soybean and it is biodegradable. The biodiesel produced was subjected to physicochemical analysis and results of cetane index was established to be 52 the flash point using pensky martens close cup was determine to be 1600C diesel index using IP21 0.3411 kinematic viscosity at 400C to be 4.12 and calorific value of 10867calg. The investigated physicochemical parameters show that the biodiesel produced is suitable for use in diesel engines without modifications and is cheaper to produce compared to petroleum diesel.

  14. Evaluation of Crude Oil Biodegradation Efficiency and Peroxidase ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Increase in biomass enhanced degradation efficiency above 80 % after 10 days for all concentration of crude oil studied. Peroxidase ... compounds by various bacteria and fungi (Gianfreda et al, 1999) ... into a clean plastic container. Microbial.

  15. Effects of nitrogen application and plant densities on flower yield, essential oils, and radiation use efficiency of Marigold (Calendula officinalis L.)

    International Nuclear Information System (INIS)

    Ameri, A.A.; Nasiri Mahalati, M.

    2010-01-01

    Efficient use of radiation for medicinal plants production, might increase flower yield, essential oils and extract yield .A split plot design.was used in a two years (2005 and 2006) field study in Torogh region(36,10° N,59.33° E and 1300 m altitude) of Mashhad, Iran, to observe the effects of different nitrogen application and plants densities on flower dry matter production, essential oils, and radiation use efficiency in a multi-harvested Marigold (Calendula officinalis). The levels of nitrogen fertilizer were 0, 50, 100 and 150 kg ha-1 and levels of density were 20, 40, 60 and 80 plant m-2. The combined analysis results revealed significant effects of nitrogen and density levels on flower dry matter production, essential oils, and radiation use efficiency of Marigold. The highest dry flower production obtained by 150 kg ha-1 N and 80 plant m-2 plant population (102.86 g m-2). The higher flower dry matter production caused more essential oils and extract production in high nitrogen and density levels. The amount of essential oils and extract per 100g flower dry matter decreased during the flower harvesting period. The higher amount of essential oil and extract obtained at early flowering season. The essential oil and extract ranged from 0.22 to 0.12 (ml. per 100g flower dry matter) and 2.74 to 2.13 (g per 100g flower dry matter) respectively. Increase of both nitrogen and density caused higher radiation use efficiency. The most radiation use efficiency obtained at 150 kg ha-1 nitrogen and 80 Plant m-2desity treatments. In 150 kg ha-1 nitrogen treatment, increase of density levels from 20 plant m-2 to 80 Plant m-2 caused increase in radiation use efficiency from 1.41 g MJ-1 to 1.44 g MJ-1 respectively

  16. The Study of the Desulfurization Process of Oil and Oil Products of "Zhanazhol" Oil Field Using the Approaches of Green Chemistry

    OpenAIRE

    Zhaksyntay K. Kairbekov; Zhannur K. Myltykbaeva; Nazym T. Smagulova; Dariya K. Kanseitova

    2015-01-01

    In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.

  17. The examination of the seasonal influence on the efficiency in oil and fats removal through primary treatment from the wastewater of edible oil industry

    Directory of Open Access Journals (Sweden)

    Nikolin Tatjana

    2014-01-01

    Full Text Available This paper investigates the influence of the seasonal change of the air temperature, chemical oxygen demand as well as efficiency of suspended matter removal on the efficiency of oil and fats removal (h, % during primary treatment. The parameters are monitored in the period of time from 2006 to 2011. The efficiency of oil and fats removal in the first and in the fourth quartal is proportional to the efficiency of the removal of suspended matter and of total organic matter, measured as chemical oxygen demand (COD. The measured values for oil and fat are: η (IV quartal = 0.96 % - 50.8 % and η (I quartal = 5.06 % - 95.97 %. The efficiency of oil and fats removal in the second and third quartal is proportional to air temperature so the measured efficiency of fat and oil removal are, η (II quartal = 3.93 % - 82.86 % and η (III quartal = 6.82% - 71.51%. The results of investigation have shown the existence of the correlation between the air temperature during various seasons and the efficiency of the oil and fats removal (h, % as well as the removal of the suspended matter and chemical oxygen demand (COD.

  18. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  19. Selection of High Oil Yielding Trees of Millettia pinnata (L.) Panigrahi, Vegetative Propagation and Growth in the Field

    OpenAIRE

    Ni Luh Arpiwi; I Made Sutha Negara; I Nengah Simpen

    2017-01-01

    Millettia pinnata (L.) Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field. The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to e...

  20. Evidence of efficiency in United States futures oil prices

    International Nuclear Information System (INIS)

    Duchock, C.J. Jr.

    1991-01-01

    The purpose of this study was to use the Perpetual Contract Data for West Texas Intermediate Crude Oil futures contracts in studies of the US crude oil futures market prices to determine whether the market was efficient. Analysis was done to determine whether the Perpetual Contract Data exhibited the characteristics of a random walk. Daily data on US crude oil perpetual futures contract prices were analyzed using standard statistical techniques and spectral analysis techniques. Spectral analysis was used on the first differences of daily data to determine whether the price change data contained cyclicality. Results showed no significant cycles or autocorrelation in the data, concluding there was evidence to indicate the Perpetual Contract Data for futures prices is a random walk. This is similar to the conclusion by Howard (1988) that spot West Texas Intermediate Crude prices follow a random walk. Thus, both the futures and spot markets efficiently capture current information in prices

  1. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  2. History and performance of the Steelman Oil Field, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaychuk, J; Francis, R E

    1965-01-01

    This paper summarizes the development and performance of the Steelman oil field in southeastern Saskatchewan. Steelman was the first field in southeastern Saskatchewan in which pressure maintenance by waterflooding was attempted. Production is obtained, at a depth of 4,700 ft, mainly from the dolomitized limestone Midale beds reservoir. Some production is also obtained from the underlying Frobisher beds, but the productive development of this zone is quite sporadic. The discovery of the field in 1954 was followed by the drilling of approximately 800 wells on 80-acre spacing. An early decline in reservoir pressure and increasing gas-oil ratios in this solution gas drive reservoir caused the working-interest owners to unitize most of the field and institute a program of pressure maintenance by waterflooding. The bulk of the field is unitized as 6 separate units, with pressure maintenance being conducted by three operators. To the end of 1964, the cumulative oil production from the six-unit area was approximately 77,000,000 bpd.

  3. Pseudomonas sp. BUP6 produces a thermotolerant alkaline lipase with trans-esterification efficiency in producing biodiesel.

    Science.gov (United States)

    Priji, Prakasan; Sajith, Sreedharan; Faisal, Panichikkal Abdul; Benjamin, Sailas

    2017-12-01

    The present study describes the characteristics of a thermotolerant and alkaline lipase secreted by Pseudomonas sp. BUP6, a novel rumen bacterium isolated from Malabari goat, and its trans -esterification efficiency in producing biodiesel from used cooking oil (UCO). The extracellular lipase was purified to homogeneity (35.8 times purified with 14.8% yield) employing (NH 4 ) 2 SO 4 salt precipitation and Sephadex G-100 chromatography. The apparent molecular weight of this lipase on SDS-PAGE was 35 kDa, the identity of which was further confirmed by MALDI-TOF/MS. The purified lipase was found stable at a pH range of 7-9 with the maximum activity (707 U/ml) at pH 8.2; and was active at the temperature ranging from 35 to 50 °C with the optimum at 45 °C (891 U/ml). Triton X-100 and EDTA had no effect on the activity of lipase; whereas SDS, Tween-80 and β-mercaptoethanol inhibited its activity significantly. Moreover, Ca 2+ (1.0 mM) enhanced the activity of lipase (1428 U/ml) by 206% vis-à-vis initial activity; while Zn 2+ , Fe 2+ and Cu 2+ decreased the activity significantly. Using para -nitrophenyl palmitate as substrate, the K m (11.6 mM) and V max [668.9 μmol/(min/mg)] of the purified lipase were also determined. Crude lipase was used for analyzing its trans -esterification efficiency with used cooking oil and methanol which resulted in the worthy yield of fatty acid methyl esters, FAME (45%) at 37 °C, indicating its prospects in biodiesel industry. Thus, the lipase secreted by the rumen bacterium, Pseudomonas sp. BUP6, offers great potentials to be used in various industries including the production of biodiesel by trans -esterification.

  4. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  5. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  7. Oil-field equipment in Romania. Export trade information

    International Nuclear Information System (INIS)

    Tinis, R.

    1991-09-01

    The Industry Sector Analyses (I.S.A.) for oil field equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Romanian consumers to U.S. products, the competitive situation - Romanian production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Romanian tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Romanian market for oil field equipment

  8. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    Science.gov (United States)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  9. Testing the weak-form efficiency of the WTI crude oil futures market

    Science.gov (United States)

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Zhou, Wei-Xing

    2014-07-01

    The weak-form efficiency of energy futures markets has long been studied and empirical evidence suggests controversial conclusions. In this work, nonparametric methods are adopted to estimate the Hurst indexes of the WTI crude oil futures prices (1983-2012) and a strict statistical test in the spirit of bootstrapping is put forward to verify the weak-form market efficiency hypothesis. The results show that the crude oil futures market is efficient when the whole period is considered. When the whole series is divided into three sub-series separated by the outbreaks of the Gulf War and the Iraq War, it is found that the Gulf War reduced the efficiency of the market. If the sample is split into two sub-series based on the signing date of the North American Free Trade Agreement, the market is found to be inefficient in the sub-periods during which the Gulf War broke out. The same analysis on short-time series in moving windows shows that the market is inefficient only when some turbulent events occur, such as the oil price crash in 1985, the Gulf war, and the oil price crash in 2008.

  10. Contaminación del agua en fuentes cercanas a campos petrolíferos de Bolivia Water pollution in sources close to oil-producing fields of Bolivia

    Directory of Open Access Journals (Sweden)

    Silvia González Alonso

    2010-10-01

    Full Text Available OBJETIVO: Determinar las concentraciones de compuestos petroquímicos en las fuentes de agua de consumo para comunidades cercanas a campos petrolíferos del Chaco Boliviano. MÉTODOS: Se recogieron datos sobre concentraciones de hidrocarburos totales de petróleo (HTP, 16 hidrocarburos aromáticos policíclicos (HAP, incluidos el benceno, tolueno, etilbenceno y xilenos (BTEX, y 22 metales en muestras de 42 fuentes de agua de consumo humano situadas a menos de 30 km de un campo de extracción de petróleo. Se analizó la distribución de la concentración y el cumplimiento de los estándares definidos en las normativas boliviana, europea y estadounidense, así como en las recomendaciones de la Organización Mundial de la Salud. RESULTADOS: En 76,19% de las muestras se halló algún contaminante petroquímico en concentraciones superiores a alguna de las cuatro normativas de referencia. Las muestras de agua que presentaron mayor contaminación fueron las provenientes de grifos y ríos. Los contaminantes más frecuentes fueron HTP, HAP, aluminio, arsénico, manganeso y hierro. CONCLUSIONES: Las comunidades del Chaco Boliviano ubicadas en un radio de 30 km alrededor de los campos de extracción de petróleo consumen agua con concentraciones de HTP, HAP y metales muy por encima de los niveles permitidos por la normativa boliviana y los estándares internacionales, poniendo en grave riesgo la salud pública de sus habitantes.OBJECTIVE: To determine the concentrations of petrochemical compounds in the drinking water sources of communities located near oil-producing fields in the Bolivian Chaco region. METHODS: Data were collected on total petroleum hydrocarbons (TPH, 16 polycyclic aromatic hydrocarbons (PAH, including benzene, toluene, ethylbenzene, and xylenes (BTEX, and 22 metals in samples from 42 sources of water for human consumption located less than 30 km from an oil-producing field. Distribution of the concentration and adherence to the

  11. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  12. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  13. Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.

    Science.gov (United States)

    Shaw, D; Annett, J M; Doherty, B; Leslie, J C

    2007-09-01

    To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.

  14. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  15. Applying CFD in the Analysis of Heavy Oil/Water Separation Process via Hydrocyclone

    Directory of Open Access Journals (Sweden)

    K Angelim

    2017-06-01

    Full Text Available In recent years most of the oil reserves discovered has been related to heavy oil reservoirs whose reserves are abundant but still show operational difficulties. This fact provoked great interest of the petroleum companies in developing new technologies for increasing the heavy oil production. Produced water generation, effluent recovered from the production wells together with oil and natural gas, is among the greatest potential factors for environmental degradation. Thus, a new scenario of the oil industry appears requiring improvement in treatment units for produced water. Among the technological improvements in the facilities, the use of hydrocyclones has been applied in the treatment of the oily water. In this sense, this study aims to investigate numerically the separation process of heavy oil from a water stream via hydrocyclone, using the computational fluid dynamics technique. In the mathematical modeling was considered a two-phase, three-dimensional, stationary, isothermal and turbulent flow. Results of streamlines, pressure and volume fraction fields of the involved phases (oil and water into the hydrocyclone, and mechanical efficiency and pumping power of the fluids are shown and analyzed. In conclusion, it seems that with increasing fluid input velocity in the device there is an increase in pressure drop, indicating a greater pumping energy consumption of the mixture, and greatly influences the separation process efficiency.

  16. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  17. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao

    2015-01-01

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  18. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  19. Optimization of Offshore De-oiling Hydrocyclone Performance

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Løhndorf, Petar Durdevic; Pedersen, Simon

    , along with the facts that the global oil demand will continuously grow by 7 mb/d to 2020 and exceed 99 mb/d in 2035, meanwhile, many production fields turn to be matured and thereby the water flooding technology is more and more employed as a key enhanced oil recovery solution for these fields [9]. Fig......One of the biggest environmental concerns in offshore oil & gas production is the quality of tremendous amounts of produced water discharged into the oceans. Today, in average three barrels of water are produced along with each barrel of oil [9]. This concern will become more severe in the future...... companies, Maersk Oil and Ramboll Oil & Gas A/S, launched a research project HTF-PDPWAC with total budget of 10 million dkk. One of the focuses of this project is to optimization of the de-oiling hydrocyclone performance in order to improve the produced water treatment quality without sacrificing...

  20. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  1. Mobil positioning itself to become Canada's premier oil and gas company

    International Nuclear Information System (INIS)

    Thomas, A.

    1994-01-01

    To achieve its goal of becoming Canada's premier oil and gas company by the year 2000, Mobil Oil Canada is empowering its employees and applying appropriate technology to unlock resources and create value. Mobil produces 4.1 million m 3 of oil and natural gas liquids, 5.6 million m 3 /y of natural gas and 438,000 tonnes/y of sulfur. It also operates over 3,000 wells in western Canada and eleven gas processing plants, manages 1,700 km of pipeline, and has 33% interest in the Hibernia project on the Grand Banks. Oil lifting costs have decreased over the past three years from $3.40/bbl to $2.80/bbl and development costs are under $2/bbl. Innovative technology used to achieve high production and low costs include the use of three dimensional seismic surveys and horizontal drilling. Other techniques used at particular sites include installation of downhole injection regulators to control problems of segregation and metering between different water injection zones at the Carson Creek field, use of artificial lifts in gas wells, and a dual gas lift at the Rainbow Lake oil field. At the Lone Pine gas plant, the first Superclaus-99 sulfur recovery process was installed, reducing sulfur emissions by 60% and increasing recovery efficiency from 95% to 98%. Mobil has operated in Canada since 1940 and has made significant discoveries, including Canada's largest producing oil field, the Pembina. In 1971, Mobil discovered gas of commercial significance off the east coast and helped discover the Hibernia and Venture fields. The Hibernia project is scheduled to come on stream in 1997 and Mobil expects the economics of the project to be favorable, with a $12-13/bbl oil price needed to break even. 7 figs

  2. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  3. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  4. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  5. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  6. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation of produced waters radioactivity of oil and gas deposits in the Dnieper-Donets province

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2017-12-01

    Full Text Available The process of radioactive pollution of produced waters, oilfield equipment, oil-contaminated soils and sludge is widely spread and differs within the various oil and gas regions. Formation waters contained radioactive element isotopes become the significant source and cause of elevated level of equivalent dose power and as a consequence, an increase in the incidence among the population. The author's idea is formulation of specific recommendations on the decontamination of the investigated objects by conducting the necessary appropriate experimental studies. The purpose of the article is to determine the content of radionuclides, γ- and α-emitters in technogenic objects of Bugruvate oil and gas fields, and to reveal the relationship with the features of mineralogical composition, geological structure and technological process. The γ-spectrometric analysis was used to determine the radionuclide composition of the natural radiators of the 238U (226Ra, 214Pо, 214Bi and 232Th (228Ac, 212Pb, 212Вi series in samples of technological sludge, oil, individual soil samples and water. The content of radionuclides of α-emitters was determined using separate radiochemical techniques. It was investigated that the radioactivity of the formation water is mainly determined by 226Ra and 228Ra and the products of their decay.

  8. Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach

    NARCIS (Netherlands)

    H.H. Lean (Hooi Hooi); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2010-01-01

    textabstractThis paper examines the market efficiency of oil spot and futures prices by using a stochastic dominance (SD) approach. As there is no evidence of an SD relationship between oil spot and futures, we conclude that there is no arbitrage opportunity between these two markets, and that both

  9. Oil companies make cutbacks

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2014-01-01

    As oil prices are falling, the oil sector faces company restructuring, merger projects, closure of oil fields, and so on. Restructuring is motivated by the costs of offshore exploration and oil production projects. Saudi Arabia tries to fight the emergence of shale gases by reducing oil prices, and somehow succeeds as some projects in the USA are put into question again. Experts perceive this situation as an opportunity for the sector to improve its efficiency and reduce over-staffing

  10. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  11. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  12. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  13. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.

    Science.gov (United States)

    Asshifa Md Noh, Nur; Al-Ashraf Abdullah, Amirul; Nasir Mohamad Ibrahim, Mohamad; Ramli Mohd Yahya, Ahmad

    2012-01-01

    A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.

  14. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  15. Molecular imprinted hydrogel polymer (MIHP) as microbial immobilization media in artificial produced water treatment

    Science.gov (United States)

    Kardena, E.; Ridhati, S. L.; Helmy, Q.

    2018-01-01

    Produced water generated during oil and gas exploration and drilling, consists of many chemicals which used in drilling process. The production of produced water is over three fold of the oil production. The water-cut has increased over time and continues to do so because the fraction of oil in the reservoir decreases and it is more difficult to get the oil out from an old oil-field. It therefore requires more sea water to be injected in order to force the oil out; hence more produced water is generated. Produced water can pollute the environment if it is not treated properly. In this research, produced water will be treated biologically using bacterial consortium which is isolated from petroleum processing facility with Molecular Imprinted Hydrogel Polymer (MIHP) for microbial immobilization media. Microbial growth rate is determined by measuring the MLVSS and hydrogel mass, also by SEM-EDS analysis. SEM-EDS analysis is an analysis to evidence the presence of microbe trapped in hydrogel, and also to determine the types and weight of the molecules of hydrogel. From this research, suspended microbial growth rate was found at 0.1532/days and attached microbial growth rate was 0.3322/days. Furthermore, based on SEM analysis, microbe is entrapped inside the hydrogel. Effectiveness of microbial degradation activity was determined by measuring organic materials as COD. Based on COD measurement, degradation rate of organic materials in wastewater is 0.3089/days, with maximum COD removal efficiency of 76.67%.

  16. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  17. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  18. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  20. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    Science.gov (United States)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  1. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    Science.gov (United States)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  2. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  3. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  4. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  5. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  6. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  7. Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador.

    Science.gov (United States)

    Maddela, Naga Raju; Scalvenzi, Laura; Venkateswarlu, Kadiyala

    2017-10-01

    A field-level feasibility study was conducted to determine total petroleum hydrocarbon (TPH)-degrading potential of two bacterial strains, Bacillus thuringiensis B3 and B. cereus B6, and two fungi, Geomyces pannorum HR and Geomyces sp. strain HV, all soil isolates obtained from an oil field located in north-east region of Ecuador. Crude oil-treated soil samples contained in wooden boxes received a mixture of all the four microorganisms and were incubated for 90 days in an open low-land area of Amazon rainforest. The percent removal of TPHs in soil samples that received the mixed microbial inoculum was 87.45, indicating the great potential of the soil isolates in field-scale removal of crude oil. The TPHs-degrading efficiency was verified by determining the toxicity of residues, remained in soil after biodegradation, toward viability of Artemia salina or seed germination and plant growth of cowpea. Our results clearly suggest that the selected soil isolates of bacteria and fungi could be effectively used for large-scale bioremediation of sites contaminated with crude oil.

  8. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    Energy Technology Data Exchange (ETDEWEB)

    Campaner, N.; Yenikeyeff, S.

    2008-07-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the

  9. Evaluation of input output efficiency of oil field considering undesirable output —A case study of sandstone reservoir in Xinjiang oilfield

    Science.gov (United States)

    Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin

    2017-06-01

    Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.

  10. Tenth oil recovery conference

    International Nuclear Information System (INIS)

    Sleeper, R.

    1993-01-01

    The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base

  11. Oil and gas field code master list 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  12. Succession in the petroleum reservoir microbiome through an oil field production lifecycle.

    Science.gov (United States)

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-09-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H 2 S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new

  13. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  14. Economic Efficiency of Artisanal Fishing Households under Oil Pollution Environment in the Niger Delta Region of Nigeria

    Directory of Open Access Journals (Sweden)

    Gbigbi, TM.

    2014-01-01

    Full Text Available Fish supplies more than 87% of the animal protein in Nigeria, and more than 90% of coastal communities depend solely on fishing and fisheries related activities for their survival. Available information however, shows that Nigeria's inland water bodies are producing less than 13% of their estimated fishery potential. And domestic demand for fish has never been met by dependence on output from available aquatic sources. Nigeria therefore imports over US$ 200 million worth of frozen fish per annum. The capacity of artisanal fisheries to play its role of bridging this food gap, providing employment and generating income, particularly for the coastal communities in Nigeria, will largely depend on the adoption of appropriate management strategies that will ensure efficiency and sustainability given their debilitating oil pollution environment. This study employed a Cobb- Douglas stochastic frontier cost function to measure the level of economic efficiency and its determinants among these households. A multi-stage random sampling technique was used to select 160 respondents from whom input-output data, prices and socioeconomic characteristics were obtained. The results of the analysis showed that individual levels of economic efficiency ranged from 0.10 - 0.96 with a mean of 0.68. While age, household size and number of fishing trips made in a week decreased, access to credit, membership of co-operative society, and oil spill increased, significantly, the respondents' level of economic inefficiency. These observations particularly suggest that the farmers were yet to harness the potentials of farm credit and membership of cooperative societies in their farm business, perhaps as a result of poverty. We recommend training workshops and seminars to remedy this. There is also the need for policies that could compel oil companies to minimize oil spill within the farmers' fishing environment. The adverse effects of oil spill on the environment and the

  15. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China.

    Science.gov (United States)

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-03-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.

  16. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  17. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-06-01

    This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.

  18. Oil spill contingency planning for offshore oil fields - a new concept established for the Norwegian continental shelf

    International Nuclear Information System (INIS)

    Singsaas, I.; Reed, M.; Nygaard, T.; Sundnes, G.Jr.

    1998-01-01

    The development of a new concept for oil spill contingency planning to be used for offshore oil fields on the Norwegian continental shelf was discussed. The factors which are important in developing a good oil spill contingency plan include a good understanding of: (1) the fate, behaviour and weathering of the specific oil, (2) relevant oil spill scenarios, (3) drift and spreading of the oil, and (4) specific requirements for the effectiveness of the chosen response options. The oil spill contingency and response (OSCAR) model was used for quantitative comparison of alternative response options. 21 refs., 2 tabs., 7 figs

  19. Effects of Watering and Nitrogen Fertilization on Yield and Water and Nitrogen Use Efficiency of Cropping Oil Sunflower

    Directory of Open Access Journals (Sweden)

    TAN Jian-xin

    2015-10-01

    Full Text Available The field experiment with split-plot design was conducted to study the effects of the interaction of water and nitrogen fertilization on the growth and yield of oil sunflower, water and nitrogen use efficiency of cropping oil sunflower. This experiment set three irrigation rate treatments, including high irrigation treatment (5 250 m3·hm-2, middle irrigation treatment (3 750 m3·hm-2, low irrigation treatment (2 250 m3·hm-2, and four nitrogen application rate treatments, covering no nitrogen fertilization treatment (0 kg·hm-2, low nitrogen application treatment (120 kg·hm-2, middle nitrogen application treatment (240 kg·hm-2 and high nitrogen application treatment (360 kg·hm-2. The results showed that the nitrogen absorption and nitrogen use efficiency of cropping oil sunflower increased as the irrigation rate increased. With the nitrogen application rate increased, the yield of cropping oil sunflower was increased when the nitrogen application rate was 0~240 kg·hm-2, but beyond the 240 kg·hm-2, there was no significant increase. With the irrigation rate increased, the water consumption amount of cropping oil sunflower increased all the time, but the water use efficiency increased first, and hen decreased. Besides there was no significant difference between 240 kg·hm-2 and 360 kg·hm-2 treatment. Under our experiment condition, during the cropping oil sunflower growth period, when the irrigation rate was 5 250 m3·hm-2 (high irrigation rate and the nitrogen ertilization was 360 m3·hm-2 (high nitrogen application rate, the yield of cropping oil sunflower was 3 598 kg·hm-2. When the irrigation rate was 3 750 m3·hm-2 (middle irrigation rate and the nitrogen fertilization was 240 m3·hm-2 (middle nitrogen application rate, the yield was 3 518 kg·hm-2, with the yield components similar with the high irrigation rate and high nitrogen application rate treatment. Considering various factors, middle irrigation rate and middle nitrogen

  20. Agulha (Potiguar Basin): an old field with exploitation new ideas; Agulha (Bacia Potiguar): um velho campo com novas ideias de explotacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diogenes C. de; Rodrigues, Luis G. [PETROBRAS, Natal, RN (Brazil)

    2004-07-01

    The integrated reservoir analysis of the Agulha field has led to several alternative actions to improve oil recovery, despite the fact that the field has already produced more than 45% of the currently mapped oil in place in nearly three decades. Studies were carried out taking into account not only elements of production behavior, but also the geologic aspects of the productive zones. Among various proposed actions, the following can be outlined: change of the water injection quota; workover for improvement of the swept efficiency; modification of the production schedule of some wells; improvement on the efficiency of the gas lift system. Additionally, the possibility that some wells be systematically producing from some hydrocarbon accumulations in volcanic rocks (not classified as reservoir yet), which is feeding traditional turbidities reservoirs is also investigated. The use of geochemical saturation, image and cement logs may lead to identify new oil producing horizons, including non-conventional reservoirs. In order to support new ideas on reservoir geometry and subsequent modeling, a new seismic acquisition is proposed. (author)

  1. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  3. Predicting the nutritional health status of locally produced palm oil ...

    African Journals Online (AJOL)

    Three physical properties of locally produced palm oil – viscosity, thermal conductivity and density for varying temperatures were determined. The values obtained were compared with corresponding internationally stipulated standard values using statistics of mean and graphs. The purpose of the comparison was to predict ...

  4. Maximizing heavy oil value while minimizing environmental impact with HTL upgrading of heavy to light oil

    Energy Technology Data Exchange (ETDEWEB)

    Koshka, E. [Ivanhoe Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described Ivanhoe Energy Inc.'s proprietary HTL upgrading technology which was designed to process heavy oil in the field to cost effectively produce an upgraded synthetic oil that meets pipeline requirements. Steam and electricity are generated from the energy produced during the process. HTL improves the economics of heavy oil production by reducing the need for natural gas and diluent, and by capturing most of the heavy to light oil price differential. Integrated HTL heavy oil production also provides many environmental benefits regarding greenhouse gas (GHG) emissions. The HTL upgrading process is ready for full scale application. tabs., figs.

  5. The Parameters Controlling the Burning Efficiency of In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Jomaas, Grunde

    2017-01-01

    Parameters that control the burning efficiency of in-situ burning of crude oil on water were identified by studying the influence of the initial slick thickness, vaporization order, oil slick diameter, weathering state of the oil, heat losses to the water layer and heat flux to the fuel surface...... on the burning efficiency for light and heavy crude oils. These parameters were studied in several small scale and intermediate scale experimental setups. The results showed that the heat losses to the water layer increase with increasing burning time because the components in a crude oil evaporate from volatile...... to non-volatile. Due to the relatively low heat feedback (reradiation and convection, in kW/m2) to the fuel surface of small scale pool fires, as compared to large scale pool fires, these heat losses were shown to limit the burning efficiency in small scale experiments. By subjecting small scale crude...

  6. The Application of Biogeophysical Studies in the Search for Oil Fields

    Directory of Open Access Journals (Sweden)

    M.Sh. Mardanov

    2017-08-01

    Full Text Available The article gives an analysis of qualitative and quantitative indices of biogeophysical anomalies (BGPh-anomalies recorded over oil deposits, obtained as a result of experimental and methodological work on the oil fields studied in detail. By the degree of intensity and complexity of the BGPh-anomalies registered in digital form with special equipment developed by the authors, a set of qualitative and quantitative features has been developed that make it possible to determine the genetic type of the structural trap of the identified oil deposit, and, under favorable conditions, the depth of its occurrence. BGPh-anomalies of the “tectonic fault” type, their influence on the “oil deposit” type of BGPh-anomalies have been studied. The limiting values ​​of the watercut in the exploited oil reservoir are determined, when exceeding, the oil reservoir ceases to create a BGPh-anomaly such as “oil deposit”, which can be used for the areal monitoring of oil fields. The minimum thickness of the oil-saturated reservoir is determined, which creates an anomaly of the “oil deposit” type. Based on this analysis, it is assumed that the BGPh-anomalies arise only over oil deposits, potential for industrial development.

  7. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  8. Production of Detergent from Castor Oil

    Directory of Open Access Journals (Sweden)

    Abubakar Garba ISAH

    2006-07-01

    Full Text Available This research work was carried out with the objective of extraction of oil from castor seeds and its utilization to produce a synthetic detergent. Solvent extraction method was employed in extracting the oil and the total percent oil yield was found to be 23.8%. The experimentally determined saponification value of the oil was 183.7275mgKOH/g of oil. The detergent efficiency, determined as a measure of the foamability of the detergent was found to be 2.6cm. The pH tests revealed mildly basic properties. The color, scent and efficiency of the detergent were improved with the addition of bleaching agent, perfume and foaming agents respectively.

  9. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    Science.gov (United States)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  10. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  11. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  12. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  13. Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach

    Energy Technology Data Exchange (ETDEWEB)

    Lean, Hooi Hooi [Economics Program, School of Social Sciences, Universiti Sains Malaysia (Malaysia); McAleer, Michael [Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, and, Tinbergen Institute (Netherlands); Wong, Wing-Keung, E-mail: awong@hkbu.edu.h [Department of Economics, Hong Kong Baptist University (Hong Kong)

    2010-09-15

    This paper examines the market efficiency of oil spot and futures prices by using both mean-variance (MV) and stochastic dominance (SD) approaches. Based on the West Texas Intermediate crude oil data for the sample period 1989-2008, we find no evidence of any MV and SD relationships between oil spot and futures indices. This infers that there is no arbitrage opportunity between these two markets, spot and futures do not dominate one another, investors are indifferent to investing spot or futures, and the spot and futures oil markets are efficient and rational. The empirical findings are robust to each sub-period before and after the crises for different crises, and also to portfolio diversification.

  14. Market efficiency of oil spot and futures. A mean-variance and stochastic dominance approach

    Energy Technology Data Exchange (ETDEWEB)

    Lean, Hooi Hooi [Economics Program, School of Social Sciences, Universiti Sains Malaysia (Malaysia); McAleer, Michael [Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam (Netherlands); Wong, Wing-Keung [Department of Economics, Hong Kong Baptist University (China); Tinbergen Institute (Netherlands)

    2010-09-15

    This paper examines the market efficiency of oil spot and futures prices by using both mean-variance (MV) and stochastic dominance (SD) approaches. Based on the West Texas Intermediate crude oil data for the sample period 1989-2008, we find no evidence of any MV and SD relationships between oil spot and futures indices. This infers that there is no arbitrage opportunity between these two markets, spot and futures do not dominate one another, investors are indifferent to investing spot or futures, and the spot and futures oil markets are efficient and rational. The empirical findings are robust to each sub-period before and after the crises for different crises, and also to portfolio diversification. (author)

  15. Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach

    International Nuclear Information System (INIS)

    Lean, Hooi Hooi; McAleer, Michael; Wong, Wing-Keung

    2010-01-01

    This paper examines the market efficiency of oil spot and futures prices by using both mean-variance (MV) and stochastic dominance (SD) approaches. Based on the West Texas Intermediate crude oil data for the sample period 1989-2008, we find no evidence of any MV and SD relationships between oil spot and futures indices. This infers that there is no arbitrage opportunity between these two markets, spot and futures do not dominate one another, investors are indifferent to investing spot or futures, and the spot and futures oil markets are efficient and rational. The empirical findings are robust to each sub-period before and after the crises for different crises, and also to portfolio diversification.

  16. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    Science.gov (United States)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  17. Current status and future of developing Upper Cretaceous oil deposits in the Oktyabrskoye field

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshnikova, A.I.; Lapshin, M.Ye.

    1979-01-01

    The Upper Cretaceous deposit at the Oktyabrskoye field was discovered in 1966. Fractured, cavernous limestone, similar to the producing rock of many Upper Cretaceous deposits of the Chechen Ingush ASSR, form the reservoir. The deposit is situated toward a narrow anticlinal fold with angles of rock drop 40-45/sup 0/. Its heighth is 950m; the average capacity of the producing part is 400m; the deposit depth is 4200-5150m; the layer temperature is 150-160/sup 0/C. Exploratory work on the deposit is incomplete. The deposit was brought under industrial development in 1974. The development is conducted based on a refined, technological system, that includes contour flooding to maintain layer pressure in the center to edge part of the deposit at 36.0 MPa. This somewhat increases the pressure of the gas saturated oil, as well as the subsequent increase in layer pressure to 45.9 MPa for assuring wide open well flow during the late stages of development. Currently, the amount of oil obtained somewhat exceeds the planned level but the pumping volume is less than that planned. The deposit has not yet been studied sufficiently. Its boundaries have not been established; the locations of the initial and working water/oil edges are conditional; the structural plan is approximate. Data on the degree of waterflooding in the deposit and the magnitude of the actual oil yield coefficient are lacking inasmuch as the amount of oil already extracted at this time exceeds the calculated reserves. To increase the effectiveness of further development of the deposit and acquisition of the necessary data for calculating oil reserves, the deposit will be studied according to a special plan over a number of new drilling wells.

  18. Determination of naturally occurring radionuclides in scales produced in oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M S; Ali, A F; Kitue, M; Kawash, A [Atomic Energy Commission, Dept. of Radiation Protection and Nuclear Safety, Damascus (Syrian Arab Republic)

    1997-04-01

    Scales produced by Oil production operations contain relatively high concentrations of natural radionuclides especially radium isotopes (Ra-226, Ra-228, Ra-224) and their daughters. These scales deposit in oil surface equipment such as separator tanks, tubular, and storage tanks. In this work, naturally occurring radionuclides and radiation exposure levels in some Syrian oil lines have been determined. Radiation measurements have shown high radiation exposure in some production sites and reached about 23 {mu}Sv/hr (production wellhead) which is higher than the normal background (0.09 - 012 {mu}Sv/hr). The highest value of the exposure around storage tanks was about o.5 {mu}Sv/hr. Moreover, the highest concentration of radionuclides in scales were found to be 47000 Bq/Kg and 55000 Bq/Kg for Ra-226 and Ra-228 respectively while in sludge samples, the Ra-226 concentration was about 24.2 Bq/Kg, a relatively very low activity. In addition, results have shown that soil contamination can occur by disposal of produced water to the surrounding environment. Furthermore, the present paper shows some of protection procedures, which should be followed by workers for radiation protection. (author). 10 refs., 4 tabs.

  19. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  2. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  3. Determining an Efficient Solvent Extraction Parameters for Re-Refining of Waste Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2012-04-01

    Full Text Available Re-refining of vehicle waste lubricating oil by solvent extraction is one of the efficient and cheapest methods. Three extracting solvents MEK (Methyl-Ethyl-Ketone, 1-butanol, 2-propanol were determined experimentally for their performance based on the parameters i.e. solvent type, solvent oil ratio and extraction temperature. From the experimental results it was observed the MEK performance was highest based on the lowest oil percent losses and highest sludge removal. Further, when temperature of extraction increased the oil losses percent also decreased. This is due to the solvent ability that dissolves the base oil in waste lubricating oil and determines the best SOR (Solvent Oil Ratio and extraction temperatures.

  4. Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce.

    Science.gov (United States)

    Özcan, Gülçin; Demirel Zorba, Nükhet Nilüfer

    2016-06-01

    Salads prepared from contaminated fresh produce have a high risk of causing food-borne illnesses. Essential oils obtained from plants have antimicrobial activity and may provide a natural approach to reduce the pathogens on fresh produce. Additionally, ultrasound treatments have been shown to reduce the microbial counts on different foods. The objective of this study was to investigate the antimicrobial activities of cinnamon and lemon essential oils in vitro and in food applications. Mixtures of lettuce, parsley and dill were inoculated with Listeria monocytogenes and then dip-treated for 5 min in one of the following treatments: sterile tap water, chlorinated water, 1% lemon essential oil, 2% cinnamon essential oil or 2% cinnamon essential oil + ultrasound. The samples were stored at 4 ℃ and collected at d 0, 1, 3, 5, 7 and 9 post inoculation. The 1% lemon (4 log) and 2% cinnamon (2 log) essential oil washes provided partial inhibition against L. monocytogenes by d 1. The combined application of 2% cinnamon oil and ultrasound resulted in only 0.85 log inhibition by d 1; however, the number of L. monocytogenes increased during storage and became nearly equal to the control at d 9. Therefore, different combinations of essential oils with other antimicrobials or novel technologies are required. © The Author(s) 2015.

  5. CO{sub 2} emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, J M; Gustavsson, L [Ecotechnology and Environmental Science, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2008-03-15

    We examine consequences of new energy technologies in the pulp and paper industry with respect to net CO{sub 2} emissions and oil use. The entire production chain from the extraction of primary resources is included in the analysis. Stand-alone production of electricity and transportation fuel from biomass is included to balance the systems compared, so that they produce the same CO{sub 2} emission and oil use reductions. The technologies considered are black liquor gasification (BLG) with electricity and motor fuels production in chemical pulp mills and increased energy efficiency in thermomechanical pulp mills. The technologies are evaluated with respect to net CO{sub 2} emission, oil use, primary energy use, biomass use and monetary cost. We find that BLG in chemical pulp mills is favourable compared to stand-alone production of fuels and electricity from biomass. It is more efficient to implement BLG with motor fuels production and stand-alone electricity production from biomass, than to implement BLG with electricity production and stand-alone production of motor fuels. Increased energy efficiency in refining of thermomechanical pulp gives CO{sub 2} savings more efficiently than stand-alone production of electricity from biomass. Sensitivity analysis indicates that our conclusions are robust with respect to energy and biomass prices and the choice of coal or natural gas for marginal electricity. Newsprint from thermomechanical pulp would require slightly less biomass and have lower costs than paper from chemical pulp, per metric ton (t) product, when the systems are also required to render the same oil use and CO{sub 2} emission reductions. Substituting mineral fillers for 25% of the chemical pulp changes the balance in favour of the chemical pulp paper. At an oil price of 40 US$/barrel, all studied pulp and paper mill technology improvements give unchanged or reduced monetary costs also when oil use and CO{sub 2} emissions are not balanced with stand

  6. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  7. Index to names of oil and gas fields in Oklahoma, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Lacina, J.L.

    1979-05-01

    This index contains the current and discontinued names of the oil and gas fields in Oklahoma. They are listed according to assignments made by the Oklahoma Nomenclature Committee of the Kansas-Oklahoma Division, Mid-Continent Oil and Gas Association. Also listed are some names which have been used locally or unofficially for certain areas. Included also are: (1) the date when the field was named; (2) the description of location by county, township, and section; and (3) a statement as to the disposition of a field when it was combined with other fields.

  8. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.

    Science.gov (United States)

    Xia, Wen-Jie; Luo, Zhi-Bin; Dong, Han-Ping; Yu, Li; Cui, Qing-Feng; Bi, Yong-Qiang

    2012-03-01

    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0-8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI(24) ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.

  9. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  10. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  11. Flavor profiles of monovarietal virgin olive oils produced in the Oriental region of Morocco

    Directory of Open Access Journals (Sweden)

    Mansouri Farid

    2017-09-01

    Full Text Available The purpose of this study is the evaluation of flavor profiles of monovarietal virgin olive oils (VOO produced in the Oriental region of Morocco via the characterization of volatile compounds, using SPME-GC/MS technique, and the determination of total phenolic content (colorimetric method. The study concerns oils of three European olive cultivars (Arbosana, Arbequina and Koroneiki which were recently introduced in Morocco under irrigated high-density plantation system. GC/MS aroma profiles of analyzed VOOs showed the presence of 35 volatile compounds. The major compounds in such oils are C6 compounds produced from linoleic and linolenic acids via lipoxygenase pathway such as trans-2-hexenal, cis-2-hexenal, cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-3-hexen-1-ol acetate, hexanal and 1-hexanol in different proportions depending on the cultivar (p < 0.05. In addition, statistical analyses indicate that the analyzed VOOs have different aroma profiles. Arbequina oil has a high proportion of compounds with sensory notes “green” and “sweet” giving it a fruity sensation compared to Arbosana and Koroneiki. In parallel, Arbosana and Koroneiki oils are rich in phenolic compounds and provide relatively bitter and pungent tastes to these oils.

  12. Isotopic characterization and genetic origin of crude oils from Gulf of Suez and western desert fields in Egypt

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.

    2006-01-01

    Stable carbon isotopes were used to asses the general characteristics of the western desert and Gulf of Suez crude oils in accordance with hydrocarbon generation, source rocks, thermal gradient and maturation level. The carbon isotopic results of all the analyzed oil samples in both areas lie in the range from -29.62 to -24.11 %. The av. σ 13 C values in the Gulf of Suez reaches about -28.6% and -26.4% in western desert. It was accounted a marginal difference between the two areas by about 2.5 : 3% in carbon-13 isotope of the whole oil indicated two distinct oil types of different organic input and varies in the depositional environment. It was found that Gulf of Suez oils are dominated by marine organic matter (plankton algae) deposited in saline environment. The derived oils from the northern and central provinces of the Gulf are isotopically light, higher in sulfur content, lower in API gravity degree and have Pristane/Phytane (Pr/Ph) ratio less than or equal one (Pr/Ph = 1). In the southern province, about 0.5% isotopic enrichment was recorded in the produced oils from shallower depths, associated with gradual increment in API and maturity level as thermal gradient increase. However, low API gravity degree and less maturity of the Gulf of Suez oils could be related to the rifting temperature that forced and accelerated the expulsion rate and hydrocarbon generation prior reaching higher maturation levels. On the other hand, the produced oils from the western desert fields belong mostly to terrestrial organic debris (with minor marine fragment in some basins) deposited at deeper geological formations. It is characterized by isotopic enrichment, paraffinic waxy oils, low in sulphur content, have Pr/Ph = 1, high in API gravity and maturity level. Hydrocarbon generated from the western desert fields has been controlled by time-temperature effect in the source rocks and reservoirs where the humic organic matter are affected by high temperature over longer period of

  13. Getting Over the Barrel- Achieving Independence from Foreign Oil in 2018

    National Research Council Canada - National Science Library

    Haigh, Christopher S

    2009-01-01

    The United States can achieve independence from foreign oil in 2018. Increasing production from current oil fields, developing untapped oil resources, converting coal to oil and oil shale extraction can produce an additional...

  14. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    Science.gov (United States)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-12-03

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  15. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    Oballa, M.; Simanzhenkov, V.; Clark, P.; Laureshen, C.; Plessis du, D.

    2006-01-01

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  16. The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves

    International Nuclear Information System (INIS)

    Jakobsson, Kristofer; Bentley, Roger; Söderbergh, Bengt; Aleklett, Kjell

    2012-01-01

    There is a lively debate between ‘concerned’ and ‘unconcerned’ analysts regarding the future availability and affordability of oil. We critically examine two interrelated and seemingly plausible arguments for an unconcerned view: (1) there is a growing amount of remaining reserves; (2) there is a large amount of oil with a relatively low average production cost. These statements are unconvincing on both theoretical and empirical grounds. Oil availability is about flows rather than stocks, and average cost is not relevant in the determination of price and output. We subsequently implement a bottom-up model of regional oil production with micro-foundations in both natural science and economics. An oil producer optimizes net present value under the constraints of reservoir dynamics, technological capacity and economic circumstances. Optimal production profiles for different reservoir drives and economic scenarios are derived. The field model is then combined with a discovery model of random sampling from a lognormal field size-frequency distribution. Regional discovery and production scenarios are generated. Our approach does not rely on the simple assumptions of top-down models such as the Hubbert curve – however it leads to the same qualitative result that production peaks when a substantial fraction of the recoverable resource remains in-ground. - Highlights: ► Remaining oil reserves and average costs are of limited use in forecasting. ► We present a bottom-up approach to the modeling of regional oil production. ► Producers maximize net present value under technological and physical constraints. ► Exploration is modeled as random sampling from a lognormal field size distribution. ► Regional production starts declining before half of the recoverable oil is produced.

  17. Re-injection of produced water: ''Environmental friendliness pays off''

    International Nuclear Information System (INIS)

    Bjerke, E.

    1995-01-01

    The article deals with the re-injection of produced water for minimizing the emission of polluting components and for enhancing the oil recovery on the Norwegian oil field Ula. A closed cycle system is installed increasing the oil production by 4-5.000 bbl per day

  18. Optimizing the recovery efficiency of Finnish oil combating vessels in the Gulf of Finland using Bayesian Networks.

    Science.gov (United States)

    Lehikoinen, Annukka; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari

    2013-02-19

    Oil transport has greatly increased in the Gulf of Finland over the years, and risks of an oil accident occurring have risen. Thus, an effective oil combating strategy is needed. We developed a Bayesian Network (BN) to examine the recovery efficiency and optimal disposition of the Finnish oil combating vessels in the Gulf of Finland (GoF), Eastern Baltic Sea. Four alternative home harbors, five accident points, and ten oil combating vessels were included in the model to find the optimal disposition policy that would maximize the recovery efficiency. With this composition, the placement of the oil combating vessels seems not to have a significant effect on the recovery efficiency. The process seems to be strongly controlled by certain random factors independent of human action, e.g. wave height and stranding time of the oil. Therefore, the success of oil combating is rather uncertain, so it is also important to develop activities that aim for preventing accidents. We found that the model developed is suitable for this type of multidecision optimization. The methodology, results, and practices are further discussed.

  19. Plastics - the sustainable way to use Oil and Gas

    Energy Technology Data Exchange (ETDEWEB)

    Siebourg, Wolfgang

    2009-07-01

    Conclusions (drawn by the author): Plastics are a sustainable use of oil and gas - Plastic products enable significant savings of energy and GHG emissions particularly in the use phase; - Plastic products help use resources in the most efficient way. Restricting plastics relative growth would result in increased energy consumption. Diversion from landfill would increase resource efficiency. Waste-to-Energy is an additional resource and is complementary to mechanical recycling. Plastics producers and the Oil and Gas industry should cooperate to produce reliable consumption data. Oil and Gas industry should develop and maintain European (world) eco-profiles (cradle to gate) for their respective industry. (author)

  20. Organic geochemistry of heavy/extra heavy oils from sidewall cores, Lower Lagunillas Member, Tia Juana Field, Maracaibo Basin, Venenzuela

    Energy Technology Data Exchange (ETDEWEB)

    Tocco, R.; Alberdi, M. [PDVSA-Inteveo S.A., Caracas (Venezuela)

    2002-10-01

    The study of 22 oils from sidewall cores taken at different depths in the Lower Lagunillas Member, well LSJ-AB, Tia Juana Field, Maracaibo Lake is presented, with the purpose of predicting the intervals that present the best crude oil quality. Differences were detected in the biodegradation levels of the studied samples, which are correlated with the depth at which the sidewall core was taken. The API gravity was considered for the oils from each sidewall core and it was found that toward the top of the sequence, the oils have an API gravity of 10.6-11.2{sup o}C, while toward the base part of the sequence, the well produces extra heavy oils with an API gravity that varies between 8.2 and 8.7{sup o}. 12 refs., 5 figs., 1 tab.

  1. 16. International oil field chemistry symposium

    International Nuclear Information System (INIS)

    2006-03-01

    The symposium deals with topics on well chemicals, petrochemicals, well injection fluids, reservoir describing methods, reservoir exploitation enhancing chemicals, corrosion inhibitors, production methods and chemical aspects of maintenance, multiphase flow and reservoir geochemistry. The environmental effects of the chemicals and preservation of the environment is also focussed on. Some aspects of decommissioning of oil fields are dealt with

  2. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  3. A new submarine oil-water separation system

    Science.gov (United States)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  4. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  5. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  6. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  7. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction.

    Science.gov (United States)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gómez-Muñoz, Beatriz; García-Ruiz, Roberto

    2016-12-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    Energy Technology Data Exchange (ETDEWEB)

    Bonan, Roberta F. [Departamento de Engenharia de Materiais (DEMAT), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Bonan, Paulo R.F.; Batista, André U.D.; Sampaio, Fábio C.; Albuquerque, Allan J.R. [Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Moraes, Maria C.B. [Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Ecológica, W/5 Norte (Final) Cenargen (Laboratório de Semioquímicos) ASA NORTE, 70770900 Brasília, DF (Brazil); Mattoso, Luiz H.C. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação Agropecuária (CNPDIA), Rua XV de Novembro, 1452, Centro, 13.560, 970 São Carlos, SP (Brazil); Glenn, Gregory M. [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Bioproduct Chemistry and Engineering - BCE, Albany, CA 94710 (United States); and others

    2015-03-01

    In this study poly(lactic acid) (PLA) and polyvinylpyrrolidone (PVP) micro- and nanofiber mats loaded with Copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The Copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/PVP blends containing 20% (wt.%) oil were spun and characterized by scanning electron microscopy (SEM) and by studying the surface contact angle, in vitro release rate, and antimicrobial activity. All compositions evaluated were able to produce continuous and smooth fibers by SBS. The addition of PVP increased fiber diameter, and decreased the surface contact angle. GC analysis demonstrated that the main component of the Copaiba oil was β-caryophyllene, a known antimicrobial agent. In vitro release tests of Copaiba oil volatiles demonstrated a higher release rate in fibers containing PVP. Fiber mats made from blends containing higher amounts of PVP had greater antimicrobial action against Staphylococcus aureus. The results confirm the potential of the fiber mats for use in controlled drug release and could lead to promising applications in the biomedical field. - Highlights: • An efficient method for production of antimicrobial nanofiber mats using solution blow spinning was reported. • Nanofiber mats containing Copaiba oil were efficient against Staphylococcus aureus. • Nanofiber composition changed morphological properties and antimicrobial action.

  9. Improve The Efficiency Of The Study Of Complex Reservoirs And Hydrocarbon Deposits - East Baghdad Field

    Directory of Open Access Journals (Sweden)

    Sudad H. Al-Obaidi

    2015-08-01

    Full Text Available Practical value of this work consists in increasing the efficiency of exploration for oil and gas fields in Eastern Baghdad by optimizing and reducing the complex of well logging coring sampling and well testing of the formation beds and computerizing the data of interpretation to ensure the required accuracy and reliability of the determination of petrophysical parameters that will clarify and increase proven reserves of hydrocarbon fields in Eastern Baghdad. In order to calculate the most accurate water saturation values for each interval of Zubair formation a specific modified form of Archie equation corresponding to this formation was developed.

  10. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  11. Competitive, microbially-mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir.

    Science.gov (United States)

    Lambo, Adewale J; Noke, Kim; Larter, Steve R; Voordouw, Gerrit

    2008-12-01

    Fields from which oil is produced by injection of sulfate-bearing water often exhibit an increase in sulfide concentration with time (souring). Nitrate added to the injection water lowers the sulfide concentration by the action of sulfide-oxidizing, nitrate-reducing bacteria (SO-NRB). However, the injected nitrate can also be reduced with oil organics by heterotrophic NRB (hNRB). Aqueous volatile fatty acids (VFAs; a mixture of acetate, propionate, and butyrate) are considered important electron donors in this regard. Injection and produced waters from a western Canadian oil field with a low in situ reservoir temperature (30 degrees C) had only 0.1-0.2 mM VFAs. Amendment of these waters with nitrate gave therefore only partial reduction. More nitrate was reduced when 2% (v/v) oil was added, with light oil giving more reduction than heavy oil. GC-MS analysis of in vitro degraded oils and electron balance considerations indicated that toluene served as the primary electron donor for nitrate reduction. The differences in the extent of nitrate reduction were thus related to the toluene content of the light and heavy oil (30 and 5 mM, respectively). Reduction of nitrate with sulfide by SO-NRB always preceded that with oil organics by hNRB, even though microbially catalyzed kinetics with either electron donor were similar. Inhibition of hNRB by sulfide is responsible for this phenomenon. Injected nitrate will thus initially be reduced with sulfide through the action of SO-NRB. However, once sulfide has been eliminated from the near-injection wellbore region, oil organics will be targeted by the action of hNRB. Hence, despite the kinetic advantage of SO-NRB, the nitrate dose required to eliminate sulfide from a reservoir depends on the concentration of hNRB-degradable oil organics, with toluene being the most important in the field under study. Because the toluene concentration is lower in heavy oilthan in light oil, nitrate injection into a heavy-oil-producing field of

  12. Modeling OPEC behavior: theories of risk aversion for oil producer decisions

    International Nuclear Information System (INIS)

    Reynolds, D.B.

    1999-01-01

    Theories of OPEC such as price leadership, cartel, or game theoretic models suggest an incentive for OPEC members to expand their production capacity well above current levels in order to maximize revenues. Yet individual OPEC members consistently explore for and develop oil fields at a level well below their potential. The cause of low oil exploration and development efforts among OPEC members, and even some non-OPEC members, may have to do with risk aversion. This paper describes an alternative theory for OPEC behavior based on risk aversion using a two piece non-Neumann-Morgenstern utility function similar to Fishburn and Koehenberger (1979, Decision Science 10, 503-518), and Friedman and Savage (1948, Journal of political Economy 56). The model shows possible low oil production behavior. (author)

  13. Radionuclides in produced water from Norwegian oil and gas installations - concentrations and bioavailability

    International Nuclear Information System (INIS)

    Eriksen, D.Oe.; Sidhu, R.; Stralberg, E.; Iden, K.I.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M.H.G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226 Ra and 228 Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals. (author)

  14. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  15. Medium's conductivity and stage of growth as crucial parameters for efficient hydrocarbon extraction by electric field from colonial micro-algae.

    Science.gov (United States)

    Guionet, Alexis; Hosseini, Bahareh; Akiyama, Hidenori; Hosano, Hamid

    2018-04-25

    The green algae Botryococcus braunii produces a high amount of extracellular hydrocarbon, making it a promising algae in the field of bio-fuels production. As it mainly produces squalene like hydrocarbons, cosmetic industries are also interested in its milking. Pulsed electric fields (PEF) are an innovative method allowing oil extraction from micro-algae. In common algae accumulating hydrocarbon inside cytoplasm (Chlorella vulgaris, Nannochloropsis sp., etc), electric fields can destroy cell membranes, allowing the release of hydrocarbon. However, for B.braunii, hydrocarbons adhere to the cell wall outside of cells as a matrix. In a previous article we reported that electric fields can unstick cells from a matrix, allowing hydrocarbon harvesting. In this work, we deeper investigated this phenomenon of cell hatching by following 2 parameters: the conductivity of the medium and the cultivation duration of the culture. Cell hatching is accurately evaluated by both microscopic and macroscopic observations. For high conductivity and a short time of cultivation, almost no effect is observed even after up to 1000 PEF pulses are submitted to the cells. While lower conductivity and a longer cultivation period allow strong cell hatching after 200 PEF pulses are applied to the cells. We identify 2 new crucial parameters, able to turn the method from inefficient to very efficient. It might help companies to save energy and money in case of mass production. Copyright © 2018. Published by Elsevier B.V.

  16. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of

  17. Uncertainties in ecological epidemiology: A cautionary tale featuring kit foxes and oil fields

    International Nuclear Information System (INIS)

    Suter, G.W. II

    1993-01-01

    Ecological epidemiology, like human epidemiology, often must employ encountered rather than statistically designed data set and must make comparisons among populations that differ in terms of various poorly defined confounding variables. These properties can result in false positive or false negative results if statistics are naively applied. The case in point is a study of a population of an endangered subspecies, the San Joaquin Kit Fox (Vulpes macrotis mutica), inhabiting an oil field. The fox population abundance declined sharply following an increase in oil development until it was virtually absent from the developed portion of the field. It was decided that the possibility of toxicological effects would be investigated by analyzing historic and current hair samples. Metal concentrations were found to be statistically significantly higher for foxes from the developed area compared with those from undeveloped areas of the field. However, analysis of fur from two areas remote from oil fields and from another oil field indicated that the foxes from the developed portions of the subject oil field were not unusually metalliferous but that the foxes from the undeveloped portions were unusually low in metals. The conclusions of this study will be used to draw lessons for the design of studies in ecological epidemiology

  18. Evaluation of miscible and immiscible CO2 injection in one of the Iranian oil fields

    Directory of Open Access Journals (Sweden)

    Aref Hashemi Fath

    2014-09-01

    Full Text Available Carbon dioxide (CO2 flooding is one of the most important methods for enhanced oil recovery (EOR because it not only increases oil recovery efficiency but also causes a reduction of greenhouse gas emissions. It is a very complex system, involving phase behavior that could increase the recovery of oil by means of swelling, evaporation and decreasing viscosity of the oil. In this study, a reservoir modeling approach was used to evaluate immiscible and miscible CO2 flooding in a fractured oil field. To reduce simulation time, we grouped fluid components into 10 pseudo-components. The 3-parameter, Peng–Robinson Equation of State (EOS was used to match PVT experimental data by using the PVTi software. A one-dimensional slim-tube model was defined using ECLIPSE 300 software to determine the minimum miscibility pressure (MMP for injection of CO2. We used FloGrid software for making a reservoir static model and the reservoir model was calibrated using manual and assisted history matching methods. Then various scenarios of natural depletion, immiscible and miscible CO2 injection have been simulated by ECLIPSE 300 software and then the simulation results of scenarios have been compared. Investigation of simulation results shows that the oil recovery factor in miscible CO2 injection scenario is more than other methods.

  19. Effects of different nitrogen levels and plant density on flower, essential oils and extract production and nitrogen use efficiency of Marigold (Calendula officinalis.

    Directory of Open Access Journals (Sweden)

    ali akbar ameri

    2009-06-01

    Full Text Available Efficient use of nitrogen for medicinal plants production, might increase flower dry matter, essential oil and extract yield and reduce cost of yield production. A two year (2005 and 2006 field study was conducted in Torogh region(36,10° N,59.33° E and 1300 m altitude of Mashhad, Iran, to observe the effects of different nitrogen and densities on flower dry matter, essential oil and extract production and nitrogen use efficiency (NUE in a multi-harvested Marigold (Calendula officinalis. The levels of Nitrogen fertilizer (N were 0, 50, 100 and 150 kg ha-1 and levels of density were 20, 40, 60 and 80 plant m-2. The combined analysis results revealed significant effects of N and density levels on flower dry matter, essential oil and extract production and NUE of Marigold. The highest dry flower production obtained by 150 kg ha-1 N and 80 plant m-2 plant population (102.86 g m-2. The higher flower dry matter production caused more essential oil and extract production in high nitrogen and density levels. Agronomic N-use efficiency (kg flower dry matter yield per kg N applied, physiological efficiency (kg flower dry matter yield per kg N absorbed and fertilizer N-recovery efficiency (kg N absorbed per kg N applied, expressed as % for marigold across treatments ranged from 6.8 to14.9, 12.3 to 33.6 and 55.5 to 77.6, respectively and all were greater for N application at 50 compared with150 kg N ha-1, and under high density than low density. The amount of essential oil and extract per 100g flower dry matter decreased during the flower harvesting period. The higher amount of essential oil and extract obtained at early flowering season. The essential oil and extract ranged from 0.22 to 0.12 (ml. per 100g flower dry matter and 2.74 to 2.13 (g per 100g flower dry matter respectively.

  20. Alcorn wells bolster Philippines oil production

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Alcorn International Inc., Houston, is producing about 16,500 b/d of oil from West Linapacan A field in the South China Sea off the Philippines. The field's current production alone is more than fivefold the Philippines' total average oil flow of 3,000 b/d in 1991. It's part of a string of oil and gas strikes off Palawan Island that has made the region one of the hottest exploration/development plays in the Asia-Pacific theater

  1. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  2. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  3. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Directory of Open Access Journals (Sweden)

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  4. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    Science.gov (United States)

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation

  5. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    , cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  6. Production of Detergent from Castor Oil

    OpenAIRE

    Abubakar Garba ISAH

    2006-01-01

    This research work was carried out with the objective of extraction of oil from castor seeds and its utilization to produce a synthetic detergent. Solvent extraction method was employed in extracting the oil and the total percent oil yield was found to be 23.8%. The experimentally determined saponification value of the oil was 183.7275mgKOH/g of oil. The detergent efficiency, determined as a measure of the foamability of the detergent was found to be 2.6cm. The pH tests revealed mildly basic ...

  7. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  8. Tekna's produced water conference 2005

    International Nuclear Information System (INIS)

    2005-01-01

    The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)

  9. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan; Li, Rong-Ji [Department of Marine Engineering, National Taiwan Ocean, University, Keelung 20224 (China)

    2009-01-15

    The soapstock of a mixture of marine fish was used as the raw material to produce the biodiesel in this study. The soapstock was collected from discarded fish products. Crude fish oil was squeezed from the soapstock of the fish and refined by a series of processes. The refined fish oil was transesterified to produce biodiesel. The fuel properties of the biodiesel were analyzed. The experimental results showed that oleic acid (C18:1) and palmitic acid (C16:0) were the two major components of the marine fish-oil biodiesel. The biodiesel from the mixed marine fish oil contained a significantly greater amount of polyunsaturated fatty acids than did the biodiesel from waste cooking oil. In addition, the marine fish-oil biodiesel contained as high as 37.07 wt.% saturated fatty acids and 37.3 wt.% long chain fatty acids in the range between C20 and C22. Moreover, the marine fish-oil biodiesel appeared to have a larger acid number, a greater increase in the rate of peroxidization with the increase in the time that it was stored, greater kinematic viscosity, higher heating value, higher cetane index, more carbon residue, and a lower peroxide value, flash point, and distillation temperature than those of waste cooking-oil biodiesel. (author)

  10. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  11. Cleaning the Produced Water in Offshore Oil Production by Using Plant-wide Optimal Control Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2014-01-01

    To clean the produced water is always a challenging critical issue in the offshore oil & gas industry. By employing the plant-wide control technology, this paper discussed the opportunity to optimize the most popular hydrocyclone-based Produced Water Treatment (PWT) system. The optimizations of t...... of this research is to promote a technical breakthrough in the PWT control design, which can lead to the best environmental protection in the oil & gas production, without sacrificing the production capability and production costs....

  12. Hyper-saline produced water treatment for beneficial use

    NARCIS (Netherlands)

    Al-Furaiji, Mustafa

    2016-01-01

    Producing oil and gas is always accompanied with large amounts of effluent water, called “produced water” (PW). These huge quantities of water can be used (if treated efficiently and economically) for many useful purposes like industrial applications, irrigation, cattle and animal consumption, and

  13. Response strategies for oil producers in the face of environmental taxation

    International Nuclear Information System (INIS)

    Walker, I.O.; Brennand, G.J.

    1993-01-01

    The impact of environmental taxes on the oil export revenues of developing countries, particularly OPEC, is considered; the possibility of amelioration through production management is investigated. A model of oil market dynamics is considered and applied to for different tax secenarios. These are a base case scenario where no environmental tax is imposed; an unmanaged market where a $100/t of carbon tax is imposed in all OECD regions and the resulting fall in oil demand is absorbed by OPEC, thereby keeping oil prices at base case levels; a partially managed market where the same tax is imposed, but only OPEC responds by reducing oil production even further to maintain base case revenue; a totally managed market where the same tax is imposed but both OPEC and non-OPEC agree to manage and control the market. The conclusions reached is that as long as OPEC is not able to target a revenue-maximizing path, a totally managed market is likely to prove beneficial to all developing country producers with a much more manageable, higher than base case price in a partially managed market. If, however, OPEC were able to implement a revenue-maximizing course, there would be no need for total management, since non-OPEC revenue would be concomitantly maximized. (2 tables, 4 figures). (UK)

  14. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  15. TESTING THE GENERALIZATION EFFICIENCY OF OIL SLICK CLASSIFICATION ALGORITHM USING MULTIPLE SAR DATA FOR DEEPWATER HORIZON OIL SPILL

    Directory of Open Access Journals (Sweden)

    C. Ozkan

    2012-07-01

    Full Text Available Marine oil spills due to releases of crude oil from tankers, offshore platforms, drilling rigs and wells, etc. are seriously affecting the fragile marine and coastal ecosystem and cause political and environmental concern. A catastrophic explosion and subsequent fire in the Deepwater Horizon oil platform caused the platform to burn and sink, and oil leaked continuously between April 20th and July 15th of 2010, releasing about 780,000 m3 of crude oil into the Gulf of Mexico. Today, space-borne SAR sensors are extensively used for the detection of oil spills in the marine environment, as they are independent from sun light, not affected by cloudiness, and more cost-effective than air patrolling due to covering large areas. In this study, generalization extent of an object based classification algorithm was tested for oil spill detection using multiple SAR imagery data. Among many geometrical, physical and textural features, some more distinctive ones were selected to distinguish oil and look alike objects from each others. The tested classifier was constructed from a Multilayer Perception Artificial Neural Network trained by ABC, LM and BP optimization algorithms. The training data to train the classifier were constituted from SAR data consisting of oil spill originated from Lebanon in 2007. The classifier was then applied to the Deepwater Horizon oil spill data in the Gulf of Mexico on RADARSAT-2 and ALOS PALSAR images to demonstrate the generalization efficiency of oil slick classification algorithm.

  16. Field research on using oil herding surfactants to thicken oil slicks in pack ice for in-situ burning. Volume 1

    International Nuclear Information System (INIS)

    Buist, I.; Potter, S.; Nedwed, T.; Mullin, J.

    2007-01-01

    Laboratory and field studies have been performed in recent years to determine the capability of herding agents to thicken oil slicks among loose pack ice for the purpose of in situ burning. In loose pack ice conditions where booms are not practical, effective in situ burns may be possible if thin slicks could be thickened to the 2 to 5 mm range. However, specific chemical surface-active agents known as herders are need to clear and contain oil slicks on an open water surface. The agents spread quickly over a water surface into a monomolecular layer due to their high spreading coefficients. The best agents have spreading pressures in the mid 40 mN/m range. As such, only small quantities of these surfactants are needed to clear thin films of oil from large areas of water surface, and to contract it into thicker slicks. This paper summarized the previous studies that evaluated shoreline-cleaning agents with oil herding properties. However, the main focus of this paper was on the final phase of testing conducted at the Prudhoe Bay Fire Training Grounds in November 2006 in which a series of outdoor burns were conducted at the scale of 30 m 2 with herders and crude oil in a test pool containing pieces of ice. The tests revealed that when a herder was used on crude oil slicks that were otherwise unignitable, the slicks could be ignited and burned in situ in brash and slush ice conditions at temperatures as low as -17 degrees C. Both the removal rate and efficiencies for the herded slicks were comparable to the theoretical maximum achievable for mechanically contained slicks on open water. 13 refs., 1 tab., 18 figs

  17. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Directory of Open Access Journals (Sweden)

    I. Leifer

    2018-03-01

    Full Text Available Methane (CH4 inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne–surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL and combines downwind trace gas concentration anomaly (plume above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX – the Alpha Jet Atmospheric eXperiment and mobile surface (collected by AMOG – the AutoMObile trace Gas – Surveyor data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV floor into the Sierra Nevada (0.1–2.2 km altitude, validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10–20 km downwind, highlighting the importance of the experimental design.

  18. A comparison of cold flow properties of biodiesel produced from virgin and used frying oil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shanableh, Filiz [Food Engineering Department, Near East University (Cyprus); Evcil, Ali; Govsa, Cemal [Mechanical Engineering Department, Near East University (Cyprus); Savasdylmac, Mahmut A. [Mechanical Engineering Department, Booazici University (Turkey)

    2011-07-01

    Bio-diesel can be produced from different kinds of feedstock. The purpose of this paper is to research and make the comparison of the cold flow properties of bio-diesel produced from refined-virgin frying vegetable oil (RVFVO) and waste frying vegetable oil (WFVO). As is known, bio-diesel fuel will have higher cloud points (CP), cold filter plugging points (CFPP) and pour points (PP) if it is derived from fat or oil which consists of significant amounts of saturated fatty compounds. Both RVFVO and WFVO were derived from the same cafeteria on a Near East University campus and converted to biodiesel fuel through base catalyzed transesterification reaction. As the current results show, there is no considerable difference in cold flow properties of the bio-diesel produced from RVFVO and WFVO. So WFVO seems be better positioned to serve as raw material in biodiesel production because of its lower cost and its environmental benefits.

  19. Development of heavy oil fields onshore and offshore: resemblances and challenges; Desenvolvimento de campos de oleos pesados em terra e em mar: semelhancas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Celso Cesar Moreira; Moczydlower, Priscila [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The so called offshore heavy oils (API gravity lower than 19) and extra heavy oils (API lower than 10) are receiving increasing importance due to the light oil production decline and also to exploration difficulties. In countries like Canada, Venezuela, China and the US (California) there are immense onshore heavy oil resources sometimes classified as non conventional. Differently in Brazil, onshore heavy oil volumes are modest being important those located in offshore fields (although non comparable to the Canadian and Venezuelan ones). The issue raised in this paper is: the field location, whether onshore or offshore, is always the main constraint in the development process? Well, the question has both a 'yes' and 'no' as an answer. There are important differences but some similarities in the technologies that can be applied. In this text the authors intend to explore this point while at the same time depicting some of the main related aspects under research for proper exploitation of heavy and extra heavy oil assets. The most relevant difference between onshore and offshore heavy oil fields is the application of thermal methods for improved recovery: while worldwide spread and commercially applied to onshore fields, steam injection is not yet viable for offshore operations. The only option for improving recovery in offshore fields is water injection, which has the drawback of producing large volumes of water during the field life. Another aspect is the cost of the production wells: much cheaper onshore they allow well spacing in the order of 100 m or even 50 m whereas in offshore well spacing are in the 1000 m range. From the flow assurance point of view, inland installations can take use of solvents for heavy oil dilution, such as diesel or naphtha. Offshore this option is complicated by the long distances from the wellheads to the producing facilities in the platform, in the case of wet completions. There are also differences regarding the

  20. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  1. Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2014-01-01

    Full Text Available The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils.

  2. Petrophysical studies in heavy oil sands with early water production - Hamaca area, Orinoco Oil Belt

    Energy Technology Data Exchange (ETDEWEB)

    Salisch, H.A.

    1982-07-01

    This study describes the main lines of petrophysical research in the Hamaca-Pao region of the Orinoco Oil Belt. The techniques and parameters most appropriate for petrophysical studies in the area of interest are discussed. Field tests have confirmed the conclusions of this study on early water production and low oil recovery. Steam injection was shown to be a means for increasing oil mobility to such a degree that significant amounts of additional oil can be produced.

  3. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation.

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    Full Text Available In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4% for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery.

  4. More oil sand cooperation between Canada and Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    Venezuela has pioneered the production of heavy oil, according to Dr. A. Guzman-Reyes, director general of hydrocarbons for the Venezuelan government. The first heavy oil production began in Venezuela 60 yr ago and the oil industry has steadily improved methods of producing and handling heavy oil. The country's producing fields are capable of yielding almost one million barrels of heavy oil daily, although actual production, largely because of market limitations, is about 650,000 bpd. Canada's daily heavy oil production, including the 60,000 bbl of synthetic crude produced daily by the Great Canadian Oil Sands plant, is about 200,000 bbl. Dr. Guzman-Reyes stated that Venezuela intends to rapidly develop heavy oil production and upgrade facilities to maintain its export markets. The national oil company, Petroleos de Venezuela, plans to invest 4 times the amount spent on oil development over the last 60 yr during the next 10 yr, a total of $3 billion by 1980.

  5. A novel method of producing a microcrystalline beta-sitosterol suspension in oil

    DEFF Research Database (Denmark)

    Christiansen, Leena I; Rantanen, Jukka T; von Bonsdorff, Anna K

    2002-01-01

    This paper describes a novel method of producing a microcrystalline oral suspension containing beta-sitosterol in oil for the treatment of hypercholesterolaemia. beta-Sitosterol pseudopolymorphs with different water contents were crystallized from acetone and acetone-water solutions. Structural...

  6. The U.S. natural gas and oil resource base is abundant; but can we produce what the country needs?

    International Nuclear Information System (INIS)

    Ewing, T.E.

    1994-01-01

    Recent studies agree that the United States has abundant resources of gas and oil left to find and produce over the next 50--75 years -- if its exploration and production companies are given the resources to do the job. The NPC's estimate of 1,295 TCF of natural gas (advanced technology case) represents a resource/present production ration of 68 years. A similar estimate for oil gives 62 years. Furthermore, these resource estimates have been increasing through the 1980s, as the effects of new geological, geophysical, and engineering technologies has become more apparent. However, only 30% of this tremendous resource will be available under today's business-as-usual economic regime. The rest of the resource will be accessed if: (1) tax policies (and financial and trade policies) are adopted to stabilize prices and stimulate exploration and production (estimated 27% of the resource base); (2) technology is developed, transferred, and used (17%); (3) environmental regulation is held to a balanced level, considers economic costs as well as environmental benefits, and is applied consistently (13%); (4) access to Federal lands is eased for environmentally responsible drilling and development (13%). To convert America's gas and oil resources into delivered products in a timely manner, assuring the nation's gas users of a reliable supply -- and contribute up to $8.7 trillion to the nation's economy -- a doubling of industry effort is required, even at today's high levels of finding and producing efficiency. Coordinated action by industry, government, and the investment community is required to secure the future development of energy supplies. Government in particular must develop policies that encourage the needed investment in America's natural gas and oil

  7. Effect of Vegetable Oils on the Surface Tension, Diffusion and Efficiency of Sethoxydim to Control Wild oat (Avena ludoviciana Durieu.

    Directory of Open Access Journals (Sweden)

    H. Hammami

    2017-08-01

    Full Text Available Introduction: During last century, population explosion has been pressing man to produce more supplies of food by consuming more energy in agroecosystems like applying chemical management strategies. herbicides have increasingly become a key component of weed management programs. In Iran, using herbicides led to increasing wheat yield about 20% and 22% in rainfed and irrigated farms respectively (20. Nonetheless, herbicides have also a negative impact on environment. A tool for reducing the herbicide usage which allows to decreasing their cost and side effects is the use of adjuvants. They increase the effectiveness of the post-emergence herbicides. Some adjuvants have toxic effects on living organisms such as Polyethoxylated tallowamine adjuvants that they are very toxic in fairy shrimp (Thamnocephalus platyurus (6. Vegetable oils are not phytotoxic and likely are degraded and metabolized quickly in the environment (8. Sethoxydim is an acetyl coenzyme A carboxylase (ACCase inhibitor that is considered to be a key enzyme in lipid biosynthesis. Similar to other foliar applied herbicides, it need to be associated with an adjuvant for more effective control. Vegetable oils can be developed characteristics of sethoxydim solution such as surface tension and spry drop diffusion. Therefore, the objective of this research is to determine the effect of vegetable oils on the surface tension, diffusion and efficiency of sethoxydim to control wild oat (Avena ludoviciana Durieu.. Materials and Metods: To evaluate the effect of vegetable oils on properties of sethoxydim solution, a series of experiments were separately conducted at Ferdowsi University of Mashhad and Khorasan Science and Technology Park in 2012. For evaluating the effect of vegetable oils on surface tension of distilled water and sethoxydim solution and the sethoxydim efficiency on wild oat control, three experiments were conducted as factorial based on completely randomized design. In other

  8. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  9. Remaining recoverable petroleum in giant oil fields of the Los Angeles Basin, southern California

    Science.gov (United States)

    Gautier, Donald L.; Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Klett, Timothy R.

    2012-01-01

    Using a probabilistic geology-based methodology, a team of U.S. Geological Survey (USGS) scientists recently assessed the remaining recoverable oil in 10 oil fields of the Los Angeles Basin in southern California. The results of the assessment suggest that between 1.4 and 5.6 billion barrels of additional oil could be recovered from those fields with existing technology.

  10. Procedures in field systems for collecting and demulsifying crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Vakhitov, G G; Graifer, V I; Tronov, V P; Zakirov, I G

    1969-01-01

    This microscopic study of crude oil emulsification and demulsification showed that the sooner an emulsion is chemically treated, the less its stability. This finding led to the practice of adding demulsifiers to the crude oil in pipelines. This method of demulsification is now used in Romashkino, Bablinsk, and Elkhovs fields. By this early addition of a chemical, the tendency of the pipeline to form stable, highly viscous emulsions is reduced. This treatment also facilitates separation of water from oil in storage tanks. Repeated tests have shown that pipeline demulsification is a highly effective and economic process. This method reduces crude oil dewatering costs by several hundred percent.

  11. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  12. Dispersant effectiveness in the field on fresh oils and emulsions

    International Nuclear Information System (INIS)

    Lunel, T.; Davies, L.

    1996-01-01

    A detailed data set on the effectiveness of dispersants on fresh oils and emulsions, was presented. The data set could be used to calibrate laboratory dispersant tests and dispersion models so that oil spill response teams would have accurate information to make decisions regarding remediation processes. AEA Technology developed steady state continuous release experiments to provide a data set with quantitative measures of dispersant effectiveness in the field. The Sea Empress incident was closely monitored in order to compare the quantification obtained through field trials. It was noted that the prediction of the percentage of oil dispersed chemically is not the only indication of whether or not to use a dispersant. The important determinant to consider should be the extent to which the natural dispersion process would be enhanced by dispersant application. 17 refs., 5 tabs., 18 figs

  13. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    OpenAIRE

    S. T. Antipov; S. V. Shakhov; A. N. Martekha; A. A. Berestovoy

    2015-01-01

    The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of saf...

  14. Field test and mathematical modeling of bioremediation of an oil-contaminated soil. Part 1: Field test

    International Nuclear Information System (INIS)

    Li, K.Y.; Xu, T.; Colapret, J.A.; Cawley, W.A.; Bonner, J.S.; Ernest, A.; Verramachaneni, P.B.

    1994-01-01

    A fire-wall area (about 270 ft x 310 ft) with the Bunker C oil contaminated soil was selected for the bioremediation field test. This fire-wall area was separated into 18 plots by dirt dikes to test 6 bioremediation methods with three tests of each method. The six treatment methods were: (a) aeration with basic nutrients and indigenous organisms (BNIO); (b) aeration with basic nutrients and inoculation from a refinery wastewater treatment facility (BNSIWT); (c) aeration with an oleophilic fertilizer and indigenous organisms (INIPOL); (d) aeration with basic nutrients and biosurfactant organisms (EPA Seal Beach consortia) (EPA); (e) aeration with proprietary nutrients and organisms (PRO); and (f) aeration only for active control (CONTROL). This field test was conducted for 91 days. In general the oil contents in 18 plots were reduced, but the results showed significant fluctuations. A statistical method was used to examine if the oil reductions of six methods were the results from the random error of sampling and sample analysis or biodegradation. The results of the statistical analysis showed that oil reduction was concluded from all but the plots of PRO. From the data analysis, it may be concluded that the oil reduction rate in these studies is controlled by oil transfer from soil into the aqueous solution. An example of calculation was used to illustrate this conclusion

  15. 76 FR 61933 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2011-10-06

    ..., 733,877 pounds of Scotch spearmint oil have already been sold or committed, which leaves just 186,505... of essential oils and the products of essential oils. In addition, the Committee estimates that 8 of...-1A IR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

  16. Laboratory studies of oil spill bioremediation; toward understanding field behavior

    International Nuclear Information System (INIS)

    Prince, R.C.; Hinton, S.M.; Elmendorf, D.L.; Lute, J.R.; Grossman, M.J.; Robbins, W.K.; Hsu, Chang S.; Richard, B.E.; Haith, C.E.; Senius, J.D.; Minak-Bernero, V.; Chianelli, R.R.; Bragg, J.R.; Douglas, G.S.

    1993-01-01

    Oil spill remediation aims to enhance the natural process of microbial hydrocarbon biodegradation. The microbial foundations have been studied throughout this century, but the focus of most of this work has been on the degradation of well defined compounds by well defined microbial species. This paper addresses laboratory studies on crude oil biodegradation by microbial consortia obtained from oiled beaches in Prince William Sound, Alaska following the spill from the Exxon Valdez. It demonstrates that oil degradation is indeed likely to be nitrogen-limited in Prince William Sound, the different molecular classes in crude oil that are subjected to biodegradation, the identification of conserved species in the oil that can be used for assessing biodegradation and bioremediation in the field, the effectiveness of fertilizers in stimulating sub-surface biodegradation, the role of the olephilic fertilizer Inipol EAP22, and the identification of the oil-degrading microorganisms in Prince William Sound. Together, these laboratory studies provided guidance and important insights into the microbial phenomena underlying the successful bioremediation of the oiled shorelines

  17. Radiological impact of oil and Gas Activities in selected oil fields in ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... A study of the radiological impact of oil and gas exploration activities in the production land area of Delta ... the public and non-nuclear industrial environment, while the levels for the fields at Otorogu, Ughelli West, ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  18. MAJOR OIL PLAYS IN UTAH AND VICINITY

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Morgan, Craig D.; Bon, Roger L.

    2003-01-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m 3 ). However, the 13.7 million barrels (2.2 million m 3 ) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of

  19. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    Science.gov (United States)

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sleeving-back of horizontal wells to control downstream oil saturation and improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Saghr, A. M. [Bath Univ (United Kingdom)

    1998-12-31

    Air injection has become popular as an enhanced recovery technology, applicable over a wide variety of reservoir conditions including heavy, medium and light oils. One problem observed in light oil reservoirs is the tendency to desaturate the oil layer downstream of the moving front. This is particularly common in the case of thermal recovery processes. In this experiment designed to study ways to restrict the de-saturation of the oil layer, a modified horizontal producer well, incorporating a `sleeve-back` principal was used. The objective was to replicate the `toe-to-heel` displacement process occurring during heavy oil recovery, wherein downstream oil is essentially immobile due to its high viscosity. The `sleeve-back` of the well was achieved using a co-aligned, two-well assembly, so that the upstream section of the horizontal producer well was active, and continuously adjusted during propagation of the combustion front. The use of this continuous `sleeve-back` operation to control the level of de-saturation in the downstream section of a sand pack was successful as confirmed by the very high oil recovery achieved, equivalent to 93.5 per cent of oil in place. The level of CO{sub 2} production was also very high. The `sleeve-back` of the horizontal producer well made the light oil in-situ combustion more efficient compared to what would be expected in a fully-open well. The `sleeve-back` of the well also produced thermal contours in the sand pack that closely resembled those observed with heavy, highly viscous oil. By sealing-off the otherwise open well in the downstream part of the reservoir, the de-saturation of the oil layer was prevented. 9 refs., 4 tabs., 9 figs.

  1. Integrated field modelling[Oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Bamshad

    2002-07-01

    This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant

  2. Manitoba oil activity review, 1991

    International Nuclear Information System (INIS)

    1992-04-01

    In an annual survey of Manitoba's petroleum industry, data are presented on oil and natural gas leases and sales, geophysical activity, exploration and drilling activity, production, exports to other provinces and the USA, oil prices and sales value, royalties and taxes, direct revenues from oil exploration and development, reserves, industry expenditures, and oil fields. Throughout the report, explainations are given of the items covered. Descriptions are made of new developments, the oil market, oil policies, incentive programs, and industrial activities. During 1991, 54 wells were drilled, compared to 79 in 1990. Oil production was down ca 3% from 1990 levels, to 712,792 m 3 , the value of the oil produced decreased 21% to ca $90.3 million, and provincial revenues from the oil industry declined by 15%. Oil industry expenditures in the province were estimated at $69 million, down 9% from 1990. As of the end of 1991, there were 11 oil fields and 118 non-confidential oil pools designated in Manitoba. The forecast for 1992 indicates that exploration activity will increase in response to new incentive programs. Crude oil production is expected to decline slightly to about 667,000 m 3 . 9 figs., 17 tabs

  3. The influence of external field on the lubricity of mineral oil for railway transport

    Directory of Open Access Journals (Sweden)

    Voronin Serhii

    2017-01-01

    Full Text Available The use of mineral oil is associated with its gradual operational degradation caused by its natural aging and contamination with various impurities. As the concentration of impurities increases, the number of active surface molecules which determine the operational properties of mineral oils decreases. A promising method of recovery of the operational properties of oils is the treatment with an electric field, which makes it possible to enhance the activity of surfactants in the tribo-contact area. This statement is proved through the improvement of the wettability of the bronze surface with mineral oils after their treatment with an electrostatic field. However, the method of electrical treatment is associated with the need to increase the requirements for the purity of liquids, especially to the presence of water, which requires creating an oil pre-treatment system. As an alternative, a method of electrical treatment with special field parameters is proposed enabling to accelerate the coalescence process. The major parameter that accelerates the coalescence process is the electric field oscillation frequency. The results of the study give grounds for choosing the optimal field parameters.

  4. Oil markets to 2010: the impact of non-Opec oil

    International Nuclear Information System (INIS)

    Enav, Peter

    1998-09-01

    This report provides an in-depth assessment of oil development scenarios in every non-Opec oil producing country from 1998 to 2010, in addition to evaluating the extent and direction of future oil trade for Opec and non-Opec countries alike. It re-assesses world oil consumption patterns in light of the Asian financial crisis, providing a concise yet comprehensive coverage of an often-neglected oil production group. The oil market development scenario is analysed in each country, with detailed consideration of the major players providing historical production, consumption, import and export data; current oil balance - production, imports and exports; an assessment of oil development policy; analysis of potential development obstacles considering regulatory, financial, political and environmental issues; oil production and consumption projections to 2010, by type; and import and export projections to 2010, by destination and source. More than 80 tables supplying essential statistics on the world's non-Opec markets accompany the report, with maps and schematic diagrams showing existing and potential infrastructure and fields. (Author)

  5. Radionuclides in produced water from Norwegian oil and gas installations — Concentrations and bioavailability

    Science.gov (United States)

    Eriksen, D. Ø.; Sidhu, R.; Strålberg, E.; Iden, K. I.; Hylland, K.; Ruus, A.; Røyset, O.; Berntssen, M. H. G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals.

  6. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  7. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    Science.gov (United States)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  8. Series of standards for use by an oil and gas production administration for progress-of work reports and inventory control

    Energy Technology Data Exchange (ETDEWEB)

    Kucherniuk, V A; Eliseev, V G; Iskandarov, R G

    1981-01-01

    Based on a study of the characteristics of product flows from oil wells, the test and monitoring equipment used to monitor the quantity of oil, and the standard documentation, it is demonstrated that in order to increase the measurement accuracy of the product produced by the oil and gas production administration, it is necessary to develop a system of enterprise standards to account for it. A list is given of standards of use by oil and gas production administration to account for its product. The use of the standards with existing metering equipment makes it possible to decrease the variation between operational and inventory records for the quantity of oil at the ''Rechitsaneft'' oil and gas production administration up to 5% and consequently to increase the control efficiency over the operation of the fields.

  9. Major Oil Plays In Utah And Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in

  10. Oil field rejuvenation work starts at 14 project sites

    International Nuclear Information System (INIS)

    Petzet, G.A.

    1992-01-01

    This paper reports that the U.S. Department of Energy and oil and gas companies have released more information about a joint effort to rejuvenate aging U.S. oil fields in danger of abandonment. Work is starting on 14 demonstration projects that could recover 21 million bbl of oil from the fluvial dominated deltaic (FDD) reservoirs in which they are conducted. Wider application of the same techniques, if they are successful, could results in addition of 6.3 billion bbl of reserves, nearly 25% of U.S. crude oil reserves. A multidisciplinary team approach is to be used, with as many as 11 operators, service companies, universities, or state agencies participating in each project. All of the projects will culminate in extensive technology transfer activities. Here are descriptions of the projects gleaned from public abstracts provided by the DOE contractors

  11. Geochemical and petrographic investigation of Himmetoglu oil shale field, Goynuk, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M.; Gundogdu, M.N. [General Directorate of Mineral Research and Exploration, Ankara (Turkey)

    1996-09-01

    The Himmetoglu field is a good example of oil shale fields in Turkey. Mineral and maceral types show that the huminite and liptinite groups tend to be associated with smectite, clinoptilolite and calcite in Himmetoglu oil shale, while the liptinite group is accompanied by analcime and dolomite in bituminous laminated marl. The pH value increases from bottom (pH {lt} 9) to top (pH {gt} 9) in the Himmetoglu formation and volcanogenic materials have played a very important role in deposition of organic matter. The negative correlation between trace elements and organic carbon suggests absence of enrichment of trace elements in oil shales. The results of g.c.-m.s. and carbon isotope analysis show that there is a decrease in the amount of terrestrial organic matter and a relative decrease in maturity of the organic matter in the vertical succession from Himmetoglu oil shape up to the bituminous laminated marl. 8 refs., 6 figs., 5 tabs.

  12. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    user

    protection technique as a method of controlling corrosion in oil and gas pipelines is effective and efficient when compared to ... In the field of crude oil production and associated engineering .... Industrial/Mechanical Systems, Joen Printing and.

  13. [Tobacco--a highly efficient producer of vaccines].

    Science.gov (United States)

    Budzianowski, Jaromir

    2010-01-01

    Along with the depreciation of tobacco as a source of nicotine-containing commercial products, the increase of its appreciation as a potential producer of recombinant therapeutical proteins can be observed. Two species of tobacco--Nicotiana tabacum L. and N. benthamiana are easily grown by well established methods of field or green-house cultivation or cell culture, yield high biomass and soluble protein content, can be easily transformed by several methods and are not food for humans or feed for animals. Expression of foreign proteins, including vaccines, can be achieved in those plants either through stable transformation of nuclear or plastid (chloroplast) genomes or by transient transformation using infection with plant virus or bacteria--Agrobacterium tumefaciens (agroinfiltration). The most advanced mode of agrofiltration termed magnifection, which combines benefits of virus and Agrobacterium and depends on using Agrobacterium with viral pro-vectors, enables high-yield and rapid expression of therapeutical proteins, even in a few days, and can be employed on an industrial scale. Expression of many antigenic proteins, which may serve as antiviral, antibacterial, antiprotozoan and anticancer vaccines, and additionally a few autoantigens designed for the treatment of autoimunogenic diseases, like diabetes, have been achieved in tobacco. To date, a vaccine against Newcastle virus disease in poultry produced by tobacco cell culture has been approved for commercial application and several other vaccines are in advanced stage of development. The possibility of a high-level production of vaccines in tobacco against pandemic influenza or anthrax and plague due to a bioterroristic attack, as well as of individualised anticancer vaccines against non-Hodgkin's lymphoma (NHL) in a much shorter period of time than by traditional methods became realistic and hence caused increased interest in tobacco as a high-efficient producer of vaccines not only of specialistic

  14. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  15. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.

    Science.gov (United States)

    Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A

    1999-03-08

    Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.

  16. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Implications of Canadian oil tax policies

    Energy Technology Data Exchange (ETDEWEB)

    Copplestone, G H

    1983-01-01

    This thesis examines some of the implications of the policy initiatives taken by both levels of government during the 1974-80 period (i.e., from the OPEC oil embargo and subsequent quadrupling of posted world oil prices to the introduction of the National Energy Program, or NEP). A survey of the fiscal instruments employed by both the federal and the oil-producing provincial levels of government to distribute the oil revenues generated in Canada is presented. The focus of this survey is primarily on the pre-NEP regime and the immediate post-NEP regime. The remainder of the thesis then deals with some of the distributional and efficiency aspects of these tax regimes. The thesis also examines the economic efficiency aspects of the pre- and post-NEP tax regimes. In particular, it addresses the issue of an inefficient allocation of resources within the oil industry itself.

  18. Oil Fields, Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil spills., Published in 1998, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Oil Fields dataset current as of 1998. Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil...

  19. The Role of Shearing Energy and Interfacial Gibbs Free Energy in the Emulsification Mechanism of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-05-01

    Full Text Available Crude oil is generally produced with water, and the water cut produced by oil wells is increasingly common over their lifetime, so it is inevitable to create emulsions during oil production. However, the formation of emulsions presents a costly problem in surface process particularly, both in terms of transportation energy consumption and separation efficiency. To deal with the production and operational problems which are related to crude oil emulsions, especially to ensure the separation and transportation of crude oil-water systems, it is necessary to better understand the emulsification mechanism of crude oil under different conditions from the aspects of bulk and interfacial properties. The concept of shearing energy was introduced in this study to reveal the driving force for emulsification. The relationship between shearing stress in the flow field and interfacial tension (IFT was established, and the correlation between shearing energy and interfacial Gibbs free energy was developed. The potential of the developed correlation model was validated using the experimental and field data on emulsification behavior. It was also shown how droplet deformation could be predicted from a random deformation degree and orientation angle. The results indicated that shearing energy as the energy produced by shearing stress working in the flow field is the driving force activating the emulsification behavior. The deformation degree and orientation angle of dispersed phase droplet are associated with the interfacial properties, rheological properties and the experienced turbulence degree. The correlation between shearing stress and IFT can be quantified if droplet deformation degree vs. droplet orientation angle data is available. When the water cut is close to the inversion point of waxy crude oil emulsion, the interfacial Gibbs free energy change decreased and the shearing energy increased. This feature is also presented in the special regions where

  20. Energy swaps as profit motive instruments in oil markets

    International Nuclear Information System (INIS)

    Arshi, A.A.

    1992-01-01

    In this paper, I introduce oil swaps as financial instruments available to oil producers and to buyers of crude oil and products, and the positive effects they can provide for marketing profitability. In addition, I seek to underline the complementarity of oil swaps, emphasizing the benefits which can result from efficiently monitored use of such tools. I review the various criteria to be considered when implementing swap arrangements and I examine standard and non-standard examples which I believe to be of interest. Due to the unfortunate fact that exchange market liquidity is limited, I am of the opinion that producers, if they think fit, should start with only a limited amount of their availability covered by such swap arrangements. Nevertheless, I wish to draw the attention of producers and buyers of crude oil and oil products to the benefits of swap arrangements, as described in this paper. (author)

  1. Shampooing the reservoir : organic surfactant could increase Suffield oil recovery by 10 per cent

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2009-10-15

    EnCana is testing a new tertiary recovery technology in the Suffield area of southeastern Alberta which is known primarily for shallow natural gas. EnCana Corporation has approximately 1 billion barrels of original heavy oil in place in the Suffield area. Oil densities range from about 10 to 18 degrees API gravity. Viscosities range from 100 to 10,000 centipoise. Drilling began about 30 years ago. The primary productive formation is consolidated Mannville Glauconite sandstone which produces very little sand with the oil. About 15 per cent of the oil in place has been produced by primary production and waterfloods. In 2007, EnCana began testing an alkaline surfactant polymer flood operation in the Suffield heavy oil field that consists of 2 injector wells and 5 producers. Tests will continue until 2011. The surfactant acts as a detergent and reduces the interfacial tension between water and oil, thus mobilizing residual oil and increasing the displacement efficiency. In addition to the physical sweeping of a straight polymer flood, a surfactant polymer also washes oil from the rock. EnCana buys an alkaline chemical that is less expensive than surfactant. The alkaline injectant reacts with the organic acids in the oil to create a natural surfactant. EnCana was granted experimental scheme status by the Alberta Energy Resources Conservation Board. Instead of using fresh water, the pilot mixes its chemicals with saline water from a deep formation. EnCana will consider the pilot a commercial success if it recovers at least 10 per cent of the original oil in place. Thus far, the pilot is meeting that threshold. 1 fig.

  2. Evaluation of the efficiency of silicone polyether additives as foam inhibitor in crude oil

    International Nuclear Information System (INIS)

    Fraga, Assis K.; Santos, Raquel F.; Mansur, Claudia R.E.

    2011-01-01

    This work evaluates the chemical and physico-chemical properties of commercial anti-foam products based on silicone polyethers along with their efficiency in inhibiting foaming. The commercial surfactants were characterized by nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), determination of solubility in different solvents and measurement of the surface and interfacial tensions. A method to test the formation of foam in oil was used to mimic the operating conditions in gas-oil separators. The results show that the most polar additive was the most efficient in breaking up the foam. (author)

  3. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  4. The oil price and non-OPEC supplies

    International Nuclear Information System (INIS)

    Seymour, A.

    1991-01-01

    The design of any effective oil pricing policy by producers depends on a knowledge of the nature and complexity of supply responses. This book examines the development of non-OPEX oil reserves on a field-by-filed basis to determine how much of the increase in non-OPEC production could be attributable to the price shocks and how much was unambiguously due to decisions and developments that preceded the price shocks. Results are presented in eighteen case-studies of non-OPEC producers. This study will be of interest to economists and planners specializing in the upstream and to policy makers both in oil producing and consuming countries

  5. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  6. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    International Nuclear Information System (INIS)

    Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  7. Increasing Heavy Oil in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    International Nuclear Information System (INIS)

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs

  8. Evaluation of energy efficiency efforts of oil and gas offshore processing

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter

    2015-01-01

    the energy performance of these facilities, by decreasing the power and heating requirements and designing more efficient processes. Several technologies that have been proposed are to (i) promote energy integration within the oil and gas processing plant, (ii) add an additional pressure extraction level......, (iii) implement multiphase expanders, and (iv) install a waste heat recovery system. The present work builds on two case studies located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The findings suggest that no generic improvement can...

  9. Characterization of water-in-oil emulsions produced with microporous hollow polypropylene fibers

    Directory of Open Access Journals (Sweden)

    HELMAR SCHUBERT

    2000-11-01

    Full Text Available The preparation of fine and monodispersed water-in-oil (W/O emulsions by utilizing hydrophobic hollow polypropylene fibers with 0.4 mm pores was investigated in this work. The experiments were carried out using demineralized water as the disperse phase, mineral oil Velocite No. 3 as the continuous phase, and polyglycerol polyricinoleate (PGPR 90 in the concentration range of 2.5 – 10 wt % as the oil-soluble emulsifier. The size of the water droplets in the prepared emulsions and the droplet size distribution strongly depend on the content of the disperse phase, the transmembrane pressure difference, and the emulsifier concentration. Stable emulsions with a very narrow droplet size distribution and a mean droplet diameter lower than 0.27 µm were produced using 10 wt % PGPR 90 at a pressure difference below 30 kPa.

  10. Modeling of the Temperature Field Recovery in the Oil Pool

    Science.gov (United States)

    Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.

    2018-05-01

    This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

  11. Effect of elasticity during viscoelastic polymer flooding : a possible mechanism of increasing the sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Urbissinova, T.S.; Trivedi, J.J.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-12-15

    This paper discussed a laboratory experiment undertaken to study how the elasticity of polymer-based fluids affects microscopic sweep efficiency, which has implications for enhanced oil recovery processes. In a series of experiments, polymer solutions with the same shear viscosity but notably different elastic characteristics were injected through a mineral-oil-saturated sandpack. The experiments involved a special core holder that was designed to simulate radial flow. The solution was injected via a perforated injection line located in the centre of the cell, and fluids were produced by way of 2 production lines located at the periphery. The shear rate used in the experiments was within the range of field applications. Using polymer solutions with similar shear viscosity behaviour and different elasticity allowed the effect of elasticity on sweep efficiency to be singled out. It was concluded that adjusting the molecular weight distribution of the solution at a constant shear viscosity and polymer concentration could improve the sweep efficiency of a polymeric fluid. The higher-elasticity polymer solution had a higher resistance to flow through porous media, resulting in better sweep efficiency and lower residual oil saturation. The objective of the study was to isolate elasticity from the other parameters that affect displacement efficiency to show the individual effect of elasticity on oil recovery. 20 refs., 5 tabs., 14 figs.

  12. Separation kinetics of an oil-in-water emulsion under enhanced gravity

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The breakup of crude oil emulsions to produce clean oil and water phases is an important task in crude oil processing. We have investigated the demulsification kinetics of a model oil-in-water emulsion in a centrifugal field to mimic the forces acting on emulsion droplets in oil/water separators

  13. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H{sub 2}S production

    Energy Technology Data Exchange (ETDEWEB)

    Kumaraswamy, Raji; Ebert, Sara; Fedorak, Phillip M.; Foght, Julia M. [Alberta Univ., Edmonton, AB (Canada). Biological Sciences; Gray, Murray R. [Alberta Univ., Edmonton, AB (Canada). Chemical and Materials Engineering

    2011-03-15

    Nitrate injection into oil fields is an alternative to biocide addition for controlling sulfide production ('souring') caused by sulfate-reducing bacteria (SRB). This study examined the suitability of several cultivation-dependent and cultivation-independent methods to assess potential microbial activities (sulfidogenesis and nitrate reduction) and the impact of nitrate amendment on oil field microbiota. Microcosms containing produced waters from two Western Canadian oil fields exhibited sulfidogenesis that was inhibited by nitrate amendment. Most probable number (MPN) and fluorescent in situ hybridization (FISH) analyses of uncultivated produced waters showed low cell numbers ({<=}10{sup 3} MPN/ml) dominated by SRB (>95% relative abundance). MPN analysis also detected nitrate-reducing sulfide-oxidizing bacteria (NRSOB) and heterotrophic nitrate-reducing bacteria (HNRB) at numbers too low to be detected by FISH or denaturing gradient gel electrophoresis (DGGE). In microcosms containing produced water fortified with sulfate, near-stoichiometric concentrations of sulfide were produced. FISH analyses of the microcosms after 55 days of incubation revealed that Gammaproteobacteria increased from undetectable levels to 5-20% abundance, resulting in a decreased proportion of Deltaproteobacteria (50-60% abundance). DGGE analysis confirmed the presence of Delta- and Gammaproteobacteria and also detected Bacteroidetes. When sulfate-fortified produced waters were amended with nitrate, sulfidogenesis was inhibited and Deltaproteobacteria decreased to levels undetectable by FISH, with a concomitant increase in Gammaproteobacteria from below detection to 50-60% abundance. DGGE analysis of these microcosms yielded sequences of Gamma- and Epsilonproteobacteria related to presumptive HNRB and NRSOB (Halomonas, Marinobacterium, Marinobacter, Pseudomonas and Arcobacter), thus supporting chemical data indicating that nitrate-reducing bacteria out-compete SRB when nitrate is

  14. Toxicology of oil field pollutants in cattle: a review.

    Science.gov (United States)

    Coppock, R W; Mostrom, M S; Khan, A A; Semalulu, S S

    1995-12-01

    Cattle are poisoned by petroleum and substances used in drilling and operating oil and gas wells. The most common reported route of exposure for non-gaseous material is oral. Exposures occur when the petroleum or chemicals used in oil and gas field activities are available to cattle and when water and feed-stuffs are contaminated. Cattle, as a leisure activity, explore and ingest crude oil. Based on morbidity patterns in cattle herds, the amount of toxic substance ingested is variable. When water and feedstuffs are contaminated, a larger number in a herd generally are affected. Cattle have been poisoned by a wide variety of chemical mixtures. For substances high in volatile hydrocarbons, the lung is a target organ. Hydrocarbons also target the kidney, liver and brain. Exposure-linked abortions have been reported in cattle. Diethylene glycol targets the brain, liver and kidney. The reported threshold dose of unweathered oil for cattle ranges from 2.5 to 5.0 ml/kg bw, and the reported threshold dose for weathered oil is 8.0 ml/kg.

  15. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil.

    Science.gov (United States)

    Krause, Andre; Wu, Yu; Tian, Runtao; van Beek, Teris A

    2018-04-24

    High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential oils, taking patchouli essential oil as a test case. Patchouli essential oil is frequently adulterated, even today. In total, 75 genuine patchouli essential oils, 10 commercial patchouli essential oils, 10 other essential oils, 17 adulterants, and 1 patchouli essential oil, spiked at 20% with those adulterants, were measured. Visual inspection of the NMR spectra allowed for easy detection of 14 adulterants, while gurjun and copaiba balsams proved difficult and one adulterant could not be detected. NMR spectra of 10 random essential oils differed not only strongly from patchouli essential oil but also from one another, suggesting that fingerprinting by low-field NMR is not limited to patchouli essential oil. Automated chemometric evaluation of NMR spectra was possible by similarity analysis (Mahalanobis distance) based on the integration from 0.1 - 8.1 ppm in 0.01 ppm increments. Good quality patchouli essential oils were recognised as well as 15 of 17 deliberate adulterations. Visual qualitative inspection by GC-MS allowed for the detection of all volatile adulterants. Nonvolatile adulterants, and all but one volatile adulterant, could be detected by semiquantitation. Different chemometric approaches showed satisfactory results. Similarity analyses were difficult with nonvolatile adulterants. Refractive index measurements could detect only 8 of 17 adulterants. Due to advantages such as simplicity, rapidity, reproducibility, and ability to detect nonvolatile adulterants, 60 MHz 1 H-NMR is complimentary to GC-MS for quality control of essential oils. Georg Thieme Verlag KG Stuttgart · New York.

  16. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis.

    Science.gov (United States)

    Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico

    2017-01-01

    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

  17. The great Canadian oil patch : the petroleum era from birth to peak. 2. ed.

    International Nuclear Information System (INIS)

    Gray, E.

    2004-01-01

    This book presents a history of the petroleum industry from its early years to the present day. Anecdotal tales of pioneers in the industry were related, with reference to the birth of the oil industry, the Turner Valley, early energy waste issues, and accidents. Norman Wells and the Canol Project were discussed, as was the accident at Leduc and issues surrounding Pembina. Issues concerning the great pipeline debate and Trans-Canada were related. An overview of the oil sands industry was provided along with historical information on Arctic development and offshore oil. The National Oil Policy was considered, with reference to the oil crisis, economic development and the rise and fall of the National Energy Program. Survivors of the oil industry crisis were discussed, with reference to the remaining large independent producers. Issues surrounding the end of the oil and gas age were also examined, with reference to issues concerning renewable energy technologies and energy efficiency. The Kyoto Protocol was reviewed in relation to the oil and gas industry. It was concluded that currently, low market prices mask external costs such as air pollution. It was also noted that if energy prices continue to rise, energy efficiency will increase, thereby reducing the gap between fossil and alternative fuels. In addition, it was suggested that the incentive to capture carbon dioxide emissions and sequester them to recover more oil from old fields will increase. refs., tabs., figs

  18. Manitoba oil activity review, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    In an annual survey of Manitoba's petroleum industry, data are presented on oil and natural gas leases and sales, geophysical activity, exploration and drilling activity, production, oil prices and sales value, royalties and taxes, direct revenues from oil exploration and development, reserves, industry expenditures, and oil fields. Throughout the report, explanations are given of the items covered. Descriptions are made of new developments, the oil market, oil policies, incentive programs, and industrial activities. During 1992, 28 wells were drilled, compared to 54 in 1991. Oil production was down ca 8% from 1991 levels, to 656,415 m 3 ; the value of the oil produced decreased 4% to ca $86.3 million; and provincial revenues from the oil industry decreased by 24%. Oil industry expenditures in the province were estimated at $58 million, down 16% from 1991. As of 4 January 1993, there were 11 oil fields and 120 non-confidential oil pools designated in Manitoba. Crude oil prices fluctuated throughout the year. In 1992, Manitoba's average crude oil price was $20.89/bbl, compared with 1991's average of $20.14/bbl. Manitoba Energy and Mines amended the Drilling Incentive Program to provide a 10,000 m 3 holiday volume for horizontal wells. 12 figs., 17 tabs

  19. Manitoba oil activity review, 1993

    International Nuclear Information System (INIS)

    1994-07-01

    In an annual survey of Manitoba's petroleum industry, data are presented on oil and natural gas leases and sales, geophysical activity, exploration and drilling activity, production, oil prices and sales value, royalties and taxes, direct revenues from oil exploration and development, reserves, industry expenditures, and oil fields. Throughout the report, explanations are given of the items covered. Descriptions are made of new developments, the oil market, oil policies, incentive programs, and industrial activities. During 1993, 87 wells were drilled, compared to 28 in 1992. Oil production was down ca 3% from 1992 levels, to 634,561 m 3 ; the value of the oil produced decreased 10% to ca $77.5 million; and provincial revenues from the oil industry decreased by 4%. Oil industry expenditures in the province were estimated at $73 million, up 26% from 1992. As of 4 January 1994, there were 11 oil fields and 120 non-confidential oil pools designated in Manitoba. Crude oil prices fluctuated throughout the year, between $15.12 and $21.50/bbl. In 1993, Manitoba's average crude oil price was $19.40/bbl, compared with 1992's average of $20.89/bbl. Manitoba Energy and Mines amended the Drilling Incentive Program to provide a 10,000 m 3 holiday volume for horizontal wells. 12 figs., 17 tabs

  20. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  1. 78 FR 9575 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to...

    Science.gov (United States)

    2013-02-11

    ... reserve oil in such manner as to accurately account for its receipt, storage, and disposition. In a rule... FR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to Administrative Rules Regarding the Transfer and Storage of Excess Spearmint Oil AGENCY: Agricultural Marketing...

  2. COMPETITIVE POSITION OF THE MAIN PRODUCERS AND EXPORTERS OF OILSEEDS AND VEGETABLE OILS IN THE INTRA-EU TRADE

    Directory of Open Access Journals (Sweden)

    Karolina Pawlak

    2014-09-01

    Full Text Available The aim of the paper was to assess the competitive position of the main producers and exporters of oilseeds and vegetable oils in the intra-EU trade in 2004 and 2012. The competitiveness was assessed with the use of a selected set of quantitative measures of international competitive position. Moreover, some shares of the analysed countries in the intra-EU trade, as well as relative export intensity of oilseeds and vegetable oils in these countries were estimated. On the basis of the conducted analyses it is possible to conclude that apart from Germany in trade in rapeseed and soya beans, as well as the Netherlands in trade in rapeseed and sunflower-seed, the main producers and exporters of oilseeds were competitive on the Single European Market. Excluding soya-bean oil produced in the EU mainly from imported raw material, competitive advantage of most of the countries decreased together with the level of processing and was lower in trade in vegetable oils.

  3. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  4. Effects of two diamine biocides on the microbial community from an oil field

    International Nuclear Information System (INIS)

    Telang, A.; Voordouw, G.; Ebert, S.; Foght, J. M.; Westlake, D. W. S.

    1998-01-01

    Oil production facilities are routinely treated with biocides to control or eliminate microbes responsible for souring odor, or microbially influenced corrosion. In this study the effects of diamine biocides A and B on the microbial population from an oil field were investigated using reverse sample genome probing (RSGP), a technique designed to track multiple oil field bacteria in a single assay. RSGP studies of sessile microbial populations scraped from corrosion coupons obtained from biocide-treated oil field installations indicate dominance of Desulfovibrio species Lac6 and Eth3. Laboratory studies suggest that batchwise application of high doses (400 ppm) of biocide A is capable of killing planktonic populations of Desulfovibrio spp. Lac6 and Eth3. Batchwise application of similar doses of biocide B did not have this effect. Overall results indicate that the application of 400 ppm biocide B and 40 ppm biocide A may actually promote survival of selected Desulfovibrio spp., which may then effectively colonize available metal surfaces. 15 refs., 3 figs

  5. AN INTER-TEMPORAL ANALYSIS OF OPERATIONAL EFFICIENCY OF OIL FIRMS: FURTHER EVIDENCE FROM NIGERIA

    Directory of Open Access Journals (Sweden)

    David Mautin Oke

    2013-01-01

    Full Text Available There have been growing needs to investigate oil and gas firms more closely due to their corporate scandals. Globally, oil firm managements have become more risk intolerant. They are sometimes under pressure to deliver results within a short time, which often negatively affect their ability to undertake risky ventures that are rewarding.Applying the Data Envelopment Analysis, this paper shows a high level of technical operational inefficiency of 0.51 in Nigerian oil industry over the period 2006-2009. The fall in technical efficiency of the oil firms in 2009 might be attributed to the banking crisis in Nigeria in 2009 that affected financial operations of some oil firms that relied on banking credits for running their business, and the fall in global oil prices relative to mid 2008.

  6. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    Science.gov (United States)

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases

  7. Numerical simulation and structural optimization of the inclined oil/water separator.

    Directory of Open Access Journals (Sweden)

    Liqiong Chen

    Full Text Available Improving the separation efficiency of the inclined oil/water separator, a new type of gravity separation equipment, is of great importance. In order to obtain a comprehensive understanding of the internal flow field of the separation process of oil and water within this separator, a numerical simulation based on Euler multiphase flow analysis and the realizable k-ε two equation turbulence model was executed using Fluent software. The optimal value ranges of the separator's various structural parameters used in the numerical simulation were selected through orthogonal array experiments. A field experiment on the separator was conducted with optimized structural parameters in order to validate the reliability of the numerical simulation results. The research results indicated that the horizontal position of the dispenser, the hole number, and the diameter had significant effects on the oil/water separation efficiency, and that the longitudinal position of the dispenser and the position of the weir plate had insignificant effects on the oil/water separation efficiency. The optimal structural parameters obtained through the orthogonal array experiments resulted in an oil/water separation efficiency of up to 95%, which was 4.996% greater than that realized by the original structural parameters.

  8. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  9. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME produced through hydrodynamic cavitation process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2018-03-01

    Full Text Available In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester blended with diesel in proportions of 10%, 20%, 30% and 50% by volume and pure diesel was used as fuel. Engine performance (specific fuel consumption and brake thermal efficiency and exhaust emission (CO, CO2 and NOx were measured to evaluate the behaviour of the diesel engine running on biodiesel. The results show that the brake thermal efficiency of diesel is higher and brake specific fuel consumption is lower at all loads followed by blends of SOME and diesel. The performance parameter for B10, B20, B30 and B50 were also closer to diesel and the CO emission was found to be lesser than diesel while there was a slight increase in the CO2 and NOx. SOME produced by using hydrodynamic cavitation seems to be efficient, time saving and industrially viable. The experimental results revel that SOME-diesel blends up to 50% (v/v can be used in a diesel engine without modifications. Keywords: Performance, Emission, Diesel engine, Schleichera Oleosa Oil, Biodiesel hydrodynamic cavitation (HC

  10. The energy efficiency of crude oil refining in Brazil: A Brazilian refinery plant case

    International Nuclear Information System (INIS)

    Lima, Romulo S. de; Schaeffer, Roberto

    2011-01-01

    This article evaluates energy efficiency in Brazilian crude oil refining in comparison with the crude oil refining in the United States between 1930 and 2008. It aims to show that increased refinery complexity reduces the energy consumption of products of high value added. Moreover, the article shows that improvements in energy efficiency result in higher quality products and increased processing of oil. A Brazilian refinery with a capacity of 157,000 barrels per day (kbpd) was modernized in 2008 at a cost of US $1.3 billion. As a result, its capacity increased by 17%, from 157 to 189 kbpd. Its complexity index also rose from 3.2 to 6.8, allowing an improvement in the EII (energy intensity index) from 110% to 93%. In relation to the crude oil processed before being modernized, energy consumption fell from 0.75 to 0.52 MBtu (million British thermal units) per barrel processed. These proceedings show that increases in complexity reduce the energy consumed in the production of final products with high value added, such as gasoline, diesel and jet fuel. -- Highlights: → Increased refinery complexity reduces the energy consumption of products of high value added. → Improvements in refinery energy efficiency result in higher quality products and increased processing of oil. → Brazilian refineries were not affected significantly in the 2008 crisis, such as the US refineries, due to many factors. → The EII of Brazilian refining presents real opportunities for gains through changes in the profile of energy consumed.

  11. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?

    International Nuclear Information System (INIS)

    Thamsiriroj, T.; Murphy, J.D.

    2009-01-01

    The proposed EU Directive on the promotion of Renewable Energy stipulates that only biofuels that achieve greenhouse emissions savings of 35% will be eligible for inclusion with respect to meeting the 2020 target of 10% for the share of biofuels. This paper examines biodiesel for use in Ireland, produced from two different sources: indigenous rape seed and palm oil imported from Thailand. The palm oil system generates more biodiesel per hectare than the rape seed system, and has less parasitic demand. Greenhouse-gas reductions of 29% and 55%, respectively were calculated for the rape seed and palm oil systems. (author)

  12. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  13. Placing Brazil's heavy acid oils on international markets

    International Nuclear Information System (INIS)

    Szklo, Alexandre Salem; Machado, Giovani; Schaeffer, Roberto; Felipe Simoes, Andre; Barboza Mariano, Jacqueline

    2006-01-01

    This paper identifies the international market niches of Brazil's heavy acid oils. It analyzes the perspectives for making wider use of heavy acid oils, assessing their importance for certain oil-producing regions such as Brazil, Venezuela, West Africa, the North Sea and China. Within this context, the oil produced in the Marlim Field offshore Brazil is of specific interest, spurred by the development of its commercial brand name for placement on international markets and backed by ample production volumes. This analysis indicates keener international competition among acid oils produced in Brazil, the North Sea and the West Coast of Africa, through to 2010. However, over the long term, refinery conversion capacity is the key factor for channeling larger volumes of heavy acid oils to the international market. In this case, the future of acid oil producers will depend on investments in refineries close to oil product consumption centers. For Brazil, this means investments in modifying its refineries and setting up partnerships in the downstream segment for consumer centers absorbing all products of high added value, such as the USA and even Southeast Asia and Western Europe

  14. Unravelling the potential of energy efficiency in the Colombian oil industry

    NARCIS (Netherlands)

    Yanez Angarita, Edgar Eduardo; Ramirez, Andrea; Uribe, Ariel; Castillo, Edgar; Faaij, Adrianus

    2018-01-01

    The oil and gas sector represents 39% of the world's total industrial final energy consumption, and contributes to around 37% of total greenhouse gas (GHG) emissions. This study investigates the potential for improvements in energy efficiency, and their implications for CO2 abatement, in the

  15. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  16. Effect of oil-pipelines existed in HVTL corridor on the electric field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, H.M. [College of Technological Studies, Kuwait (Kuwait). Dept. of Electrical Engineering

    2007-07-01

    The overhead transmission of large amounts of electricity over long distances requires high transmission voltages which can generate high electric fields that may have harmful effects on both human and animals. Therefore, corridors or right-of-way are left on both sides along the route of transmission lines. Overhead power transmission lines need strips of land to be designated as rights-of-way. These strips of land can also support other uses such as pipelines, railroads and highways. The primary purpose for minimizing the field effects of high voltage AC lines is to reduce the electric field at ground level. This study investigated the effects of oil-pipelines running parallel to the lines in the rights-of-way corridors on the electric fields generated from high voltage electrical networks in Kuwait. In order to examine the impact of certain design parameters on the electric field distribution near the ground surface, this study varied the oil pipelines diameter, the proximity of the pipeline from the transmission line center and the number of pipelines. The objective was to determine if the amount of land which is required as right-of-way can be reduced. This study also examined the effect of two parallel oil pipelines on the field distribution. Both pipelines were separated by a given distance and ran parallel to the transmission line conductors. The charge simulation method (CSM) was used to simulate and model both the conductors of the transmission lines and the oil-pipelines. Graphs for the electric field distribution profiles at the ground surface, at transmission line conductors' surfaces and at the surfaces of the oil pipelines were presented and evaluated for each scenario. 10 refs., 12 figs.

  17. Comparative exergy analyses of Jatropha curcas oil extraction methods: Solvent and mechanical extraction processes

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Keat Teong, Lee; JitKang, Lim

    2012-01-01

    Highlights: ► Exergy analysis detects locations of resource degradation within a process. ► Solvent extraction is six times exergetically destructive than mechanical extraction. ► Mechanical extraction of jatropha oil is 95.93% exergetically efficient. ► Solvent extraction of jatropha oil is 79.35% exergetically efficient. ► Exergy analysis of oil extraction processes allow room for improvements. - Abstract: Vegetable oil extraction processes are found to be energy intensive. Thermodynamically, any energy intensive process is considered to degrade the most useful part of energy that is available to produce work. This study uses literature values to compare the efficiencies and degradation of the useful energy within Jatropha curcas oil during oil extraction taking into account solvent and mechanical extraction methods. According to this study, J. curcas seeds on processing into J. curcas oil is upgraded with mechanical extraction but degraded with solvent extraction processes. For mechanical extraction, the total internal exergy destroyed is 3006 MJ which is about six times less than that for solvent extraction (18,072 MJ) for 1 ton J. curcas oil produced. The pretreatment processes of the J. curcas seeds recorded a total internal exergy destructions of 5768 MJ accounting for 24% of the total internal exergy destroyed for solvent extraction processes and 66% for mechanical extraction. The exergetic efficiencies recorded are 79.35% and 95.93% for solvent and mechanical extraction processes of J. curcas oil respectively. Hence, mechanical oil extraction processes are exergetically efficient than solvent extraction processes. Possible improvement methods are also elaborated in this study.

  18. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  19. Experimental use of produced waters for waterflooding fields of Kuibyshev region

    Energy Technology Data Exchange (ETDEWEB)

    Palii, P A; Gavura, V E; Redkin, I I; Sokolov, A G

    1970-01-01

    Large volumes of produced waters have been used for waterflooding in the Kuibyshev region. Before underground injection, the water is conditioned by short-term storage. The treated water contains emulsified oil, suspended solids, hydrogen sulfide, and ferrous iron. This water is readily injected into fractured porous formations, even if suspended solids reach 42 mg/liter and emulsifed oil 67 mg/liter. However, better quality water has to be injected into nonfractured formations. In this case, the concentration of emulsified oil and suspended solids needs to be kept below 5 mg/liter. If concentration of suspended material exceeds this limit, water injectivity decreases rapidly. The partially plugged wells can be restored by acid treatment. Water injection has shown large economic gains in this region.

  20. Determination of the Efficiency of Some Essential Oil Compounds on the Development of Jonsongrass [(Sorghum halepense (L. Pers.

    Directory of Open Access Journals (Sweden)

    Ayşe YAZLIK

    2015-09-01

    Full Text Available Jonsongrass (Sorghum halepense (L. Pers. (SORHA is one of the most troublesome perennial weeds caused important yield reductions in the agricultural and environmental problems in the non-agricultural fields. Using a combination of several control strategies is required because Sorha cannot be effectively controlled by a single control method. One of the methods that can be used for the control of Sorha is the usage of allelopathic chemicals. The efficiency of the plants [oregano (Origanum vulgare L., lavender (Lavandula angustifolia L. and rosemary (Rosmarinus officinalis L.] that have allelochemicals on the SORHA were examined with this study. Using rosemary oil at the high rate (16 μl 38.465 cm2 gave the best results and reduced dry weight at 41.0% when it was applied as pre-emergence. The same essential oil rate obtained from rosemary was the highest adversely effects on the Sorha growth (48.0% when it was used as post-emergence. Post-emergence application of all three volatile oils has provided more influence on the Sorha growth compared to the pre-emergence application.

  1. Removal of oil from water by bentonite

    International Nuclear Information System (INIS)

    Moazed, H.; Viraraghavan, T.

    1999-01-01

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  2. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  3. Oil and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yoshiaki

    1988-06-01

    The secondary oil recovery due to microorganisms and the production of useful substances from oil distillates using microorganisms are described as examples to solidify the relationship between oil and biotechnology. The secondary crude-oil recovery has been carried out due to the microorganism drive process, which includes the on-the-ground and underground processes. Although the microorganism drive process has been investigated for many years, the selection of the microorganisms is not completely established. Many uncertainties still remain regarding the technical and economic aspects. The single cell protein (SCP) is an example of industrial success in the production of useful substances from the oil. Rumania has produced SCP from normal paraffin and the U. K. from the methanol and the products are used as the protein source for animals. Remarkable progress in the functional efficiency of microorganisms is expected due to the biotechnology for both applications. (4 tabs)

  4. Development of a centrifugal in-line separator for oil-water flows

    NARCIS (Netherlands)

    Slot, J.J.

    2013-01-01

    The world energy consumption will increase in the next decades. However, many aging oil fields are showing a steady decline in oil production. And they are producing increasing amounts of water, making the separation of the oil from the oil-water mixture an important processing step. In-line

  5. Characteristics of waterflooding of oil pools with clay-containing reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Stupochenko, V E; Khavkin, A Ya; Martos, V N

    1981-01-01

    When planning the development of oil fields with reservoir pressure maintenance by the injection of water or activated solutions (surfactants, alkali, etc.), it is necessary to take into account the consequences of phenomena related to clay swelling. For this purpose, it is necessary to measure on a core the parameters characterizing the change and hysteresis of the filtration and storage properties of the reservoir rocks. Swelling of the clay component of the rock along with reducing these properties in the sweep zone can promote an increase of the efficiency of displacing oil by water. Theoretical investigations showed that the maximum displacement efficiency in homogeneous clay-containing rocks does not depend on the time of starting stimulation by demineralized waters. The efficiency from changing the mineralization of the stimulating agent increases with increase of viscosity of the oil. Under certain physical and geologic conditions, a purposeful change of the filtration and storage properties by increasing or decreasing clay swelling can increase the efficiency of developing the field and can increase oil recovery.

  6. Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability.

    Science.gov (United States)

    Wood, Craig C; Okada, Shoko; Taylor, Matthew C; Menon, Amratha; Mathew, Anu; Cullerne, Darren; Stephen, Stuart J; Allen, Robert S; Zhou, Xue-Rong; Liu, Qing; Oakeshott, John G; Singh, Surinder P; Green, Allan G

    2018-03-06

    Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  8. Upstream oil and gas. Subsector no. 7: Oil and gas exploration and development 1995 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    Prepared by the Alberta Human Resources and Employment, this report provides a summary of the lost-time injuries and disease descriptions of workers injured while employed in the upstream oil and gas industries in Alberta during the period 1995 to 1999. The report includes the characteristics of the injured worker and the risk of injury to workers in the industries in Alberta, as well as the cost of injuries and revenue by means of total premiums paid by the employers. The occupational fatalities that were accepted by the Workers Compensation Board and investigated by the Occupational Health and Safety were summarized in the report along with a brief description of the injuries. The aim was to provide information concerning health and safety issues to government, employers, workers, and health and safety officers in the industries in Alberta about health and safety issues. The focus was placed on the oil and gas exploration and development sub-sector. Defined as all upstream oil field activities of employers which generate revenue from the production and sale of crude oil and/or natural gas, the sub-sector comprises major integrated oil and gas companies and small independent producers. In those cases where the owner/producer operates its own upstream production/processing facilities, they form an integral part of this sub-section. In addition, oil and gas marketing firms are included. Oil/gas well, well head equipment; flow lines/gathering systems tied into field processing facilities; battery sites/compressors stations; crude oil separators and natural gas dehydrators/treaters; natural gas/sulfur processing plants; heavy oil projects including steam generation; and other enhanced recovery methods are all included in the sub-sector. The other sub-sectors in the upstream oil and gas industries are: exploration, oilfield maintenance and construction, well servicing with service rigs and power swivels, drilling of oil and gas wells, oilfield downhole and other

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  10. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes

  11. Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency

    International Nuclear Information System (INIS)

    Jo, Heuntae; Prajitno, Hermawan; Zeb, Hassan; Kim, Jaehoon

    2017-01-01

    Highlights: • Non-catalytic and non-hydrogen based bio-oil upgrading was conducted using scMeOH. • 16–40 wt% alcohols were consumed during the upgrading. • High bio-oil yield of 78.4 wt% and low TAN of 4.0 mg KOH/g were achieved. • Effect of supercritical alcohols, reaction times, temperature and bio-oil concentration was conducted. • scMeOH upgrading has good energy recovery (ER) and energy efficiency (EE) compared with scEtOH and scIPA. - Abstract: Herein, a supercritical methanol (scMeOH) route for efficient upgrading of the low-boiling fraction of fast pyrolysis bio-oil containing a large amount of low-molecular-weight acids and water was investigated. The effects of various reaction parameters, including the temperature, concentration, and time, were explored. The yield of bio-oil and the energy efficiency of the scMeOH upgrading process were determined based on the amount of methanol that participated in the reaction during upgrading and fractionation of the upgraded heavy-fraction bio-oils (UHBOs) and upgraded light-fraction bio-oils (ULBOs). Upgrading at 400 °C with 9.1 wt% bio-oil for 30 min generated a high bio-oil yield of 78.4 wt% with a low total acid number (TAN) of 4.0 mg-KOH/g-oil and a higher heating value of 29.9 MJ kg −1 . The energy recovery (ER) was 94–131% and the energy efficiency (EE) was in the range of 79–109% depending on the calorific values of the ULBOs. Compared with upgrading in supercritical ethanol and supercritical isopropanol, less alcohol participation, a lower TAN, and higher ER and EE were achieved with scMeOH upgrading. Plausible pathways for bio-oil upgrading in supercritical alcohols based on detailed compositional analysis of the UHBO, ULBO, and gaseous products were discussed.

  12. Technical and Economic Efficiency of Palm Oil Marketing in the Niger Delta Region of Southern Nigeria

    OpenAIRE

    Nkasiobi Silas Oguzor

    2013-01-01

    This study examined the structural performance and productive efficiency of palm oil marketing in some selected States in Southern Nigeria. Eighty districts were selected in the Niger Delta Area and data were collected from 1000 palm oil sellers randomly selected in these towns. The tools of analysis were marketing margin, Lorenz curve and Gini coefficient to measure the structural performance while the productive efficiency was measured with the use of the production function analysis using ...

  13. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  14. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.

    Science.gov (United States)

    Wagner, Jonathan; Bransgrove, Rachel; Beacham, Tracey A; Allen, Michael J; Meixner, Katharina; Drosg, Bernhard; Ting, Valeska P; Chuck, Christopher J

    2016-05-01

    A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biomarker chemistry and flux quantification methods for natural petroleum seeps and produced oils, offshore southern California

    Science.gov (United States)

    Lorenson, T.D.; Leifer, Ira; Wong, Florence L.; Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Hostettler, Frances D.; Greinert, Jens; Finlayson, David P.; Bradley, Eliza S.; Luyendyk, Bruce P.

    2011-01-01

    Sustained, natural oil seepage from the seafloor is common off southern California, and is of great interest to resource managers, who are tasked with distinguishing natural from anthropogenic oil sources. The major purpose of this study was to build upon the work previously funded by the Bureau of Ocean Energy Management (BOEM) and the U.S. Geological Survey (USGS) that has refined the oil-fingerprinting process to enable differentiation of the highly similar Monterey Formation oils from Outer Continental Shelf (OCS) production and adjacent natural seeps. In these initial studies, biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic-matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs mainly from coastal California. The analysis resulted in a predictive model of oil source families that could be applied to samples of unknown origin.

  16. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  17. Tekna's produced water conference 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)

  18. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  19. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  20. Selection of High Oil Yielding Trees of Millettia pinnata (L. Panigrahi, Vegetative Propagation and Growth in the Field

    Directory of Open Access Journals (Sweden)

    Ni Luh Arpiwi

    2017-09-01

    Full Text Available Millettia pinnata (L. Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field.  The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to evaluate the survival and growth of budded plants in the field. Pods were collected from 30 trees in Lovina Beach, Buleleng Regency, Bali. Oil was extracted from seeds using soxhlet with hexane as a solvent.  The high oil yielding trees were propagated by budding using root stocks grown from M. pinnata seeds.  Scions were taken from young branches of selected trees. Incision was made on rootstock and the same size of cut was made on a scion containing a single bud.  The scion was inserted to the incision of rootstock then closed tightly using plastic strips.   The plastic was removed when the scion grew into a little green shoot. One month after plastic removal, the scion union grew into a single shoot and then the budded plants were removed to polybags. Budded plants were planted in the field of Bukit Jimbaran, Badung Regency, Bali with 4 × 4 spacing. Results showed all budded plants successfully grow new shoots. Two months after planting the survival of budded plants was 100%. Plant height increased by 22.13 cm, stem diameter increased by 2.43 mm and the number of compound leaf increased by 2.08.  It can be concluded that four high oil yielding trees were selected from Lovina Beach and successfully propagated by budding. Survival of budded plants was 100% with vigorous growth.

  1. OIL AS POLITICAL WEAPON

    Directory of Open Access Journals (Sweden)

    Mariana, BUICAN

    2013-12-01

    Full Text Available Oil (called by some black gold has not always been as coveted and used, but only in the last hundred years has established itself as a highly sought after as an indispensable proper functioning of modern economic activity that an important factor in international politics. International oil regime has changed in the last decades. In 1960, oil regime was a private oligopol which had links with governments main consuming countries. By then the price of a barrel of oil was two U.S. dollars and seven major transnational oil companies decided the amount of oil that will be produced. Meanwhile the world region with the largest oil exports were more strongly expressed nationalism and decolonization. Result, it was so in the late 60s in the region occur independent states. They have created an organization aim of this resource to their advantage - OPEC (Organization of Petroleum Exporting Countries. Thus since 1973 there have been changes in the international regime governing oil field, namely producing countries were fixed production rate and price. After this time the oil weapon has become increasingly important in the management of international relations. Oil influenced the great powers to Middle East conflicts that occurred in the last century, but their attitude about the emergence of new sources of oil outside OPEC. In the late 90's, Russia has become a major supplier of oil to the West.

  2. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    Science.gov (United States)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  3. Economic study of NHR application on high pour point oil field

    International Nuclear Information System (INIS)

    Zhao Gang; Zhang Zuoyi; Ma Yuanle

    1997-01-01

    In order to extent the application of NHR (nuclear heating reactor) and cut down the oil production costs, the authors designed different heating disposition by NHR and boiler heating stations in high pour point oil reservoir, total 16.9 km 2 , in Daqing oil field. This work was based on the study of history matching, water flood planning and hot water circulation for the reservoir. The analyzing results show that, the convert heating cost of NHR is a third of boiler's and the net oil production of NHR is 4 times more than the latter. Considering economization and reliability, authors suggest to adopt the scheme of two NHR with one boiler heating station

  4. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs.

    Science.gov (United States)

    Fu, Xiao-Wen; Li, Tian-Yuan; Ji, Lei; Wang, Lei-Lei; Zheng, Li-Wen; Wang, Jia-Ning; Zhang, Qiang

    2018-08-15

    The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells. Copyright © 2018 Elsevier Inc. All

  5. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  6. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  7. Peculiarity of radioactivity pollution of manufacturing environment gas and oil producing firms of the apsheron region

    International Nuclear Information System (INIS)

    Mamedov, A.M.; Alekperova, J.A.

    2002-01-01

    Full text: Present time protection of the biosphere from technogene pollution is the important problem, having common to all mankind value. In circuits of the technogene pollution of the environment the soil is a carrying on link for through soil the contaminants freely go to air environment, in underground waters in plants and in foodstuff of a vegetative and animal genesis. In subsequent these contaminants on the indicated chains by penetrating in an organism of the people render an ill effect on their health. In this plane the radiological contamination of soil introduces still large dangerous. As the radionuclides of soil can render as external radiation, and by getting in an organism with air, water and foodstuff can cause internal radiation. In this plane, for detection of a role of gas and oil producing firms in radiological contamination soil as object of an environment, we conduct researches by a hygienic estimation of radiological contamination of soil of territory of oil-fields OOGE 'Gum adasi' of the Apsheron region. By spectrometric method were studied a natural background radiation and radioactivity of soil of different territories of shop of complex opening-up of oil. Established, that for the raw tank the specific activity reaches 4438-9967 Bk/kg, close of the product repair shop the radioactivity reached 650- 700 micro R/hour. In territory of the region 'Gum adasi', where the waste from cleaning chisel tubes were accumulated, the radioactivity made 600 micro R/hour. These indexes the superior background level is significant. The analysis of power spectrums a gamma of radiations is model from the indicated sites has shown, that the radioactivity is conditioned by isotopes of a radium. The researches have allowed to demonstrate a radioactivity technogene of impurity of rocks to recommend urgent dumping of above-stated waste in bunkers on sites, retracted by it. Thus, was established, that gas and oil producing firms contributing to radiological

  8. Anti-listerial effects of essential oils and herbs in fresh-cut produce: opportunities and limitations

    OpenAIRE

    Scollard, Johann

    2011-01-01

    peer-reviewed The potential anti-listerial benefits of essential oils and herbs in fresh-cut produce systems were investigated. Interactions with modified atmospheres and product types were examined in detail, including effects on quality. A strong anti-listerial response from rosemary herb was discovered during maceration and the chemical basis of this determined for future exploitation. The anti-listerial properties of essential oils (thyme, oregano and rosemary), under a ...

  9. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  10. Energy sources consumption: end uses, efficiency and productivity

    International Nuclear Information System (INIS)

    Martin, J.M.

    2005-01-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  11. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  12. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

  13. PlumpyField – Network of local producers of RUF (contributed paper)

    International Nuclear Information System (INIS)

    Belete, Hilina

    2014-01-01

    Full text: Expanding coverage for the 35 million children in the world suffering from Moderate Acute Malnutrition (MAM) will require sustainably scaling up regional procurement of lipid-based RUSF products. Momentum is now building to achieve this aim through ten local ready-to-use food (RUF) producers in the PlumpyField Network, which was established by the French company Nutriset in 2005. These independently-owned factories, located in Sub-Saharan Africa, Asia, and the Caribbean, currently produce one-third of the world’s RUF supply. Overcoming substantial obstacles, they have achieved the same high quality standards of producers in Europe and the U.S., with increasingly competitive pricing. Being part of a mutually supportive and interactive network of RUF producers from around the world provides unique learning and partnership opportunities, from sharing insights on peanut supply chain development, increasingly complex quality challenges, to pooled procurement. This network system has been instrumental to the success of local production for the members of the PlumpyField Network. Historically, local producers achieving economies of scale and reliable local and international supply chains (i.e. for peanuts, oil, sugar, milk etc.) takes several years, making the cost of locally-procured products more expensive in the short term. However, there are numerous positive outcomes and externalities that cannot be ignored, such as decreased lead times (especially crucial to reach children with acute malnutrition), lower shipping costs, economic development, and maturation of the food processing and microbiological laboratory sectors. UNICEF and WFP have become leaders in local and regional procurement as they continually optimize their strategies to best meet global needs. Local production is often an important stimulant of public-private partnerships, including procurement of RUF by local governments for government-run acute malnutrition programs, furthering

  14. Bioremediation of hydrocarbon contaminated-oil field drill-cuttings ...

    African Journals Online (AJOL)

    The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, ...

  15. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in frio fluvial-deltaic sandstone reservoirs at South Texas. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, M.; Knox, P.; McRae, L. [and others

    1996-02-01

    The Frio Fluvial-Deltaic Sandstone oil play of South Texas has produced nearly 1 billion barrels of oil, yet it still contains about 1.6 billion barrels of unrecovered mobile oil and nearly the same amount of residual oil resources. Interwell-scale geologic facise models of Frio Fluvial-deltaic reservoirs are being combined with engineering assessments and geophysical evaluations in order to determine the controls that these characteristics exert on the location and volume or unrecovered mobile and residual oil. Progress in the third year centered on technology transfer. An overview of project tasks is presented.

  16. Renovate produced-water-treating facilities to handle increased water cuts

    International Nuclear Information System (INIS)

    Murti, D.G.K.; Al-Nuaimi, H.R.

    1991-01-01

    This paper reports on the modified skimmer tanks that have consistently demonstrated superior oil recovery characteristics compared to conventional design in an oil field tank battery system. The modified tanks have been in continuous service for more than 3 years in one of the oldest oil fields in the Arabian Gulf. The new design has helped recover skimmed oil from a mere 6 bpd (1.0 m 3 ) to more than 55 bpd (8.75 m 3 ) from produced water in a tank battery system alone. The recovery is expected to improve by up to 200 bpd (31.8 m 3 ) once skimmer tanks in all the tank batteries are upgraded to the new design

  17. Investigation of an innovative technology for oil-field brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, D; Dalmacija, B; Hain, Z; Karlovic, E; Maric, S; Uzelac, N [Inst. of Chemistry, Faculty of Sciences, V. Vlahovica 2 (YU)

    1989-01-01

    Various aspects of an innovative technology for oil field brine treatment were investigated on a laboratory scale. The both free and dispersed oily matter were separated by gravitation and sedimentation. Apart from the physico-chemical oil removal process, special attention was paid to different variants of improved microbiological treatment: dilution with fresh water and application of powdered activated carbon (PAC). Advanced treatment was carried out on granular biological activated carbon (GBAC). A technological scheme for complete treatment was proposed. (author).

  18. Impact on world oil prices when larger and fewer producers emerge from a political restructuring of the Middle East

    International Nuclear Information System (INIS)

    Wirl, F.

    1992-01-01

    We investigate how a redistribution of oil reserves among a (probably reduced) set of producers affects OPEC's oil extraction policies and thus international crude oil-prices. The empirical investigation shows that this impact is fairly small, as long as OPEC members do not cooperate. Only cooperation will have a substantial impact. (author)

  19. Perestroika, Soviet oil, and joint ventures

    International Nuclear Information System (INIS)

    Churkin, M. Jr.

    1991-01-01

    Glaznost, the freedom of expression in both the public and private sectors of the Soviet Union, has rapidly transformed the country form a largely isolated and closed society to one that is rapidly becoming more cosmopolitan and open to the West. Now that the Soviet Union is moving toward a free-market economy, a number of new laws are being generated to create a favorable environment for Western investment, especially joint ventures. First, crude oil sales have provided over 75% of much-needed hard currency, and oil has been the principal barter for manufactured goods produced in eastern Europe. Second, joint oil ventures with Western companies can reverse declining production levels and provide sufficient stimulus to turn around the economic recession. The Soviet Union has a very large inventory of discovered but undeveloped oil and gas fields. Most of these fields are difficult for the Soviets to produce technically, financially, and environmentally safely, and they are actively seeking appropriate Western partners. From an exploration point of view, the Soviet Union has probably the largest number of undrilled and highly prospective oil basins, which may replenish declining reserves in the West. Finally, the Soviet Union represents in the long term a large unsaturated market eager to absorb the surplus of goods and services in the Western world. Again, joint oil ventures could provide the convertible currency to increase East-West trade

  20. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.