WorldWideScience

Sample records for efficient ferric reductant

  1. Restraining Sodium Volatilization in the Ferric Bauxite Direct Reduction System

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2016-03-01

    Full Text Available Direct reduction is an emerging utilization technology of ferric bauxite. However, it requires much more sodium carbonate than ordinary bauxite does. The volatilization is one of the most significant parts of sodium carbonate consumption, as reported in previous studies. Based on the new direct reduction method for utilization of ferric bauxite, this paper has systematically investigated factors including heating temperature, heating time, and sodium carbonate dosage influencing sodium volatilization. For the purpose of reducing sodium volatilization, the Box–Benhken design was employed, and the possibility of separating iron and sodium after direct reduction was also investigated.

  2. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  3. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

  4. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    International Nuclear Information System (INIS)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian

    2012-01-01

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly

  5. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    Science.gov (United States)

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  6. Ferric Iron Reduction by Bacteria Associated with the Roots of Freshwater and Marine Macrophytes†

    Science.gov (United States)

    King, G. M.; Garey, Meredith A.

    1999-01-01

    In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 μmol g (dry weight)−1 day−1 for three freshwater macrophytes and rates between 15 and 83 μmol (dry weight)−1 day−1 for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32°C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments. PMID:10508065

  7. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water

    International Nuclear Information System (INIS)

    Zhang Kai; Dwivedi, Vineet; Chi Chunyan; Wu Jishan

    2010-01-01

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  8. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  9. Reduction of costs for anemia-management drugs associated with the use of ferric citrate

    Directory of Open Access Journals (Sweden)

    Thomas A

    2014-05-01

    Full Text Available Anila Thomas,1 Leif E Peterson2 1Clinical Pharmacy Services, Houston Methodist Hospital, Houston, TX, USA; 2Center for Biostatistics, Houston Methodist Research Institute, Houston, TX, USA Background: Ferric citrate is a novel phosphate binder which has the potential to reduce usage of erythropoietin-stimulating agents (ESAs and intravenous (IV iron used for anemia management during hemodialysis (HD among patients with end-stage renal disease (ESRD. Currently, the potential health care cost savings on a national scale due to the use of ferric citrate in ESRD are undetermined. Methods: Per-patient-per-year costs of ESAs (Epogen® and Aranesp® [Amgen Inc., CA, USA] and IV iron (Venofer® [American Regent, Inc., NY, USA] and Ferrlecit® [Sanofi US, Bridgewater, NJ, USA] were based on RED BOOK™ (Truven Health Analytics New York, NY, USA costs combined with the Centers for Medicare and Medicaid Services (CMS base rate and actual usage in 2011 for the four drugs. The annual number of outpatients undergoing HD in the US was based on frequencies reported by the USRDS (United States Renal Data System. Monte Carlo uncertainty analysis was performed to determine total annual costs and cost reduction based on ferric citrate usage. Results: Total annual cost of ESAs and IV iron for anemia management in ESRD determined by Monte Carlo analysis assuming CMS base rate value was 5.127 (3.664–6.260 billion USD. For actual utilization in 2011, total annual cost of ESAs and IV iron was 3.981 (2.780–4.930 billion USD. If ferric citrate usage reduced ESA utilization by 20% and IV iron by 40%, then total cost would be reduced by 21.2% to 4.038 (2.868–4.914 billion USD for the CMS base rate, and by 21.8% to 3.111 (2.148–3.845 billion USD, based on 2011 actual utilization. Conclusion: It is likely that US health care costs for anemia-management drugs associated with ESRD among HD patients can be reduced by using ferric citrate as a phosphate binder. Keywords

  10. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2017-01-01

    Full Text Available The sodium leaching ratio (ηN of ferric bauxite direct reduction process is much lower than that of ordinary bauxite; thus, the former consumes more sodium than the latter. ηN can be promoted by increasing the dosage of sodium or restricted by increasing the heating temperature and time. However, the restriction effect of heating temperature is 16.67 times larger than that of heating time, and the restriction effect decreases 47.03 times faster when heating temperature increases than that process of heating time. These imply that ηN improves with the increasing sodium carbonate dosage and the decreasing heating temperature.

  11. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle.

    Science.gov (United States)

    Liu, Yulei; Wang, Lu; Wang, Xianshi; Huang, Zhuangsong; Xu, Chengbiao; Yang, Tao; Zhao, Xiaodan; Qi, Jingyao; Ma, Jun

    2017-11-01

    Thallium (Tl) is highly toxic to mammals and relevant pollution cases are increasing world-widely. Convenient and efficient method for the removal of trace Tl from contaminated source water is imperative. Here, the removal of trace Tl by K 2 FeO 4 [Fe(VI)] was investigated for the first time, with the exploration of reaction mechanisms. Six different types of water treatment agents (powdered activated carbon, Al 2 (SO 4 ) 3 , FeCl 3 , δ-MnO 2 , MnO 2 nano-particles, and K 2 FeO 4 ) were used for the removal of Tl in spiked river water, and K 2 FeO 4 showed excellent removal performance. Over 92% of Tl (1 μg/L) was removed within 5 min by applying 2.5 mg/L of K 2 FeO 4 (pH 7.0, 20 °C). XPS analysis revealed that in the reaction of Tl(I) with K 2 FeO 4 , Tl(I) was oxidized to Tl(III), and removed by the K 2 FeO 4 reduced ferric particles. The removal of Tl by in situ formed and ex situ formed ferric particle was examined respectively, and the results revealed that the removal of trace Tl could be attributed to the combination of adsorption and coprecipitation processes. The hydrodynamic size of the reduced particle from K 2 FeO 4 ranged from 10 nm to 100 nm, and its surface was negatively charged under neutral pH condition. These factors were conducive for the efficient removal of Tl by K 2 FeO 4 . The effects of solution pH, coexisting ions (Na + , Ca 2+ , and HCO 3 - ), humic acid, solution temperature, and reductive environment on the removal and desorption of Tl were investigated, and the elimination of Tl in polluted river water and reservoir water was performed. These results suggest that K 2 FeO 4 could be an efficient and convenient agent on trace Tl removal. Copyright © 2017. Published by Elsevier Ltd.

  12. Influence of Carbon Sources and Electron Shuttles on Ferric Iron Reduction by Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Dr Robin Gerlach; Erin K. Field; Sridhar Viamajala; Brent M. Peyton; William A. Apel; Al B. Cunningham

    2011-09-01

    Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.

  13. EVALUATION OF FERRIC CHLORIDE AND ALUM EFFICIENCIES IN ENHANCED COAGULATION FOR TOC REMOVAL AND RELATED RESIDUAL METAL CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia, M. T. Rafiee, F. Vaezi and A. H. Mahvi

    2005-07-01

    Full Text Available Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM to reduce the formation of disinfection by-products (DBPs, is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron concentration in the treated water was assessed as well. The removal of total organic carbon (TOC was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.

  14. 21 CFR 184.1297 - Ferric chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  15. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  16. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  17. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    Science.gov (United States)

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  20. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  1. The influence of surfactant on the synthesis of gamma ferric oxide: implications on phase composition and magnetic properties

    International Nuclear Information System (INIS)

    Narasimhan, B.R.V.; Prabhakar, S.; Manohar, P.; Gnanam, F.D.

    2002-01-01

    It has already been established that ferrous carbonate precipitated from the reaction of ferrous sulphate and sodium carbonate, on direct thermal decomposition yields gamma ferric oxide. The present work describes the effect of sodium lauryl sulphate (Sodium dodecyl sulphate) on the synthesis of gamma ferric oxide when it is introduced during the precipitation of ferrous carbonate. Since ferrous carbonate undergoes rapid oxidation on standing in air, the extent of oxidation in presence of sodium lauryl sulphate is also studied using oxidation-reduction potential measurements. The ferric oxide powders are characterized for phase analysis (XRD), magnetic properties (VSM) and particle size analysis. (author)

  2. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    .R. Asgari

    2008-04-01

    Full Text Available Background and ObjectivePollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.MethodsThis study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares. ResultsResults showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.ConclusionAccording to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost. Keywords: Arsenic, Granular Ferric Hydroxide (GFH, Adsorption, Drinking Water

  3. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil.

    Science.gov (United States)

    Huang, Bin; Yu, Kewei; Gambrell, Robert P

    2009-01-01

    A laboratory soil slurry experiment and an outdoor pot experiment were conducted to study effects of ferric iron (Fe(III)) reduction and regeneration on nitrous oxide (N(2)O) and methane (CH(4)) emissions in a rice (Oryza sativa L.) soil. The anoxic slurry experiment showed that enhancing microbial Fe(III) reduction by ferrihydrite amendment (40 mol Fe g(-1)) transitionally stimulated N(2)O production and lowered CH(4) production by 16% during an initial 33-day incubation. Increased regeneration of Fe(III) through a 4-day aeration period in the Fe-amended slurry compared to the control slurry reduced CH(4) emission by 30% in the subsequent 15-day anaerobic incubation. The pot experiment showed that ferrihydrite amendment (63 micromol Fe g(-1)) stimulated N(2)O fluxes in the days following flooding. The Fe amendment suppression on CH(4) emission was obscured in the early season but became significant upon reflooding in the mid- and late-seasons. As a result, seasonal CH(4) emission in Fe-amended pots was 26% lower than the control with a single 2-day drainage and 69% lower with a double 2-day drainage. The reduction in CH(4) emission upon reflooding from the Fe-amended pots was mainly attributed to the increased Fe(III) regeneration during drainage showing a mechanism of Fe(III) regeneration in mitigating CH(4) emission by short-term drainage in flooded soils.

  4. Thermally assisted nanosecond laser generation of ferric nanoparticles

    Science.gov (United States)

    Kurselis, K.; Kozheshkurt, V.; Kiyan, R.; Chichkov, B.; Sajti, L.

    2018-03-01

    A technique to increase nanosecond laser based production of ferric nanoparticles by elevating temperature of the iron target and controlling its surface exposure to oxygen is reported. High power near-infrared laser ablation of the iron target heated up to 600 °C enhances the particle generation efficiency by more than tenfold exceeding 6 μg/J. Temporal and thermal dependencies of the particle generation process indicate correlation of this enhancement with the oxidative processes that take place on the iron surface during the per spot interpulse delay. Nanoparticles, produced using the heat-assisted ablation technique, are examined using scanning electron and transmission electron microscopy confirming the presence of 1-100 nm nanoparticles with an exponential size distribution that contain multiple randomly oriented magnetite nanocrystallites. The described process enables the application of high power lasers and facilitates precise, uniform, and controllable direct deposition of ferric nanoparticle coatings at the industry-relevant rates.

  5. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Pengyi; Pan Gang; Chen Hao

    2008-01-01

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 μM ferric ion, 47.3% of initial PFOA (48 μM) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 μM, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu 2+ and Zn 2+ also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way

  6. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  7. Kinetic study of the reduction of Ferric-1, 10-Orthophenanthroline with Uranium (IV) DTPA

    International Nuclear Information System (INIS)

    Perveen, Rashida; Naqvi, Iftikhar Imam

    2006-01-01

    The reduction of ferric 1, 10-orthophenanthroline by Uranium (IV) complex of Diethylenetriaminepentaacetic acid was investigated in aqueous hydrochloride acid at 30C, ionic strength 0.01 mole dm-3 and pH 3.5. The mechanism and rate law for the formation of [Fe (opt) 3] was established by isolation method at constant and varying pH values. Spectroscopic method was employed for this investigation. The rate constant and order of reaction with respect to each of the reactant the [U (IV) DTPA] and [Fe(opt3)] was established by plotting a graph 1n (A-At) vs. time. The reaction was observed to be following first order with respect each of following reactants. Overall reaction order was found to be two, having the value of the rate constant 571.59 m min. at pH 3.5. Thermodynamic parameters for the reaction were determined to be E=26.47 kj mol, G=35.11 kj mol, H=24.86 mol and S= 50.17 mol. With the help of Arrhenius equation activation energy for the reaction was calculated. Change in enthalpy and entropy for the reaction (S, H) were determined from the slope and intercept of Eyring plot. Hydrogen ion dependence of the reaction was determined by varying the pH and the rate law was determined. (author)

  8. Ferritin Elevation and Improved Responsiveness to Erythropoiesis-Stimulating Agents in Patients on Ferric Citrate Hydrate

    Directory of Open Access Journals (Sweden)

    Keitaro Yokoyama

    2017-05-01

    Discussion: It is suggested that not only iron load but also the erythropoiesis-stimulating agent dose reduction may be involved in ferritin elevation during ferric citrate hydrate treatment, resulting in a decrease of erythropoietin resistance index.

  9. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    Full Text Available Introduction: Iron cycle is one of the most important biogeochemical processes which affect the availability of iron in soils. Ferric iron oxides are the most abundant forms of iron in soils and sediments. Ferric iron is highly insoluble at circumneutral pH. Present investigations have shown that the structural ferric iron bound in clay minerals is reduced by some microorganisms. Anaerobic bacteria reduce ferric iron which bound to soil clay minerals under anaerobic conditions. They have the ability to use ferric iron as a terminal electron acceptor. Many studies presented that dissimilatory iron reducing bacteria (DIRB mediate the transfer of electrons from small organic molecules like acetate and glucose to various humic materials (electron shuttles which then pass electrons abiotically to ferric iron oxyhydroxide and phyllosilicate minerals. Electron shuttles like AQDS, a tricyclic quinone, increase the rate of iron reduction by iron reducing bacteria on sites of iron oxides and oxyhydroxides. By increasing the rate of bioreduction of ferric iron, the solubility and availability of iron enhanced meaningfully. Royer et al. (2002 showed that bioreduction of hematite (common iron mineral in soils increased more than three times in the presence of AQDS and Shewanella putrefaciens comparedto control treatments. Previous works have mostly used synthetic minerals as electron acceptor in bioreduction process. Furthermore, the effect of quinones as electron acceptor for microorganisms were studied with poorly crystalline ferric iron oxides . The main objective of this study was to study the effect of AQS, humic acid and fulvic acid (as electron shuttle and Shewanella sp. and Pseudomonas aeruginosa, on bioreduction of native ferric iron in two acidic and calcareous soils. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in vitro condition. The soil samples collected

  10. FERRIC CITRATE: AN IRON-BASED ORAL PHOSPHATE BINDER

    Directory of Open Access Journals (Sweden)

    T. Christopher Bond

    2012-06-01

    Based on actual physician behavior in response to ferritin and TSAT increases and ferric citrate clinical trial results, and assuming equivalent pricing to other PBs, there would be cost savings with ferric citrate use through reduced ESA and iron use.

  11. Intravenous ferric carboxymaltose for anaemia in pregnancy.

    Science.gov (United States)

    Froessler, Bernd; Collingwood, Joshua; Hodyl, Nicolette A; Dekker, Gustaaf

    2014-03-25

    Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia (IDA) is associated with significant maternal, fetal and infant morbidity. Current options for treatment are limited: these include oral iron supplementation, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a new treatment option that may be better tolerated.The study was designed to assess the safety and efficacy of iron deficiency anaemia (IDA) correction with intravenous ferric carboxymaltose in pregnant women with mild, moderate and severe anaemia in the second and third trimester. Prospective observational study; 65 anaemic pregnant women received ferric carboxymaltose up to 15 mg/kg between 24 and 40 weeks of pregnancy (median 35 weeks gestational age, SD 3.6). Treatment effectiveness was assessed by repeat haemoglobin (Hb) measurements and patient report of well-being in the postpartum period. Safety was assessed by analysis of adverse drug reactions and fetal heart rate monitoring during the infusion. Intravenous ferric carboxymaltose infusion significantly increased Hb values (p anaemia in pregnancy.

  12. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  13. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  14. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    Science.gov (United States)

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pHremoves iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Subsurface injection of dissolved ferric chloride to form a chemical barrier: Laboratory investigations

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.; Morris, S.A.

    1996-01-01

    A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO 3 ), it may be viable to emplace a zone of amorphous ferric oxyhydroxide (an absorbent for U, Mo, and other inorganic contaminants) into calcite-bearing geologic units by injecting ferric chloride through wells. For a chemical barrier to be successful, it must remain permeable and must be immobile. This investigation monitored chemical compositions, hydraulic conductivity, and iron mobility in laboratory columns and in a two-dimensional tank to determine the viability of injecting ferric chloride to form an amorphous ferric oxyhydroxide chemical barrier. The authors introduced a ferric chloride solution (1,345 mg/1[0.024 m] Fe) to calcite-bearing alluvial gravel to form a chemical barrier of amorphous ferric oxyhydroxide, followed by solutions contaminated with U and Mo. The simulated chemical barriers decreased U and Mo concentrations to less than 0.05 mg/l (2.1 x 10 -7 m) and 0.01 (1.0 x 10 -7 m), respectively; however, the breakthrough front is spread out with concentrations increasing to more than regulatory guideline values sooner than predicted. The hydraulic conductivity of calcite-bearing alluvial gravel decreased substantially during ferric chloride introduction because of the formation of carbon dioxide but increased to within factors of 1 to 5 of the original value as synthetic ground water flowed through the system. Amorphous ferric oxyhydroxide that formed in these experiments remained immobile at flow rates exceeding those typical of ground water. These laboratory results, in conjunction with site-specific characterization data, can be used to design chemical barriers emplaced by injection of ferric chloride

  16. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Garaje, Sunil N.; Apte, Sanjay K. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Kumar, Ganpathy [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Panmand, Rajendra P.; Naik, Sonali D. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Mahajan, Satish M., E-mail: smahajan@tntech.edu [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Chand, Ramesh [Ministry of Communications and Information Technology, Department of Electronics and Information Technology (DeitY), Electronics Niketan, 6, CGO Complex, New Delhi 110003 (India); Kale, Bharat B., E-mail: bbkale@cmet.gov.in [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India)

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  17. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The absorption and transportation of ferric-salt in apple trees

    International Nuclear Information System (INIS)

    Xiong Zhixun; Chen Meihong

    1994-01-01

    59 Fe tracer technique was used to study the ferric-salt absorption, utilization and transportation in apple trees. The results indicated that absorption and utilization rate of ferric salt was 0.056%∼0.110% for roots and 30% for leaves, and that Fe is not easily to be transferred from one part to another. Fulvic acid iron had a better effect than ferrous sulfate. Ferric-salt absorption, utilization and transference were different among the cultivars. Intensive injections of ferrous salt into the apple trunks seemed to be more effective for correcting of chlorosis

  19. Development of a radiochromic ferric oligomer hydrogel

    International Nuclear Information System (INIS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-01-01

    Ferrous gelatin hydrogels were prepared by using sulphuric acid concentrations lower than required to maintain radiation induced ferric ions fully hydrated. The ferric hydroxyl species that are produced following irradiation exhibit a radiochromic response that can be probed with blue light. The dose distribution shapes were stable in time, indicating no long term diffusion. An over response to dose gradients was observed both in one centimeter cuvette samples and litre volumes probed with optical cone beam CT. This ferrous hydrogel may represent a model system for studying iron radiochemistry in biological systems.

  20. Real-time monitoring of arsenic filtration by granular ferric hydroxide

    International Nuclear Information System (INIS)

    Fleming, D.E.B.; Eddy, I.S.; Gherase, M.R.; Gibbons, M.K.; Gagnon, G.A.

    2008-01-01

    Full text: Contamination of drinking water by arsenic is a serious public health issue in many parts of the world. One recent approach to this problem has been to filter out arsenic by use of granular ferric hydroxide (GFH), an adsorbent developed specifically for the selective removal of arsenic from water. Previous studies have documented the efficiency and high treatment capacity of this approach. We present a novel X-ray fluorescence method to monitor the accumulation of arsenic within a specially designed GFH column, as both a function of time (or water volume) and location along the column. Using a miniature X-ray tube and silicon PiN diode detector, X-ray fluorescence is used to detect characteristic X-rays of arsenic excited from within the GFH. Trials were performed using a water flow rate of approximately 1.5 litres per hour, with an added arsenic concentration of approximately 1000 μg per litre. In this paper, trial results are presented and potential applications described. Characteristic arsenic Kα X-ray peak area as a function of time, as measured at various locations along a granular ferric hydroxide (GFH) water filtration column

  1. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  2. Removal of Sb(III and Sb(V by Ferric Chloride Coagulation: Implications of Fe Solubility

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Inam

    2018-04-01

    Full Text Available Coagulation and precipitation appear to be the most efficient and economical methods for the removal of antimony from aqueous solution. In this study, antimony removal from synthetic water and Fe solubility with ferric chloride (FC coagulation has been investigated. The effects of pH, FC dosage, initial antimony loading and mixed Sb(III, Sb(V proportions on Fe solubility and antimony removal were studied. The results showed that the Sb(III removal efficiency increased with the increase of solution pH particularly due to an increase in Fe precipitation. The Sb(V removal was influenced by the solution pH due to a change in Fe solubility. However, the Fe solubility was only impaired by the Sb(III species at optimum pH 7. The removal efficiencies of both Sb species were enhanced with an increase in FC dose. The quantitative analysis of the isotherm study revealed the strong adsorption potential of Sb(III on Fe precipitates as compared to Sb(V. Furthermore, the removal behavior of antimony was inhibited in mixed proportion with high Sb(V fraction. In conclusion, this study contributes to better understanding the fate of Sb species, their mobilities, and comparative removal behavior, with implications for Fe solubility using ferric chloride in different aqueous environments.

  3. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  4. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  5. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  6. Designing building energy efficiency programs for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Lima Azevedo, Ines; Scott Matthews, H.; Hendrickson, Chris T.

    2011-01-01

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO 2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: → We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. → We use optimization to evaluate trade-offs between program objectives and capital constraints. → Local energy market conditions significantly influence efficiency expectations. → Different program objectives can lead to different effective investment strategies. → We reflect on the implications of our results for efficiency program design.

  7. Designing building energy efficiency programs for greenhouse gas reductions

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael, E-mail: mfb@andrew.cmu.edu [Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712 (United States); Lima Azevedo, Ines, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Scott Matthews, H., E-mail: hsm@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Hendrickson, Chris T., E-mail: cth@andrew.cmu.edu [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-09-15

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO{sub 2} eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: > We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. > We use optimization to evaluate trade-offs between program objectives and capital constraints. > Local energy market conditions significantly influence efficiency expectations. > Different program objectives can lead to different effective investment strategies. > We reflect on the implications of our results for efficiency program design.

  8. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  9. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  10. Diffusion simulation of ferric ions in dosemeter Fricke-gel with variable diffusion coefficient

    International Nuclear Information System (INIS)

    Milani, Caio Jacob; Bevilacqua, Joyce da Silva; Rodrigues Junior, Orlando

    2014-01-01

    Dosimetry using dosimeters Fricke-xylenol-Gel (FXG) allows confirmation and better understanding of radiotherapy treatments. The technique involves the evaluation of volumes irradiated by magnetic resonance imaging (MRI) or CT-optical. In both cases, the time spent between the irradiation and measurement is an important factor that directly influences the results. The quality of the images can be compromised by the mobility of ferric ions (Fe 3+), formed during the interaction of radiation with matter, increasing the uncertainty in determining the isodose. In this work, we simulated the dynamic involving ferric ions formed in one irradiated region irradiated in a two-dimensional domain with a variable diffusion coefficient. This phenomenon is modeled by a differential equation and solved numerically by an efficient algorithm that generalizes the Crank-Nicolson method. The stability and consistency of the method guarantee the convergence of the numerical solution for a predefined tolerance based in the choice of discretization steps of time and space. Different continuous functions were chosen to represent the diffusion coefficient and graphical views of the phenomenon are presented for a better understanding of the process

  11. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    Science.gov (United States)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  12. Synthesis and characterization of redox-active ferric nontronite

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; Artyushkova, K.; Cerrato, J. M.; Kruichak, J. N.; Janish, M. T.; Sun, C. J.; Argo, J. M.; Washington, R. E.

    2017-10-01

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and its natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.

  13. Ferric-Pyoverdine Recognition by Fpv Outer Membrane Proteins of Pseudomonas protegens Pf-5

    Science.gov (United States)

    Hartney, Sierra L.; Mazurier, Sylvie; Girard, Maëva K.; Mehnaz, Samina; Davis, Edward W.; Gross, Harald; Lemanceau, Philippe

    2013-01-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  14. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  15. Implementation of ferric hydroxide-based media for removal of toxic metalloids

    Science.gov (United States)

    Szlachta, Małgorzata; Wójtowicz, Patryk

    2017-11-01

    Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.

  16. High Efficient Reduction of Graphene Oxide via Nascent Hydrogen at Room Temperature

    Directory of Open Access Journals (Sweden)

    Qiqi Zhuo

    2018-02-01

    Full Text Available To develop a green and efficient method to synthesize graphene in relative milder conditions is prerequisite for graphene applications. A chemical reducing method has been developed to high efficiently reduce graphene oxide (GO using Fe2O3 and NH3BH3 as catalyst and reductants, respectively. During the process, environmental and strong reductive nascent hydrogen were generated surrounding the surface of GO sheets by catalyst hydrolysis reaction of NH3BH3 and were used for reduction of GO. The reduction process was studied by ultraviolet absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrum. The structure and morphology of the reduced GO were characterized with scanning electron microscopy and transmission electron microscopy. Compared to metal (Mg/Fe/Zn/Al particles and acid system which also use nascent hydrogen to reduce GO, this method exhibited higher reduction efficiency (43.6%. Also the reduction was carried out at room temperature condition, which is environmentally friendly. As a supercapacitor electrode, the reversible capacity of reduced graphene oxide was 113.8 F g−1 at 1 A g−1 and the capacitance retention still remained at 90% after 200 cycles. This approach provides a new method to reduce GO with high reduction efficiency by green reductant.

  17. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jie; Ju, Yuyun; Liu, Juanjuan; Zhang, Huige [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xingguo, E-mail: chenxg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China)

    2015-01-07

    Highlights: • A new method for synthesis of the BPEI-CuNCs is established. • A facile approach for Fe{sup 3+} ion sensing by fluorescence quenching is developed. • The method for Fe{sup 3+} sensing has high sensitivity and excellent selectivity. - Abstract: In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe{sup 3+}) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5–1000 μM, which was lower than the maximum level of Fe{sup 3+} permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe{sup 3+} in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%.

  18. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor

    International Nuclear Information System (INIS)

    Feng, Jie; Ju, Yuyun; Liu, Juanjuan; Zhang, Huige; Chen, Xingguo

    2015-01-01

    Highlights: • A new method for synthesis of the BPEI-CuNCs is established. • A facile approach for Fe 3+ ion sensing by fluorescence quenching is developed. • The method for Fe 3+ sensing has high sensitivity and excellent selectivity. - Abstract: In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe 3+ ) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5–1000 μM, which was lower than the maximum level of Fe 3+ permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe 3+ in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%

  19. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.p [Universidad de Panama, Depto. de Quimica Fisica, CITEN, Lab. No. 105, Edificio de Laboratorios Cientificos-VIP (Panama); Navarro, Cesar [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2009-07-15

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  20. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    International Nuclear Information System (INIS)

    Jaen, Juan A.; Navarro, Cesar

    2009-01-01

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  1. Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia

    Science.gov (United States)

    Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  2. Removing ferric ions from concentrated acid leaching solution of an uranium ore by jarosite

    International Nuclear Information System (INIS)

    Song Huanbi; Hu Yezang

    1997-01-01

    The author expounds the fundamental rules of removing ferric ions by jarosite and presents results of removing ferric ions from concentrated acid curing-trickle leaching solution of an uranium ore. It turns out that the method can be applied to uranium hydrometallurgical process effectively

  3. Role of Intravenous Ferric Carboxy-maltose in Pregnant Women with Iron Deficiency Anaemia.

    Science.gov (United States)

    Mishra, Vineet; Gandhi, Khusaili; Roy, Priyankur; Hokabaj, Shaheen; Shah, Kunur N

    2017-09-08

    Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia is associated with significant maternal, foetal and infant morbidity. Current options for treatment include oral iron, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a modern treatment option. The study was designed to assess the safety and efficacy of intravenous ferric carboxymaltose for correction of iron deficiency anaemia in pregnant women. A prospective study was conducted at Institute of Kidney Disease and Research Centre, Ahmedabad from January 2014 to December 2016. Antenatal women (108) with iron deficiency anaemia were the study subjects. Socio-demographic profile was recorded and anaemia was assessed based on recent haemoglobin reports. Iron deficiency was diagnosed on basis of serum ferritin value. Intravenous ferric carboxymaltose as per total correction dose (maximum 1500mg) was administered to all women; the improvement in haemoglobin levels were assessed after 3 weeks of total dose infusion. Most of the women(n= 45, 41.7%), were in the age group of 27-30 years. Most of the women (n = 64, 59.3%) had moderate anaemia as per WHO guidelines. Mean haemoglobin levels significantly increased over a period of 3 weeks after Ferric carboxymaltose administrationand no serious life threatening adverse events were observed. Intravenous ferric carboxymaltose was safe and effective in pregnent women with iron deficiency anaemia.

  4. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  5. Safety and Efficacy of Intravenous Ferric Carboxy Maltose in Iron Deficiency Anaemia During Post-partum Period.

    Science.gov (United States)

    Mishra, Vineet; Roy, Priyankar; Gandhi, Khushali; Choudhary, Sumesh; Aggarwal, Rohina; Sokabaj, Shaheen

    2018-01-01

    Iron deficiency is the commonest treatable cause of postpartum anaemia. Parenteral iron therapy results in faster and higher replenishment of iron stores and correction of haemoglobin levels with better compliance. Ferric Carboxy Maltose is an effective and a safe option which can be administered intravenously in single total correction dose without any serious adverse effects.The study was done to evaluate the efficacy and safety of Ferric Carboxy Maltose in the treatment of iron deficiency anaemia in post-natal patients. It was an open, single arm study including 615 women with diagnosis of Iron deficiency anaemia and haemoglobin (Hb) levels between 4gm% and 11gm% from January 2013 to December 2016. Intravenous Ferric Carboxy Maltose(500-1500mg) was administered and the improvement in haemoglobin levels and iron stores were assessed after three weeks of total dose infusion. Out of the 615 women, 595 women were included in the analysis. Most of the women were in the age group of 27-30 years. Most of the women had mild anaemia as per World Health Organisation guidelines. Mean hemoglobin levels significantly increased over a period of three weeks after Ferric Carboxy Maltose administration. Other parameters like total iron binding capacity, Ferritin and Iron also had a significant improvement after Ferric Carboxy Maltose administration. No serious adverse events were observed after Ferric Carboxy Maltose. Intravenous Ferric Carboxy Maltose was an effective and a safe treatment option for iron deficiency anaemia and has an advantage of single administration of high doses without serious adverse effects.

  6. Pengaruh Brand Credibility Terhadap Information Efficiency Dan Risk Reduction, Serta Dampaknya Atas Repurchase Intention

    OpenAIRE

    Faisal, Aekram

    2015-01-01

    This research conducted to know the influence of Brand Credibility to Information efficiency and Risk reduction, also the influence of Information efficiency and Risk reduction to Repurchase intention. This research aimed to know the influence of Brand Credibility to Repurchase intention that mediated by Information efficiency and Risk reduction. The methodology of this research is testing hypothesis research. The sample collecting by questionnaire of 150 respondents from Starb...

  7. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Science.gov (United States)

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  8. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    A.R Asgari

    2012-05-01

    Full Text Available

    Background and Objective

    Pollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.

     

    Methods

    This study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares.

     

    Results

    Results showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.

     

    Conclusion

    According to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost.

  9. Superiority of ferric chloride as coagulant over alum and ferrous sulphate at controlled pH and cost comparison of these coagulant

    International Nuclear Information System (INIS)

    Irfan, M.

    2008-01-01

    This study was conducted by author as a member of Specialty Chemical Division of Sitara Chemical Industries which is the largest chlor -alkali manufacturing industry in Pakistan. Sitara is also producing FeCl/sub 3/ as a byproduct to consume its additional quantity of chlorine produced during electrolysis of brine solution for caustic soda preparation. Most of the industries are using Alum along with other polymers for treatment of effluent waste water. Treatment system is based on sand bed filters. For coagulation of unwanted materials present in the water, Alum is being used with Anionic Polymer (Accofloc-A2125) as flocculent. But the ferric chloride is not only functions as a reactants to remove water impurities but it also functions as a both coagulant and a Flocculent. This study was conducted for finding best alternative chemicals to improve treated water quality. For this purpose Ferric Chloride (FeCl/sub 3/) is used as best alternative of alum for better removal of turbidity, heavy metals and micro organisms to eradicate above said problems and for better removal of turbidity, heavy metals and micro, organisms to eradicate health problems. As per lab scale results quality of treated water with Ferric Chloride (FeCl/sub 3/) proved better than that of Alum. The main objective of this research is to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD which present in significant quantity. Three types of coagulants were examined using standard jar test apparatus, i.e., aluminum sulphate (alum), ferric chloride (FeCl/sub 3/) and ferrous sulphate (FeSO/sub 4/). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing and 50 rpm of slow mixing and 60 minutes settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl/sub 3/ was found to be superior compared with other

  10. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa

    Science.gov (United States)

    Kong, W.G.; Wang, A.; Chou, I.-Ming

    2011-01-01

    Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.

  11. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.

    Science.gov (United States)

    Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan

    2008-05-21

    An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.

  12. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  13. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes.

    Science.gov (United States)

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe

    2010-09-01

    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Estimating the Value of Price Risk Reduction in Energy Efficiency Investments in Buildings

    Directory of Open Access Journals (Sweden)

    Pekka Tuominen

    2017-10-01

    Full Text Available This paper presents a method for calculating the value of price risk reduction to a consumer that can be achieved with investments in energy efficiency. The value of price risk reduction is discussed to some length in general terms in the literature reviewed but, so far, no methodology for calculating the value has been presented. Here we suggest such a method. The problem of valuating price risk reduction is approached using a variation of the Black–Scholes model by considering a hypothetical financial instrument that a consumer would purchase to insure herself against unexpected price hikes. This hypothetical instrument is then compared with an actual energy efficiency investment that reaches the same level of price risk reduction. To demonstrate the usability of the method, case examples are calculated for typical single-family houses in Finland. The results show that the price risk entailed in household energy consumption can be reduced by a meaningful amount with energy efficiency investments, and that the monetary value of this reduction can be calculated. It is argued that this often-overlooked benefit of energy efficiency investments merits more consideration in future studies.

  15. Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate

    Science.gov (United States)

    Li, Qian; Lai, Huimin; Yang, Yongbin; Xu, Bin; Jiang, Tao; Zhang, Yaping

    The intensified effects of ferric phosphate and ferric sulfate as nutrient and oxidant on the bioleaching of pentlandite concentrate with Acidithiobacillus ferrooxidans and Sulfobacillus thermosulfidooxidans were studied. The results showed that the nickel leaching rate was enhanced continuously with FePO4 or Fe2(SO4)3 added in certain extent, but declined at excess. For A. ferrooxidans, the optimum additive amount of Fe2(SO4)3 was 6.63mM/L and the nickel leaching rate reached 71.76%. Compared with Fe2(SO4)3, the optimum additive amount of FePO4 was 26.52mM/L for both strains. For A. ferrooxidans and S. thermosulfidooxidans, the nickel leaching rate could increase to 98.06% and 98.11% which was 1.83 times and 1.55 times of the leachig rate of blank test, respectively.

  16. Evolution of the local structure of ferric gels and polymers during the crystallisation of iron oxides. Application to uranium trapping

    International Nuclear Information System (INIS)

    Combes, Jean-Marie

    1988-01-01

    A first part of this research thesis reports the study of the structure of the main iron oxides and oxy-hydroxides, and of the protocols for the synthesis of ferric gels. The second part reports a topological approach by EXAFS (Extended X-Ray Absorption Fine Structure) of the structure of Mn and Fe oxides and oxy-hydroxides. The third part reports the study of the formation of ferric oxides from aqueous solutions by using a polyhedral approach by X-ray absorption spectroscopy in the case of hydrolysis and formation of ferric gels, and in the case of haematite formation from ferric gels. The next parts respectively report the study of the local structure of gels synthesised from iron(II), and the study of the local structure of natural ferric gels. Then, the author reports the study of sites of uranium bonding on ferric gels [fr

  17. Towards a More Complete Picture: Dissimilatory Metal Reduction by Anaeromyxobacter Species

    International Nuclear Information System (INIS)

    Loeffler, Frank E.

    2004-01-01

    We investigate the physiological requirements of available Anaeromyxobacter isolates, and assess their distribution and abundance in the environment, including DOE sites. The performers on this project include Frank Loeffler (PI), Robert Sanford (Co-PI), Qingzhong Wu (postdoc), Sara Henry (graduate student) and Cornell Gayle (undergraduate student). Year-1 efforts focused on method and tool development to address the research objectives. First, we compared different analytical assays (based on fluorescent light emission and calorimetric methods) to quantify U(VI) in cultures of Anaeromyxobacter dehalogenans strain 2CP-C. The assays were optimized to reflect specific culture conditions, and we found that a laser-excited spectrofluorescence assay provided reproducible and accurate information on the amount of U(VI) reduced in bacterial cultures. To demonstrate the ability of Anaeromyxobacter dehalogenans strain 2CP-C to reduce U(VI), washed suspensions of fumarate-grown cells were prepared. These experiments confirmed that the rapid reduction of U(VI) to U(IV) depended on the presence of live cells, and no U(VI) reduction occurred in cell-free controls. Additional experiments explored the ability of three different Anaeromyxobacter strains to grow with the mineral hematite, an insoluble form of ferric iron, as electron acceptor. All strain grew equally well with soluble ferric iron (provided as ferric citrate) but distinct differences were observed between strains when grown with hematite. All strains tested shared a 16S rRNA gene similarity of >99.5%, suggesting that closely related strains may differ in their ability to access insoluble forms of ferric iron

  18. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    Peng Zhang'e; Wu Feng; Deng Nansheng

    2006-01-01

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe 3+ ions was investigated. Algae, humic acid and Fe 3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10 9 cells L -1 raw Chlorella vulgaris, 4 mg L -1 humic acid and 20 μmol L -1 Fe 3+ . The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  19. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zhang' e [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: zhepeng@126.com; Wu Feng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: fengwu@whu.edu.cn; Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: nsdengwhu@163.com

    2006-12-15

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe{sup 3+} ions was investigated. Algae, humic acid and Fe{sup 3+} ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10{sup 9} cells L{sup -1} raw Chlorella vulgaris, 4 mg L{sup -1} humic acid and 20 {mu}mol L{sup -1} Fe{sup 3+}. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment.

  20. Thermodynamics of ion-exchange on ferric antimonate

    International Nuclear Information System (INIS)

    Rawat, J.P.; Muktawat, K.P.S.

    1981-01-01

    A simple approach to ion-exchange equilibria on ferric antimonate has been applied. The values of selectivity coefficients for Ba 2+ , Mg 2+ , Ca 2+ and Sr 2+ have been measured using equilibrium experiments at constant ionic strength and at different temperatures from 20 to 60 0 C. The thermodynamic equilibrium constant and values of ΔG 0 , ΔH 0 and ΔS 0 are reported. (author)

  1. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  2. Adherence rates to ferric citrate as compared to active control in patients with end stage kidney disease on dialysis.

    Science.gov (United States)

    Jalal, Diana; McFadden, Molly; Dwyer, Jamie P; Umanath, Kausik; Aguilar, Erwin; Yagil, Yoram; Greco, Barbara; Sika, Mohammed; Lewis, Julia B; Greene, Tom; Goral, Simin

    2017-04-01

    Oral phosphate binders are the main stay of treatment of hyperphosphatemia. Adherence rates to ferric citrate, a recently approved phosphate binder, are unknown. We conducted a post-hoc analysis to evaluate whether adherence rates were different for ferric citrate vs. active control in 412 subjects with end stage kidney disease (ESKD) who were randomized to ferric citrate vs. active control (sevelamer carbonate and/or calcium acetate). Adherence was defined as percent of actual number of pills taken to total number of pills prescribed. There were no significant differences in baseline characteristics including gender, race/ethnicity, and age between the ferric citrate and active control groups. Baseline phosphorus, calcium, and parathyroid hormone levels were similar. Mean (SD) adherence was 81.4% (17.4) and 81.7% (15.9) in the ferric citrate and active control groups, respectively (P = 0.88). Adherence remained similar between both groups after adjusting for gender, race/ethnicity, age, cardiovascular disease (CVD), and diabetic nephropathy (mean [95% CI]: 81.4% [78.2, 84.6] and 81.5% [77.7, 85.2] for ferric citrate and active control, respectively). Gender, race/ethnicity, age, and diagnosis of diabetic nephropathy did not influence adherence to the prescribed phosphate binder. Subjects with CVD had lower adherence rates to phosphate binder; this was significant only in the active control group. Adherence rates to the phosphate binder, ferric citrate, were similar to adherence rates to active control. Similar adherence rates to ferric citrate are notable since tolerance to active control was an entry criteria and the study was open label. Gender, race/ethnicity, nor age influenced adherence. © 2016 International Society for Hemodialysis.

  3. Evaluation of oral abdominal contrast agent containing ferric ammonium citrate

    International Nuclear Information System (INIS)

    Shiga, Toshiko; Kawamura, Yasutaka; Iwasaki, Toshiko

    1991-01-01

    We evaluated the effectiveness of oral MRI contrast agent containing ferric ammonium citrate. Twenty patients were arbitrarily divided into 2 groups according to the given dose of 100 and 200 mg Fe of oral MRI contrast agent. MRI was performed before and immediately after ingesting 300 ml solution of oral MRI contrast agent using a 1.5 T superconducting system (GE: Signa). Each dose of 100 and 200 mg Fe of oral MRI contrast agent produced sufficient enhancement of gastrointestinal tract, enough to make clear the pancreatic contour and porta hepatis. There was no significant change in blood and urine analysis observed after taking oral MRI contrast agent. The use of ferric ammonium citrate as an oral MRI contrast agent seems to add valuable information in performing upper abdominal MRI imaging. (author)

  4. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    Science.gov (United States)

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  5. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  6. BP Canada Energy Company energy efficiency and GHG reduction opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, B. [BP Canada Energy Company, Calgary, AB (Canada)

    2004-07-01

    This paper presented an outline of the BP Canada Energy Company's energy efficiency program, which uses an innovative approach that relies on front line operations staff to generate, evaluate and implement ideas for energy reduction projects. An outline of the organization team was presented, with details of the small central Calgary group responsible for coordination, technical support and tracking of data. Key objectives of the team were identified as: the promotion of energy efficiency; sharing of best practices; and coordination of efforts at operations at both the development and corporate level. An outline of BP upstream operations and emissions reduction strategies was provided along with a timeline of BP Canada greenhouse gas (GHG) emissions and sustainable reductions projects. A chart representing energy savings through conversion to natural gas was also presented, sorted by project type. Results included over 400 GHG or energy reduction projects completed, with an average pay out of 30 months as well as 300,000 tonnes equivalent of GHGs reduced at an estimated value of of $13,000,000. Areas of focus for future projects include: compression; fired equipment; flaring; venting; and fugitive emissions. Strategies to reduce emissions in all areas of future research were also provided. tabs, figs.

  7. A Cost-effectiveness Analysis of Ferric Carboxymaltose in Patients With Iron Deficiency and Chronic Heart Failure in Spain.

    Science.gov (United States)

    Comín-Colet, Josep; Rubio-Rodríguez, Darío; Rubio-Terrés, Carlos; Enjuanes-Grau, Cristina; Gutzwiller, Florian S; Anker, Stefan D; Ponikowski, Piotr

    2015-10-01

    Treatment with ferric carboxymaltose improves symptoms, functional capacity, and quality of life in patients with chronic heart failure and iron deficiency. The aim of this study was to assess the cost-effectiveness of ferric carboxymaltose treatment vs no treatment in these patients. We used an economic model based on the Spanish National Health System, with a time horizon of 24 weeks. Patient characteristics and ferric carboxymaltose effectiveness (quality-adjusted life years) were taken from the Ferinject® Assessment in patients with IRon deficiency and chronic Heart Failure trial. Health care resource use and unit costs were taken either from Spanish sources, or from the above mentioned trial. In the base case analysis, patients treated with and without ferric carboxymaltose treatment acquired 0.335 and 0.298 quality-adjusted life years, respectively, representing a gain of 0.037 quality-adjusted life years for each treated patient. The cost per patient was €824.17 and €597.59, respectively, resulting in an additional cost of €226.58 for each treated patient. The cost of gaining 1 quality adjusted life year with ferric carboxymaltose was €6123.78. Sensitivity analyses confirmed the robustness of the model. The probability of ferric carboxymaltose being cost-effective (< €30 000 per quality-adjusted life year) and dominant (more effective and lower cost than no treatment) was 93.0% and 6.6%, respectively. Treatment with ferric carboxymaltose in patients with chronic heart failure and iron deficiency, with or without anemia, is cost-effective in Spain. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Porphyria Cutanea Tarda in a Patient with End-Stage Renal Disease: A Case of Successful Treatment with Deferoxamine and Ferric Carboxymaltose

    Directory of Open Access Journals (Sweden)

    Natacha Rodrigues

    2017-01-01

    Full Text Available Porphyria cutanea tarda (PCT is a rare disease, with a strong association with hepatitis C virus. PCT is particularly problematic in end-stage renal disease patients as they have no renal excretion of porphyrins and these are poorly dialyzed. Also, conventional treatment of PCT is compromised in these patients as hydroxychloroquine is contraindicated, phlebotomies with the stipulated frequency are poorly tolerated in already anaemia-prone patients, and iron-chelating agents are less efficient in removing iron and contribute to worsening anaemia. The authors report a patient on haemodialysis, with hepatitis C infection, that is diagnosed with PCT. Despite the good clinical results with deferoxamine, she became dependent on blood transfusions because of her ferropenic state. Every time oxide iron was started, the patient developed clinical features of the disease, resolving after the suspension of the drug. A decision was made to start the patient on ferric carboxymaltose, which was well tolerated without disease symptoms and need of further blood transfusions. This case suggests that deferoxamine is efficient in treatment of porphyria cutanea tarda. Also, ferric carboxymaltose may be a valuable option for refractory anaemia in patients with this disease and end-stage renal disease, as it seems to provide iron without clinical relapse of the disease.

  9. Gravity settling of precipitated magnetite and ferric floc

    International Nuclear Information System (INIS)

    Holt, N.S.; Loft, P.R.

    1983-06-01

    A comparison is presented of the gravity settling performance of ferric floc and magnetite, both in batch settling tests, and on a continuous gravity settler. The precipitation of magnetite from solution on a continuous basis was also demonstrated, and the process was shown not to be significantly affected by the presence of a wide range of chemical species. (U.K.)

  10. Oxidation of Alcohols by Ferric Nitrate in the Presence of Barium ...

    African Journals Online (AJOL)

    NJD

    Oxidation, ferric nitrate, barium chloride, silica sulphuric acid, heterogeneous or solvent-free conditions. 1. Introduction ... economic advantage and environment protection. ... by TLC. After completion, structure of the product was charac-.

  11. Part 5: Experimental periods using a ferrous-ferric chloride blend

    African Journals Online (AJOL)

    drinie

    A blend of ferrous chloride and ferric chloride (FeCl2-FeCl3) was simultaneously dosed into an activated sludge system at .... theoretical oxygen demand for this reaction is small, namely 0.15 ...... The role of bacterial extracellular polymers.

  12. A case of osteomalacia due to deranged mineral balance caused by saccharated ferric oxide and short-bowel syndrome

    Science.gov (United States)

    Nomoto, Hiroshi; Miyoshi, Hideaki; Nakamura, Akinobu; Nagai, So; Kitao, Naoyuki; Shimizu, Chikara; Atsumi, Tatsuya

    2017-01-01

    Abstract Rationale: Saccharated ferric oxide has been shown to lead to elevation of fibroblast growth factor 23, hypophosphatemia, and, consequently, osteomalacia. Moreover, mineral imbalance is often observed in patients with short-bowel syndrome to some degree. Patient concerns: A 62-year-old woman with short-bowel syndrome related with multiple resections of small intestines due to Crohn disease received regular intravenous administration of saccharated ferric oxide. Over the course of treatment, she was diagnosed with tetany, which was attributed to hypocalcemia. Additional assessments of the patient revealed not only hypocalcemia, but also hypophosphatemia, hypomagnesemia, osteomalacia, and a high concentration of fibroblast growth factor 23 (314 pg/mL). Diagnoses: We diagnosed her with mineral imbalance-induced osteomalacia due to saccharated ferric oxide and short-bowel syndrome. Interventions: Magnesium replacement therapy and discontinuation of saccharated ferric oxide alone. Outcomes: These treatments were able to normalize her serum mineral levels and increase her bone mineral density. Lessons: This case suggests that adequate evaluation of serum minerals, including phosphate and magnesium, during saccharated ferric oxide administration may be necessary, especially in patients with short-bowel syndrome. PMID:28953654

  13. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin-Jun [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Graduate Univ., Chinese Academy of Sciences, BJ (China); Yang Jing; Chen Xue-Ping; Sun Guo-Xin [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Zhu Yong-Guan [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Key Lab. of Urban Environment and Health, Inst. of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2009-12-15

    Purpose: Dissimilatory iron-reducing bacteria have been described by both culture-dependent and -independent methods in various environments, including freshwater, marine sediments, natural wetlands, and contaminated aquifers. However, little is known about iron-reducing microbial communities in paddy soils. The goal of this study was to characterize iron-reducing microbial communities in paddy soil. Moreover, the effect of dissolved and solid-phase iron (III) species on the iron-reducing microbial communities was also investigated by enrichment cultures. Methods: Ferric citrate and ferrihydrite were used respectively to set up enrichment cultures of dissimilatory ironreducing microorganisms using 1% inoculum of soil samples, and the iron reduction was measured. Moreover, bacterial DNA was extracted and 16S rRNA genes were PCR-amplified, and subsequently analyzed by the clone library and terminal restriction fragment length polymorphism (T-RFLP). Results: Phylogenetic analysis of 16S rRNA gene sequences extracted from the enrichment cultures revealed that Bradyrhizobium, Bacteroides, Clostridium and Ralstonia species were the dominant bacteria in the ferric citrate enrichment. However, members of the genera Clostridium, Bacteroides, and Geobacter were the dominant micro-organisms in the ferrihydrite enrichment. Analysis of enrichment cultures by T-RFLP strongly supported the cloning and sequencing results. Conclusions: The present study demonstrated that dissimilatory iron-reducing consortia in As-contaminated paddy soil are phylogenetically diverse. Moreover, iron (III) sources as a key factor have a strong effect on the iron (III)-reducing microbial community structure and relative abundance in the enrichments. In addition, Geobacter species are selectively enriched by ferrihydrite enrichment cultures. (orig.)

  14. Reaction of ferric leghemoglobin with H2O2

    DEFF Research Database (Denmark)

    Moreau, S; Davies, M J; Puppo, A

    1995-01-01

    Ferric leghemoglobin in the presence of H2O2 is known to give rise to protein radicals, at least one of which is centred on a tyrosine residue. These radicals are quenched by at least two processes. The first one involves an intramolecular heme-protein cross-link probably involving the tyrosine r...

  15. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives.

    Science.gov (United States)

    Hu, Yuyan; Yang, Fan; Chen, Fangfang; Feng, Yuheng; Chen, Dezhen; Dai, Xiaohu

    2018-05-01

    Co-pyrolysis with sewage sludge was proved to be an efficient pre-treatment for sanitary landfill of municipal solid waste incineration (MSWI) fly ash (FA). In this study, to improve the stabilization effect of heavy metals, mixed ferrous/ferric sulfate was added into the FA/SS mixture before pyrolysis. To examine the feasibility of the landfill of co-pyrolysis char, toxicity characteristic leaching procedure (HJ/T300) was conducted. In addition, physio-chemical characteristics of char were also tested to explain the stability of heavy metals, including the speciation, mineralogical composition and the morphological features of them. The results indicated that within the range that the obtained char could meet the standard for landfill (GB16889-2008), the appropriate addition of mixed ferrous/ferric sulfates benefit to raising the FA ratio in the FA/SS mixture. The maximum ratio of 67 wt% is achieved when the additive was 1.5 wt% of dried SS (based on iron element) and the pyrolysis temperature was 500 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Equilibrium Studies of Fluoride Adsorption onto a Ferric Poly ...

    African Journals Online (AJOL)

    African countries along the Great Rift Valley are among areas of the world where excess fluoride in water sources is a major public health problem. In this work, the removal of fluoride (F) from water solutions using a ferric poly-mineral (FPM) from Kenya was therefore studied using batch adsorption experiments. The effect of ...

  17. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.

    Science.gov (United States)

    Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G

    2016-06-03

    Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. Copyright © 2016, American Association for the Advancement of Science.

  18. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  19. Highly selective and sensitive fluorogenic ferric probes based on aggregation-enhanced emission with - SiMe3 substituted polybenzene

    Science.gov (United States)

    Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo

    2018-01-01

    In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.

  20. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  1. Preparation of ferric acetylacetonate, bonzonate and caprate labelled with Fe-55 and tests of application to liquid scintillation measurements

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Rodriguez Barquero, L.; Grau Malonda, A.

    1990-01-01

    The methods of preparation of ferric acetylacetonate, benzoate and caprate labelled with 55 Fe are described. The quenching effect, the spectral baehaviour and the count rate stability are studied by liquid scintillation measurements in toluene, INSTAGEL and HISAFE II, for two different values of the sample concentration. The ferric acetylaceton-ate is stable for all the three scintillators but shows a strong quench, while the ferric benzoate and caprate are stable only for INSTAGEL and HISAFE II showing no significant quench at the concentrat-ions of interest in habitual measurements. (Author)

  2. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles

    NARCIS (Netherlands)

    Rohner, F.; Ernst, F.O.; Arnold, M.; Hilbe, M.; Biebinger, R.; Ehrensperger, F.; Pratsinis, S.E.; Langhans, W.; Hurrell, R.F.; Zimmermann, M.B.

    2007-01-01

    Particle size is a determinant of iron (Fe) absorption from poorly soluble Fe compounds. Decreasing the particle size of metallic Fe and ferric pyrophosphate added to foods increases Fe absorption. The aim of this study was to develop and characterize nanoparticles of FePO4 and determine their

  3. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  4. Total gastrectomy due to ferric chloride intoxication.

    Science.gov (United States)

    Menéndez, A Mesut; Abramson, Leonardo; Vera, Raúl A; Duza, Guillermo E; Palermo, Mariano

    2015-09-01

    The ferric chloride intoxication is frequently caused by accident. Its toxicity is generally underrated, which can lead to fatal evolution or irreversible consequences. In this case, the caustic condition of the substance is related to the toxic properties of iron. A 36-year-old male patient arrives by ambulance indicating sensory deterioration. He presents erosive injuries in the buccal cavity and in the oropharynx, brownish teeth and metabolic acidosis. Toxicology tests and ferritin blood dosage are requested, which show a result from 1400 mg/dl. The symptoms are interpreted as acute iron intoxication. Due to the unfavorable evolution of his condition, an abdominal and pelvic CT scan are performed, which show extensive pneumoperitoneum and free fluid in the abdominal cavity. An exploratory laparotomy, a total gastrectomy with esophagostomy and feeding jejunostomy, washing and drainage due to perforated gastric necrosis caused by caustic ingestion are performed. In our country, there is a high rate of intoxication caused by iron compounds, although it is not statistically measured. Nevertheless, the ferric chloride intoxication is extremely infrequent. The ingestion of this product leads to complications, which are associated with the iron concentration and its condition as a caustic agent. The surgical indications in the presence of intoxication caused by iron compounds are: stomach evacuation of iron, gastric necrosis, perforation or peritonitis and stenosis. Early or prophylactic gastrectomy is contraindicated. However, if complications that require immediate surgical intervention arise, there should be no hesitation and the corresponding procedure should be performed.

  5. Comparison of ferric chloride and aluminum sulfate on phosphorus removal and membrane fouling in MBR treating BAF effluent of municipal wastewater

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-12-01

    Full Text Available A membrane bioreactor (MBR was used for treating biological aerated filter effluent in a municipal wastewater plant, and chemical phosphorus removal was accomplished in the MBR. The results showed that ferric chloride of 20 mg/L and aluminum sulfate of 30 mg/L were the optimal dosages for total phosphorus (TP removal, and the TP removal efficiency was over 80%. In long-term continuous operations, both ferric chloride and aluminum sulfate effectively mitigated membrane fouling, with the corresponding growth rate of transmembrane pressure decreased to 0.08 and 0.067 kPa/d, respectively. Sludge particle sizes analysis demonstrated that the decrease of particle sizes lower than 50 μm was the main reason for membrane fouling control. Simultaneously, the proteins and polysaccharide (PS concentrations in the MBR supernatant were analyzed, and the PS concentration significantly decreased to 2.02 mg/L at aluminum sulfate of 30 mg/L, indicating the flocculation of aluminum sulfate on PS was the main reason for mitigation of membrane fouling.

  6. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  7. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    Aquifer sediment samples obtained from the anaerobic part of a landfill leachate plume in Vejen, Denmark, were suspended in groundwater or in an artificial medium and incubated. The strictly anaerobic suspensions were tested for reduction of ferric iron (Fe(III)) oxides, which was measured...

  8. A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives

    International Nuclear Information System (INIS)

    Wu, Jie; Lv, Lin; Sun, Jiasen; Ji, Xiang

    2015-01-01

    Energy and environmental issues have recently aroused increasing interest in China and many approaches are used to evaluate energy and environmental performance. In this paper, a two-stage network DEA framework is applied to evaluate the efficiency of energy saving and emission reduction in China during the period of the eleventh five-year plan, from 2006 to 2010. In this study, economic activities are divided into production and treatment processes. This is different from previous research which generally focused on either environmental efficiency or energy efficiency, omitting the integration of energy and environmental measures. Today, energy saving and emission reduction are both parts of the basic state policy of China and are equally important. The empirical results in this study show that: (i) eastern China has the best energy saving and emission reduction efficiency, performing is better than western and central China. (ii) The efficiency of the production process in central China is better than that in western China while the western area performs better than the central area in term of treatment efficiency. (iii) Integrated efficiency of energy saving and emission reduction of China was relatively stable in the five years and the pollution treatment efficiency maintained a rising trend. -- Highlights: •We measured China's regional energy saving and emission reduction efficiency using two-stage DEA approach. •The production and treatment processes are incorporated in evaluation. •Eastern China performs best in terms of energy saving and emission reduction efficiency. •Integrated efficiency of energy saving and emission reduction of China kept a stable trend during 2006–2010

  9. An efficient architecture for LVQ-SLM for PAPR reduction

    International Nuclear Information System (INIS)

    Khalid, S.; Yasin, M.

    2010-01-01

    In this paper we propose an efficient architecture for the implementation of a LVQ (Learning Vector Quantization)NN (Neural Network), used as a classifier, for PAPR (Peak to Average Power Ratio) reduction. A special feature of the implementation is a combinatorial module for nearest neighbor search that allows online execution of this important operation during classification. The LVQ classifier is programmed in Verilog and the entire circuit is synthesized on FPGAs (Field Programmable Gate Arrays) using Xilinx at the rate ISE (Integrated Software Environment) 8.1i. The model is implemented with 64 sub carriers, considering the parametric values of WLANs standard IEEE 802.11a. Using the architecture, efficient on-line classification is achieved. (author)

  10. Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite-galena flotation separation

    Science.gov (United States)

    Yu, Jin-sheng; Liu, Run-qing; Wang, Li; Sun, Wei; Peng, Hong; Hu, Yue-hua

    2018-05-01

    Selective recovery of chalcopyrite-galena ore by flotation remains a challenging issue. The development of highly efficient, low-cost, and environmentally friendly depressants for this flotation is necessary because most of available reagents (e.g., K2Cr2O4) are expensive and adversely affect the environment. In this study, ferric chromium lignin sulfonate (FCLS), which is a waste-product from the paper and pulp industry, was introduced as a selective depressant for galena with butyl xanthate (BX) as a collector. Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73% using FCLS compared with 10.71% using the common depressant K2Cr2O4. The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy (XPS). Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite. XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite. Thus, FCLS could be a potential candidate as a depressant for chalcopyrite-galena flotation because of its low cost and its lack of detrimental effects on the environment.

  11. Pitting corrosion resistance of high alloy OCTG in ferric chloride solution

    International Nuclear Information System (INIS)

    Masamura, K.; Yamamoto, S.; Matsushima, I.

    1986-01-01

    The effects of alloying elements and precipitated phases on the corrosion rate of high alloy OCTG in the ferric chloride solution have been evaluated. The corrosion rate of Fe-Cr-Ni-Mo alloys without precipitated phases, e.g. carbides and sigma phase, can be estimated from the composition using the following equation: log(C.R.)=-0.144xPRE-7690/(273+T)+28.6 where C.R. is the corrosion rate in g/m/sup 2//hr; PRE is Cr+3Mo+16N in percent and T is the test temperature in 0 C. The activation energies of the ferric chloride test are almost the same regardless of PRE or Ni content when no detrimental phase precipitates. When carbides or the sigma phase precipitate, the corrosion rate is higher and the activation energy is lowered. This suggests that secondary phases give preferential sites for initiation of pitting corrosion

  12. A case of osteomalacia due to deranged mineral balance caused by saccharated ferric oxide and short-bowel syndrome: A case report.

    Science.gov (United States)

    Nomoto, Hiroshi; Miyoshi, Hideaki; Nakamura, Akinobu; Nagai, So; Kitao, Naoyuki; Shimizu, Chikara; Atsumi, Tatsuya

    2017-09-01

    Saccharated ferric oxide has been shown to lead to elevation of fibroblast growth factor 23, hypophosphatemia, and, consequently, osteomalacia. Moreover, mineral imbalance is often observed in patients with short-bowel syndrome to some degree. A 62-year-old woman with short-bowel syndrome related with multiple resections of small intestines due to Crohn disease received regular intravenous administration of saccharated ferric oxide. Over the course of treatment, she was diagnosed with tetany, which was attributed to hypocalcemia. Additional assessments of the patient revealed not only hypocalcemia, but also hypophosphatemia, hypomagnesemia, osteomalacia, and a high concentration of fibroblast growth factor 23 (314 pg/mL). We diagnosed her with mineral imbalance-induced osteomalacia due to saccharated ferric oxide and short-bowel syndrome. Magnesium replacement therapy and discontinuation of saccharated ferric oxide alone. These treatments were able to normalize her serum mineral levels and increase her bone mineral density. This case suggests that adequate evaluation of serum minerals, including phosphate and magnesium, during saccharated ferric oxide administration may be necessary, especially in patients with short-bowel syndrome.

  13. Effect of process parameters and injector position on the efficiency of NOx reduction by selective non catalytic reduction technique

    International Nuclear Information System (INIS)

    Hamid, A.; Mehmood, M.A.; Irfan, N.; Javed, M.T.; Waheed, K.

    2009-01-01

    An experimental investigation has been performed to study the effect of atomizer pressure dilution of the reducing reagent and the injector position on the efficiency or the NOx reduction by a selective non-catalytic reduction technique using urea as a reducing agent. Experiments were performed with a flow reactor in which flue gas was generated by the combustion of methane in air at stoichiometric amount of oxygen and the desired levels of initial NOx (400-450 ppm) were achieved by doping the flame with ammonia. The work was directed to investigate the effect of atomizer pressure, dilution of urea reagent and the injector position. The atomizer pressure was varied from 1 to 3bar and 20-25% increase in efficiency was observed by decreasing the pressure. Effect of dilution of urea solution was investigated by varying the strength of the solution from the 8 to 32% and 40-45% increase in the efficiency was observed. Effects of injector position was investigated by injecting the urea solution both in co current and counter current direction of the flue gases and 20-25% increase in the efficiency was observed in counter current direction. (author)

  14. THE SURFACE PHOTOCHEMISTRY OF PROCYMIDONE IN PRESENCE OF AMMONIUM FERRIC CITRATE

    Directory of Open Access Journals (Sweden)

    Ivan Osipov

    2015-12-01

    Full Text Available Procymidone was chosen as the model compound and its phototransformation was followed under sunlight irradiation. The main photodegradation products on silica is 3,5-dichloroaniline and 3,5-diclorphenilisocyanate. The use of ammonium ferric citrate enhances the degradation of the procymidone.

  15. Radium behaviour during ferric oxi-hydroxides crystallization

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Benitah, S.

    2004-01-01

    In uranium mill tailings, oxides and oxi-hydroxides are responsible of about 70% of the radium immobilization, half being associated to amorphous forms (mainly hydrous ferric oxides and hydrous manganese oxides). With time, crystallization of these amorphous forms can occur, inducing a redistribution of radium between solid and solution. If the amount of mobile radium increases, the impact of these tailings on the environment may become significant. The aim of this study is to determine the amount of radium released in solution during the crystallization process of hydrous ferric oxide (HFO). The transformation of Ra-HFO co-precipitate in crystallized forms (goethite, hematite, is studied by ageing at 40 deg C for different solution compositions. Both solids and solutions are sampled for different times and analysed. The solid evolution is followed by specific area measurements (about 250 m2/g for HFO and about 10-20 m 2 /g for crystallized form) and by determination of the amorphous fraction according to a selective extraction procedure. The solutions were analysed for 226 radium activity, iron concentration and pH. In order to discriminate the part of radium included in the solid and the part of radium fixed on the solid surface, radium sorption onto HFO and crystallized forms is studied as a function of pH. The modelling of the sorption curves with JCHESS 2.0 code allow to point out the mechanisms responsible of the 226-radium distribution between solid and solution during the crystallization process of HFO. (author)

  16. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  17. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    Science.gov (United States)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  18. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.

    Science.gov (United States)

    Bligh, Mark W; Maheshwari, Pradeep; David Waite, T

    2017-11-01

    Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging

  19. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  20. Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution

    Science.gov (United States)

    2011-01-01

    All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285

  1. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  2. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  3. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes

    KAUST Repository

    Ge, Qingchun; Fu, Fengjiang; Chung, Neal Tai-Shung

    2014-01-01

    Cupric and ferric hydroacid complexes have proven their advantages as draw solutes in forward osmosis in terms of high water fluxes, negligible reverse solute fluxes and easy recovery (Ge and Chung, 2013. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications 49, 8471-8473.). In this study, cobaltous hydroacid complexes were explored as draw solutes and compared with the ferric hydroacid complex to study the factors influencing their FO performance. The solutions of the cobaltous complexes produce high osmotic pressures due to the presence of abundant hydrophilic groups. These solutes are able to dissociate and form a multi-charged anion and Na+ cations in water. In addition, these complexes have expanded structures which lead to negligible reverse solute fluxes and provide relatively easy approaches in regeneration. These characteristics make the newly synthesized cobaltous complexes appropriate as draw solutes. The FO performance of the cobaltous and ferric-citric acid (Fe-CA) complexes were evaluated respectively through cellulose acetate membranes, thin-film composite membranes fabricated on polyethersulfone supports (referred as TFC-PES), and polybenzimidazole and PES dual-layer (referred as PBI/PES) hollow fiber membranes. Under the conditions of DI water as the feed and facing the support layer of TFC-PES FO membranes (PRO mode), draw solutions at 2.0M produced relatively high water fluxes of 39-48 LMH (Lm-2hr-1) with negligible reverse solute fluxes. A water flux of 17.4 LMH was achieved when model seawater of 3.5wt.% NaCl replaced DI water as the feed and 2.0M Fe-CA as the draw solution under the same conditions. The performance of these hydroacid complexes surpasses those of the synthetic draw solutes developed in recent years. This observation, along with the relatively easy regeneration, makes these complexes very promising as a novel class of draw solutes. © 2014 Elsevier Ltd.

  4. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes

    KAUST Repository

    Ge, Qingchun

    2014-07-01

    Cupric and ferric hydroacid complexes have proven their advantages as draw solutes in forward osmosis in terms of high water fluxes, negligible reverse solute fluxes and easy recovery (Ge and Chung, 2013. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications 49, 8471-8473.). In this study, cobaltous hydroacid complexes were explored as draw solutes and compared with the ferric hydroacid complex to study the factors influencing their FO performance. The solutions of the cobaltous complexes produce high osmotic pressures due to the presence of abundant hydrophilic groups. These solutes are able to dissociate and form a multi-charged anion and Na+ cations in water. In addition, these complexes have expanded structures which lead to negligible reverse solute fluxes and provide relatively easy approaches in regeneration. These characteristics make the newly synthesized cobaltous complexes appropriate as draw solutes. The FO performance of the cobaltous and ferric-citric acid (Fe-CA) complexes were evaluated respectively through cellulose acetate membranes, thin-film composite membranes fabricated on polyethersulfone supports (referred as TFC-PES), and polybenzimidazole and PES dual-layer (referred as PBI/PES) hollow fiber membranes. Under the conditions of DI water as the feed and facing the support layer of TFC-PES FO membranes (PRO mode), draw solutions at 2.0M produced relatively high water fluxes of 39-48 LMH (Lm-2hr-1) with negligible reverse solute fluxes. A water flux of 17.4 LMH was achieved when model seawater of 3.5wt.% NaCl replaced DI water as the feed and 2.0M Fe-CA as the draw solution under the same conditions. The performance of these hydroacid complexes surpasses those of the synthetic draw solutes developed in recent years. This observation, along with the relatively easy regeneration, makes these complexes very promising as a novel class of draw solutes. © 2014 Elsevier Ltd.

  5. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    Science.gov (United States)

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  6. In Situ Structural Characterization of Ferric Iron Dimers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Puls, Brendan W.; Frandsen, Cathrine

    2013-01-01

    The structure of ferric iron (Fe3+) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutions...... at pH 1.28–1.81 identified a Fe–Fe distance at ∼3.6 Å, strongly indicating that the dimers take the μ-oxo form. The EXAFS analysis also indicates two short Fe–O bonds at ∼1.80 Å and ten long Fe–O bonds at ∼2.08 Å, consistent with the μ-oxo dimer structure. The scattering from the Fe–Fe paths interferes...... confirmed by Mössbauer analyses of analogous quick frozen solutions. This work also explores the electronic structure and the relative stability of the μ-oxo dimer in a comparison to the dihydroxo dimer using density function theory (DFT) calculations. The identification of such dimers in aqueous solutions...

  7. An efficient catalytic reductive amination: A facile one-pot access to ...

    Indian Academy of Sciences (India)

    An efficient catalytic reductive amination: A facile one-pot access to ... itors and in the manufacture of detergents and plastics.1 ... ammoniaborane/Ti(OiPr)4,5e ... demonstrated the first method for synthesis of 1,2- ... and column chromatography (Silica gel, n-hexane/ethyl .... supporting information at www.ias.ac.in/chemsci.

  8. Coagulant effect of ferric chloride for separation of biomass from the microalgae Chlorella sp. of the water; Efeito coagulante do cloreto ferrico para separacao da biomassa da microalga Chlorella sp. da agua

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Tamara Daiane de; Mendes, Mucio Andre dos Santos Alves [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola e Ambiental], E-mail: tamara_daiane@yahoo.com.br; Matos, Antonio Teixeira de [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Lo Monaco, Paola Alfonsa Vieira [Instituto Federal do Espirito Santo (IFES), Santa Teresa, ES (Brazil); Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2010-07-01

    Currently, much interest has been focused on the biotechnological potential of microalgae, mainly in the production of biofuels. For this to become viable the biomass of algae should be separated from the water and the process of coagulation/flocculation/sedimentation may be an alternative. This study aimed to evaluate the effect of ferric chloride as coagulant agent of the microalgae Chlorella vulgaris. Were tested five concentrations of ferric chloride in the suspension containing the microalgae: 20,0; 30,0; 40,0; 50,0 e 100,0 g L{sup -1}. The tests were performed using the Jar-test apparatus and the turbidity was measured in suspensions after 2 hours of sedimentation. Mathematical equations were adjusted by regression, relating the concentration used in the tests according to the turbidity of the suspension. There was a linear decrease in turbidity with the addition of ferric chloride, and for concentration of 100.0 g L{sup -1} was achieved a removal efficiency of turbidity of 58%. However, it is necessary to conduct further research, evaluating the economic feasibility of the technique in the separation of microalgae from the water. (author)

  9. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  10. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  11. Photoexcitation dynamics of nitric oxide bound ferric myoglobin probed by femtosecond IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Park Jaehun

    2013-03-01

    Full Text Available Time-resolved vibrational spectra show that photolysis quantum yield of NO bound ferric myoglobin is smaller than 0.86, the deligated NO geminately rebinds with subnanosecond time scale, and the rebinding kinetics depends on protein conformation.

  12. Intravenous ferric carboxymaltose accelerates erythropoietic recovery from experimental malarial anemia

    DEFF Research Database (Denmark)

    Maretty, Lasse; Sharp, Rebecca Emilie; Andersson, Mikael

    2012-01-01

    Iron restriction has been proposed as a cause of erythropoietic suppression in malarial anemia; however, the role of iron in malaria remains controversial, because it may increase parasitemia. To investigate the role of iron-restricted erythropoiesis, A/J mice were infected with Plasmodium chabaudi...... use of iron therapy in malaria and show the need for trials of intravenous ferric carboxymaltose as an adjunctive treatment for severe malarial anemia....

  13. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi

    Science.gov (United States)

    Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature. PMID:16000713

  14. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T.G.; Burkel, E.

    2016-01-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles. - Highlights: • Study of superparamagnetic transition of magnetite varying ferric iron content. • Coercivity is mainly influenced by the particle size. • Saturation polarisation influenced by the goethite content and the particle size. • Number of vacancies tend to increase with increasing ferric iron content. • Fe 3 O 4 B-sites are stronger effected by the reduction of particle size than A-sites.

  15. A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores

    Directory of Open Access Journals (Sweden)

    Kevin B. Hallberg

    2013-01-01

    Full Text Available Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn were effectively solubilised and maintained in solution due to the low pH (1.8 of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.

  16. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    Science.gov (United States)

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  17. Characterization of Predominant Reductants in an Anaerobic Leachate-Contaminated Aquifer by Nitroaromatic Probe Compounds

    DEFF Research Database (Denmark)

    Rügge, Kirsten; Hofstetter, Thomas B.; Haderlein, Stefan B.

    1998-01-01

    The biogeochemical processes controlling the reductive transformation of contaminants in an anaerobic aquifer were inferred from the relative reactivity patterns of redox-sensitive probe compounds. The fate of five nitroaromatic compounds (NACs) was monitored under different redox conditions in a...... results suggest that Fe(ll) associated with ferric iron minerals is a highly reactive reductant in anaerobic aquifers, which may also determine the fate of other classes of reducible contaminants such as halogenated solvents, azo compounds, sulfoxides, chromate, or arsenate....

  18. SPECTROPHOTOMETRIC ASSESSMENT OF FERRIC REDUCING POWER OF THE INSTANT COFFEE

    OpenAIRE

    Tsiupko, T. G.; Tishchenko, E. A.; Voronova, O. B.

    2016-01-01

    The methods of antioxidant activity determination of foodstuffs using different indicator systems were discussed. The investigation of ferric reducing power (FRP) of coffee and its individual phenolic components such as chlorogenic (CGA), caffeic (СА), ferulic (FA), gallic (GA), vanillic (VA), protocatechuic (PCA) and uric (UA) acids as well as quercetin (Qu) and catechol (C) using the spectrophotometric method with Fe(III) - o-Phen indicator system was carried out. It was shown that the sens...

  19. Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making

    International Nuclear Information System (INIS)

    Xu, Tengfang; Karali, Nihan; Sathaye, Jayant

    2014-01-01

    Highlights: • Evaluate long-term effects of national energy efficiency in steel making. • Use bottom-up optimization for projection in China, India and the U.S. • The effects include changes in steel production, energy use, emissions, and costs. • Three emission targets induce different structural changes and investments. • Projected energy and CO 2 intensity declines in each country from 2010 to 2050. - Abstract: In this paper, we applied bottom-up linear optimization modeling to analyze long-term national impacts of implementing energy efficiency measures on energy savings, CO 2 -emission reduction, production, and costs of steel making in China, India, and the U.S. We first established two base scenarios representing business-as-usual steel production for each country from 2010 to 2050; Base scenario (in which no efficiency measure is available) and Base-E scenario (in which efficiency measures are available), and model scenarios representing various emission-reduction targets that affects production, annual energy use and costs with the goal of cost minimization. A higher emission-reduction target generally induces larger structural changes and increased investments in nation-wide efficiency measures, in addition to autonomous improvement expected in the Base scenario. Given the same emission-reduction target compared to the base scenario, intensity of annual energy use and emissions exhibits declining trends in each country from year 2010 to 2050. While a higher emission-reduction target result in more energy reduction from the base scenario, such reduction can become more expensive to achieve. The results advance our understanding of long-term effects of national energy efficiency applications under different sets of emission-reduction targets for steel sectors in the three major economies, and provide useful implications for high impact strategies to manage production structures, production costs, energy use, and emission reduction in steel making

  20. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose.

    Science.gov (United States)

    Neiser, Susann; Rentsch, Daniel; Dippon, Urs; Kappler, Andreas; Weidler, Peter G; Göttlicher, Jörg; Steininger, Ralph; Wilhelm, Maria; Braitsch, Michaela; Funk, Felix; Philipp, Erik; Burckhardt, Susanna

    2015-08-01

    The advantage of the new generation IV iron preparations ferric carboxymaltose (FCM), ferumoxytol (FMX), and iron isomaltoside 1000 (IIM) is that they can be administered in relatively high doses in a short period of time. We investigated the physico-chemical properties of these preparations and compared them with those of the older preparations iron sucrose (IS), sodium ferric gluconate (SFG), and low molecular weight iron dextran (LMWID). Mössbauer spectroscopy, X-ray diffraction, and Fe K-edge X-ray absorption near edge structure spectroscopy indicated akaganeite structures (β-FeOOH) for the cores of FCM, IIM and IS, and a maghemite (γ-Fe2O3) structure for that of FMX. Nuclear magnetic resonance studies confirmed the structure of the carbohydrate of FMX as a reduced, carboxymethylated, low molecular weight dextran, and that of IIM as a reduced Dextran 1000. Polarography yielded significantly different fingerprints of the investigated compounds. Reductive degradation kinetics of FMX was faster than that of FCM and IIM, which is in contrast to the high stability of FMX towards acid degradation. The labile iron content, i.e. the amount of iron that is only weakly bound in the polynuclear iron core, was assessed by a qualitative test that confirmed decreasing labile iron contents in the order SFG ≈ IS > LMWID ≥ FMX ≈ IIM ≈ FCM. The presented data are a step forward in the characterization of these non-biological complex drugs, which is a prerequisite to understand their cellular uptake mechanisms and the relationship between the structure and physiological safety as well as efficacy of these complexes.

  1. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe...

  2. Elimination of chloride ions in the analytical method for the precise determination of plutonium or uranium using titanous ions as reductant

    International Nuclear Information System (INIS)

    Nicol-Rostaing, C.; Wagner, J.F.

    1991-01-01

    The Corpel and Regnaud's procedure for the precise determination of uranium and plutonium, using titanous (III) chloride as reductant has been modified in order to be compatible with the throwing out standards in nuclear plants. The removal of chloride reagents has been studied. On the original method, there are two: titanous chloride and ferric chloride. We propose titanous sulphate and ferric nitrate as substitution reagents. As commercial titanous sulphate can't be found, an easy procedure has been set and described with storage conditions: experimental conditions have been optimized and adapted for manufacturing on a laboratory scale [fr

  3. Ferric carboxymaltose prevents recurrence of anemia in patients with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Evstatiev, Rayko; Alexeeva, Olga; Bokemeyer, Bernd

    2013-01-01

    Iron-deficiency anemia is the most common systemic complication of inflammatory bowel diseases (IBD). Iron-deficiency anemia recurs frequently and rapidly after iron-replacement therapy in patients with IBD. We performed a randomized, placebo-controlled trial to determine if administration...... of ferric carboxymaltose (FCM) prevents anemia in patients with IBD and low levels of serum ferritin....

  4. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, Udumula; Marakatti, Vijaykumar S. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Amshumali, Mungalimane K. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Department of Chemistry and Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Bellary 583105 (India); Loukya, B. [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Singh, Dheeraj Kumar [Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Datta, Ranjan [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2016-12-15

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  5. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-01-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH 4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  6. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  7. Slat templated formation of efficient oxygen reduction electrocatalyst with a fluidic precursor

    Science.gov (United States)

    Tan, Yao

    2018-05-01

    Development of cost-effective and efficient oxygen reduction catalyst is critical for the commercialization of proton exchange membrane fuel cell. Metal and nitrogen co-doped carbon is recognized as a promising alternative to traditional platinum-based oxygen reduction catalyst. Herein, we report a novel metal and nitrogen co-doped carbon catalyst with an ionic liquid precursor. Salt template, which can be easily removed with mild treatment after the synthesis, is used to generate abundant mesopores in the resulting catalyst. We show that the novel catalyst shows a superior activity comparable to commercial Pt/C catalyst. Furthermore, the important role of the mesopore for the activity of the catalyst is demonstrated.

  8. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.

    Science.gov (United States)

    Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A

    2016-03-01

    New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).

  10. Effect of 30-Gy irradiation in conjunction with leukocyte reduction filter on platelet and transfusion efficiency

    International Nuclear Information System (INIS)

    Shimojima, Hiromi; Sawada, Umihiko; Horie, Takashi; Itoh, Takeyoshi

    2001-01-01

    To evaluate the effect of 30-Gy irradiation in conjunction with leukocyte reduction filter on platelet and transfusion efficiency, we studied platelet recovery, leukocyte reduction rate, content of platelet factor 4 and β-thromboglobulin in platelet products, platelet functions, and positive rates of platelet surface membranes CD42 and CD62, prior to and after treatment. We also evaluated the efficiency of platelet transfusion by estimating post- transfusion (1 and 24 hour) corrected count increment (CCI), and transfusion side effects. Recovery of platelets was 91.8±6.5% and depletion rate of leukocytes was 1.7±1.1 log. There was no significant difference in platelet activation markers or function tests prior to and after the procedure. The mean post-transfusion CCI and 1 and 24 hours were 16,550 (n=114) and 13,310 (n=93), respectively, with 30-Gy irradiation and leukocyte reduction filter. Those treated solely with leukocyte reduction filter were 14,970 (n=114) and 10,880 (n=118), respectively. There was no increase in transfusion side effects after the treatment of platelet concentrate with 30-Gy irradiation combined with leukocyte reduction filter compared with treatment by leukocyte reduction filter alone. These results indicate that treatment with 30 Gy irradiation in conjunction with leukocyte reduction filter is safe and effective in platelet transfusion. (author)

  11. Characterization of ferric arsenate-sulfate compounds: Implications for arsenic control in refractory gold processing residues

    Czech Academy of Sciences Publication Activity Database

    Paktunc, D.; Majzlan, J.; Palatinus, Lukáš; Dutrizac, J.; Klementová, Mariana; Poirier, G.

    2013-01-01

    Roč. 98, č. 4 (2013), s. 554-565 ISSN 0003-004X Institutional support: RVO:68378271 Keywords : arsenic * ferric arsenate sulfate * autoclave residue * hydrometallurgy Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.059, year: 2013

  12. Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media

    Science.gov (United States)

    Liu, Baichen; Huang, Binbin; Lin, Cheng; Ye, Jianshan; Ouyang, Liuzhang

    2017-07-01

    In recent years, non-precious metal electrocatalysts for oxygen reduction reaction (ORR) have attracted tremendous attention due to their high catalytic activity, long-term stability and excellent methanol tolerance. Herein, the porous carbon supported Fe-N-C catalysts for ORR were synthesized by direct pyrolysis of ferric chloride, 6-Chloropyridazin-3-amine and carbon black. Variation of pyrolysis temperature during the synthesis process leads to the difference in ORR catalytic activity. High pyrolysis temperature is beneficial to the formation of the "N-Fe" active sites and high electrical conductivity, but the excessive temperature will cause the decomposition of nitrogen-containing active sites, which are revealed by Raman, TGA and XPS. A series of synthesis and characterization experiments with/without nitrogen or iron in carbon black indicate that the coordination of iron and nitrogen plays a crucial role in achieving excellent ORR performances. Electrochemical test results show that the catalyst pyrolyzed at 800 °C (Fe-N-C-800) exhibits excellent ORR catalytic activity, better methanol tolerance and higher stability compared with commercial Pt/C catalyst in both alkaline and acidic conditions.

  13. FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology

    International Nuclear Information System (INIS)

    Usman, M.; Abdelmoula, M.; Hanna, K.

    2012-01-01

    The Mössbauer spectroscopy was used to monitor the mineralogical transformations of ferrihydrite (F), lepidocrocite (L) and goethite (G) into magnetite as a function of aging time. Ferric oxyhydroxides were reacted with soluble Fe II and OH – in stoichiometric amounts to form magnetite at an initial pH of ∼9.7. Observed transformation extent into magnetite followed the order: F>L>G with almost 30% of untransformed G after 1 month. The departure from stoichiometry, δ, of magnetite (Fe 3−δ O 4 ) generated from F (δ∼0.04) and L (δ∼0.05) was relatively low as compared to that in magnetite from G (δ∼0.08). The analysis by transmission electron microscopy and BET revealed that generated magnetite was also different in terms of morphology, particle size and surface area depending on the nature of initial ferric oxyhydroxide. This method of preparation is a possible way to form nano-sized magnetite. - Graphical abstract: Mössbauer spectrum of the early stage of magnetite formation formed from the interaction of adsorbed Fe II species with goethite. Highlights: ► Ferric oxides were reacted with hydroxylated Fe II to form magnetite. ► Magnetite formation was quantified as a function of aging time. ► Complete transformation of ferrihydrite and lepidocrocite was achieved. ► Almost 70% of initial goethite was transformed. ► Resulting magnetites have differences in stoichiometry and morphological properties.

  14. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases.

    Science.gov (United States)

    White, Corey J; Speelman, Amy L; Kupper, Claudia; Demeshko, Serhiy; Meyer, Franc; Shanahan, James P; Alp, E Ercan; Hu, Michael; Zhao, Jiyong; Lehnert, Nicolai

    2018-02-21

    Flavodiiron nitric oxide reductases (FNORs) are a subclass of flavodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N 2 O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe 2 (BPMP)(OPr)(NO) 2 ](OTf) 2 for the FNOR active site that is capable of reducing NO to N 2 O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemistry, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N 2 O, following a semireduced reaction mechanism. This reaction is very efficient and produces N 2 O with a first-order rate constant k > 10 2 s -1 . Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrous complex [Fe 2 (BPMP)(OPr) 2 ](OTf) and an unidentified ferric product. These results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe 2 (BPMP)(OPr)(NO) 2 ] 2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N 2 O in FNORs and in synthetic catalysts.

  15. Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform

    CSIR Research Space (South Africa)

    Maxakato, NW

    2011-02-01

    Full Text Available -1 Electroanalysis 2011, 23, No. 2, 325 ? 329 Efficient Oxygen Reduction Reaction Using Ruthenium Tetrakis(diaquaplatinum)Octacarboxyphthalocyanine Catalyst Supported on MWCNT Platform Nobanathi W. Maxakato,a Solomon A. Mamuru,a Kenneth I. Ozoemena*a, b a...

  16. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparison of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  17. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparisons of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  18. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  19. Synthesis of Zero Valent Iron Nanoparticles (nZVI and its Efficiency in Arsenic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2011-03-01

    Full Text Available The aim of this study to synthesize nanoparticle zero valent iron and to determine its efficiency in arsenic removal from aqueous solutions. Nanoparticles were synthesized by reduction of ferric chloride using sodium borohydrid. The experiments were conducted in a batch system and the effects of pH, contact time, and the concentrations of arsenit, arsenat, and nano zero valent iron were investigated. SEM and XRD were applied for the determination of particle size and characterization of the nanoparticles synthesized. SEM results revealed that synthesized particles were of nano size (1-100 nanometers. At pH=7.0, 99% of arsenit and arsenat was removed when nano zero valent iron concentration was 1 (g L-1  over a retention time of  10 min. Based on the results obtained, the removal efficiency was enhanced with increasing nano zero valent iron dosage and reaction time, but decreased with increasing initial concentration and initial solution pH. The significant removal efficiency, high rate of process and short reaction time showed that iron nano particles are of a significant potential for the removal of arsenic from aqueous solutions.

  20. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies.

    Science.gov (United States)

    Duan, Yan-Xin; Meng, Fan-Lu; Liu, Kai-Hua; Yi, Sha-Sha; Li, Si-Jia; Yan, Jun-Min; Jiang, Qing

    2018-04-01

    Conversion of carbon dioxide (CO 2 ) into valuable chemicals, especially liquid fuels, through electrochemical reduction driven by sustainable energy sources, is a promising way to get rid of dependence on fossil fuels, wherein developing of highly efficient catalyst is still of paramount importance. In this study, as a proof-of-concept experiment, first a facile while very effective protocol is proposed to synthesize amorphous Cu NPs. Unexpectedly, superior electrochemical performances, including high catalytic activity and selectivity of CO 2 reduction to liquid fuels are achieved, that is, a total Faradaic efficiency of liquid fuels can sum up to the maximum value of 59% at -1.4 V, with formic acid (HCOOH) and ethanol (C 2 H 6 O) account for 37% and 22%, respectively, as well as a desirable long-term stability even up to 12 h. More importantly, this work opens a new avenue for improved electroreduction of CO 2 based on amorphous metal catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fe(HSO4)3 as an Efficient Catalyst for Diazotization and Diazo Coupling Reactions

    International Nuclear Information System (INIS)

    Rahimizadeh, Mohammad; Eshghi, Hossein; Shiri, Ali; Ghadamyari, Zohreh; Matin, Maryam M.; Pordeli, Parvaneh; Oroojalian, Fatemeh

    2012-01-01

    Diazo coupling reactions of aromatic amines with 2-naphthol in a green, efficient and easy procedure is described. Ferric hydrogensulfate catalyses this reaction in water at room temperature and short reaction time with high yields. The antibacterial activities of the synthesized compounds against four pathogenic bacteria are also investigated

  2. Management Methods of Energy Efficiency and reduction of Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Actina, G.; Grackova, L.; Zebergs, V.; Zeltins, N.

    2007-01-01

    The management methods of energy efficiency and reduction of GHG emissions and their introduction depend on the financing possibilities and the management structures. Analysis is made of the following methods for the management of the process of raising energy efficiency: an energy audit and certification; the third-party financing; networks for energy efficiency and services of raising energy efficiency. In Latvia more than a half of all the energy resources are consumed for heating and the supply of hot water. The thermal parameters of buildings are poor therefore wide introduction of buildings certification, based on energy audit is of particular importance. The third-party financing would allow resolving the justified problems of audit and certification in order to hasten the heating process of buildings, particularly, owing to the appearance of respective foreign third-party financing companies, although the privatisation of dwelling houses and reorganisation of their management is not yet completed. The networks for energy efficiency have not found supporters in Latvia, however, great importance is attached to the thermal parameters of industrial premises, which are as poor as in the other buildings of the country, and here is a considerable potential of energy economy. Concerning the services of raising energy efficiency, the management method of this process is supposed to reach maximum energy economy after thermo and technical renovation of buildings at their various stages. It is connected with general organisational and financial adjustment of the management of buildings, as well as with the development of the energy service company.(author)

  3. Safety and Efficacy of Ferric Carboxymaltose in Anemic Pregnant Women: A Retrospective Case Control Study

    NARCIS (Netherlands)

    Pels, Anouk; Ganzevoort, Wessel

    2015-01-01

    Background. Anemia during pregnancy is commonly caused by iron deficiency and can have severe consequences for both the mother and the developing fetus. The aim of this retrospective study was to assess the safety and efficacy of intravenous ferric carboxymaltose (FCM) in pregnant women. Methods.

  4. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study.

    Science.gov (United States)

    Cui, Jinli; Jing, Chuanyong; Che, Dongsheng; Zhang, Jianfeng; Duan, Shuxuan

    2015-06-01

    Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (<10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water. Copyright © 2015. Published by Elsevier B.V.

  5. Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: A case study of nitrogen doped calcium niobate system

    International Nuclear Information System (INIS)

    Su, Yiguo; Huang, Shushu; Wang, Tingting; Peng, Liman; Wang, Xiaojing

    2015-01-01

    Graphical abstract: A series of nitrogen doped Ca 2 Nb 2 O 7 was successfully prepared via ion-exchange method, which was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. - Highlights: • Nitrogen doped Ca 2 Nb 2 O 7 was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. • Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. • Nitrogen doped Ca 2 Nb 2 O 7 showed photo-synergistic promotion effects toward p-nitrophenol reduction under UV light irradiation. - Abstract: This work reported on the synthesis of a series of nitrogen doped Ca 2 Nb 2 O 7 with tunable nitrogen content that were found to be efficient and green noble-metal-free catalysts toward catalytic reduction of p-nitrophenol. XPS and ESR results indicated that the introduction of nitrogen in Ca 2 Nb 2 O 7 gave rise to a large number of defective nitrogen and oxygen species. Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. The underlying mechanism is completely different from those reported for metallic nanoparticles. Moreover, the more negative conduction band edge potential enabled nitrogen doped Ca 2 Nb 2 O 7 to show photo-synergistic effects that could accelerate the reduction rate toward p-nitrophenol under UV light irradiation. This work may provide a strategy for tuning the catalytic performance by modulating the chemical composition, electronic structure as well as surface defect chemistry

  6. Riboflavin Biosynthesis Is Associated with Assimilatory Ferric Reduction and Iron Acquisition by Campylobacter Jejuni.

    NARCIS (Netherlands)

    Gaskin, D.J.H.; Holmes, K.; Mulholland, F.; Wells, J.

    2007-01-01

    One of the pathways involved in the acquisition of the essential metal iron by bacteria involves the reduction of insoluble Fe3+ to soluble Fe2+, followed by transport of Fe2+ to the cytoplasm. Flavins have been implicated as electron donors in this poorly understood process. Ferrous iron uptake is

  7. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  8. Evaluation of hydrous ferric oxide loaded activated carbon as a granular composite sorbent for radiostrontium

    International Nuclear Information System (INIS)

    Samanta, S.K.

    1997-01-01

    A composite sorbent was prepared in granular form by depositing hydrous ferric oxide inside the pores of activated carbon. The composite sorbent was found to show excellent sorption of radiostrontium in the presence of high sodium concentration under alkaline conditions. (author). 3 refs., 2 figs., 1 tab

  9. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    Science.gov (United States)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  10. Extraction of uranium from coarse ore and acid-curing and ferric sulphate-trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing

    1994-01-01

    On the basis of analysis of the problems in the technology of the traditional uranium hydrometallurgy and the limitations of thin layer leaching process (TLL), a new leaching system-acid-curing and ferric sulphate-trickle leaching (AFL) process (NGJ in Chinese) has developed for extraction of uranium from the coarse ore. The ferric sulphate solution was used for trickling the acid-cured uranium ore and the residual leaching reaction incomplete in TLL process can be improved in this process. And the AFL process has a wide applicability to China's uranium ores, being in competition with the traditional agitation leaching process for treating coarse ores. The uranium ore processing technology based on the AFL process will become one of the new basic technologies of uranium hydrometallurgy. A series of difficulties will be basically overcome associated with fine grinding because of its elimination in the presented process. Moreover, the situation of the present uranium hydrometallurgy can be also changed owing to without technological effluent discharge

  11. Comparison of the Performance of Corn Starch Coagulant Aid Accompany with Alum, Polyaluminum Chloride and Ferric Chloride Coagulants in Turbidity Removal from Water

    Directory of Open Access Journals (Sweden)

    Leila Mosleh

    2014-09-01

    Full Text Available Background: The most important process in water treatment plant is coagulation and flocculation. Regular chemical coagulant which used in Iran are aluminum sulfate (Alum and ferric chloride. Chemical coagulants have hazardous effect on human health and their cost is high for developing country. The purpose of this study was to evaluate the comparison of chemical coagulants accompany with corn starch as a coagulant aid, for the turbidity removal from water. Methods: This study was accomplished in pilot-scale with synthetic turbid water using clay. In this research, initial turbidity of 250 and 500 NTU was experimented. Chemical coagulant dose during the experiment was 1, 2 and 5 ppm and natural coagulant dose was 0, 0.1, 0.3, 0.5 and 0.7 ppm. Results: The results showed that maximum removal efficiency of turbidity in initial turbidity of 250 NTU belonged to poly aluminum chloride with 5 ppm dosage and corn starch with 0.7 ppm dosage which removed and reduced the initial turbidity to 98.48% and 3.73 NTU, respectively. Moreover, in initial turbidity of 500 NTU the maximum removal efficiency was 98.52% which belonged to ferric chloride and corn starch (5 and 0.7 ppm respectively and reduced the initial turbidity to 7.4 NTU. Conclusions: The results of this study showed that using natural coagulant aid reduce the chemical coagulant consumption, and also does not have significant effect on pH range and reduce the health risks. While huge amount of required polyelectrolytes for water treatment plant imported to the country and the production of corn starch in our country is high, it is hope that the results of this project can be used in industrial scale.

  12. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K., E-mail: pkdatta.iitkgp@gmail.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-07-07

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp{sup 2}-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp{sup 2} and sp{sup 3}-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm{sup 2}) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm{sup 2} to 302 GW/cm{sup 2}). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm{sup 2} for GO, and ∼194 GW/cm{sup 2} for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  13. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    International Nuclear Information System (INIS)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K.

    2016-01-01

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp"2-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp"2 and sp"3-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm"2) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm"2 to 302 GW/cm"2). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm"2 for GO, and ∼194 GW/cm"2 for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  14. Reduction of firewood consumption by households in south-central Chile associated with energy efficiency programs

    International Nuclear Information System (INIS)

    Schueftan, Alejandra; González, Alejandro D.

    2013-01-01

    Cities in the central-southern area of Chile face serious environmental pollution due to extensive use of firewood for heating. Low energy efficiency of constructions and cold climate increase the problem, which also affects native forests. The aims of this study are to characterize energy consumption in dwellings of this region, investigate the reduction potential, and study social and environmental consequences of high consumption of firewood. Actual energy consumption is studied with information from surveys, potential for reduction is modeled with software and other consequences are analyzed from previous studies. Results for the city of Valdivia show high firewood consumption per household, with a media bulk volume near 12 m 3 /year. Thermal regulations are softer compared with other countries. Moreover, around 85% of buildings were built before enforcing codes in 2007, and has almost no thermal protection. The reduction potential due to thermal improvements is found to be very high (62%) if buildings are refurbished to comply with the present Chilean Norm of 2007, but it reaches a 77% reduction if refurbished according to stricter foreign regulations. Therefore, an energy efficiency program strongly addressing existing buildings has the largest potential for reducing firewood use, and therefore mitigate environmental and health impacts. - Highlights: • High firewood consumption and environmental pollution in cities of south-central Chile. • High use of firewood due to inefficient constructions and soft thermal regulations. • Potential reduction of energy consumption up to 77% with more demanding regulations. • Policies should address building stock before thermal regulation, corresponding to 85%

  15. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  16. Modeling of detective quantum efficiency considering scatter-reduction devices

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Woong; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The reduction of signal-to-noise ratio (SNR) cannot be restored and thus has become a severe issue in digital mammography.1 Therefore, antiscatter grids are typically used in mammography. Scatter-cleanup performance of various scatter-reduction devices, such as air gaps,2 linear (1D) or cellular (2D) grids,3, 4 and slot-scanning devices,5 has been extensively investigated by many research groups. In the present time, a digital mammography system with the slotscanning geometry is also commercially available.6 In this study, we theoretically investigate the effect of scattered photons on the detective quantum efficiency (DQE) performance of digital mammography detectors by using the cascaded-systems analysis (CSA) approach. We show a simple DQE formalism describing digital mammography detector systems equipped with scatter reduction devices by regarding the scattered photons as additive noise sources. The LFD increased with increasing PMMA thickness, and the amounts of LFD indicated the corresponding SF. The estimated SFs were 0.13, 0.21, and 0.29 for PMMA thicknesses of 10, 20, and 30 mm, respectively. While the solid line describing the measured MTF for PMMA with 0 mm was the result of least-squares of regression fit using Eq. (14), the other lines were simply resulted from the multiplication of the fit result (for PMMA with 0 mm) with the (1-SF) estimated from the LFDs in the measured MTFs. Spectral noise-power densities over the entire frequency range were not much changed with increasing scatter. On the other hand, the calculation results showed that the spectral noise-power densities increased with increasing scatter. This discrepancy may be explained by that the model developed in this study does not account for the changes in x-ray interaction parameters for varying spectral shapes due to beam hardening with increasing PMMA thicknesses.

  17. Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction

    Science.gov (United States)

    Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan

    2018-03-01

    Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.

  18. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    Science.gov (United States)

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  19. Influence of Carbon Sources and Electron Shuttles on Ferric Iron Reduction by Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Erin K. Field; Robin Gerlach; Sridhar Viamajala; Laura K. Jennings; Alfred B. Cunningham; Brent M. Peyton; William A. Apel

    2011-09-01

    The reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at Department of Energy (DOE) and other contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the DOE site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in hexavalent chromium remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction. These chemical species are likely to be present in these terrestrial environments during in situ bioremediation. Results indicated that there were a number of interactions between these compounds that influenced Cr(VI) reduction rates. The type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. When an electron shuttle, such as anthraquinone-2,6-disulfonate (AQDS), was present in the system, reduction rates increased significantly. Biologically reduced AQDS (AHDS) reduced Cr(VI) almost instantaneously. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II) which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems is the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that is Cr(VI), Fe(III), or AQDS.

  20. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, Maurizio [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Istituto Nazionale di Fisica Nucleare (INFN) – Gruppo V Sezione di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); ATeN Center, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Collura, Giorgio [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Istituto Nazionale di Fisica Nucleare (INFN) – Gruppo V Sezione di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Gallo, Salvatore, E-mail: salvatore.gallo05@unipa.it [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Istituto Nazionale di Fisica Nucleare (INFN) – Gruppo V Sezione di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Dipartimento di Fisica, Universitá di Milano, Via Giovanni Celoria 16, 20133 Milano (Italy); Nici, Stefania [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Tranchina, Luigi [ATeN Center, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Abbate, Boris Federico [U.O.C. Fisica Sanitaria, A.R.N.A.S., Ospedale Civico Palermo, Piazza Nicola Leotta 4, 90127 Palermo (Italy); Marineo, Sandra; Caracappa, Santo [Istituto Zooprofilattico Sperimentale della Sicilia (IZS), Via Gino Marinuzzi, 3, 90129 Palermo (Italy); and others

    2017-04-01

    Highlights: • Analysis of ferric ions diffusion throughout the gel matrix in PVA-GTA samples. • Measurements with preclinical 7T MRI scanner with spatial resolution of 200 μm. • Diffusion process is much slower for PVA-GTA gels than for agarose ones. - Abstract: This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.

  1. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents.

    Science.gov (United States)

    Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae

    2017-10-01

    In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fe(HSO{sub 4}){sub 3} as an Efficient Catalyst for Diazotization and Diazo Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rahimizadeh, Mohammad; Eshghi, Hossein; Shiri, Ali; Ghadamyari, Zohreh; Matin, Maryam M.; Pordeli, Parvaneh [Ferdowsi Univ. of Mashhad, Mashhad (Iran, Islamic Republic of); Oroojalian, Fatemeh [Univ. of Tehran, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Diazo coupling reactions of aromatic amines with 2-naphthol in a green, efficient and easy procedure is described. Ferric hydrogensulfate catalyses this reaction in water at room temperature and short reaction time with high yields. The antibacterial activities of the synthesized compounds against four pathogenic bacteria are also investigated.

  3. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    Zhou G Tong

    2007-01-01

    Full Text Available Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM and code-division multiple access (CDMA, have high peak-to-average power ratios (PARs. A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs, but also leads to low transmission power efficiency. Selected mapping (SLM and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  4. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    Science.gov (United States)

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  5. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  6. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    Cardona R, D.

    2014-01-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe 2 O 3 ) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO 3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO 3 composition. These samples showed a secondary phase (Bi 2 5FeO 4 0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe 2 O 3 ) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  8. Synovectomy of the rheumatoid knee using intra-articular injection of dysprosium-165-ferric hydroxide macroaggregates

    International Nuclear Information System (INIS)

    Sledge, C.B.; Zuckerman, J.D.; Shortkroff, S.; Zalutsky, M.R.; Venkatesan, P.; Snyder, M.A.; Barrett, W.P.

    1987-01-01

    One hundred and eleven patients who had seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with intra-articular injection of 270 millicuries of dysprosium-165 bound to ferric hydroxide macroaggregates. A two-year follow-up was available for fifty-nine of the treated knees. Thirty-nine had a good result; nine, a fair result; and eleven, a poor result. Of the twenty-five knees that had Stage-I radiographic changes, nineteen had a good result. Of the thirty-four knees that had Stage-II radiographic changes, twenty showed a good result. Systemic spread of the radioactivity from the injected joint was minimum. The mean whole-body dose was calculated to be 0.3 rad and that to the liver twenty-four hours after injection, 3.2 rads. The results indicated that dysprosium-165-ferric hydroxide macroaggregate is an effective agent for performing radiation synovectomy, particularly in knees that have Stage-I radiographic changes. Because of the minimum rate of systemic spread of the dysprosium-165, it offers a definite advantage over agents that previously have been used

  9. Isolation of Trichoderma harzianum (Rifai) growing on ferric hydroxide mud impregnated with gas oil

    Energy Technology Data Exchange (ETDEWEB)

    Gudin, C. (Lavera Refinery, France); Chater, K.W.A.

    1977-09-01

    In northern France, gas oil-impregnated ferric hydroxide mud was found to support fungal growth. The fungus was identified by the Commonwealth Mycological Institute, Kew, with whom a reference culture has been registered. Experiments indicated that its growth resulted from the biodegradation of the gas oil. It is believed that, in this unusual situation, contaminating hydrocarbons may be removed from the environment by microbial activity.

  10. Reductive Dehalogenation of Trichloroacetic Acid by Trichlorobacter thiogenes gen. nov., sp. nov.

    Science.gov (United States)

    De Wever, Helene; Cole, James R.; Fettig, Michael R.; Hogan, Deborah A.; Tiedje, James M.

    2000-01-01

    A bacterium able to grow via reductive dechlorination of trichloroacetate was isolated from anaerobic soil enrichments. The isolate, designated strain K1, is a member of the δ proteobacteria and is related to other known sulfur and ferric iron reducers. In anaerobic mineral media supplemented with acetate and trichloroacetate, its doubling time was 6 h. Alternative electron donor and acceptors were acetoin and sulfur or fumarate, respectively. Trichloroacetate dehalogenation activity was constitutively present, and the dechlorination product was dichloroacetate and chloride. Trichloroacetate conversion seemed to be coupled to a novel sulfur-sulfide redox cycle, which shuttled electrons from acetate oxidation to trichloroacetate reduction. In view of its unique physiological characteristics, the name Trichlorobacter thiogenes is suggested for strain K1. PMID:10831402

  11. Complex sulphide-barite ore leaching in ferric chloride solution

    Directory of Open Access Journals (Sweden)

    Miroslav Sokić

    2016-06-01

    Full Text Available The results of research on the leaching process of complex sulphide-barite ore were presented in this paper. The leaching process was carried out in a laboratory autoclave by ferric chloride solution. Considering that those minerals are represented in complex structural-textural relationships, it is not possible to extract lead, zinc and copper minerals from ore by flotation methods. The obtained results confirmed possibility of the ore processing directly, by chemical methods. The effect of temperature, time and oxygen partial pressure on the lead, zinc and copper dissolution was studied. The maximal leaching degree was achieved at 100 °C and amount of 91.5 % for Pb, 96.1 % for Zn and 60.7 % for Cu. Leaching at temperatures above 100 °C is impractical.

  12. Exploring Efficiencies in Data Reduction, Analysis, and Distribution in the Exascale Era

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    DataDirect Networks (DDN) is world leader in massively scalable storage. Fellinger will discuss how the growth of data sets beyond the petabyte boundary presents new challenges to researchers in delivering and extracting usable information. He will also explore a Big Data processing architecture that overcomes constraints in network bandwidth and service layers in large-scale data distribution to enable researchers to request raw data through a filter or an analysis library. This technology, operating directly within the storage device, enables the reduction of service latency and process cycles to provide a more efficient feedback loop in iterative scientific experiments to increase data-intensive processing efficiency by up to 400%. About the speaker Dave Fellinger has over three decades of engineering experience, including film systems, ASIC design and development, GaAs semiconductor manufacture, RAID and storage systems, and video processing devices, and has architected high-performance storage syst...

  13. Improving computational efficiency of Monte Carlo simulations with variance reduction

    International Nuclear Information System (INIS)

    Turner, A.; Davis, A.

    2013-01-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  14. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  15. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    Science.gov (United States)

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrogenated graphenes by birch reduction: influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, Miroslav; Pumera, M.

    2015-01-01

    Roč. 21, č. 7 (2015), 16828-16838 ISSN 0947-6539 Institutional support: RVO:68378271 Keywords : hydrogenated graphenes * birch reduction * magnetism * electrochemistry * hydrogenation efficiency Subject RIV: CA - Inorganic Chemistry Impact factor: 5.771, year: 2015

  17. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  18. Delivering energy efficiency and carbon reduction schemes in England: Lessons from Green Deal Pioneer Places

    International Nuclear Information System (INIS)

    Marchand, Robert D.; Koh, S.C. Lenny; Morris, Jonathan C.

    2015-01-01

    Against a background of growing international and national carbon reduction legislation, the UK government introduced the “Green Deal” to deliver a significant increase in housing energy efficiency and reduction in carbon emissions. This paper reflects on one English local authority's experience delivering a programme intended to foster local interest in the Green Deal. Drawing on social surveys and pre and post Green Deal intervention interviews with five demonstrator homes (households that applied to receive a Green Deal package fully funded by the scheme, providing a test bed for the Green Deal recruitment and installation process), this paper shows that awareness and understanding of the Green Deal scheme is low. There is opposition to the cost of finance offered but a strong interest in improving household warmth and for funding improvements through payments added to the electricity bill. Demonstrator home residents perceived Green Deals had improved the warmth and quality of their home, but saving money was the primary motivator for their involvement, not increasing warmth. Whilst Green Deal has not delivered the level of success that was hoped, much can be learned from the scheme to improve future energy efficiency schemes that will be necessary to deliver emission reduction commitments. -- Highlights: •Resident awareness and understanding of the Green Deal is low. •Green Deal assessment costs and loan interest rates are biggest barriers to uptake. •Funding energy improvements via a charge on electricity bill welcomed by residents. •Saving money rather than increasing warmth main motivator for scheme involvement. •Insights from this work should be used to inform future emission reduction schemes

  19. Ferrous and ferric ions-based high-throughput screening strategy for nitrile hydratase and amidase.

    Science.gov (United States)

    Lin, Zhi-Jian; Zheng, Ren-Chao; Lei, Li-Hua; Zheng, Yu-Guo; Shen, Yin-Chu

    2011-06-01

    Rapid and direct screening of nitrile-converting enzymes is of great importance in the development of industrial biocatalytic process for pharmaceuticals and fine chemicals. In this paper, a combination of ferrous and ferric ions was used to establish a novel colorimetric screening method for nitrile hydratase and amidase with α-amino nitriles and α-amino amides as substrates, respectively. Ferrous and ferric ions reacted sequentially with the cyanide dissociated spontaneously from α-amino nitrile solution, forming a characteristic deep blue precipitate. They were also sensitive to weak basicity due to the presence of amino amide, resulting in a yellow precipitate. When amino amide was further hydrolyzed to amino acid, it gave a light yellow solution. Mechanisms of color changes were further proposed. Using this method, two isolates with nitrile hydratase activity towards 2-amino-2,3-dimethyl butyronitrile, one strain capable of hydrating 2-amino-4-(hydroxymethyl phosphiny) butyronitrile and another microbe exhibiting amidase activity against 2-amino-4-methylsulfanyl butyrlamide were obtained from soil samples and culture collections of our laboratory. Versatility of this method enabled it the first direct and inexpensive high-throughput screening system for both nitrile hydratase and amidase. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kivelitz, D.; Taupitz, M.; Hamm, B. [Universitaetsklinikum Charite, Berlin (Germany). Inst. fuer Radiologie; Gehl, H.B. [Medizinische Univ. Luebeck (Germany). Inst. fuer Radiologie; Heuck, A. [Muenchen Univ. (Germany). Radiologische Klinik; Krahe, T. [Koeln Univ. (Germany). Inst. fuer Radiologische Diagnostik; Lodemann, K.P. [Bracco-Byk Gulden GmbH, Konstanz (Germany)

    1999-07-01

    Purpose: To evaluate the safety and diagnostic efficacy of two different doses of ferric ammonium citrate as a paramagnetic oral contrast agent for MR imaging of the upper abdomen. Material and methods: Ninety-nine adult patients referred for MR imaging for a known or suspected upper abdominal pathology were included in this randomized multicenter double-blind clinical trial. Imaging was performed with spin-echo (T1- and T2-weighted) and gradient-echo (T1-weighted) techniques before and after administration of either 1200 mg or 2400 mg of ferric ammonium citrate dissolved in 600 ml of water. Safety analysis included monitoring of vital signs, assessment of adverse events, and laboratory testing. Efficacy with regard to organ distension, contrast distribution, bowel enhancement and delineation of adjacent structures was graded qualitatively. Results: No serious adverse events were reported for either of the two concentrations. A total of 31 minor side effects were noted, of which significantly more occurred in the higher dose group (p<0.01). The diagnostic confidence in defining or excluding disease was graded as better after contrast administration for 48% of all images. Marked or moderate enhancement of the upper gastrointestinal tract was achieved at both doses in 69.5% of cases with no evident difference between the two doses. The higher dose tended to show better results in terms of the contrast assessment parameters. Conclusion: Ferric ammonium citrate is a safe and effective oral contrast agent for MR imaging of the upper abdomen at two different dose levels. The higher dose showed a tendency toward better imaging results while the lower dose caused significantly fewer side effects. Therefore, the 1200 mg dose can be recommended in view of the risk-to-benefit ratio. (orig.)

  1. [Topography structure and flocculation mechanism of polymeric phosphate ferric sulfate (PPFS)].

    Science.gov (United States)

    Zheng, Huai-li; Zhang, Hui-qin; Jiang, Shao-jie; Li, Fang; Jiao, Shi-jun; Fang, Hui-li

    2011-05-01

    Characteristics of polymeric phosphate ferric sulfate (PPFS) were investigated using FTIR (Fourier transform infrared spectrometer), XRD (X-ray diffraction) and SEM (scanning electron microscope) in the present study. The formed PPFS structure and morphology were stereo meshwork, which was clustered and close to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role in the coagulation beaker test and the zeta potential proved that PPFS was largely affected by bridging and netting sweep. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging and netting sweep mechanisms.

  2. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  3. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability.

    Science.gov (United States)

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan

    2016-01-01

    This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn aseptically at preparation and after 24 h, 48 h and 72 h. Multiple parameters were used to test stability-related measures (pH, total iron and iron (II) content, molecular weight range determination, microbial contamination and particles count ≥10 μm). Overall, Ferinject diluted in 0.9% (w/v) NaCl solution and stored in PP bottles and bags was stable within the specifications for the complex and the acceptability limits set for all assays. In both containers, total iron content remained stable, within 10% of the theoretical iron content, and levels of iron (II) remained far below the threshold of acceptability. All preparations were free from sediments, particle numbers were acceptable and there was no microbial contamination. The molecular weight distribution and polydispersity index were also acceptable. Under the tested experimental conditions, colloidal ferric carboxymaltose solution (Ferinject) diluted in saline in PP infusion bottles or bags demonstrated physical and chemical stability for up to 72 h at 30°C and 75% rH. Because of the lack of additional clinical data, when using ferric carboxymaltose, physicians/pharmacists should refer to the dilution and storing recommendations given in the product's summary of product characteristics.

  4. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain

    International Nuclear Information System (INIS)

    López-Peña, Álvaro; Pérez-Arriaga, Ignacio; Linares, Pedro

    2012-01-01

    While support instruments have succeeded to largely deploy renewables during the 1996–2008 period, little attention has been paid to energy efficiency measures, resulting in a high energy intensity and large growth of energy demand. Energy-related CO 2 emissions have increased significantly. At the same time, important investments in combined cycle gas turbines have taken place. This paper analyses whether, from a cost minimization viewpoint, renewable support has been the best policy for reducing emissions, when compared to the promotion of energy efficiency in sectors such as transportation or buildings. We use a model of the Spanish energy sector to examine its evolution in the time period considered under different policies. It is a bottom-up, static, partial equilibrium, linear programming model of the complete Spanish energy system. We conclude that demand side management (DSM) clearly dominates renewable energy (RE) support if the reduction of emissions at minimum cost is the only concern. We also quantify the savings that could have been achieved: a total of €5 billion per year, mainly in RE subsidies and in smaller costs of meeting the reduced demand (net of DSM implementation cost). - Highlights: ► Energy efficiency is cheaper than renewables for reducing carbon emissions. ► Energy efficiency measures could have saved more than €5 billion per year in Spain. ► Savings could have been bigger without overcapacity in gas combined cycles.

  5. In situ reduction of as-prepared γ-Iron Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Garbus, Pelle Gorm; Ahlburg, Jakob; Christensen, Mogens

    -ray diffraction measurement. The as-prepared maghemite nanoparticles were synthesized by the continuous decomposition of solutes in supercritical hydrothermal flow synthesis [3, 4]. The reagent used was ferric ammonium citrate (C6H8O7•xFe(III)•yNH3) that under hydrothermal flow synthesis decomposes into the γ......-iron oxide Fe2O3. The reduction of maghemite to body centered cubic (BCC) iron does not go through a detectable intermediate state.1.Jensen, K.M., et al., Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS nano, 2014. 8(10): p. 10704-10714.2.Andersen, H...

  6. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts

    NARCIS (Netherlands)

    Ma, Ming; Trześniewski, Bartek J.; Xie, Jie; Smith, Wilson A.

    2016-01-01

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a

  7. Reduction of characteristic RL time for fast, efficient magnetic levitation

    Directory of Open Access Journals (Sweden)

    Yuqing Li

    2017-09-01

    Full Text Available We demonstrate the reduction of characteristic time in resistor-inductor (RL circuit for fast, efficient magnetic levitation according to Kirchhoff’s circuit laws. The loading time is reduced by a factor of ∼4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ∼ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.

  8. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    Science.gov (United States)

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.

  9. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    Science.gov (United States)

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  10. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    International Nuclear Information System (INIS)

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe 3+ -DFOB) and ferric-rhodotorulate (Fe 3+ -RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe 3+ -EDTA and Fe 3+ -EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 μM CCCP or 1 mM vanadate. Cyanide (100 μM KCN) or 25 μM antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron ( 55 Fe) was taken up while labeled ligands ([ 14 C] citrate or RA) were not accumulated. Cation competition from Ni 2+ and Co 2+ observed using Fe 3+ -DFOB and Fe 3+ -RA while iron uptake from Fe 3+ -citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe 3+ -DFOB indicated that a receptor may be involved in this mechanism

  11. Potential CO{sub 2} reduction by implementing energy efficiency standard for room air conditioner in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mahlia, T.M.I.; Masjuki, H.H.; Choudhury, I.A.; Saidur, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2001-09-01

    This study attempts to predict the environmental impact of implementing an energy efficiency standard for room air conditioners in Malaysia. The ownership of room air conditioners has increased tremendously in this country. At present, there are about 528,792 room air conditioners in Malaysian households. In the year 2020, it will be about 1,511,276. The potential carbon dioxide reduction is based on the predicted electricity savings from implementing a minimum energy efficiency standard for room air conditioners. The electricity savings are calculated based on the predicted electricity consumption by a single air conditioner in the Malaysian household. The replacement of less efficient units of this appliance is reflected in reduced electricity consumption and emissions from power plants. The energy efficiency provisions of this regulation and agreement provide targets to save money, energy and, most importantly, to protect the environment. (Author)

  12. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); DeFlorio, J. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); McKenzie, E. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Tao, W. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States)

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. Radioisotopic synovectomy using ferric hydroxide macroaggregated for chronic arthritis treatment

    International Nuclear Information System (INIS)

    Lima, Carla Flavia; Campos, Tarcisio P.R.

    2002-01-01

    Synovectomy radioisotopic is an arthritis treatment used in specific clinical conditions whose main goal is to sterilized the synovia. This treatment has specific and precise indications and it is considered to have an adequate response. The present work presents a modeling of an articulation (joint) based on its real geometric anatomy and chemical constitution. The internal dosimetry is evaluated by the Monte Carlo Code. The majority of the radionuclides were considered in the simulations. The syntheses of the ferric hydroxide macroaggregates with dysprosium and samarium have been prepared (Dy 165 -MHF and Sm 153 -MHF). Obtaining the cintilographic images of rabbits in which Dy 165 -MHF is injected is in progress. Biodistribution studies in addition with the internal dosimetry will certify the dose in the membrane of the synovia. (author)

  15. Simulation of ferric ions transfer in dosemeter Fricke-Xylenol-Gel in means no homogeneous

    International Nuclear Information System (INIS)

    Milani, Caio J.; Bevilacqua, Joyce da Silva; Cavinato, Christianne C.; Rodrigues Junior, Orlando; Campos, Leticia L.

    2013-01-01

    Dosimetry in three dimensions using Fricke-Xilenol-Gel dosimeters (FXG) allows the confirmation and a better understanding of a treatment by Radiotherapy. The technique involves the assessment of the irradiated volumes by magnetic resonance imaging (MRI) or optical-CT. On both cases, the time elapsed between the irradiation and the measurement is an important factor in the quality of results. The quality of the images can be compromised by the mobility of the ferric ions (Fe 3+ ), formed during the the interaction of the radiation with the matter, increasing the uncertainty in the determination of the isodoses in the volume. In this work, the phenomenon of the diffusion of the ferric ions formed by an irradiated region is simulated in a bidimensional domain. The dynamic of the Fe 3+ in Fricke-Gel is modeled by a parabolic partial differential equation and solved by the ADI-Peaceman-Rachford algorithm. Stability and consistency of the method guarantee the convergence of the numerical solution for a pre-defined error magnitude, based on choices for the discretization values of time and space. Homogeneous and non-homogeneous cases are presented considering an irradiated region and a physical barrier that prevents the movement of the ions, on the non-homogeneous case. Graphical visualizations of the phenomenon are presented for better understanding of the process. (author)

  16. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Pfiffner, Susan M. [Univ. of Tennessee, Knoxville, TN (United States); Löffler, Frank [Univ. of Tennessee, Knoxville, TN (United States); Ritalahti, Kirsti [Univ. of Tennessee, Knoxville, TN (United States); Sayler, Gary [Univ. of Tennessee, Knoxville, TN (United States); Layton, Alice [Univ. of Tennessee, Knoxville, TN (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    analyses, and gene expression studies to support the metaproteomics characterizations. Growth experiments of target microorganisms (Anaeromyxobacter, Shewanella, Geobacter) revealed tremendous respiratory versatility, as evidenced by the ability to utilize a range of electron donors (e.g. acetate, hydrogen, pyruvate, lactate, succinate, formate) and electron acceptors (e.g. nitrate, fumarate, halogenated phenols, ferric iron, nitrous oxide, etc.). In particular, the dissimilatory metabolic reduction of metals, including radionuclides, by target microorganisms spurred interest for in situ bioremediation of contaminated soils and sediments. Distinct c-type cytochrome expression patterns were observed in target microorganisms grown with the different electron acceptors. For each target microorganism, the core proteome covered almost all metabolic pathways represented by their corresponding pan-proteomes. Unique proteins were detected for each target microorganism, and their expression and possible functionalities were linked to specific growth conditions through proteomics measurements. Optimization of the proteomic tools included in-depth comprehensive metagenomic and metaproteomic analyses on a limited number of samples. The optimized metaproteomic analyses were then applied to Oak Ridge IFRC field samples from the slow-release substrate biostimulation. Metaproteomic analysis and pathway mapping results demonstrated the distinct effects of metal and non-metal growth conditions on the proteome expression. With these metaproteomic tools, we identified which previously hypothetical metabolic pathways were active during the analyzed time points of the slow release substrate biostimulation. Thus, we demonstrated the utility of these tools for site assessment, efficient implementation of bioremediation and long-term monitoring. This research of detailed protein analysis linked with metal reduction activity did (1) show that c-type cytochrome isoforms, previously associated with

  17. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  18. Absorption mechanisms for cationic and anionic mineral species on ferric iron polymer hydroxides and oxidation products of ferrous iron in aqueous media

    International Nuclear Information System (INIS)

    Gandon, Remi

    1982-01-01

    Adsorbents obtained by hydrolysing the Fe 3+ , 6H 2 O ion are made of polymers with aquo (H 2 O), hydroxo (-OH...) and oxo (...O...) ligands. Radioactive tracers reveal the importance of chemical mechanisms in adsorption phenomena on ferric oxide in aqueous media. Zn 2+ , Co 2+ and Mn 2+ cations are exchanged with hydrogen from hydroxo groups. CrO 4 2- , SeO 3 2- and Sb(OH) 6 - anions form covalent associations in place of iron ligands. The adsorption of hydrolyzed ions results in strong oxygen bridge bonds. In fresh water, Co and Mn participate alone in physical electrostatic adsorption. Iron II oxidation products generate chemical adsorptions. Zn 2+ and Sb(OH) 6 - associate with ferric hydroxides from oxidized Fe 2+ . 60 Co, 54 Mn and 51 Cr form covalent associations between unpaired 3d iron electrons and the adsorbed element. This process is not predominant with selenium IV or VI reduced to the metallic state or fixed on ferric hydroxide in the selenite form. These conclusions can be applied to pollutant analysis and to water purification and contribute to our understanding of the role of iron in the distribution of oligo-elements in aqueous media. (author) [fr

  19. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  20. Short and long term efficiencies of debris risk reduction measures: Application to a European LEO mission

    Science.gov (United States)

    Lang, T.; Kervarc, R.; Bertrand, S.; Carle, P.; Donath, T.; Destefanis, R.; Grassi, L.; Tiboldo, F.; Schäfer, F.; Kempf, S.; Gelhaus, J.

    2015-01-01

    Recent numerical studies indicate that the low Earth orbit (LEO) debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris (Liou and Johnson, 2008). Measures to be enforced play thus a major role to preserve an acceptable space mission risk and ensure sustainable space activities. The identification of such measures and the quantification of their efficiency over time for LEO missions is of prime concern in the decision-making process, as it has been investigated for the last few decades by the Inter-Agency Space Debris Coordination Committee (IADC). This paper addresses the final results of a generic methodology and the characteristics of a tool developed to assess the efficiency of the risk reduction measures identified for the Sentinel-1 (S1) mission. This work is performed as part of the 34-month P2-ROTECT project (Prediction, Protection & Reduction of OrbiTal Exposure to Collision Threats), funded by the European Union within the Seventh Framework Programme. Three ways of risk reduction have been investigated, both in short and long-term, namely: better satellite protection, better conjunction prediction, and cleaner environment. According to our assumptions, the S1 mission vulnerability evaluations in the long term (from 2093 to 2100) show that full compliance to the mitigation measures leads to a situation twice safer than that induced by an active debris removal of 5 objects per year in a MASTER2009 Business-As-Usual context. Because these measures have visible risk reduction effects in the long term, complementary measures with short response time are also studied. In the short term (from 2013 to 2020), a better prediction of the conjunctions is more efficient than protecting the satellite S1 itself. By

  1. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  2. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and

  3. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    Science.gov (United States)

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  4. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Lili [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China); Ma Wei, E-mail: chmawv@yahoo.com [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China); Han Mei; Cheng Zihong [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China)

    2011-02-15

    Research highlights: {yields} The reconstruction processes of CH-Mg/Al and CH-Mg/Al/Fe were fast and efficient, but the adsorption of Cr (VI) on CH-Mg/Al/Fe reached equilibrium faster. {yields} The removal mechanism involved not only intercalation but also adsorption on external surface of the layers and interlayer anion exchange. {yields} The existence of Fe3{sup +} in Mg/Al calcined hydrotalcite led to the interlayer anion exchange more difficult and it is affected equilibrium amount of Cr (VI) adsorption. - Abstract: The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on removal of Cr (VI) from aqueous solution was studied from aspects of structure characteristics, adsorption properties and mechanism discussions. The calcined hydrotalcites (CH-Mg/Al and CH-Mg/Al/Fe) were obtained by thermal decomposition of their corresponding precursors and characterized by XRD, TEM, pH{sub PZC} and FTIR. The adsorption properties were studied as a function of pH, initial Cr (VI) concentration and contact time. The results showed that the nature of adsorption is endothermic and spontaneous for both CH-Mg/Al and CH-Mg/Al/Fe, but the thermodynamic parameter value changes revealed the addition of Fe{sup 3+} is disadvantage to adsorption process and the theoretical saturated adsorption capacity decreased by approximately 10.2 mg/g at tested temperatures. The removal mechanism involved not only intercalation but adsorption on external surface of the layers and interlayer anion exchange for both CH-Mg/Al and CH-Mg/Al/Fe. Furthermore, the results also indicated that intercalation accounts for a large proportion during removal process whatever for CH-Mg/Al, or for CH-Mg/Al/Fe. Additionally, the replacement of Al{sup 3+} by Fe{sup 3+} in CH-Mg/Al led to the interlayer anion exchange more difficult. On the basis of the results, it is concluded that the existence of ferric iron in calcined Mg/Al hydrotalcite is unfavorable to removal of Cr (VI) from aqueous solution.

  5. Beta transmutations in apatites with ferric iron as an electron acceptor - implication for nuclear waste form development.

    Science.gov (United States)

    Yao, Ge; Zhang, Zelong; Wang, Jianwei

    2017-09-27

    Apatite-structured materials have been considered for the immobilization of a number of fission products from reprocessing nuclear fuel because of their chemical durability as well as compositional and structural flexibility. It is hypothesized that the effect of beta decay on the stability can be mitigated by introducing an appropriate electron acceptor at the neighboring sites in the structure. The decay series 137 Cs → 137 Ba and 90 Sr → 90 Y → 90 Zr were investigated using a spin-polarized DFT approach to test the hypothesis. Apatites with compositions of Ca 10 (PO 4 ) 6 F 2 and Ca 4 Y 6 (SiO 4 ) 6 F 2 were selected as model systems for the incorporation of radionuclides Cs and Sr, respectively. Ferric iron was introduced in the structure as an electron acceptor. Electron density of states, crystal and defect structures, and energies before and after beta decay were calculated. The calculated electron density of states suggests that the extra electron is localized at the ferric iron, which changes its oxidation state and becomes ferrous iron. The crystal and defect structures were analyzed based on the volume, lattice parameters, radial distribution functions, metal cation to coordinating oxygen distances, and the metaprism twist angle of the apatite crystal structure. The results show that there are minor changes in the crystal and defect structures of CsFeCa 8 (PO 4 ) 6 F 2 with Cs + and Fe 3+ substitutions undergoing the Cs → Ba transmutation, and of Ca 3 SrY 4 Fe 2 (SiO 4 ) 6 F 2 with Sr 2+ and Fe 3+ substitutions undergoing the Sr → Y → Zr transmutations. The last decay change, from Y 3+ → Zr 4+ , causes relatively larger changes in the local defect structure around Zr involving the coordination environment but the change is not significant to the crystal structure. The results on calculated cohesive energy suggest that the transmutations Cs + → Ba 2+ and Sr 2+ → Y 3+ → Zr 4+ in both apatite compositions are energetically favorable

  6. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  7. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  8. Energy-Efficiency Analysis of Per-Subcarrier Antenna Selection with Peak-Power Reduction in MIMO-OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Phuc Le

    2014-01-01

    Full Text Available The use of per-subcarrier antenna subset selection in OFDM wireless systems offers higher system capacity and/or improved link reliability. However, the implementation of the conventional per-subcarrier selection scheme may result in significant fluctuations of the average power and peak power across antennas, which affects the potential benefits of the system. In this paper, power efficiency of high-power amplifiers and energy efficiency in per-subcarrier antenna selection MIMO-OFDM systems are investigated. To deliver the maximum overall power efficiency, we propose a two-step strategy for data-subcarrier allocation. This strategy consists of an equal allocation of data subcarriers based on linear optimization and peak-power reduction via cross-antenna permutations. For analysis, we derive the CCDF (complementary cumulative distribution function of the power efficiency as well as the analytical expressions of the average power efficiency. It is proved from the power-efficiency perspective that the proposed allocation scheme outperforms the conventional scheme. We also show that the improvement in the power efficiency translates into an improved capacity and, in turn, increases energy efficiency of the proposed system. Simulation results are provided to validate our analyses.

  9. Non-transferrin-bound iron (NTBI uptake by T lymphocytes: evidence for the selective acquisition of oligomeric ferric citrate species.

    Directory of Open Access Journals (Sweden)

    Joao Arezes

    Full Text Available Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI. NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.

  10. High affinity (3H) β-Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    International Nuclear Information System (INIS)

    Robitaille, Y.; Sherwin, A.

    1984-01-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for β-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated ( 3 H) β-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with ( 3 H) β-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table

  11. Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide.

    Science.gov (United States)

    Mayes, William M; Potter, Hugh A B; Jarvis, Adam P

    2009-02-15

    Data are presented which evaluate the performance of a pilot-scale treatment system using pelletised hydrous ferric oxide (HFO; a waste stream from coal mine water treatment) as a high surface area sorbent for removing zinc (Zn) from a metal mine water discharge in the North Pennines Orefield, UK. Over a 10-month period the system removed Zn at mean area- and volume-adjusted removal rates of 3.7 and 8.1gm(-3)day(-1), respectively, with a mean treatment efficiency of 32% at a low mean residence time of 49min. There were seasonal effects in Zn removal owing to establishment and dieback of algae in the treatment tank. This led to increased Zn uptake in early summer months followed by slight Zn release upon algae senescence. In addition to these biosorptive processes, the principal sinks for Zn appear to be (1) sorption onto the HFO surface, and (2) precipitation with calcite-dominated secondary minerals. The latter were formed as a product of dissolution of portlandite in the cement binder and calcium recarbonation. Further optimisation of the HFO pelletisation process holds the possibility for providing a low-cost, low footprint treatment option for metal rich mine waters, in addition to a valuable after-use for recovered HFO from coal mine water treatment facilities.

  12. An efficient iterative model reduction method for aeroviscoelastic panel flutter analysis in the supersonic regime

    Science.gov (United States)

    Cunha-Filho, A. G.; Briend, Y. P. J.; de Lima, A. M. G.; Donadon, M. V.

    2018-05-01

    The flutter boundary prediction of complex aeroelastic systems is not an easy task. In some cases, these analyses may become prohibitive due to the high computational cost and time associated with the large number of degrees of freedom of the aeroelastic models, particularly when the aeroelastic model incorporates a control strategy with the aim of suppressing the flutter phenomenon, such as the use of viscoelastic treatments. In this situation, the use of a model reduction method is essential. However, the construction of a modal reduction basis for aeroviscoelastic systems is still a challenge, owing to the inherent frequency- and temperature-dependent behavior of the viscoelastic materials. Thus, the main contribution intended for the present study is to propose an efficient and accurate iterative enriched Ritz basis to deal with aeroviscoelastic systems. The main features and capabilities of the proposed model reduction method are illustrated in the prediction of flutter boundary for a thin three-layer sandwich flat panel and a typical aeronautical stiffened panel, both under supersonic flow.

  13. Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-09-01

    Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.

  14. Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures with Trial Vector Derivatives

    Directory of Open Access Journals (Sweden)

    Wolfgang Witteveen

    2014-01-01

    Full Text Available The mechanical response of multilayer sheet structures, such as leaf springs or car bodies, is largely determined by the nonlinear contact and friction forces between the sheets involved. Conventional computational approaches based on classical reduction techniques or the direct finite element approach have an inefficient balance between computational time and accuracy. In the present contribution, the method of trial vector derivatives is applied and extended in order to obtain a-priori trial vectors for the model reduction which are suitable for determining the nonlinearities in the joints of the reduced system. Findings show that the result quality in terms of displacements and contact forces is comparable to the direct finite element method but the computational effort is extremely low due to the model order reduction. Two numerical studies are presented to underline the method’s accuracy and efficiency. In conclusion, this approach is discussed with respect to the existing body of literature.

  15. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  16. CO2 reduction in the Danish transportation sector. Working paper 5: Technological improvement of energy efficiency. Average requirements to energy efficiency of the new vehicles. Subsidies to research and development

    International Nuclear Information System (INIS)

    1997-03-01

    The road traffic is expected to be responsible for 9/10 of the total CO 2 emission from transportation sector in 2005. Especially private cars contribute more than half of the total CO 2 emission. Cars are not produced in Denmark, so energy efficiency of the new models depends entirely on the foreign manufacturers. Measurements of energy efficiency on test facilities show usually slightly better efficiency than on-the-road results. Efficiency estimates are based on test results. Within 10-15 years the whole car park will show essential efficiency improvement due to exchanging to newer models. Shadow price of CO 2 emission reduction is defined. (EG) Prepared for Trafikministeriet. 27 refs

  17. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA)

    International Nuclear Information System (INIS)

    Ting, W.-P.; Lu, M.-C.; Huang, Y.-H.

    2008-01-01

    A new approach for promoting ferric reduction efficiency using a different electrochemical cell and the photoelectro-Fenton process has been developed. The use of UVA light and electric current as electron donors can efficiently initiate the Fenton reaction. Benzene sulfonic acid (BSA) was the target compound in this study. The parameters investigated to evaluate the reactor design include the electrode working area, electrode distance, energy consumption. Furthermore, the study also contains the intermediates and the mineralization efficiency of electrolysis, Fenton, electro-Fenton and photoelectro-Fenton process. Oxalic acid, the major intermediate of aromatic compound degradation, can complex with ferric ions. Meanwhile, a double cathode reactor could increase the current efficiency by 7%, which would translate to greater ferrous production and a higher degradation rate. Although the current efficiency of an electrode distance 5.5 cm device is 19% higher than 3.0 cm, results show that after 2 h of electrolysis the electronic expense using an electrode gap of 5.5 cm is much higher than 3.0 cm. The final TOC removal efficiency was 46, 64 and 72% using the Fenton, electro-Fenton and photoelectron-Fenton processes, respectively

  18. Strategies for carbon dioxide emissions reductions: Residential natural gas efficiency, economic, and ancillary health impacts in Maryland

    International Nuclear Information System (INIS)

    Ruth, Matthias; Blohm, Andrew; Mauer, Joanna; Gabriel, Steven A.; Kesana, Vijay G.; Chen Yihsu; Hobbs, Benjamin F.; Irani, Daraius

    2010-01-01

    As part of its commitments to the Regional Greenhouse Gas Initiative (RGGI), the State of Maryland, USA, auctions emission permits to electric utilities, creating revenue that can be used to benefit consumers and the environment. This paper explores the CO 2 emissions reductions that may be possible by allocating some of that revenue to foster efficiency improvements in the residential sector's use of natural gas. Since these improvements will require changes to the capital stock of houses and end use equipment, efficiency improvements may be accompanied by economic and ancillary health impacts, both of which are quantified in this paper.

  19. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    Science.gov (United States)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  20. IRON REDUCTASE SYSTEMS ON THE PLANT PLASMA-MEMBRANE - A REVIEW

    NARCIS (Netherlands)

    MOOG, PR; BRUGGEMANN, W

    1994-01-01

    Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is

  1. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  2. Evaluation of virus reduction efficiency in wastewater treatment unit processes as a credit value in the multiple-barrier system for wastewater reclamation and reuse

    OpenAIRE

    Ito, Toshihiro; Kato, Tsuyoshi; Hasegawa, Makoto; Katayama, Hiroyuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-01-01

    The virus reduction efficiency of each unit process is commonly determined based on the ratio of virus concentration in influent to that in effluent of a unit, but the virus concentration in wastewater has often fallen below the analytical quantification limit, which does not allow us to calculate the concentration ratio at each sampling event. In this study, left-censored datasets of norovirus (genogroup I and II), and adenovirus were used to calculate the virus reduction efficiency in unit ...

  3. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets

    International Nuclear Information System (INIS)

    Fais, Birgit; Sabio, Nagore; Strachan, Neil

    2016-01-01

    Highlights: • A new industrial modelling approach in a whole energy systems model is developed. • The contribution of UK industry to long-term energy policy targets is analysed. • Emission reductions of up to 77% can be achieved in the UK industry until 2050. • The UK industry sector is essential for achieving the overall efficiency commitments. • UK industry can make a moderate contribution to the expansion of renewable energies. - Abstract: This paper evaluates the critical contribution of the industry sector to long-term decarbonisation, efficiency and renewable energy policy targets. Its methodological novelty is the incorporation of a process-oriented modelling approach based on a comprehensive technology database for the industry sector in a national energy system model for the UK (UKTM), allowing quantification of the role of both decarbonisation of upstream energy vectors and of mitigation options in the industrial sub-categories. This enhanced model is then applied in a comparative policy scenario analysis that explores various target dimensions on emission mitigation, renewable energy and energy efficiency at both a national and European level. The results show that ambitious emission cuts in the industry sector of up to 77% until 2050 compared to 2010 can be achieved. Moreover, with a reduction in industrial energy demand of up to 31% between 2010 and 2050, the sector is essential for achieving the overall efficiency commitments. The industry sector also makes a moderate contribution to the expansion of renewable energies mostly through the use of biomass for low-temperature heating services. However, additional sub-targets on renewable sources and energy efficiency need to be assessed critically, as they can significantly distort the cost-efficiency of the long-term mitigation pathway.

  4. Impact of a simultaneous reduction in fishing subsidies and introduction of efficient management of rents

    DEFF Research Database (Denmark)

    Merayo, Eugenia; Waldo, Staffan; Nielsen, Max

    2018-01-01

    of the largest fishing nations within the EU. A static bio-economic model is used to analyze the effect of simultaneous elimination of subsidies and introduction of an economically efficient management system for the Northwest Spanish fleet. It is concluded that improvements in management would bring substantial......Subsidies to the fishing sector have long been criticized for fueling over-fishing, and a reduction in subsidies is currently on the agenda in the negotiations within the World Trade Organization (WTO). This article analyzes the role of subsidies and other management measures for Spain, one...... rents to the industry, up to €164 million, irrespective of subsidy level, but also a reduction in fishing effort of almost 60%. Under a management scheme that maximizes economic rents, elimination of subsidies in the fishery would increase social welfare, induced by a decrease in the equilibrium fishing...

  5. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  6. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    Science.gov (United States)

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  7. Iron fortification of flour with a complex ferric orthophosphate

    International Nuclear Information System (INIS)

    Hallberg, L.; Rossander-Hulthen, L.; Gramatkovski, E.

    1989-01-01

    The unexpectedly low bioavailability in humans of elemental iron powder prompted us to search for other Fe compounds suitable for Fe fortification of flour that fulfill the two requirements of insolubility in water (due to high water content of flour) and good bioavailability in humans. Systematic studies of compatibility, solubility, and bioavailability led to this study of a microcrystalline complex ferric orthophosphate (CFOP), Fe 3 H 8 (NH 4 )-(PO 4 )6.6H 2 O, a well-defined compound. This compound was labeled with 59 Fe, and the native Fe in meals was labeled with 55 FeCl3. The ratio of absorbed 59 Fe to absorbed 55 Fe is a direct measure of the fraction of CFOP that joins the nonheme Fe pool and that is made potentially available for absorption. The relative bioavailability of CFOP varied from 30% to 60% when labeled wheat rolls were served with different meals. The CFOP meets practical requirements of an Fe fortificant for flour well, with regard to both compatibility and bioavailability in humans

  8. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries.

    Science.gov (United States)

    Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras

    2012-04-13

    ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Use of novel composite coagulants for arsenic removal from waters : experimental insight for the application of polyferric sulfate (PFS)

    OpenAIRE

    Katsoyiannis, Ioannis A.; Tzollas, Nikolaos M.; Tolkou, Athanasia K.; Mitrakas, Manassis; Ernst, Mathias; Zouboulis, Anastasios I.

    2017-01-01

    In the present study, several pre-polymerized coagulants of iron and aluminum were tested for their efficiency towards As(V) and As(III) removal from water sources. The results showed that the pre-polymerized coagulants of iron, such as poly-ferric sulfate and poly-ferric silicate chloride, were very efficient for As(V) removal. With regard to As(III) removal, among all examined coagulants, including the conventional ferric chloride, only the poly-ferric sulfate (PFS) was able to reduce As(II...

  10. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    Science.gov (United States)

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  12. Efficient and Selective Reduction of Aromatic Nitro Compounds to Aromatic Amines by NbCl{sub 5}/Indium System

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Woo; Kim, Duckil; Kim, Hyung Min; Kang, Sung Ho [Korea Univ., Seoul (Korea, Republic of)

    2012-09-15

    Aromatic amines find applicability in diverse fields including dyes, pharmaceuticals, agrochemicals, and photographic materials. To date, there are a variety of methods, which can be used to convert aromatic nitro compounds to their corresponding amines. Some of them include Cp{sub 2}TiCl{sub 2}/In, Al/NH{sub 4}Cl, (NH{sub 4}){sub 2}SO{sub 4}/NaBH{sub 4}, NiCl{sub 2}6H{sub 2}O/In, HI, Sm/I{sub 2}, In/NH{sub 4}Cl, B{sub 4}H{sub 10}/Pd/C, Co{sub 2}(CO){sub 8}/H{sub 2}O and In/HCl. However, most methods still lack the desired chemo-selectivity when other reducible functional groups are present in the nitroarene and often require long reaction times, or harsh reaction conditions. Consequently, efficient and selective methods for the reduction of aromatic nitro compounds continue to be developed. It has been reported that NbCl{sub 5}/Zn system is used as a reagent for reducing sulfoxides, epoxides, and amine N-oxides.12 Because of the close resemblance of indium to zinc in several respects, including first ionization potential, we considered that NbCl{sub 5}/In system can be an efficient reducing agent for the conversion of aromatic nitro compounds to the corresponding amines. Recently, indium metal has attracted much attention for its unique properties such as low toxicity and high stability in water and air compared with other metals. In continuation of our interest in exploring the utility of metal-metal salt system in organic synthesis, we would like to report an efficient and chemo-selective method for the reduction of various aromatic nitro compounds to the corresponding amines by treatment with NbCl{sub 5}/In system (eq. 1). The new reduction system was generated by the addition of indium powder to a stirred solution of niobium(V) chloride in THF under sonication. The generation of low-valent niobium species was examined at room temperature with an excess of indium metal. The observations suggest that this procedure can be applied for the chemo

  13. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    Science.gov (United States)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction

  14. Novel regeneration method for phosphate loaded granular ferric (hydr)oxide--a contribution to phosphorus recycling.

    Science.gov (United States)

    Kunaschk, Marco; Schmalz, Viktor; Dietrich, Norman; Dittmar, Thomas; Worch, Eckhard

    2015-03-15

    At a progressive rate, small wastewater treatment plants in rural areas need to be equipped with an additional phosphorus removal stage in order to achieve a good chemical status in the receiving natural water bodies. A conventional regeneration method for ferric (hydr)oxides such as phosphate specific adsorbents, which can be applied to remove and recover phosphorus in fixed bed filters, was investigated and improved. It was shown that a loss of up to 85% of the initial capacity can be observed when regeneration with 1 M NaOH is implemented. The losses are caused by surface blocking with different calcium-containing compounds as revealed by an EDX analysis. These blocking compounds could be removed completely with an additional acidic regeneration step at pH = 2.5. During the alkaline desorption that followed, complete phosphorus removal and a full recovery of the adsorption capacity were achieved for goethite-rich Bayoxide(®) E 33 HC (E33HC) and akaganéite-rich GEH(®) 104 (GEH). The regeneration procedure was repeated up to eight times without any signs of further decline in the phosphate adsorption capacity or any changes in the specific surface area or pore size distribution of the adsorbent. In contrast to GEH and E33HC, ferric hydroxide- and calcite-rich FerroSorp(®) Plus (FSP) was partly dissolved during acid treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  17. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    Energy Technology Data Exchange (ETDEWEB)

    Michael Killian

    2009-09-30

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have

  19. The German way to an energy efficient future. Process and cross cutting technology improvements for CO{sub 2} reductions and a competitive economy

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, P.

    1999-07-01

    The aim of the paper is to show how Germany tries to improve the energy efficiency of the economy and reduce carbon dioxide emissions without affecting the competitiveness of the industry. Between 1990 to 1995 Germany has reduced its CO{sub 2} emission from 1029 to 933 million tonnes, which is equivalent to an emission reduction of 9%. To analyse and compare different options to reach the emission reduction target, multiple tools have been developed and can be used to help in setting policy priorities. The IKARUS model and database together with the use of energy efficiency indicators helps to keep the development of energy consumption and emission reduction on track to the reduction target. Voluntary agreements between industry and government had been worked out, to limit the emissions in the energy intensive sectors of the German industry. Results from the monitoring of this efforts will be presented together with a short evaluation of the factors influencing the improvements in energy efficiency. As energy related emissions can be reduced significantly by closing energy and material flows, the effect of recycling of energy intensive materials such as steel, glass, plastics, and paper is discussed. The possible role of renewables as energy carrier and feedstock is evaluated for the production of surfactants. If more oleochemical surfactants could be applied, this will help to reduce the CO{sub 2} emissions from the use of fossil fuels as feedstock. The efficiency improvement by cross cutting technologies will be discussed for furnaces, compressed air systems and electric motors. Most of these improvement potentials are economic at present energy prices, but some barriers for their application has to be overcome. One way to help decision makers in industry is the use of energy benchmarking. Benchmarking helps to analyse the energy efficiency of the own company in comparison to the competitors and to set appropriate targets and to prepare a road map of measures to

  20. Treatment of rheumatoid synovitis of the knee with intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates

    International Nuclear Information System (INIS)

    Sledge, C.B.; Zuckerman, J.D.; Zalutsky, M.R.

    1986-01-01

    One hundred eight knees of 93 patients with seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with an intraarticular injection of 270 mCi of dysprosium 165 bound to ferric hydroxide macroaggregate. Leakage of radioactivity from the injected joint was minimal. Mean leakage to the venous blood 3 hours after injection was 0.11% of the injected dose; this corresponds to a mean whole body dose of 0.2 rads. Mean leakage to the liver 24 hours after injection was 0.64% of the injected dose; this corresponds to a mean liver dose of 3.2 rads. In 7 additional patients examined, there was negligible or near negligible activity found in the draining inguinal lymph nodes. One-year followup was possible for 74 knees (63 patients). Sixty-one percent of the knees had good results, 23% had fair results, and 16% had poor results. There was a direct correlation between the radiographic stage and response to treatment. In knees with stage I radiographic changes, 72% showed good results; 93% showed improvement. In knees with stage II changes, 59% showed good results; 81% showed improvement. These preliminary results indicate that dysprosium 165-ferric hydroxide macroaggregate is an effective agent for radiation synovectomy. The low leakage rates observed offer a definite advantage over agents previously used

  1. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    Science.gov (United States)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio 2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  2. Efficient response spectrum analysis of a reactor using Model Order Reduction

    International Nuclear Information System (INIS)

    Oh, Jin Ho; Choi, Jin Bok; Ryu, Jeong Soo

    2012-01-01

    A response spectrum analysis (RSA) has been widely used to evaluate the structural integrity of various structural components in the nuclear industry. However, solving the large and complex structural systems numerically using the RSA requires a considerable amount of computational resources and time. To overcome this problem, this paper proposes the RSA based on the model order reduction (MOR) technique achieved by applying a projection from a higher order to a lower order space using Krylov subspaces generated by the Arnoldi algorithm. The dynamic characteristics of the final reduced system are almost identical with those of the full system by matching the moments of the reduced system with those of the full system up to the required nth order. It is remarkably efficient in terms of computation time and does not require a global system. Numerical examples demonstrate that the proposed method saves computational costs effectively, and provides a reduced system framework that predicts the accurate responses of a global system

  3. Efficient Analysis of Structures with Rotatable Elements Using Model Order Reduction

    Directory of Open Access Journals (Sweden)

    G. Fotyga

    2016-04-01

    Full Text Available This paper presents a novel full-wave technique which allows for a fast 3D finite element analysis of waveguide structures containing rotatable tuning elements of arbitrary shapes. Rotation of these elements changes the resonant frequencies of the structure, which can be used in the tuning process to obtain the S-characteristics desired for the device. For fast commutations of the response as the tuning elements are rotated, the 3D finite element method is supported by multilevel model-order reduction, orthogonal projection at the boundaries of macromodels and the operation called macromodels cloning. All the time-consuming steps are performed only once in the preparatory stage. In the tuning stage, only small parts of the domain are updated, by means of a special meshing technique. In effect, the tuning process is performed extremely rapidly. The results of the numerical experiments confirm the efficiency and validity of the proposed method.

  4. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  5. Infrared reduction, an efficient method to control the non-linear optical property of graphene oxide in femtosecond regime

    Science.gov (United States)

    Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.

    2016-04-01

    Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.

  6. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2009-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  7. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2008-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  8. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes

    International Nuclear Information System (INIS)

    Li Miao; Feng Chuanping; Zhang Zhenya; Sugiura, Norio

    2009-01-01

    Electrochemical reduction of nitrate using Fe, Cu, and Ti as cathodes and Ti/IrO 2 -Pt as anode in an undivided and unbuffered cell was studied. In the presence of appropriate amount of NaCl, both cathodic reduction of nitrate and anodic oxidation of the by-products of ammonia and nitrite were achieved by all cathodes under a proper condition. Both in the absence and presence of NaCl, the order of nitrate removal rate was Fe > Cu > Ti. The nitrate removal was 87% and selectivity to nitrogen was 100% in 3 h with Fe cathode in the presence of NaCl. Ti/IrO 2 -Pt anode played an important role during nitrate reduction, especially in the presence of NaCl, at which by-products could efficiently be oxidized. Moreover, atomic force microscopy (AFM) investigation shown Ti/IrO 2 -Pt anode was suitable for nitration reduction and the surface roughness of all cathodes increased. The concentrations of Fe, Cu, and Ti in the electrolyte were less than 0.15, 0.12 and 0.09 mg/L after 3 h electrolysis, respectively.

  9. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    Science.gov (United States)

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  10. Chemical Reduction Synthesis of Iron Aluminum Powders

    Science.gov (United States)

    Zurita-Méndez, N. N.; la Torre, G. Carbajal-De; Ballesteros-Almanza, L.; Villagómez-Galindo, M.; Sánchez-Castillo, A.; Espinosa-Medina, M. A.

    In this study, a chemical reduction synthesis method of iron aluminum (FeAl) nano-dimensional intermetallic powders is described. The process has two stages: a salt reduction and solvent evaporation by a heat treatment at 1100°C. The precursors of the synthesis are ferric chloride, aluminum foil chips, a mix of Toluene/THF in a 75/25 volume relationship, and concentrated hydrochloric acid as initiator of the reaction. The reaction time was 20 days, the product obtained was dried at 60 °C for 2 h and calcined at 400, 800, and 1100 °C for 4 h each. To characterize and confirm the obtained synthesis products, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques were used. The results of morphology and chemical characterization of nano-dimensional powders obtained showed a formation of agglomerated particles of a size range of approximately 150 nm to 1.0 μm. Composition of powders was identified as corundum (Al2O3), iron aluminide (FeAl3), and iron-aluminum oxides (Fe0. 53Al0. 47)2O3 phases. The oxide phases formation were associated with the reaction of atmospheric concentration-free oxygen during synthesis and sintering steps, reducing the concentration of the iron aluminum phase.

  11. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Ma, Yanjiao; Wang, Hui; Feng, Hanqing; Ji, Shan; Mao, Xuefeng; Wang, Rongfang

    2014-01-01

    Graphical abstract: Three-dimentional Fe, N-doped carbon foams prepared by two steps exhibited comparable catalytic activity for oxygen reduction reaction to commercial Pt/C due to the unique structure and the synergistic effect of Fe and N atoms. - Highlights: • Three-dimensional Fe, N-doped carbon foam (3D-CF) were prepared. • 3D-CF exhibits comparable catalytic activity to Pt/C for oxygen reduction reaction. • The enhanced activity of 3D-CF results of its unique structure. - Abstract: Three-dimensional (3D) Fe, N-doped carbon foams (3D-CF) as efficient cathode catalysts for the oxygen reduction reaction (ORR) in alkaline solution are reported. The 3D-CF exhibit interconnected hierarchical pore structure. In addition, Fe, N-doped carbon without porous strucuture (Fe-N-C) and 3D N-doped carbon without Fe (3D-CF’) are prepared to verify the electrocatalytic activity of 3D-CF. The electrocatalytic performance of as-prepared 3D-CF for ORR shows that the onset potential on 3D-CF electrode positively shifts about 41 mV than those of 3D-CF’ and Fe-N-C respectively. In addition, the onset potential on 3D-CF electrode for ORR is about 27 mV more negative than that on commercial Pt/C electrode. 3D-CF also show better methanol tolerance and durability than commercial Pt/C catalyst. These results show that to synthesize 3D hierarchical pores with high specific surface area is an efficient way to improve the ORR performance

  12. Combustion system optimization of a P-62 lignite boiler in ContourGlobal Maritsa East 3 with NOx-reduction and efficiency improvement

    International Nuclear Information System (INIS)

    Petkov, Ch.; Thierbach, Hans-Ulrich; Totev, T.

    2013-01-01

    Steinmueller Engineering GmbH, Gummersbach, Germany, successfully concluded in consortium with Siemens EOOD, Sofia, the combustion system modification of a P62 lignite fired boiler in TPP ContourGlobal Maritsa East 3, which was targeting mainly the reduction of the NOx emissions below 180 mg/Nm 3 at 6 % O 2 . The modification is part of an EPC contract covering the design, fabrication, installation and commissioning works needed to upgrade the boilers at the power station. The Modification concept involves optimization of PF- and Vapor distribution, replacement of the coal burners, installation of new Over-fire air (OFA) system and Side-wall air (SWA) system and minor modification of the existing control system to allow control of the OFAflow. The main results of the modification are: Reduction of the NOx emissions (at ESP exit) from approximately 390 g/Nm³ to below 180 mg/Nm³ at 6% O 2 , Efficiency increase of the furnace by reduction of the excess air ratio from 1.2 to 1.15 (at furnace outlet) and overall increase of the boiler efficiency. (authors)

  13. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  14. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  15. An efficient chemoselective reduction of furan series unsaturated dinitriles

    Czech Academy of Sciences Publication Activity Database

    Bobáľ, P.; Bobálová, Janette

    2013-01-01

    Roč. 18, č. 2 (2013), s. 2212-2221 ISSN 1420-3049 Institutional support: RVO:68081715 Keywords : chemoselective reduction * regioselective reduction * conjugated olefins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.095, year: 2013 http://www.mdpi.com/1420-3049/18/2/2212

  16. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  17. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    Science.gov (United States)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  19. The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis

    Directory of Open Access Journals (Sweden)

    Catherine Butler

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has an absolute requirement for iron which it transports from the host as heme and/or Fe2+. Iron transport must be regulated to prevent toxic effects from excess metal in the cell. P. gingivalis has one ferric uptake regulator (Fur orthologue encoded in its genome called Har, which would be expected to regulate the transport and usage of iron within this bacterium. As a gene regulator, inactivation of Har should result in changes in gene expression of several genes compared to the wild-type. This dataset (GEO accession number GSE37099 provides information on expression levels of genes in P. gingivalis in the absence of Har. Surprisingly, these genes do not relate to iron homeostasis.

  20. Efficient Rank Reduction of Correlation Matrices

    NARCIS (Netherlands)

    I. Grubisic (Igor); R. Pietersz (Raoul)

    2005-01-01

    textabstractGeometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established,

  1. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  2. The influence of aquatic humic substances characteristics on the coagulation efficiency using ferric chloride; Influencia das caracteristicas das substancias humicas aquaticas na eficiencia da coagulacao com o cloreto ferrico

    Energy Technology Data Exchange (ETDEWEB)

    Sloboda, Eliane; Vieira, Eny Maria [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica], e-mail: elisloboda@hotmail.com; Dantas, Angela Di Bernardo; Bernardo, Luiz Di [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Hidraulica e Saneamento

    2009-07-01

    The aim of this study was to verify the influence of the apparent molecular size of aquatic humic substances on the effectiveness of coagulation with ferric chloride. Coagulation-filtration tests using jar test and bench-scale sand filters were carried out on samples of water with true color of approximately 100 Hazen units, prepared with aquatic humic substances of different molecular sizes (F{sub 1}: < 0.45 {mu}m, F{sub 2}: 100 kDa - 0.45 {mu}m, F{sub 3}: 30 - 100 kDa and F{sub 4}{sup '} : < 30 kDa). For the water samples with lower apparent molecular size fractions, greater dosages of coagulant was needed to remove the color around 5.0 Hanzen units, mainly because these water samples contain higher concentrations of fulvic acids, which exhibited a larger number of negatively-charged groups. (author)

  3. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean; Khandaker, Nadim Reza

    2006-01-01

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

  4. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenesh R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Clark, Ezra L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering; Bell, Alexis T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  5. Fast and efficient method for reduction of carbonyl compounds with NaBH4 /wet SiO2 under solvent free condition

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Bahyar, Tarifeh

    2005-01-01

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO 2 (30% m/m) under solvent free condition. The reactions were performed at room temperature or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  6. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  7. A Universal Method to Engineer Metal Oxide-Metal-Carbon Interface for Highly Efficient Oxygen Reduction.

    Science.gov (United States)

    Lv, Lin; Zha, Dace; Ruan, Yunjun; Li, Zhishan; Ao, Xiang; Zheng, Jie; Jiang, Jianjun; Chen, Hao Ming; Chiang, Wei-Hung; Chen, Jun; Wang, Chundong

    2018-03-27

    Oxygen is the most abundant element in the Earth's crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes and energy converting/storage systems. Developing techniques toward high-efficiency ORR remains highly desired and a challenge. Here, we report a N-doped carbon (NC) encapsulated CeO 2 /Co interfacial hollow structure (CeO 2 -Co-NC) via a generalized strategy for largely increased oxygen species adsorption and improved ORR activities. First, the metallic Co nanoparticles not only provide high conductivity but also serve as electron donors to largely create oxygen vacancies in CeO 2 . Second, the outer carbon layer can effectively protect cobalt from oxidation and dissociation in alkaline media and as well imparts its higher ORR activity. In the meanwhile, the electronic interactions between CeO 2 and Co in the CeO 2 /Co interface are unveiled theoretically by density functional theory calculations to justify the increased oxygen absorption for ORR activity improvement. The reported CeO 2 -Co-NC hollow nanospheres not only exhibit decent ORR performance with a high onset potential (922 mV vs RHE), half-wave potential (797 mV vs RHE), and small Tafel slope (60 mV dec -1 ) comparable to those of the state-of-the-art Pt/C catalysts but also possess long-term stability with a negative shift of only 7 mV of the half-wave potential after 2000 cycles and strong tolerance against methanol. This work represents a solid step toward high-efficient oxygen reduction.

  8. State Approaches to Demand Reduction Induced Price Effects: Examining How Energy Efficiency Can Lower Prices for All

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Colin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hedman, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goldberg, Amelie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effects (DRIPE) as a real, quantifiable benefit of energy efficiency and demand response programs. DRIPE is a measurement of the value of demand reductions in terms of the decrease in wholesale energy prices, resulting in lower total expenditures on electricity or natural gas across a given grid. Crucially for policymakers and consumer advocates, DRIPE savings accrue not only to the subset of customers who consume less, but to all consumers. Rate-paying customers realize DRIPE savings when price reductions across an electricity or natural gas system are passed on to all retail customers as lower rates (depending upon regulation and market structure, residual savings may be wholly or partially retained by utilities). DRIPE savings, though seemingly small in terms of percent price reductions or dollars per household, can amount to hundreds of millions of dollars per year across entire states or grids. Therefore, accurately assessing DRIPE benefits can help to ensure appropriate programs are designed and implemented for energy efficiency measures. This paper reviews the existing knowledge and experience from select U.S. states regarding DRIPE (including New York and Ohio), and the potential for expanded application of the concept of DRIPE by regulators. Policymakers and public utility commissions have a critical role to play in setting the methodology for determining DRIPE, encouraging its capture by utilities, and allocating DRIPE benefits among utilities, various groups of customers, and/or society at large. While the methodologies for estimating DRIPE benefits are still being perfected, policymakers can follow the examples of states such as Maryland and Vermont in including conservative DRIPE estimates in their resource planning.

  9. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  10. Cost-minimization analysis favours intravenous ferric carboxymaltose over ferric sucrose for the ambulatory treatment of severe iron deficiency.

    Directory of Open Access Journals (Sweden)

    Xavier Calvet

    Full Text Available OBJECTIVE: Intravenous iron is widely used to treat iron deficiency in day-care units. Ferric carboxymaltose (FCM allows administration of larger iron doses than iron sucrose (IS in each infusion (1000 mg vs. 200 mg. As FCM reduces the number of infusions required but is more expensive, we performed a cost-minimization analysis to compare the cost impact of the two drugs. MATERIALS AND METHODS: The number of infusions and the iron dose of 111 consecutive patients who received intravenous iron at a gastrointestinal diseases day-care unit from 8/2007 to 7/2008 were retrospectively obtained. Costs of intravenous iron drugs were obtained from the Spanish regulatory agencies. The accounting department of the Hospital determined hospital direct and indirect costs for outpatient iron infusion. Non-hospital direct costs were calculated on the basis of patient interviews. In the pharmacoeconomic model, base case mean costs per patient were calculated for administering 1000 mg of iron per infusion using FCM or 200 mg using IS. Sensitivity analysis and Monte Carlo simulation were performed. RESULTS: Under baseline assumptions, the estimated cost of iron infusion per patient and year was €304 for IS and €274 for FCM, a difference of €30 in favour of FCM. Adding non-hospital direct costs to the model increased the difference to €67 (€354 for IS vs. €287 for FCM. A Monte Carlo simulation taking into account non-hospital direct costs favoured the use of FCM in 97% of simulations. CONCLUSION: In this pharmacoeconomic analysis, FCM infusion reduced the costs of iron infusion at a gastrointestinal day-care unit.

  11. Segmentation of the potential consumers of ferric medicines based on data of iron deficiency anemia prevalence

    Directory of Open Access Journals (Sweden)

    Z. N. Mnushko

    2013-08-01

    Full Text Available INTRODUCTION. According to WHO 3.6 billion of people on the planet have latent iron deficiency and another 1.8 billion of people suffer from iron deficiency anemia (IDA. According to the Ministry of Health of Ukraine information the prevalence and the incidence of iron deficiency anemia is 1163.9 and 404.5 per 100 000 persons, respectively. However, this information is only clinically confirmed cases of IDA. The largest share in the structure of morbidity has the latent iron deficiency, which is characterized by less prominent clinical manifestations. Treatment of IDA aimed not only at addressing anemia as a symptom, but also at the elimination of iron deficiency and replenishment of its reserves in the organism, which can be achieved by taking ferric drugs. Today ferric drugs market is characterized by high leveled competition, stable demand and a wide range of products. Therefore, an important issue in the study of the market is to find the best ways to determining its potential capacity to expand the marketing potential and to provide iron supplementation as many consumers who need treatment and prevention of iron deficiency. GOAL OF THE STUDY. the segmentation of the population that needs treatment and prevention of iron deficiency on the basis of the etiological factors that cause development of anemia, based on official statistics on morbidity. MATERIALS AND METODS. According to the standard classification of the iron deficiency we have identified four main groups of etiological factors that lead to the development of IDA: bleeding, iron malabsorption, increased body's need for iron, as well as complicated genesis factors. In order to determine the total number of individual segments we have analyzed the reports of the State Statistics Committee of Ukraine, Health Statistics Centre of Ministry of Health of Ukraine, as well as electronic database of medical statistics “Health for All”. RESULTS AND DISCUSSION. According to the estimates

  12. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  13. Structural characterization of ferric hemoglobins from three antarctic fish species of the suborder notothenioidei.

    Science.gov (United States)

    Vergara, Alessandro; Franzese, Marisa; Merlino, Antonello; Vitagliano, Luigi; Verde, Cinzia; di Prisco, Guido; Lee, H Caroline; Peisach, Jack; Mazzarella, Lelio

    2007-10-15

    Spontaneous autoxidation of tetrameric Hbs leads to the formation of Fe (III) forms, whose physiological role is not fully understood. Here we report structural characterization by EPR of the oxidized states of tetrameric Hbs isolated from the Antarctic fish species Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, as well as the x-ray crystal structure of oxidized Trematomus bernacchii Hb, redetermined at high resolution. The oxidation of these Hbs leads to formation of states that were not usually detected in previous analyses of tetrameric Hbs. In addition to the commonly found aquo-met and hydroxy-met species, EPR analyses show that two distinct hemichromes coexist at physiological pH, referred to as hemichromes I and II, respectively. Together with the high-resolution crystal structure (1.5 A) of T. bernacchii and a survey of data available for other heme proteins, hemichrome I was assigned by x-ray crystallography and by EPR as a bis-His complex with a distorted geometry, whereas hemichrome II is a less constrained (cytochrome b5-like) bis-His complex. In four of the five Antartic fish Hbs examined, hemichrome I is the major form. EPR shows that for HbCTn, the amount of hemichrome I is substantially reduced. In addition, the concomitant presence of a penta-coordinated high-spin Fe (III) species, to our knowledge never reported before for a wild-type tetrameric Hb, was detected. A molecular modeling investigation demonstrates that the presence of the bulkier Ile in position 67beta in HbCTn in place of Val as in the other four Hbs impairs the formation of hemichrome I, thus favoring the formation of the ferric penta-coordinated species. Altogether the data show that ferric states commonly associated with monomeric and dimeric Hbs are also found in tetrameric Hbs.

  14. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms.

    Science.gov (United States)

    Sisó-Terraza, Patricia; Rios, Juan J; Abadía, Javier; Abadía, Anunciación; Álvarez-Fernández, Ana

    2016-01-01

    Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms. © 2015 CSIC New Phytologist © 2015 New Phytologist Trust.

  15. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  16. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  17. Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST Thin Film Doped with Ferric Oxide on p-type Si (100 Substrate using Chemical Solution Deposition Method

    Directory of Open Access Journals (Sweden)

    Irzaman

    2011-12-01

    Full Text Available In this paper we have grown pure Ba0.25Sr0.75TiO3 (BST and BST doped by Ferric Oxide Fe2O3 (BFST with doping variations of 5%, 10%, and 15% above type-p Silicon (100 substrate using the chemical solution deposition (CSD method with spin coating technique at rotation speed of 3000 rpm, for 30 seconds. BST thin film are made with a concentration of 1 M 2-methoxyethanol and annealing temperature of 850OC for the Si (100 substrate. Characterization of the thin film is performed for the electrical properties such as the current-voltage (I-V curve using Keithley model 2400 as well as dielectric constant, time constant, pyroelectric characteristics, and depth measurement. The results show that the thin film depth increases if the concentration of the Ferric Oxide doping increases. The I-V characterization shows that the BST and BFST thin film has photodiode properties. The dielectric constant increases with the addition of doping. The maximum dielectric constant value is obtained for 15 % doping concentration namely 83.1 for pure BST and 6.89, 11.1, 41.63 and 83.1, respectively for the Ferric Oxide doping based BST with concentration of 5%, 10%, and 15%. XRD spectra of 15 % of ferric oxide doped BST thin film tetragonal phase, we carried out the lattice constant were a = b = 4.203 Å; c = 4.214 Å; c/a ratio = 1.003

  18. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G 15) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F. 1.1.1 Method A—Ferric chloride pitting test. 1.1.2 Method B—Ferric chloride crevice test. 1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys. 1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys. 1.1.5 Method E—Critical pitting temperature test for stainless steels. 1.1.6 Method F—Critical crevice temperature test for stainless steels. 1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a rankin...

  19. Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD

    DEFF Research Database (Denmark)

    Roger, Simon D; Gaillard, Carlo A; Bock, Andreas H

    2017-01-01

    -label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient......: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD.......Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open...

  20. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong; Jia, Jia; Song, Pengfei; Wang, Qiang; Li, Debao; Min, Shixiong; Qian, Chenxi; Wang, Lu; Li, Young Feng; Ma, Chun; Wu, Tao; Yuan, Jiayin; Antonietti, Markus; Ozin, Geoffrey A.

    2017-01-01

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  1. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong

    2017-05-12

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  2. Effect of pH and Calcium on the Adsorptive Removal of Cadmium and Copper by Iron Oxide–Coated Sand and Granular Ferric Hydroxide

    KAUST Repository

    Uwamariya, V.

    2015-08-17

    Iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effect of Ca2+ and pH on the adsorptive removal of Cu2+ and Cd2+ from groundwater using batch adsorption experiments and kinetic modeling. It was observed that Cu2+ and Cd2+ were not stable in synthetic waters. The extent of precipitation increased with increasing pH. Removal of Cu2+ and Cd2+ was achieved through both precipitation and adsorption, with IOCS showing higher adsorption efficiency. Increase of pH (from 6 to 8) resulted in a higher overall removal efficiency of both Cu2+ and Cd2+, with precipitation as predominant removal mechanisms at higher pH values, especially for Cu2+. An increase in Ca2+ concentration increased the precipitation of Cu2+ [as Cu2(OH)2CO3 and Cu3(OH)2(CO3)2] and Cd2+ [as Cd(OH)2 and CdCO3]. In addition, Ca2+ competes with Cu2+ and Cd2+ for surface adsorption sites on IOCS and GFH, and reduces their adsorption capacity. The kinetic modeling revealed that the adsorption of Cd2+ onto IOCS is a complex process, with limited contribution of chemisorption that increases in the presence of Ca2+. © 2015 American Society of Civil Engineers.

  3. CO2 reduction in the Danish transportation sector. Working paper 10: Energy efficiency of the private cars - a package of control measures

    International Nuclear Information System (INIS)

    1997-03-01

    Average requirements to automotive fuel efficiency in new cars and differentiation of registration and weight taxes according to fuel consumption by a car result in fewer new cars due to very high registration tax and lower driving costs per km, which is against the CO 2 reduction measure. More efficient car manufacturing would eventually lead to a lower registration tax. Higher tax on fuels is another solution to the problem. (EG)

  4. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  5. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  7. Chromate (CrO2-4) Reduction in Groundwaters by Using Reductive Bacteria in Fixed-Bed Bioreactors

    International Nuclear Information System (INIS)

    Battaglia-Brunet, F.; Foucher, S.; Morin, D.; Ignatiadis, I.

    2004-01-01

    A biological method for the reduction Cr(VI), using sulphate-reducing bacteria (SRB), was tested in 2-L then 20-L fixed-bed reactors, with H 2 as a low-cost and clean substrate. The systems were inoculated with Desulfomicrobium norvegicum, that proved to be particularly efficient for direct Cr(VI) enzymatic reduction. The bacterial reduction was efficient when some SO 2- 4 was provided in the feeding, in order to allow their growth and to combine the direct enzymatic reduction to the indirect chemical reduction by dissolved H 2 S. The Cr(VI)/SO 2- 4 , ratio in the influent was adjusted in order to avoid excess sulphide production. A real polluted groundwater and an industrial electroplating effluent were treated in the 20-L pilot plant

  8. Potential side effects of ammonium-ferric-hexacyano-ferrate application: enhanced radiostrontium transfer and free cyanide release

    International Nuclear Information System (INIS)

    Vandenhove, Hildegarde; Hees, May van; Vandecasteele, Christian

    2000-01-01

    The effect of the application of ammonium-ferric-hexacyano-ferrate (AFCF), effective in reducing soil-to-plant radiocaesium transfer, on radiostrontium transfer was tested for ryegrass grown under greenhouse conditions on sandy soil for 310 days. Identical radiostrontium transfer factors (9.4 kg kg -1 ) were obtained with 0 or 10 g AFCF m -2 applied. Amending AFCF to planted or uncovered sandy or loamy soils in quantities of up to 100 g AFCF m -2 did not result in detectable levels of free cyanide. Negative side effects of AFCF application to soil are hence unlikely

  9. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  10. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy.

    Science.gov (United States)

    Zhao, Man; Gao, Liang; Zhang, Li; Bai, Yanbin; Chen, Liang; Yu, Meilan; Cheng, Feng; Sun, Jie; Wang, Zhao; Ying, Xiangxian

    2017-11-01

    To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL]. The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%. Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.

  11. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    Science.gov (United States)

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.

  12. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.

    Science.gov (United States)

    He, Yu-Cai; Ma, Cui-Luan; Xu, Jian-He; Zhou, Li

    2011-02-01

    Nitrile-hydrolyzing enzymes (nitrilase or nitrile hydratase/amidase) have been widely used in the pharmaceutical industry for the production of carboxylic acids and their derivatives, and it is important to build a method for screening for nitrile-hydrolyzing enzymes. In this paper, a simple, rapid, and high-throughput screening method based on the ferric hydroxamate spectrophotometry has been proposed. To validate the accuracy of this screening strategy, the nitrilases from Rhodococcus erythropolis CGMCC 1.2362 and Alcaligenes sp. ECU0401 were used for evaluating the method. As a result, the accuracy for assaying aliphatic and aromatic carboxylic acids was as high as the HPLC-based method. Therefore, the method may be potentially used in the selection of microorganisms or engineered proteins with nitrile-hydrolyzing enzymes.

  13. Ion sorption onto hydrous ferric oxides: Effect on major element fluid chemistry at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Bruton, C.J.; Viani, B.E.

    1996-06-01

    The observed variability of fluid chemistry at the Aespoe Hard Rock Laboratory is not fully described by conservative fluid mixing models. Ion exchange may account for some of the observed discrepancies. It is also possible that variably charged solids such as oxyhydroxides of Fe can serve as sources and sinks of anions and cations through surface complexation. Surface complexation reactions on hydrous ferric oxides involve sorption of both cations and anions. Geochemical modeling of the surface chemistry of hydrous ferric oxides (HFOs) in equilibrium with shallow HBH02 and deep KA0483A waters shows that HFOs can serve as significant, pH-sensitive sources and sinks for cations and anions. Carbonate sorption is favored especially at below-neutral pH. A greater mass of carbonate is sorbed onto HFO surfaces than is contained in the fluid when 10 g goethite, used as a proxy for HFOs, is in contact with 1 kg H 2 O. The masses of sorbent required to significantly impact fluid chemistry through sorption/desorption reactions seem to be reasonable when compared to the occurrences of HFOs at Aespoe. Thus, it is possible that small changes in fluid chemistry can cause significant releases of cations or anions from HFOs into the fluid phase or, alternately, result in uptake of aqueous species onto HFO surfaces. Simulations of the mixing of shallow HBH02 and native KA0483A waters in the presence of a fixed mass of goethite show that surface complexation does not cause the concentrations of Ca, Sr, and SO 4 to deviate from those that are predicted using conservative mixing models. Results for HCO 3 are more difficult to interpret and cannot be addressed adequately at this time

  14. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  15. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  16. Supplementation with a dietary multicomponent (Lafergin(®)) based on Ferric Sodium EDTA (Ferrazone(®)): results of an observational study.

    Science.gov (United States)

    Cignini, Pietro; Mangiafico, Lucia; Padula, Francesco; D'Emidio, Laura; Dugo, Nella; Aloisi, Alessia; Giorlandino, Claudio; Vitale, Salvatore Giovanni

    2015-01-01

    During pregnancy, iron deficiency anemia is recognized as a specific risk factor for both adverse maternal and perinatal outcome. We decided to test the hypothesis that the daily administration of Lafergin(®), a dietary multicomponent based on Ferrazone(®) (Ferric Sodium EDTA), Lactoferrin, Vitamin C and Vitamin B12, from first trimester of pregnancy until the end of gestation, may significantly reduce, in anemic women, the severity of anemia compared to controls who received ferrous sulfate or liposomal iron.

  17. Fast and efficient method for reduction of carbonyl compounds with NaBH{sub 4} /wet SiO{sub 2} under solvent free condition

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Bahyar, Tarifeh [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: b.zeynizadeh@mail.urmia.ac.ir

    2005-11-15

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, {alpha},{beta}-unsaturated enals and enones, {alpha}-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO{sub 2} (30% m/m) under solvent free condition. The reactions were performed at room tempere or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  18. Highly efficient catalytic reductive degradation of various organic ...

    Indian Academy of Sciences (India)

    aDepartment of Applied Sciences (Chemical Science Division), GUIST, Gauhati University, ... Highly improved catalytic reductive degradation of different organic dyes, in the ... was prepared by a facile co-precipitation method using ultra-high dilute aqueous solutions. ...... face chemical-modification for engineering the intrin-.

  19. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  20. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake

    Directory of Open Access Journals (Sweden)

    Min Wu

    2017-12-01

    Full Text Available Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA, including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit® and generic sodium ferric gluconate (SFG products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1 and quantitative (Q2 formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies.

  1. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  2. Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India

    NARCIS (Netherlands)

    Andersson, M.; Thankachan, P.; Muthayya, S.; Goud, R.B.; Kurpad, A.V.; Hurrell, R.F.

    2008-01-01

    Background:Dual fortification of salt with iodine and iron could be a sustainable approach to combating iodine and iron deficiencies. Objective:We compared the efficacy of dual-fortified salt (DFS) made by using 2 proposed contrasting formulas-one fortifying with iron as micronized ground ferric

  3. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2017-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  4. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    Science.gov (United States)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  5. Oxidation-reduction processes in ground water at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    Science.gov (United States)

    Jones, S.A.; Braun, Christopher L.; Lee, Roger W.

    2003-01-01

    Concentrations of trichloroethene in ground water at the Naval Weapons Industrial Reserve Plant in Dallas, Texas, indicate three source areas of chlorinated solvents?building 1, building 6, and an off-site source west of the facility. The presence of daughter products of reductive dechlorination of trichloroethene, which were not used at the facility, south and southwest of the source areas are evidence that reductive dechlorination is occurring. In places south of the source areas, dissolved oxygen concentrations indicated that reduction of oxygen could be the dominant process, particularly south of building 6; but elevated dissolved oxygen concentrations south of building 6 might be caused by a leaking water or sewer pipe. The nitrite data indicate that denitrification is occurring in places; however, dissolved hydrogen concentrations indicate that iron reduction is the dominant process south of building 6. The distributions of ferrous iron indicate that iron reduction is occurring in places south-southwest of buildings 6 and 1; dissolved hydrogen concentrations generally support the interpretation that iron reduction is the dominant process in those places. The generally low concentrations of sulfide indicate that sulfate reduction is not a key process in most sampled areas, an interpretation that is supported by dissolved hydrogen concentrations. Ferrous iron and dissolved hydrogen concentrations indicate that ferric iron reduction is the primary oxidation-reduction process. Application of mean first-order decay rates in iron-reducing conditions for trichloroethene, dichloroethene, and vinyl chloride yielded half-lives for those solvents of 231, 347, and 2.67 days, respectively. Decay rates, and thus half-lives, at the facility are expected to be similar to those computed. A weighted scoring method to indicate sites where reductive dechlorination might be likely to occur indicated strong evidence for anaerobic biodegradation of chlorinated solvents at six sites

  6. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Efficiency in the reduction of chromium by a wild bacterium in a Batch treatment type using residual water substrate from the municipality of Pasto, Colombia

    Directory of Open Access Journals (Sweden)

    Deisy Lorena Guerrero Ceballos

    2017-05-01

    Full Text Available Objective: To evaluate the efficiency in the reduction of chromium in a Batch treatment type, using municipal residual water substrate inoculated with a wild bacterium. Materials and methods: The reduction percentage of hexavalent chromium of three wild bacteria previously isolated from residual water from the Pasto River was verified at laboratory scale (Bacillus thuringiensis, Bacillus amyloliquefaciens and Paenibacillus sp.; the isolated that showed the highest percentage of reduction of Cr was selected and was subjected to different treatments. The analysis of results was done using descriptive statistics. Results: B. thuringiensis, B. amyloliquefaciens, and Paenibacillus sp., presented percentages of reduction of Cr (VI of 82,01%; 80,85% and 79,27%, respectively. It was determined that the third treatment (nonsterile water from the Pasto River with B. thuringiensis presented significant differences with regard to the other (p = 0.0001 α = 0.05, concluding that B. thuringiensis reduces in greater proportion the Cr (VI. The results found in this research are promising in the field of bioremediation of contaminated effluents with Chrome since they may be taken as the basis for implementing strategies of bioremediation on a large scale. Conclusion: The bacteria B. thuringiensis presented high efficiency in the reduction of hexavalent chromium (99.42% when implemented in a treatment at laboratory scale of residual nonsterile water.

  8. Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    2017-11-01

    This fact sheet "Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency" explains how the City of Moab used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  9. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance

    Science.gov (United States)

    Li, Deke; Guo, Zhiguang

    2018-06-01

    Superhydrophobic layers are extremely essential for protecting material surface in various applications. In this study, a stable superhydrophobic mixed matrix surface with a 152.2° contact angle can be fabricated through the technology of layer-by-layer hot-pressing (HoP), and then modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) on the ZIF-8@Kevlar fabric surface. The morphology and chemical composition were analyzed by the means of SEM, XRD and FTIR. The obtained superhydrophobic coatings showed excellent antiwear performance and drag reduction under desired working conditions. Moreover, we successfully applied superhydrophobic F-ZIF-8@Kevlar fabric in the alcohol adsorbent with high removal capacity, and it can be reused for several times without serious efficiency loss.

  10. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.)

    OpenAIRE

    El Jemli, Meryem; Kamal, Rabie; Marmouzi, Ilias; Zerrouki, Asmae; Cherrah, Yahia; Alaoui, Katim

    2016-01-01

    Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) assays. Also the total phenolic ...

  11. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  12. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  13. Pollution from the electric power sector in Japan and efficient pollution reduction

    International Nuclear Information System (INIS)

    Matsushita, Kyohei; Yamane, Fumihiro

    2012-01-01

    Under the scheme of the Kyoto Protocol, there are plans for the efficient reduction of carbon dioxide emissions. In the electric power sector, nuclear power generation, which emits no carbon dioxide in the process of generating electricity, has come under scrutiny. However, this energy produces a new environmental issue: the disposal of radioactive waste. First, we derive shadow prices of carbon dioxide and low-level waste as marginal abatement costs in the case of the electric power sector in Japan, employing a directional output distance function. It is found that the shadow prices are US$39 per tonne for carbon dioxide and US$1531 per liter for low-level waste. Secondly, we calculate the indirect Morishima elasticity between carbon dioxide and low-level waste in order to identify their substitutability, and it is found that the substitution of low-level waste for carbon dioxide is easier than the reverse. This result suggests that, with the amount of generated electricity fixed, carbon dioxide can be substituted more easily by low-level waste when the relative price of carbon dioxide increases, for example, as a result of implementation of a carbon dioxide tax or an emissions trading system.

  14. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

    International Nuclear Information System (INIS)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2013-01-01

    China's annual cement production (i.e., 1868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in China's cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using bottom–up CSC models, the cumulative cost-effective and technical electricity and fuel savings, as well as the CO 2 emission reduction potentials for the Chinese cement industry for 2010–2030 are estimated. By comparison, the total final energy saving achieved by the implementation of these 23 efficiency measures in the Chinese cement industry over 20 years (2010–2030) is equal to 30% of the total primary energy supply of Latin America or Middle East or around 71% of primary energy supply of Brazil in 2007. In addition, a sensitivity analysis with respect to the discount rate is conducted to assess its effect on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost. - Highlights: ► Estimation of energy saving potential in the entire Chinese cement industry. ► Development of the bottom–up technology-rich Conservation Supply Curve models. ► Discussion of different approaches for developing conservation supply curves. ► Primary energy saving over 20 years equal to 33% of primary energy of Latin America

  15. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    Directory of Open Access Journals (Sweden)

    Ma D.

    2013-01-01

    Full Text Available Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC, a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate was used to adjust pH value and the basicity of the pickle liquor, the PAFC was subsequently prepared after the polymerization process. The optimal synthesizing parameters for the preparation of PAFC obtained were as follows: the concentration of hydrochloric acid of 24 wt%, ratio of hydrochloric acid to bauxite tailings of 6:1, temperature of 90ºC, leaching time of 2.5 hours, ration of pickle liquor to calcium aluminate of 12:1, polymerization temperature of 90ºC and polymerization time of about 3 hours. The basicity of PAFC was higher than 68%, the sum concentration of Al2O3 and Fe2O3 was beyond 12.5%. The results of flocculation tests indicate that the PAFC has a better performance of removing the turbidity of wastewater compared to PAC, and PAFC prepared by bauxite tailings is a kind of high quality flocculants.

  16. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  17. Efficiency of radon reduction techniques and strategies

    International Nuclear Information System (INIS)

    Hubert, Ph.; Monchecourt, D.

    2000-01-01

    Radon is a lung carcinogen recognized by the World Health Organisation and it is present in dwellings. In France, the first actions to measure the exposition of the population were made in 1982, and the first national recommendation was published in 1999. In parallel, information booklets on radon and possible actions to lower its concentration in house were made available to the public. The aim of this study was to test the economic feasibility of different methods to reduce radon level in housing. The first step was to identify the cost and the radon reduction rate of different methods, all based on insulation or ventilation of the buildings. Using the data of the Environmental Protection Agency (EPA), we selected six measures and combined them to obtain a total of twenty potential solutions. We also used the 'duration' model of the Biological Effects of Ionising Radiation committee (BEIR VI) to determine the probability of dying from a cancer associated to a fixed exposure to radon. Knowing this information, it was possible to make cost-efficiency analysis on our data and thus keep six interesting methods. Combining these results with the value of human life of the human capital approach we could find what was the most interesting method to apply for a known level of radon and a specific duration of exposure in a house. In given house, for each level of initial exposure, a cost benefit approach allowed to determine if one, or several techniques, or none, is worthwhile to apply. In favorable cases (i.e : easily remediable houses), and with a figure for the price of human life of about 0,9 MEuro, actions should be undertaken at levels as low as 80 Bq.m -3 . As we know the radon distribution in France, the second step was to see what would be the effects on this distribution if all inhabitants used the optimal approach against their radon exposure defined by our function. Thus, overall costs and overall risks could be computed. However, in public health issues, the

  18. Design, fabrication and cold tests of a super ferric octupole corrector for the LHC

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Calero, J.; Laurent, G.; Russenschuck, S.; Siegel, N.; Traveria, M.; Aguirre, P.; Etxeandia, J.; Garcia, J.

    1996-01-01

    In the corrections scheme of the LHC it is planed to install octupole corrector magnets in the short straight section of the lattice. Initially these correctors were distributed windings on the cold bore tube nested in the tuning quadrupoles. The latter being suppressed a new compact super ferric design was chosen for the octupole prototype, suitable for a two-in-one configuration. This prototype was designed by CERN and CEDEX/Spain, built at INDAR/Spain and tested at CEDEX. The paper reports on the design of the prototype, describes the fabrication and assembly and presents the measurement results. Special interest has been taken to design a simple and compact magnet, easy to fabricate and training free below nominal field. First results show the feasibility of the solution wich will be finally confirmed by magnetic measurement. (Author) 4 refs

  19. Renal function in patients with non-dialysis chronic kidney disease receiving intravenous ferric carboxymaltose

    DEFF Research Database (Denmark)

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando

    2017-01-01

    BACKGROUND: Preclinical studies demonstrate renal proximal tubular injury after administration of some intravenous iron preparations but clinical data on renal effects of intravenous iron are sparse. METHODS: FIND-CKD was a 56-week, randomized, open-label, multicenter study in which patients...... with non-dialysis dependent chronic kidney disease (ND-CKD), anemia and iron deficiency without erythropoiesis-stimulating agent therapy received intravenous ferric carboxymaltose (FCM), targeting either higher (400-600 μg/L) or lower (100-200 μg/L) ferritin values, or oral iron. RESULTS: Mean (SD) e...... quartiles of FCM dose, change in ferritin or change in TSAT versus change in eGFR. Dialysis initiation was similar between groups. Renal adverse events were rare, with no indication of between-group differences. CONCLUSION: Intravenous FCM at doses that maintained ferritin levels of 100-200 μg/L or 400...

  20. Induction of hepatic and renal metallothionein synthesis by ferric nitrilotriacetate in mice: the role of MT as an antioxidant

    International Nuclear Information System (INIS)

    Min, Kyong-Son; Morishita, Fumio; Tetsuchikawahara, Noriko; Onosaka, Satomi

    2005-01-01

    Metallothionein (MT) demonstrates strong antioxidant properties, yet the physiological relevance of its antioxidant action is not clear. Injection of mice with ferric nitrilotriacetate (Fe-NTA) caused a dose-dependent increase in hepatic and renal MT. Fe-NTA caused a greater increase in hepatic and renal MT concentration (2.5- and 4-fold) compared with FeCl 3 at the same dose of ferric ion. MT mRNA levels were markedly elevated in both of tissues. Thiobarbituric acid (TBA) values in both tissues reached a maximum after 2-4 h. The MT concentrations were significantly increased after 2-4 h in liver and after 8-16 h in kidneys. Plasma concentrations of cytokines such as IL-6 and TNFα were elevated by 4 h; IL-6 levels were 24 times higher after Fe-NTA than that after injection of FeCl 3 . Pretreatment of mice with ZnSO 4 attenuated nephrotoxicity induced by Fe-NTA after 2 h, but was not effective 4 h after injection. After a Fe-NTA injection, a loss of Cd-binding properties of preinduced MT was observed only in kidneys of Zn-pretreated mice but not in liver. Treatment with BSO, glutathione (GSH) depletor, intensified a loss of its Cd-binding properties after a Fe-NTA injection. These results indicate that induction of MT synthesis may result from reactive oxygen species (ROS) generated by Fe-NTA, and MT may act in vivo as a complementary antioxidant

  1. A radioisotope study of the dispersion of ferric hydroxide floc in Bass Strait

    International Nuclear Information System (INIS)

    Davison, A.

    1983-01-01

    The dispersion of ferric hydroxide floc in Bass Strait waters adjacent to Burnie, Tasmania, has been investigated using radioisotope tracer techniques. Gold-198 labelled floc was employed to follow the movement of floc produced by dilution of the iron-rich effluent from a titanium dioxide plant. Dispersion was determined under calm and storm conditions. Tidal and wind-driven currents were measured, oscillating wave generated currents were calculated, and lateral and vertical dispersion coefficients were determined. It is concluded that floc disperses episodically during storms. The agglomerated floc remains trapped in a stable seabed layer which spreads slowly at seabed level when wind velocities are less than 15 m s -1 . When wind velocities exceed this level, the wave generated oscillating currents at seabed level, 30 m below the surface, are strong enough to raise the floc into suspension where advective dispersion occurs. Since tidal currents in the area are negligible, the direction of floc movement depends on the direction of the wind-driven current during each storm

  2. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas.

    Science.gov (United States)

    Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-11-28

    Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.

  3. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  4. VOC reduction technology deveolpment as part of the U.S. Department of Energy, Industrial Waste Reduction Program

    International Nuclear Information System (INIS)

    Cranford, B.

    1993-01-01

    A strong industry is vital to U.S. Economic health and prosperity, but U.S. industry is facing serious challenges both domestically and internationally. One of these challenges is the reduction of volatile organic compounds emissions from industrial processes and products. To assist industry with these challenges, the U.S. Department of Energy established the Industrial Waste Reduction Program to improve energy efficiency and competitiveness to private industry through cost-effective waste material reduction. This paper describes the programs and the use of joint partnerships between the Department of Energy, industry, national laboratories, universities and others, in developing technologies which reduce VOC emissions while improving energy efficiency. This paper also describes the process and selection criteria for participation in the program, and briefly describes the following five VOC reduction technologies under development: Dual Cure Coatings, Solvent Reduction through use of a No-clean Soldering Process, Solvent Waste Minimization by Supercritical CO 2 Cleaning Process, ethanol Recovery Process, and Membrane Vapor Recovery Systems. The VOC reductions as well as the energy savings and other benefits to the U.S. are discussed

  5. ACTIVATION AND DETOXIFICATION OF UICC CROCIDOLITE - THE EFFECT OF CONVERSION OF OXIDATION-STATE OF IRON ON THE TOXICITY OF THE FIBERS

    NARCIS (Netherlands)

    GULUMIAN, M; POLLAK, H

    Detoxification of crocidolite, an asbestiform riebeckite with a coating of ferric salt, converted some of the ferrous ions into ferric ions and therefore decreased the activity of the fibres to catalyse the reduction of oxygen and hydrogen peroxide. The H-2-activation of crocidolite fibres on the

  6. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production.

    Science.gov (United States)

    Lee, Ai-Yun; Kao, Cheng-Yen; Wang, Yao-Kuan; Lin, Ssu-Yuan; Lai, Tze-Ying; Sheu, Bor-Shyang; Lo, Chien-Jung; Wu, Jiunn-Jong

    2017-08-01

    Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching. © 2017 John Wiley & Sons Ltd.

  7. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  8. Removal of the blue 1 dye of aqueous solutions using ferric zeolite

    International Nuclear Information System (INIS)

    Pinedo H, S. Y.

    2010-01-01

    Water is essential to all life forms, including humans. In recent years water use has increased substantially, also has been altered in its capacity as a result of various human activities, such as domestic, industrial and agricultural, also by natural activity. Undoubtedly one of the main pollutants today are the waste generated by the food industry, due to the use of dyes for the production of their products. So it is necessary to restore water quality through treatment systems to remove contaminants, and thus prevent disease and imbalance of ecosystems. Due to the above, it is important to conduct research directed towards finding new ways to remove dyes such as blue 1 used in the food industry, using low cost materials and abundant in nature as zeolites. To accomplish the above, the present study has the purpose to evaluate the adsorption capacity of the blue dye 1 in aqueous solutions. To accomplish that objective, the zeolite material was reconditioned to improve its sorption properties of the material and provide the ability to adsorb pollutants such as this dye. The zeolite material was characterized by scanning electron microscopy and elemental analysis, X-ray diffraction and infrared spectroscopy. To evaluate the ability of blue 1 dye sorption the kinetics and sorption isotherms were determined; the experimental results were adjusted to mathematical models such as pseudo-first order, pseudo second order and Elovich to describe the kinetic process, and the Langmuir, Freundlich and Langmuir-Freundlich to describe sorption isotherms. The results showed that ferric zeolite surface is a heterogeneous material and has a considerable adsorption capacity, which makes it a potential adsorbent for removing color from aqueous streams. Also the sorption of the dye was evaluated at different ph values; the most sorption was carried out at ph values 1, 3 and 11. We also evaluated the change in mass where the sorption capacities for the blue 1 increase by increasing

  9. CO2 emission reduction potential of large-scale energy efficiency measures in power generation from fossil fuels in China, India, Brazil, Indonesia and South Africa

    OpenAIRE

    Boehme, Benn J.; Krey, Matthias

    2005-01-01

    We quantify the theoretical potential for energy-efficiency CDM projects using best available technology in coal, natural gas or oil fuelled power generation in China, India, Brazil, Indonesia and South Africa, looking at new power plants or retrofit measures. We then discuss the likelihood of the potential emission reductions materialising under CDM. Our results are very sensitive to choices of baseline and project efficiencies and the level of electricity generation from potential emission ...

  10. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    Science.gov (United States)

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.

  11. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    Science.gov (United States)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  12. Reduction of Cr(VI) in aqueous solution with DC diaphragm glow discharge

    International Nuclear Information System (INIS)

    Wang, Xiaoyan; Jin, Xinglong; Zhou, Minghua; Chen, Zhenhai; Deng, Kai

    2013-01-01

    This paper investigated the reduction of Cr(VI) in aqueous solution with direct current diaphragm glow discharge (DGD). The glow discharge sustained around the hole on a quartz tube which divided the electrolyte cell into two parts. The reduction efficiencies of Cr(VI) under different applied voltages, initial conductivities, hole diameters, hole numbers, initial pH values and initial concentrations were systematically studied. The results showed that the reduction efficiency of Cr(VI) increased with the increase of applied voltage, initial conductivity, hole diameter and hole number. The different initial pH values showed less effects on the reduction of Cr(VI). The reduction efficiency decreased with the increasing initial concentration. In addition, the simultaneous reduction of Cr(VI) and decolorization of acid orange (AO) with DGD were also fulfilled. Furthermore, the energy efficiency for Cr(VI) reduction with DGD was calculated and compared with those in photocatalysis and other glow discharge reactor

  13. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. M. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  14. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong; Yang, Xiulin; Lu, Ang-Yu; Tseng, Chien-Chih; Hedhili, Mohamed N.; Lai, Zhiping; Li, Lain-Jong; Huang, Kuo-Wei

    2017-01-01

    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH

  15. Natural organic matters removal efficiency by coagulation

    Science.gov (United States)

    Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared

    2017-10-01

    The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.

  16. Reduction of emissions and increase of energy efficiency are no contradiction. Reduction of NO{sub x} by means of primary measures with the VLN process; Emissionsminderung und Steigerung der Energieeffizienz sind kein Widerspruch. NO{sub x}-Minderung durch Primaermassnahmen mit dem VLN-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ulrich [Martin GmbH fuer Umwelt- und Energietechnik, Muenchen (Germany)

    2013-03-01

    Since a long time, the pure disposal and the homogenisation of waste materials were the main issues of the waste incineration. Thus, the reduction of the limits of nitrous oxides from 200 mg/Nm{sup 3} to 100 mg/Nm{sup 3} for new plants with a thermal input of more than 50 MW from 1st January, 2013, was embedded in the amendment of the 17th BImSchV (Federal Nuisance Control Ordinance). The VLN process (VLN = very low NO{sub x}) supplies an enhanced energy efficiency and a reduced emission within the process of the thermal waste utilization. This is achieved by a simultaneous reduction of the waste gas volume flow and the emissions of nitrous oxide while maintaining the usual process requirements such as stability and burnout quality. This requires a sufficient calorific value because especially enhanced amounts of water impact the ignition capability and liberation of combustible materials from the fuel. This is in contrast to the enhanced energy efficiency due to a lower waste gas volume flow because the total consumption of the waste gas treating elements is reduced at a constant specific energy demand. This also is due to the significant reduction of the expenditure of the secondary reduction of nitrous oxide. This not only saves occasional costs of the reduction agent and possibly occasional energy consumptions but also facilitates considerably lower emissions at unchanged or even declining expenditure of the reduction process.

  17. Bioavailability and the mechanisms of intestinal absorption of iron from ferrous ascorbate and ferric polymaltose in experimental animals

    International Nuclear Information System (INIS)

    Johnson, G.; Jacobs, P.

    1990-01-01

    The comparative bioavailability from matching quantities of iron in the form of ferrous ascorbate or ferric polymaltose was defined in rats. Studies were carried out in the intact animals under basal conditions and also when requirements for this metal were either increased or decreased by manipulating stores or erythropoietic activity. No significant difference was found in the total quantity of iron absorbed from either salt or complex under any of these circumstances, suggesting that the mucosal mechanism regulating the overall process was common to both. However, the rate of transfer from the lumen into portal blood was distinctive, reaching a maximum with salt at 30 min compared to 24 h for the complex. To explore the possibility that iron from the two sources was initially handled by different subcellular pathways, the radiolabeled compounds were instilled into loops of bowel that had been isolated between ligatures in vivo. Enterocytes were harvested and fractionated, and incorporation into ferritin and transferrin was determined using RIA. From salt, iron appeared rapidly in duodenal but not ileal ferritin, whereas mucosal transferrin increased under conditions of stimulated absorption, suggesting that this protein may act as a shuttle for the metal. In contrast, iron from polymaltose showed a cumulative incorporation into duodenal ferritin over time that correlated with iron absorption, defined by the appearance of radiolabel in the serum and in the carcass; a similar pattern was demonstrable in ileal mucosal cells. Conversely, binding of iron to transferrin was minimal. No iron polymaltose was found within the mucosal cells. It is suggested that the low rate of iron transfer from this ferric complex may reflect its extracellular breakdown in the lumen of the gastrointestinal tract

  18. CO{sub 2} emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, J M; Gustavsson, L [Ecotechnology and Environmental Science, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2008-03-15

    We examine consequences of new energy technologies in the pulp and paper industry with respect to net CO{sub 2} emissions and oil use. The entire production chain from the extraction of primary resources is included in the analysis. Stand-alone production of electricity and transportation fuel from biomass is included to balance the systems compared, so that they produce the same CO{sub 2} emission and oil use reductions. The technologies considered are black liquor gasification (BLG) with electricity and motor fuels production in chemical pulp mills and increased energy efficiency in thermomechanical pulp mills. The technologies are evaluated with respect to net CO{sub 2} emission, oil use, primary energy use, biomass use and monetary cost. We find that BLG in chemical pulp mills is favourable compared to stand-alone production of fuels and electricity from biomass. It is more efficient to implement BLG with motor fuels production and stand-alone electricity production from biomass, than to implement BLG with electricity production and stand-alone production of motor fuels. Increased energy efficiency in refining of thermomechanical pulp gives CO{sub 2} savings more efficiently than stand-alone production of electricity from biomass. Sensitivity analysis indicates that our conclusions are robust with respect to energy and biomass prices and the choice of coal or natural gas for marginal electricity. Newsprint from thermomechanical pulp would require slightly less biomass and have lower costs than paper from chemical pulp, per metric ton (t) product, when the systems are also required to render the same oil use and CO{sub 2} emission reductions. Substituting mineral fillers for 25% of the chemical pulp changes the balance in favour of the chemical pulp paper. At an oil price of 40 US$/barrel, all studied pulp and paper mill technology improvements give unchanged or reduced monetary costs also when oil use and CO{sub 2} emissions are not balanced with stand

  19. Effects of suspended particles on the rate of mass transfer to a rotating disk electrode. [Ferric cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Roha, D.J.

    1981-06-01

    Limiting currents for the reduction of ferric cyanide at a rotating disk were determined in the presence of 0 to 40 percent by volume of spherical glass beads. Experiments were conducted with six different particle diameters, and with rotation speeds in the range of 387 to 270 rpm, usong both a 0.56 cm and a 1.41 cm radius disk electrode. It was established that at a given rpm upon addition of glass beads in the limiting current, i/sub L/, may increase to more than three times its value without solids. This increase in limiting current density is greater at high rotation speeds and with the larger disk electrode. i/sub L/ as a function of particle diameter yields at maximum at approx. 10 ..mu..m. Two mass transfer models are offered to explain this behavior, both of which assume that the beads are in contact with the disk electrode and moving parallel to its surface. In the surface renewal model it is assumed that complete mixing takes place with the passage of each bead and the boundary layer is replaced with fresh bulk solution. While with the particle film model it is assumed the bead and a clinging film of fluid rotate together. The film promotes mass transfer by alternately absorbing and desorbing the diffusing species. The particle film model best explains the observed behavior of the limiting current density. Calculations of stirring power required verses i/sub L/ observed, show that adding beads to increase i/sub L/ consumes less additional power than simply increasing the rotation speed alone and even permits a decrease in the amount of stirring energy required per unit reactant consumed, at limiting current conditions.

  20. Impacts of vegetation and temperature on the treatment of domestic sewage in constructed wetlands incorporated with Ferric-Carbon micro-electrolysis material.

    Science.gov (United States)

    Zhou, Qingwei; Zhu, Hui; Bañuelos, Gary; Yan, Baixing; Liang, Yinxiu; Yu, Jing; Li, Huai

    2017-10-03

    Ferric-Carbon Micro-Electrolysis (Fe/C-M/E) material had been widely used for the pretreatment of wastewater. Therefore, we hypothesized that Fe/C-M/E material could enhance the treatment of domestic sewage when it was integrated into constructed wetlands (CWs). In this study, CWs integrated with Fe/C-M/E material were developed. Druing the experiment of effect of vegetation on the performance of CWs, percentages of NH 4 + -N, NO 3 - -N, total nitrogen (TN), and Chemical Oxygen Demand (COD) removed in polyculture (W1) were up to 91.8%, 97.0%, 92.3%, and 85.4%, respectively, which were much higher than those in Lythrum salicaria monoculture (W2) and Canna indica monoculture (W3). In the experiment of temperature influences on the removal efficiency of CWs, temperature substantially influenced the performance of CWs. For example, NO 3 - -N removal percentages of W1, W2, and W3 at high temperature (25.5°C and 19.8°C) were relatively stable and greater than 85.4%. At 8.9°C, however, a sharp decline of NO 3 - -N removal percentage was observed in all CWs. Temperature also influenced the Chemical Oxygen Demand (COD) removal and soil microbial activity and biomass. Overall, the polyculture (Lythrum salicaria +Canna indica) showed the best performance during most of the operating time, at an average temperature ≥ 19.8°C, due to the functional complementarity between vegetation. All the CWs consistently achieved high removal efficiency (above 96%) for TP in all experiments, irrespective of vegetation types, phosphorous loadings, and temperatures. In conclusion, polyculture was an attractive solution for the treatment of domestic sewage during most of the operating time (average temperature ≥ 19.8°C). Furthermore, CWs with Fe/C-M/E material were ideally suitable for domestic sewage treatment, especially for TP removal.

  1. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  2. Efficiency potentials of heat pumps with combined heat and power. For maximum reduction of CO2 emissions and for electricity generation from fossil fuels with CO2 reduction in Switzerland

    International Nuclear Information System (INIS)

    Rognon, F.

    2005-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials

  3. Interconnected nitrogen and sulfur dual-doped porous carbon as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells

    Science.gov (United States)

    Li, Zhao; Yang, Wang; Xu, Xiuwen; Tang, Yushu; Zeng, Ziwei; Yang, Fan; Zhang, Liqiang; Ning, Guoqing; Xu, Chunming; Li, Yongfeng

    2016-09-01

    Exploiting cost-effective and efficient counter electrodes (CEs) for the reduction of triiodide (I3-) has been a persistent objective for the development of dye-sensitized solar cells (DSSCs). Here, we propose a strategy for the synthesis of nitrogen and sulfur dual-doped porous carbon (N/S-PC) via a thermal annealing approach by using melamine as N source, and basic magnesium sulfate (BMS) whiskers as S source and templates. Benefiting from the high surface area, unique interconnected structural feature and synergistic effects of N/S dual-doping, the N/S-PC shows excellent electrocatalytic activity toward I3- reduction, which has simultaneously been confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The DSSC devices with N/S-PC CEs exhibit a PCE up to 7.41%, which is higher than that of DSSC devices with single heteroatom (N or S) doped CEs and even Pt CEs (7.14%).

  4. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    Science.gov (United States)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  5. Optimizing iron delivery in the management of anemia: patient considerations and the role of ferric carboxymaltose

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2014-12-01

    Full Text Available Jorge Eduardo Toblli, Margarita Angerosa Nephrology Section, Department of Internal Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Argentina Abstract: With the challenge of optimizing iron delivery, new intravenous (iv iron–carbohydrate complexes have been developed in the last few years. A good example of these new compounds is ferric carboxymaltose (FCM, which has recently been approved by the US Food and Drug Administration for the treatment of iron deficiency anemia in adult patients who are intolerant to oral iron or present an unsatisfactory response to oral iron, and in adult patients with non-dialysis-dependent chronic kidney disease (NDD-CKD. FCM is a robust and stable complex similar to ferritin, which minimizes the release of labile iron during administration, allowing higher doses to be administered in a single application and with a favorable cost-effective rate. Cumulative information from randomized, controlled, multicenter trials on a diverse range of indications, including patients with chronic heart failure, postpartum anemia/abnormal uterine bleeding, inflammatory bowel disease, NDD-CKD, and those undergoing hemodialysis, supports the efficacy of FCM for iron replacement in patients with iron deficiency and iron-deficiency anemia. Furthermore, as FCM is a dextran-free iron–carbohydrate complex (which has a very low risk for hypersensitivity reactions with a small proportion of the reported adverse effects in a large number of subjects who received FCM, it may be considered a safe drug. Therefore, FCM appears as an interesting option to apply high doses of iron as a single infusion in a few minutes in order to obtain the quick replacement of iron stores. The present review on FCM summarizes diverse aspects such as pharmacology characteristics and analyzes trials on the efficacy/safety of FCM versus oral iron and different iv iron compounds in multiple clinical scenarios. Additionally, the

  6. Canadian options for greenhouse gas emission reduction (COGGER)

    International Nuclear Information System (INIS)

    Robinson, J.; Fraser, M.; Haites, E.; Harvey, D.; Jaccard, M.; Reinsch, A.; Torrie, R.

    1993-09-01

    A panel was formed to assess the feasibility and cost of energy-related greenhouse gas (GHG) emissions reduction in Canada. The panel studies focused on the potential for increased energy efficiency and fuel switching and their effect in reducing CO 2 emissions by reviewing the extensive literature available on those topics and assessing their conclusions. Economically feasible energy savings are estimated mostly in the range of 20-40% savings by the year 2010 relative to a reference-case projection, with a median of 23%. The panel concluded that achieving the identified economic potential for increased energy efficiency by 2010 will depend on development of additional demand-side management or energy efficiency programs that go well beyond current policies and programs. Fuel switching will play a much smaller role in stabilizing energy-related CO 2 emissions than improved energy efficiency. Technology substitution and broader structural change would enable Canada to achieve significant reductions in CO 2 emissions; however, more research is needed on achieving emission reductions that would approach the levels estimated to be required globally for stabilization of atmospheric CO 2 concentrations. Achieving such emissions reductions would likely require a combination of significant improvements in energy efficiency, major changes in energy sources, and substantial changes in economic activity and life styles, relative to that projected in most reference-case forecasts. 5 refs., 1 fig., 10 tabs

  7. Effects of ferric ions on the catalytic ozonation process on sanitary landfill leachates

    Directory of Open Access Journals (Sweden)

    Messias Borges Silva

    2013-04-01

    Full Text Available Leachates exhibiting an unstable ratio of biochemical oxygen demand (BOD and chemical oxygen demand (COD of approximately 0.45 are typical of new landfills in the City of Cachoeira Paulista, Brazil. Although the organic matter portion is bio-treatable, the presence of refractory leached organic material requires unconventional effluent-treatment processes. Leachate treatment with ozone oxidation, in the presence of ferric ions, acts as catalyst in the formation of hydroxyl radicals. Ozone was obtained by corona-discharge from high-purity O2 gas. The treatment was performed in natura in a jacketed borosilicate glass reactor containing 900 ml of leachate. The analyzed response variable was expressed as the concentration of dissolved organic carbon (DOC. In order to determine the optimal proportions to produce the greatest degradation rate for organic materials, variations in experimental O2 flow-fed to the generator, the Fe(iii concentration, and the output of the ozonator were conducted over two experimental runs. Experimental models showed a DOC degradation on the order of 81.25%.

  8. Studies on the preparation of ferric-hydroxide macro aggregate and hydroxyapatite particles labelled with Sm-153, Ho-166 and/or Dy-165 for radiation synovectomy

    International Nuclear Information System (INIS)

    Le Van So; Pham Ngoc Dien; Truong Hong Nghia; Nguyen Thi Thu; Nguyen Cong Duc; Vo Thji Cam Hoa; Bui Van Cuong

    2004-01-01

    The modified methods for the preparation of Hydroxyapatite particle (HA) and Ferric Hydroxide Macro Aggregated (FHMA of high stability and uniformity in particle size and of good geometrical shape suitable for production of radiolabeled carrier for radiation synovectomy purpose were developed. 165 Dy, 166 Ho and/or 153 Sm labeled HA and FHMA were produced using a simple labelling method. (author)

  9. Nitrogen-doped diamond electrode shows high performance for electrochemical reduction of nitrobenzene

    International Nuclear Information System (INIS)

    Zhang, Qing; Liu, Yanming; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2014-01-01

    Highlights: • A metal-free nitrogen-doped diamond electrode was synthesized. • The electrode exhibits high electrocatalytic activity for nitrobenzene reduction. • The electrode exhibits high selectivity for reduction of nitrobenzene to aniline. • High energy efficiency was obtained compared with graphite electrode. -- Abstract: Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC–MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN

  10. A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water - An alternative sustainable solution for developing countries

    Science.gov (United States)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    A research project was commissioned to investigate the performance of Moringa oleifera compared with that of aluminium sulphate (Al 2(SO 4) 3) and ferric sulphate (Fe 2(SO 4) 3), termed alum and ferric respectively. A series of jar tests was undertaken using model water, different raw water sources and hybrid water containing a mixture of both of these types of water. The model water consisted of deionised water spiked with Escherichia coli (E. coli) at 10 4 per 100 ml and turbidity (146 NTU) artificially created by kaolin. Results showed that M. oleifera removed 84% turbidity and 88% E. coli, whereas alum removed greater than 99% turbidity and E. coli. Low turbidity river water (<5 NTU), with an E. coli count of 605 colony forming units (cfu)/100 ml was treated with M. oleifera and ferric. Results showed an 82% and 94% reduction in E. coli for M. oleifera and ferric respectively. Tests on turbid river water of 45 NTU, with an E. coli count of 2650 cfu/100 ml, showed a removal of turbidity of 76% and E. coli reduction of 93% with M. oleifera. The equivalent reductions for alum were 91% and 98% respectively. Highly coloured reservoir water was also spiked with E. coli (10 4 cfu/100 ml) and turbidity (160 NTU) artificially created by kaolin; termed hybrid water. Under these conditions M. oleifera removed 83% colour, 97% turbidity and reduced E. coli by 66%. Corresponding removal values for alum were 88% colour, 99% turbidity and 89% E. coli, and for ferric were 93% colour, 98% turbidity and 86% E. coli. Tests on model water, using a secondary treatment stage sand filter showed maximum turbidity removal of 97% and maximum E. coli reduction of 98% using M. oleifera, compared with 100% turbidity and 97% E. coli for alum. Although not as effective as alum or ferric, M. oleifera showed sufficient removal capability to encourage its use for treatment of turbid waters in developing countries.

  11. An investigation of magnox sludge and alumino-ferric floc waste simulate, immobilised by a cementitious matrix

    International Nuclear Information System (INIS)

    Halley, D.G.

    1983-09-01

    Magnox sludge and alumino ferric floc simulates, prepared using non-radioactive tracers were immobilised by a cementitious system. Formulation design aimed at optimising pollutant leaching with permeability and compressive strength as secondary considerations. The behaviour of the products under accelerated weathering conditions was investigated. The study was divided into two parts: Formulation design in Phase I and the systematic testing of the optimum formulations under freeze-thaw, and hydration -dehydration conditions in Phase 2. Analytical method development for leachate analysis continued through both Phases. The Barnwood method of leach testing was used. The immobilised waste had good physical properties (i.e. high strength and low permeability) and a significant improvement was achieved during the course of the work in the leach rates of the tracers, particularly of caesium and strontium. (author)

  12. SEQUENTIAL EXTRACTION OF PHOSPHORUS BY MEHLICH-1 AND ION EXCHANGE RESIN FROM B HORIZONS OF FERRIC AND PERFERRIC LATOSOLS (OXISOLS

    Directory of Open Access Journals (Sweden)

    Danilo de Lima Camêlo

    2015-08-01

    Full Text Available In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1 and Ion Exchange Resin (IER, from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m. Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.

  13. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.

    Science.gov (United States)

    Kralchevska, Radina P; Prucek, Robert; Kolařík, Jan; Tuček, Jiří; Machala, Libor; Filip, Jan; Sharma, Virender K; Zbořil, Radek

    2016-10-15

    Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    International Nuclear Information System (INIS)

    Hwang, Seon Bung; Kim, Il Hwan; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Jeong, Seong Min; Kim, Gi Hwan; Lee, Ah Ram; Cho, Yura

    2011-01-01

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration

  15. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Bung; Kim, Il Hwan; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Jeong, Seong Min; Kim, Gi Hwan; Lee, Ah Ram [Dept. of Radiation and Oncology, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Yura [Dept. of Cyberknife, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-03-15

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to

  16. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Prajakta R.; Krishnamurthy, V.N.; Joshi, Satyawati S. [Department of Chemistry, University of Pune, Pune 411007 (India)

    2006-12-15

    A comparative study of the thermal decomposition of ammonium perchlorate (AP)/hydroxy terminated polybutadiene (HTPB) based composite propellants has been carried out in presence and absence of nano iron oxide at different heating rates in a dynamic nitrogen atmosphere using differential scanning calorimetry. The pronounced effect was a lowering of the high temperature decomposition by 49 C. A higher heat release up to 40% was observed in presence of nano ferric oxide (3.5 nm). The kinetic parameters were evaluated using the Kissinger method. The increase of the rate constant in the catalyzed propellant confirmed the enhancement of the catalytic activity of ammonium perchlorate. The scanning electron micrographs of nano Fe{sub 2}O{sub 3} incorporated in HTPB revealed a well-separated characteristic necklace-like structure of {alpha}-Fe{sub 2}O{sub 3} particles at high magnification. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe(III)-organic complexes in dilute aqueous suspensions

    Science.gov (United States)

    Bligh, Mark W.; Waite, T. David

    2010-10-01

    While chemical reactions that take place at the surface of amorphous ferric oxides (AFO) are known to be important in aquatic systems, incorporation of these reactions into kinetic models is hindered by a lack of ability to reliably quantify the reactivity of the surface and the changes in reactivity that occur over time. Long term decreases in the reactivity of iron oxides may be considered to result from changes in the molecular structure of the solid, however, over shorter time scales where substantial aggregation may occur, the mechanisms of reactivity loss are less clear. Precipitation of AFO may be described as a combination of homogeneous and heterogeneous reactions, however, despite its potentially significant role, the latter reaction is usually neglected in kinetic models of aquatic processes. Here, we investigate the role of AFO in scavenging dissolved inorganic ferric (Fe(III)) species (Fe') via the heterogeneous precipitation reaction during the net dissociation of organically complexed Fe(III) in seawater. Using sulfosalicylic acid (SSA) as a model ligand, AFO was shown to play a significant role in inducing the net dissociation of the Fe-SSA complexes with equations describing both the heterogeneous precipitation reaction and the aging of AFO being required to adequately describe the experimental data. An aggregation based mechanism provided a good description of AFO aging over the short time scale of the experiments. The behaviour of AFO described here has implications for the bioavailability of iron in natural systems as a result of reactions involving AFO which are recognised to occur over time scales of minutes, including adsorption of Fe' and AFO dissolution, precipitation and ageing.

  18. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  19. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

    NARCIS (Netherlands)

    Zimmermann, M.B.; Biebinger, R.; Egli, I.; Zeder, C.; Hurrell, R.F.

    2011-01-01

    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric

  20. Rapid and efficient photocatalytic reduction of hexavalent chromium by using “water dispersible” TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Wang, Lei; Kang, Shi-Zhao; Li, Xiangqing; Qin, Lixia; Yan, Hao; Mu, Jin

    2016-01-01

    In the present work, “water dispersible” TiO 2 nanoparticles were prepared, and meanwhile, their photocatalytic activity was systematically tested for the reduction of aqueous Cr(VI) ions. It is found that the as-prepared “water dispersible” TiO 2 nanoparticles are a highly efficient photocatalyst for the reduction of Cr(VI) ions in water under UV irradiation, and suitable for the remediation of Cr(VI) ions wastewater with low concentration. Compared with commercial TiO 2 nanoparticles (P25), the “water dispersible” TiO 2 nanoparticles exhibit 3.8-fold higher photocatalytic activity. 100% Cr (VI) ions can be reduced into Cr(III) ions within 10 min when the Cr (VI) ions initial concentration is 10 mg L −1 . Moreover, the electrical energy consumption can be obviously decreased using the “water dispersible” TiO 2 nanoparticles. These results suggest that the “water dispersible” TiO 2 nanoparticles are a promising photocatalyst for rapid removal of Cr (VI) in environmental therapy. - Highlights: • “Water dispersible” TiO 2 nanoparticles with high photocatalytic activity. • 100% Cr (VI) (10 mg L −1 ) can be reduced within 10 min. • Obvious decrease of electrical energy consumption.

  1. The reduction of Winterveld chrome spinel at 1300 degrees Celsius under an argon atmosphere in the presence of carbon

    International Nuclear Information System (INIS)

    Kuecuekkaragoz, C.S.; Algie, S.H.; Finn, C.W.P.

    1984-01-01

    The reduction of a mixture of particles of gangue-free spinel in the size range 106 to 90 μm and particles of graphite in the same size range was studied by the use of a recording thermobalance. The partially reduced material was analysed chemically, as well as by X-ray diffraction, optical microscopy, and electron-microprobe analysis. The reaction is shown to be sequential, the ferric iron being reduced to ferrous iron before a metallic reduction product appears. Almost one-half of the iron is reduced before the reduction of chromium becomes significant, and, by the time about one-half of the chromium has been reduced, almost no unreduced iron remains in the oxide. Carbon appears in the reduced material after the reduction of chromium has started. The carbon content rises as the reaction proceeds, and beyond the stage at which all the iron has been reduced, the reduced product is an iron-chromium carbide. The product is therefore in a state of near equilibrium with the partially reduced spinel. This indicates that, up to about 60 per cent reduction, the transfer of carbon to the oxide is a controlling factor in the reduction. This conclusion is supported by the observation that the reduced product is confined to the surface of the chromite particle, which retains its external shape while becoming progressively more porous as reduction proceeds. Under hydrogen, a metallic reduction product is formed within the internal pores as well as on the surface. The second half of the reduction proceeds at a reproducible decreasing rate that can be modelled on the basis of the diffusion of chromium from within the particle to the surface. The initial reduction rate is slow but accelerating, and is not reproducible. Further investigation of this stage of the reduction process is recommended

  2. Reduction of Hexavalent Chromium Using Sorbaria sorbifolia Aqueous Leaf Extract

    Directory of Open Access Journals (Sweden)

    Shashi Prabha Dubey

    2017-07-01

    Full Text Available Aqueous plant leaves extract (PLE of an abundant shrub, Sorbaria sorbifolia, was explored for the reduction of hexavalent chromium, Cr(VI, to trivalent chromium, Cr(III. The effect of contact time, pH, PLE quantity, ionic strength, hardness, temperature and effective initial Cr(VI ion concentration were tested; Cr(VI reduction followed the pseudo-first order rate kinetics and maximum reduction was observed at pH 2. Significantly, Cr(VI reduction efficacies varied from 97 to 66% over the pH range of 2 to 10, which bodes well for PLE to be used for the reduction of Cr(VI also at a higher pH. PLE-mediated Cr(VI reduction displays considerable efficiency at various ionic strengths; however, hardness strongly affects the reduction ability. Higher temperature significantly enhances the Cr(VI reduction. This study reveals the potential use of PLE as a green reducing agent in aqueous extract for the efficient reduction of Cr(VI to Cr(III.

  3. Hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum nanocomposite as an efficient electrocatalyst for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Li, Zesheng; Liu, Zhisen; Li, Bolin; Liu, Zhenghui; Li, Dehao; Wang, Hongqiang; Li, Qingyu

    2016-01-01

    Graphical abstract: Newfashioned hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum (HMG/WC/Pt) nanocomposite with interesting three-dimensional architecture bas been successfully fabricated as an efficient electrocatalyst for the oxygen reduction reaction. - Highlights: • Hollow hemisphere-shaped macroporous graphene is proposed as ORR catalyst support. • Honeycomb-like macroporous graphene/WC/Pt electrocatalyst is firsy prepared for ORR. • The present electrocatalyst exhibited greatly enhanced ORR catalytic activity and stability. - Abstract: Hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum (HMG/WC/Pt) nanocomposite has been synthesized as an efficient electrocatalyst for the oxygen reduction reaction (ORR). The HMG/WC/Pt sample has been systematically characterized by the X-ray diffraction (XRD), Scanning electron microscope (SEM) and Transmission electron microscopy (TEM). The analysis results indicate that the sample has an interesting three-dimensional hollow hemisphere-shaped macroporous architecture. The results also demonstrate the successful integration of WC and Pt nanoparticles on the HMG, in which the WC nanoparticles are in size of about 10 nm and the Pt nanoparticles are in size of about 3 nm. The as-prepared HMG/WC/Pt electrode displays excellent electrocatalytic performances for the ORR in 0.1 mol L −1 HClO 4 electrolyte. The mass activity (i m at 0.9 V) of HMG/WC/Pt is 206 mA mg −1 Pt, which is about 85% higher than that of Pt/C (112 mA mg −1 Pt). It also displayed a very high activity retention of 84.5% after 2000 cyclic voltammetry cycles for the HMG/WC/Pt, while that of the Pt/C is only 70.5%. The HMG/WC/Pt nanocomposite would be a promising electrocatalytic material for the ORR in Fuel cell applications.

  4. Experiment study on NOx reduction through biomass reburning in an entrained flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.; Wang, Y.; Lu, F.; Liu, Y. [Nanjing Normal Univ. (China). School of Energy and Mechanical Engineering

    2013-07-01

    The reburning experiments with six kinds of biomass (including rice straw, wheat straw, maize stalk, cotton stalk, rice husk and bagasse,) and one biochar (wheat straw char) was carried out in an entrained flow reactor. The effects of biomass type, stoichiometric ratio in the reburning-zone (SR2), reaction temperature in the reburning-zone (t{sub 2}), particle sizes of biomass (d{sub p}), and reburning fuel fraction (R{sub ff}) on NO reduction efficiency analysed. The NO heterogeneous reduction contribute of biochar was also analyzed. The results indicate that NO reduction efficiency behaves a trend of first increase and then decrease with decreasing of SR2 or increasing of R{sub ff}. The higher NO reduction efficiency (more than 50%) can be achieved at the range of SR2 = 0.7-0.8 or R{sub ff} = 20-26% during reburning with six tested biomass. Cotton stalk with higher volatiles and the highest contents of K, Na alkali metals behaves the best performance of NO reduction. In the range of t{sub 2} = 900-1,100 C NO reduction efficiency increases with increasing of reburning-zone reaction temperature at the same SR2. NO reduction efficiency increases insignificantly with decreasing of particle size of biomass while d{sub p} < 425{mu}m. The contribution of NO heterogeneous reduction by wheat straw char to the total NO reduction is in the higher range of 59-68% while R{sub ff} = 10-26%.

  5. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Koretsky, Carla [Western Michigan University

    2013-11-29

    hexavalent chromium, especially at low pH. Unexpectedly, experiments with the clay minerals kaolinite and montmorillonite suggest that hexavalent chromium may interact with these solids over much longer periods of time than expected. Furthermore, hexavalent chromium may irreversibly bind to these solids, perhaps because of oxidation-reduction reactions occurring on the surfaces of the clay minerals. More work should be done to investigate and quantify these chemical reactions. Experiments conducted with mixtures of goethite, hydrous manganese oxide, hydrous ferric oxide, γ-alumina, montmorillonite and kaolinite demonstrate that it is possible to correctly predict hexavalent chromium binding in the presence of multiple minerals using thermodynamic models derived for the simpler systems. Further, these models suggest that of the six solid considered in this study, goethite is typically the solid to which most of the hexavalent chromium will bind. Experiments completed with organic-rich and organic-poor natural sediments demonstrate that in organic-rich substrates, organic matter is likely to control uptake of the hexavalent chromium. The models derived and tested in this study for hexavalent chromium binding to γ-alumina, hydrous manganese oxide, goethite, hydrous ferric oxide and clay minerals can be used to better predict changes in hexavalent chromium bioavailability and mobility in contaminated sediments and soils.

  6. Fast Reduction Method in Dominance-Based Information Systems

    Science.gov (United States)

    Li, Yan; Zhou, Qinghua; Wen, Yongchuan

    2018-01-01

    In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.

  7. Stabilized-solubilized ferric pyrophosphate as a new iron source for food fortification. Bioavailability studies by means of the prophylactic-preventive method in rats.

    Science.gov (United States)

    Salgueiro, M J; Arnoldi, S; Kaliski, M A; Torti, H; Messeri, E; Weill, R; Zubillaga, M; Boccio, J

    2009-02-01

    The purpose of the present work was to evaluate the iron bioavailability of a new ferric pyrophosphate salt stabilized and solubilized with glycine. The prophylactic-preventive test in rats, using ferrous sulfate as the reference standard, was applied as the evaluating methodology both using water and yogurt as vehicles. Fifty female Sprague-Dawley rats weaned were randomized into five different groups (group 1: FeSO(4); group 2: pyr; group 3: FeSO(4) + yogurt; group 4: pyr + yogurt and group 5: control). The iron bioavailability (BioFe) of each compound was calculated using the formula proposed by Dutra-de-Oliveira et al. where BioFe % = (HbFef - HbFei) x 100/ToFeIn. Finally, the iron bioavailability results of each iron source were also given as relative biological value (RBV) using ferrous sulfate as the reference standard. The results showed that both BioFe % and RBV % of the new iron source tested is similar to that of the reference standard independently of the vehicle employed for the fortification procedure (FeSO(4) 49.46 +/- 12.0% and 100%; Pyr 52.66 +/- 15.02% and 106%; FeSO(4) + yogurth 54.39 +/- 13.92% and 110%; Pyr + yogurt 61.97 +/- 13.54% and 125%; Control 25.30 +/- 6.60, p soluble ferric pyrophosphate may be considered as an optimal iron source for food fortification.

  8. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    Science.gov (United States)

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Kim, Young-Bae

    2017-02-01

    3D and porous reduced graphene oxide (rGO) catalysts have been prepared with sp3-hybridized 1,4-diaminobutane (sp3-DABu, rGO-sp3-rGO) and sp2-hybridized 1,4-diaminobenzene (sp2-DABe, rGO-sp2-rGO) through a covalent amidation and have employed as a metal-free electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. Both compounds have used as a junction between functionalized rGO layers to improve electrical conductivity and impart electrocatalytic activity to the ORR resulting from the interlayer charge transfer. The successful amidation and the subsequent reduction in the process of catalyst preparation have confirmed by X-ray photoelectron spectroscopy. A hierarchical porous structure is also confirmed by surface morphological analysis. Specific surface area and thermal stability have increased after successful the amidation by sp3-DABu. The investigated ORR mechanism reveals that both functionalized rGO is better ORR active than nonfunctionalized rGO due to pyridinic-like N content and rGO-sp3-rGO is better ORR active than rGO-sp2-rGO due to higher pyridinic-like N content and π-electron interaction-free interlayer charge transfer. Thus, the rGO-sp3-rGO has proven as an efficient metal-free electrocatalyst with better electrocatalytic activity, stability, and tolerance to the crossover effect than the commercially available Pt/C for ORR.

  10. In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate

    International Nuclear Information System (INIS)

    Tong Guoxiu; Guan Jianguo; Xiao Zhidong; Huang Xing; Guan Yao

    2010-01-01

    Ferric oxide (Fe 2 O 3 ) complex nanoarchitectures with high BET specific surface area, superior photocatalytic activity and modulated magnetic properties are facilely synthesized via controlled thermal decomposition of iron(III) nitrate nonahydrate. The products are characterized by X-ray diffraction, Fourier-transforming infrared spectra, field-emission scanning electron microscope, field-emission high-resolution transmission electron microscope, and nitrogen physisorption and micrometrics analyzer. The corresponding photocatalytic activity and static magnetic properties are also evaluated by measuring the photocatalytic degradation of Rhodamine B aqueous solution under visible light illumination and vibrating sample magnetometer, respectively. Simply tuning the decomposition temperature can conveniently modulate the adsorbing/desorbing behaviors of the in situ generated gases on the nucleus surfaces, and consequently the crystalline structures and morphologies of the Fe 2 O 3 complex nanoarchitectures. The as-prepared Fe 2 O 3 complex nanoarchitectures show strong crystal structure and/or morphology-dependent photocatalytic and magnetic performances. The Fe 2 O 3 complex nanoarchitectures with high specific surface area and favorable crystallization are found to be beneficial for improving the photocatalytic activity. This work not only reports a convenient and low-cost decomposition procedure and a novel formation mechanism of complex nanoarchitectures but also provides an efficient route to enhance catalytic and magnetic properties of Fe 2 O 3 .

  11. Achievement report on research and development in the Sunshine Project in fiscal 1976. Research and development of water decomposition by using a hybrid cycle composed of thermo-chemistry and photo-chemistry; 1976 nendo netsukagaku oyobi hikari kagaku hybrid cycle ni yoru mizu bunkai no kenkyu kahatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes water decomposition by using a hybrid cycle composed of thermo-chemistry and photo-chemistry. Ferric sulfate and HI are obtained from ferrous sulfate and iodine via photo-chemical reaction. This is an endothermic reaction of 10.8 kcal. Then, the photo-chemically reacted aqueous solution is electrolysed to separate HI, while Fe{sup 3+} (ferric ion) is reduced and converted into Fe{sup 2+} (ferrous ion). Oxygen is generated at this time. Since mixed potential is made from iron oxidation and reduction potential and iodine potential, the electrolytic efficiency is greatly influenced by electrode materials. Ideally, an electrode material that causes only the reduction of Fe{sup 3+}, but not other reactions is preferable. The HI is decomposed into hydrogen and iodine by electrolysis. Research is continuing to acquire hydrogen from HI thermo-chemically. Endothermic reaction heat of 7 to 8 kcal has been obtained in photo-chemical reaction, the heat quantity being close to the theoretical value of 10.8. A result close to the theoretical value may be expected if the electrode material problem is solved. The basic research will be continued for a high possibility of linking the research to a pilot plant in the future. (NEDO)

  12. Energy efficiency outlook in China’s urban buildings sector through 2030

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Feng, Wei; Rue du Can, Stephane de la; Khanna, Nina Zheng; Ke, Jing; Zhou, Nan

    2016-01-01

    This study uses bottom-up modeling framework in order to quantify potential energy savings and emission reduction impacts from the implementation of energy efficiency programs in the building sector in China. Policies considered include (1) accelerated building codes in residential and commercial buildings, (2) increased penetration of district heat metering and controls, (3) district heating efficiency improvement, (4) building energy efficiency labeling programs and (5) retrofits of existing commercial buildings. Among these programs, we found that the implementation of building codes provide by far the largest savings opportunity, leading to an overall 17% reduction in overall space heating and cooling demand relative to the baseline. Second are energy efficiency labels with 6%, followed by reductions of losses associated with district heating representing 4% reduction and finally, retrofits representing only about a 1% savings. - Highlights: • We use a bottom-up modeling approach to quantify emission reduction from efficiency programs. • Heating and cooling are the main focus of this study. • We find that building codes lead to 17% reduction compare to the baseline. • Other programs analyzed concern district heat, building labeling and retrofits of buildings.

  13. Identification of a c-Type Cytochrome Specific for Manganese Dioxide (MnO2) Reduction in Anaeromyxobacter dehalogenans Strain 2CP-C

    Science.gov (United States)

    Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.

    2014-12-01

    Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments

  14. High efficiency lithium-thionyl chloride cell

    Science.gov (United States)

    Doddapaneni, N.

    1982-08-01

    The polarization characteristics and the specific cathode capacity of Teflon bonded carbon electrodes in the Li/SOCl2 system have been evaluated. Doping of electrocatalysts such as cobalt and iron phthalocyanine complexes improved both cell voltage and cell rate capability. High efficiency Li/SOCl2 cells were thus achieved with catalyzed cathodes. The electrochemical reduction of SOCl2 seems to undergo modification at catalyzed cathode. For example, the reduction of SOCl2 at FePc catalyzed cathode involves 2-1/2 e-/mole of SOCl2. Furthermore, the reduction mechanism is simplified and unwanted chemical species are eliminated by the catalyst. Thus a potentially safer high efficiency Li/SOCl2 can be anticipated.

  15. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator.

    Science.gov (United States)

    Bertrand, R; Danielson, D; Gong, V; Olynik, B; Eze, M O

    2012-01-01

    Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II)--dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during logarithmic phase of growth were studied via non-denaturing polyacrylamide gel electrophoresis and activity staining specific to each enzyme. Though NO is known to induce transcription of the manganese-bearing isozyme of SOD (MnSOD), treatment with SNP paradoxically suppressed MnSOD expression and greatly enhanced the activity of the iron-containing equivalent (FeSOD). Fur, one of six global regulators of MnSOD transcription, is uniquely capable of suppressing MnSOD while enhancing FeSOD expression through distinct mechanisms. We thus hypothesize that Fur is complacent in causing this behaviour and that the iron(II) component of SNP is activating Fur. E. coli was also treated with the SNP structural analogues, potassium ferricyanide (PFi) and potassium ferrocyanide (PFo). Remarkably, the ferrous PFo was capable of mimicking the SNP-related pattern, whereas the ferric PFi was not. As Fur depends upon ferrous iron for activation, we submit this observation of redox-specificity as preliminary supporting evidence for the hypothesized Fur-SNP interaction. Iron is an essential metal that the human innate immune system sequesters to prevent its use by invading pathogens. As NO is known to inhibit iron-bound Fur, and as activated Fur regulates iron uptake through feedback inhibition, we speculate that the administration of this drug may disrupt this strategic management of iron in favour of residing Gram-negative species by providing a source of iron in an otherwise iron-scarce environment capable of encouraging its own uptake

  16. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure

    International Nuclear Information System (INIS)

    Choi, Yongrok; Zhang, Ning; Zhou, P.

    2012-01-01

    Highlights: ► We employ a slacks-based DEA model to estimate the energy efficiency and shadow prices of CO 2 emissions in China. ► The empirical study shows that China was not performing CO 2 -efficiently. ► The average of estimated shadow prices of CO 2 emissions is about $7.2. -- Abstract: This paper uses nonparametric efficiency analysis technique to estimate the energy efficiency, potential emission reductions and marginal abatement costs of energy-related CO 2 emissions in China. We employ a non-radial slacks-based data envelopment analysis (DEA) model for estimating the potential reductions and efficiency of CO 2 emissions for China. The dual model of the slacks-based DEA model is then used to estimate the marginal abatement costs of CO 2 emissions. An empirical study based on China’s panel data (2001–2010) is carried out and some policy implications are also discussed.

  17. Comparison of the Performance of Poly Aluminum Chloride (PACl, Ferric Chloride (FeCl3, in Turbidity and Organic Matter Removal; from Water Source, Case-Study: Karaj River, in Tehran Water Treatment Plant No. 2

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolah zadeh

    2009-06-01

    Full Text Available Coagulation and flocculation are the principal units in water treatment processes. In this study, the Jar test was used to investigate the effects of the pH and TOC on FeCl3 and PACl coagulants for further removal of turbidity, organic matter, aluminum, total organic carbon (TOC, dissolved organic carbon (DOC, organic Aadsorption at a wavelength of 254 nm (UV254 nm , alkalinity, residual aluminum and ferric, total trihalomethans (TTHMs in the Karaj River in the year 2007- 2008. These experiments were conducted through a bench scale study using conventional coagulation in the influent to Tehran Water Treatment Plant No. 2 (TWTP2.With normal pH levels, PACl demonstrated more efficiency than FeCl3 in removing turbidity, TOC, UV254 nm, and TTHMs. The lower coagulant consumption, high floc size, lower floc detention time, lower sludge production, lack of the need for pH adjustment in turbidity of 25 NTU and the lower alum consumption were the advantages of PACl application instead of FeCl3 as a coagulant. Also, PACl application was efficient at low turbidity (2 NTU, average turbidity (6 NTU, and high turbidity (100 NTU in TOC, turbidity, UV254 nm , and DOC removal. Thus, PACl is an economical alternative as a coagulant in TWTP2.

  18. Efficiency of deodorant materials for ammonia reduction in indoor air

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor

    2014-01-01

    A comparative study about the removability of ammonia gas in the air by activated carbon fiber (ACF) felt chemically treated with acid and a cotton fabric processed with iron phthalocyanine with copper (Cu) was performed in small-scale experiments. The test rig consisted of a heated plate and its...... proved activated carbon fiber felt with acid to be highly efficient in removing ammonia gas. Air temperature did not have profound effect on ACF performance. However, efficiency of the carbon fiber felt decreased when relative humidity was raised from 20 to 80%....

  19. Simultaneous separation of copper, cadmium and cobalt from sea-water by co-flotation with octadecylamine and ferric hydroxide as collectors.

    Science.gov (United States)

    Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A

    1984-08-01

    A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.

  20. Automated data reduction workflows for astronomy. The ESO Reflex environment

    Science.gov (United States)

    Freudling, W.; Romaniello, M.; Bramich, D. M.; Ballester, P.; Forchi, V.; García-Dabló, C. E.; Moehler, S.; Neeser, M. J.

    2013-11-01

    Context. Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims: The efficiency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods: The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results: Automated workflows can greatly increase the efficiency of astronomical data reduction. In Reflex, workflows can be run non-interactively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions: Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow

  1. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.

    Science.gov (United States)

    Hu, Jing; Guo, Huiyuan; Li, Junli; Gan, Qiuliang; Wang, Yunqiang; Xing, Baoshan

    2017-02-01

    The impacts of iron oxide nanoparticles (γ-Fe 2 O 3 NPs) and ferric ions (Fe 3+ ) on plant growth and molecular responses associated with the transformation and transport of Fe 2+ were poorly understood. This study comprehensively compared and evaluated the physiological and molecular changes of Citrus maxima plants as affected by different levels of γ-Fe 2 O 3 NPs and Fe 3+ . We found that γ-Fe 2 O 3 NPs could enter plant roots but no translocation from roots to shoots was observed. 20 mg/L γ-Fe 2 O 3 NPs had no impact on plant growth. 50 mg/L γ-Fe 2 O 3 NPs significantly enhanced chlorophyll content by 23.2% and root activity by 23.8% as compared with control. However, 100 mg/L γ-Fe 2 O 3 NPs notably increased MDA formation, decreased chlorophyll content and root activity. Although Fe 3+ ions could be used by plants and promoted the synthesis of chlorophyll, they appeared to be more toxic than γ-Fe 2 O 3 NPs, especially for 100 mg/L Fe 3+ . The impacts caused by γ-Fe 2 O 3 NPs and Fe 3+ were concentration-dependent. Physiological results showed that γ-Fe 2 O 3 NPs at proper concentrations had the potential to be an effective iron nanofertilizer for plant growth. RT-PCR analysis showed that γ-Fe 2 O 3 NPs had no impact on AHA gene expression. 50 mg/L γ-Fe 2 O 3 NPs and Fe 3+ significantly increased expression levels of FRO2 gene and correspondingly had a higher ferric reductase activity compared to both control and Fe(II)-EDTA exposure, thus promoting the iron transformation and enhancing the tolerance of plants to iron deficiency. Relative levels of Nramp3 gene expression exposed to γ-Fe 2 O 3 NPs and Fe 3+ were significantly lower than control, indicating that all γ-Fe 2 O 3 NPs and Fe 3+ treatments could supply iron to C. maxima seedlings. Overall, plants can modify the speciation and transport of γ-Fe 2 O 3 NPs or Fe 3+ for self-protection and development by activating many physiological and molecular processes. Copyright © 2016 Elsevier

  2. Novel Insights Into Microbial Uranium Reduction and Immobilization

    Science.gov (United States)

    Loeffler, F. E.; Fletcher, K.; Thomas, S.; Kemner, K. M.; Boyanov, M.; Sanford, R.

    2010-12-01

    Many ferric iron- and manganese oxide-reducing bacteria affect the oxidation state and complexation of toxic radionuclides in subsurface environments. Relevant to uranium (U) speciation are bacteria that reduce predominantly water-soluble and mobile U(VI) to U(IV), which has reduced solubility and typically forms the uraninite (UO2) mineral. Gram-negative model organisms including Shewanella spp., Geobacter spp., and more recently Anaeromyxobacter spp. use U(VI) as growth-supporting electron acceptor; however, the biomass yields are lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Recent findings demonstrated that U(VI) reduction is not limited to Gram-negative bacteria, and members of the genus Desulfitobacterium, which are commonly found in soil and subsurface environments, share the ability to reduce U(VI). Interestingly, extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in cultures of five Desulfitobacterium spp. was not UO2 but rather a phase or mineral composed of mononuclear U(IV) atoms. Since the properties of the reduced product influence U(IV) fate, knowledge of the diversity of U reduction mechanisms and the stability of the end products is desirable for controlling and predicting U fate. For example, UO2 is susceptible to reoxidation by oxidants, and oxic/anoxic interface processes are controlling the stability of the precipitated material. In other words, metal reducers that thrive at the oxic/anoxic interface are likely key players affecting long-term U fate. Anaeromyxobacter spp. are facultative microaerophiles and grow with oxygen as electron acceptor at partial pressures equal to or below 0.18 atm. Thus, Anaeromyxobacter are uniquely adapted to life at the oxic-anoxic interface where they consume oxygen and take advantage of oxidized metal species including U(VI) as electron acceptors. The application of 16S rRNA gene-targeted qPCR approaches

  3. Definition and discussion of the intrinsic efficiency of winglets

    Directory of Open Access Journals (Sweden)

    Dieter SCHOLZ

    2018-03-01

    Full Text Available Three simple equations are derived to define the “Intrinsic Aerodynamic Efficiency of Winglets” independent of the horizontal extension of the winglet and independent of the winglet’s (relative height. This Intrinsic Aerodynamic Efficiency allows a quick comparison of purely the aerodynamic shape of winglets independent of the selected size chosen for a certain aircraft installation. The Intrinsic Aerodynamic Efficiency is calculated in 3 steps: STEP 1: The relative total drag reduction due to the winglet is converted into an assumed contribution of the winglet only on the span efficiency factor. STEP 2: If the winglet also increases span, its performance is converted into one without the effect of span increase. STEP 3: The winglet’s reduction in induced drag is compared to a horizontal wing extension. If the winglet needs e.g. to be three times longer than the horizontal extension to achieve the same induced drag reduction, its Intrinsic Aerodynamic Efficiency is the inverse or 1/3. Winglet metrics as defined are calculated from literature inputs. In order to evaluate winglets further, the mass increase due to winglets is estimated in addition to the reduction of drag on aircraft level and fuel burn.

  4. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    Science.gov (United States)

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  5. Assessing Multiple Pathways for Achieving China’s National Emissions Reduction Target

    Directory of Open Access Journals (Sweden)

    Mingyue Wang

    2018-06-01

    Full Text Available In order to achieve China’s target of carbon intensity emissions reduction in 2030, there is a need to identify a scientific pathway and feasible strategies. In this study, we used stochastic frontier analysis method of energy efficiency, incorporating energy structure, economic structure, human capital, capital stock and potential energy efficiency to identify an efficient pathway for achieving emissions reduction target. We set up 96 scenarios including single factor scenarios and multi-factors combination scenarios for the simulation. The effects of each scenario on achieving the carbon intensity reduction target are then evaluated. It is found that: (1 Potential energy efficiency has the greatest contribution to the carbon intensity emissions reduction target; (2 they are unlikely to reach the 2030 carbon intensity reduction target of 60% by only optimizing a single factor; (3 in order to achieve the 2030 target, several aspects have to be adjusted: the fossil fuel ratio must be lower than 80%, and its average growth rate must be decreased by 2.2%; the service sector ratio in GDP must be higher than 58.3%, while the growth rate of non-service sectors must be lowered by 2.4%; and both human capital and capital stock must achieve and maintain a stable growth rate and a 1% increase annually in energy efficiency. Finally, the specific recommendations of this research were discussed, including constantly improved energy efficiency; the upgrading of China’s industrial structure must be accelerated; emissions reduction must be done at the root of energy sources; multi-level input mechanisms in overall levels of education and training to cultivate the human capital stock must be established; investment in emerging equipment and accelerate the closure of backward production capacity to accumulate capital stock.

  6. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows

    Science.gov (United States)

    Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li

    2017-02-01

    The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.

  7. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  8. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    Science.gov (United States)

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  9. Experimental studies on the simultaneous reduction of NO and SO2 emissions by re burning

    International Nuclear Information System (INIS)

    Sun, Rui; Yu, Leibo; Fei, Jun; Mu, Yangyang; Zhang, Xin; Sun, Shaozeng; Wu, Shaohua

    2010-01-01

    The simultaneous reduction of NO and SO 2 by pulverized coal re burning was studied in a drop tube furnace (DTF). A bituminous pulverized coal was chosen as the re burning fuel, and calcium oxide was added as desulfurizer. The influences of stoichiometric ratio (SR), re burning temperature, calcium to sulfur ratio (Ca/ S), and residence time on efficiency of removing NO and SO 2 were studied by DTF hot experiments. The experiment results showed that, at the condition of the re burning temperature 1200 degree Celsius, Ca/ S=1.5, NO reduction efficiency decreased with the increase of re burning fuels stoichiometric ratio, but SO 2 reduction efficiency increased. When the re burning temperature increased from 1000 degree Celsius to 1200 degree Celsius, NO and SO 2 reduction efficiencies initially increased, but then decreased as temperature higher than 1100 degree Celsius. NO reduction efficiency decreased when Ca/ S changed from 1.0 to 2.5, and SO 2 reduction efficiency increased at all times, in spite of the increasing trend became flat when Ca/ S was higher than 2.0. Among all tests, high SO 2 and NO reduction ratios were obtained at SR of 0.8∼0.9 and Ca/ S of 1.5. The mechanisms of desulfurization and denitrification are also discussed and presented to explain the reactions routine in the DTF. (author)

  10. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  11. Communication complexity reduction from globally uncorrelated states

    International Nuclear Information System (INIS)

    Wieśniak, Marcin

    2015-01-01

    Bell inequality violating entangled states are the working horse for many potential quantum information processing applications, including secret sharing, cryptographic key distribution and communication complexity reduction in distributed computing. Here we explicitly demonstrate the power of certain multi-qubit states to improve the efficiency of partners in joint computation of some multi-qubit function, despite the fact that there could be no correlations between all distributed particles. It is important to stress that the class of functions that can be computed more efficiently is widened, as compared with the standard Bell inequalities. - Highlights: • We expand the set of functions, which can be computed more efficiently with quantum states. • We describe communication complexity reduction protocols based not only on full correlations. • We explicitly show an instance where, a globally uncorrelated state reduces communication complexity

  12. Communication complexity reduction from globally uncorrelated states

    Energy Technology Data Exchange (ETDEWEB)

    Wieśniak, Marcin, E-mail: marcin.wiesniak@univie.ac.at

    2015-04-03

    Bell inequality violating entangled states are the working horse for many potential quantum information processing applications, including secret sharing, cryptographic key distribution and communication complexity reduction in distributed computing. Here we explicitly demonstrate the power of certain multi-qubit states to improve the efficiency of partners in joint computation of some multi-qubit function, despite the fact that there could be no correlations between all distributed particles. It is important to stress that the class of functions that can be computed more efficiently is widened, as compared with the standard Bell inequalities. - Highlights: • We expand the set of functions, which can be computed more efficiently with quantum states. • We describe communication complexity reduction protocols based not only on full correlations. • We explicitly show an instance where, a globally uncorrelated state reduces communication complexity.

  13. Multiple imputation using linked proxy outcome data resulted in important bias reduction and efficiency gains: a simulation study.

    Science.gov (United States)

    Cornish, R P; Macleod, J; Carpenter, J R; Tilling, K

    2017-01-01

    When an outcome variable is missing not at random (MNAR: probability of missingness depends on outcome values), estimates of the effect of an exposure on this outcome are often biased. We investigated the extent of this bias and examined whether the bias can be reduced through incorporating proxy outcomes obtained through linkage to administrative data as auxiliary variables in multiple imputation (MI). Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) we estimated the association between breastfeeding and IQ (continuous outcome), incorporating linked attainment data (proxies for IQ) as auxiliary variables in MI models. Simulation studies explored the impact of varying the proportion of missing data (from 20 to 80%), the correlation between the outcome and its proxy (0.1-0.9), the strength of the missing data mechanism, and having a proxy variable that was incomplete. Incorporating a linked proxy for the missing outcome as an auxiliary variable reduced bias and increased efficiency in all scenarios, even when 80% of the outcome was missing. Using an incomplete proxy was similarly beneficial. High correlations (> 0.5) between the outcome and its proxy substantially reduced the missing information. Consistent with this, ALSPAC analysis showed inclusion of a proxy reduced bias and improved efficiency. Gains with additional proxies were modest. In longitudinal studies with loss to follow-up, incorporating proxies for this study outcome obtained via linkage to external sources of data as auxiliary variables in MI models can give practically important bias reduction and efficiency gains when the study outcome is MNAR.

  14. Manganese dioxide-supported silver bismuthate as an efficient electrocatalyst for oxygen reduction reaction in zinc-oxygen batteries

    International Nuclear Information System (INIS)

    Sun, Yanzhi; Yang, Meng; Pan, Junqing; Wang, Pingyuan; Li, Wei; Wan, Pingyu

    2016-01-01

    In this paper, we present a new efficient composite electrocatalyst, manganese dioxide-supported silver bismuthate (Ag 4 Bi 2 O 5 /MnO 2 ), for oxygen reduction reaction (ORR) in alkaline media. The new electrocatalyst was characterized with scanning electron microscope (SEM), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical measurements indicate that the Ag 4 Bi 2 O 5 /MnO 2 composite is a very efficient electrocatalyst for ORR in alkaline media. The physical and electrochemical characterization results suggest that the high activity is ascribed to the support effects from MnO 2 and the synergetic effects among Ag 4 Bi 2 O 5 and MnO 2 . The analysis of rotating disk electrode (RDE) results shows that the ORR occurs via a four-electron pathway on the surface of the Ag 4 Bi 2 O 5 /MnO 2 electrocatalyst. This electrocatalyst was further tested in a designed zinc–oxygen (Zn–O 2 ) battery. This battery can offer a discharge time of 225 h at 120 mA cm −2 , increasing by more than 492% as compared with pure MnO 2 electrocatalyst. It demonstrates that this inexpensive Ag 4 Bi 2 O 5 /MnO 2 electrocatalyst is a viable alternative to platinum electrocatalyst for energy conversion devices.

  15. Large Scale Reduction of Graphite Oxide

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  16. Cyanide binding to ferrous and ferric microperoxidase-11.

    Science.gov (United States)

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.

  17. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition.

    Science.gov (United States)

    Rejitha, V; Peter, M C Subhash

    2013-01-15

    The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps

  18. Improving Quality and Efficiency for Intussusception Management After Successful Enema Reduction.

    Science.gov (United States)

    Raval, Mehul V; Minneci, Peter C; Deans, Katherine J; Kurtovic, Kelli J; Dietrich, Ann; Bates, D Gregory; Rangel, Shawn J; Moss, R Lawrence; Kenney, Brian D

    2015-11-01

    The purpose of this project was to implement a protocol facilitating discharge from the emergency department (ED) after successful radiologic ileocolic intussusception reduction in a pediatric referral center. A multidisciplinary team identified drivers for successful quality improvement including educational brochures, a standardized radiologic report, an observation period in the ER with oral hydration challenges, and follow-up phone calls the day after discharge. Patient outcomes were tracked, and quarterly feedback was provided. Of 80 patients identified over a 24-month period, 34 (42.5%) did not qualify for discharge home due to need for surgical intervention (n = 9), specific radiologic findings (n = 11), need for additional intravenous hydration (n = 4), or other reasons (n = 7). Of 46 patients who qualified for discharge, 30 (65.2%) were successfully sent home from the ED. One patient returned with recurrent symptoms that required repeat enema reduction. Sixteen patients were observed and discharged within 23 hours. Adherence with discharge from the ED improved over time. Discharge from the ED was associated with cost savings and improved net margins at the hospital level for each encounter. A sustainable multidisciplinary quality improvement project to discharge intussusception patients from the ED after air-contrast enema reduction was successfully integrated in a high-volume referral center through education, standardized radiologic reporting, and protocoled follow-up. Copyright © 2015 by the American Academy of Pediatrics.

  19. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.

    Science.gov (United States)

    Kumar, Devesh; de Visser, Samuël P; Shaik, Sason

    2005-06-08

    The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.

  20. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  1. Tissue Prx I in the protection against Fe-NTA and the reduction of nitroxyl radicals

    International Nuclear Information System (INIS)

    Uwayama, Junya; Hirayama, Aki; Yanagawa, Toru; Warabi, Eiji; Sugimoto, Rika; Itoh, Ken; Yamamoto, Masayuki; Yoshida, Hiroshi; Koyama, Akio; Ishii, Tetsuro

    2006-01-01

    Peroxiredoxin I (Prx I) is a key cytoplasmic peroxidase that reduces intracellular hydroperoxides in concert with thioredoxin. To study the role of tissue Prx I in protection from oxidative stress, we generated Prx I -/- mice by gene trapping. We then evaluated the acute-phase tissue damage caused by ferric-nitrilotriacetate (Fe-NTA). Increases in serum aspartate aminotransferase and alanine aminotransferase levels were significantly greater in Prx I -/- than wild-type mice, 4 and 12 h after the injection of Fe-NTA. Using real-time EPR imaging, we examined the reduction of the stable paramagnetic nitroxyl radical 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl in vivo, and found that the half-life of this spin probe in the liver and kidney was significantly prolonged in the Prx I -/- mice. These results demonstrate that Prx I -/- mice have less reducing activity and are more susceptible to the damage mediated by reactive oxygen species in vivo than wild-type mice

  2. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.

    Science.gov (United States)

    Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M

    2011-09-15

    The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Technical Note: On the efficiency of variance reduction techniques for Monte Carlo estimates of imaging noise.

    Science.gov (United States)

    Sharma, Diksha; Sempau, Josep; Badano, Aldo

    2018-02-01

    Monte Carlo simulations require large number of histories to obtain reliable estimates of the quantity of interest and its associated statistical uncertainty. Numerous variance reduction techniques (VRTs) have been employed to increase computational efficiency by reducing the statistical uncertainty. We investigate the effect of two VRTs for optical transport methods on accuracy and computing time for the estimation of variance (noise) in x-ray imaging detectors. We describe two VRTs. In the first, we preferentially alter the direction of the optical photons to increase detection probability. In the second, we follow only a fraction of the total optical photons generated. In both techniques, the statistical weight of photons is altered to maintain the signal mean. We use fastdetect2, an open-source, freely available optical transport routine from the hybridmantis package. We simulate VRTs for a variety of detector models and energy sources. The imaging data from the VRT simulations are then compared to the analog case (no VRT) using pulse height spectra, Swank factor, and the variance of the Swank estimate. We analyze the effect of VRTs on the statistical uncertainty associated with Swank factors. VRTs increased the relative efficiency by as much as a factor of 9. We demonstrate that we can achieve the same variance of the Swank factor with less computing time. With this approach, the simulations can be stopped when the variance of the variance estimates reaches the desired level of uncertainty. We implemented analytic estimates of the variance of Swank factor and demonstrated the effect of VRTs on image quality calculations. Our findings indicate that the Swank factor is dominated by the x-ray interaction profile as compared to the additional uncertainty introduced in the optical transport by the use of VRTs. For simulation experiments that aim at reducing the uncertainty in the Swank factor estimate, any of the proposed VRT can be used for increasing the relative

  4. Will the application of Ammonium-Ferric-Hexacyano-Ferrate enhance the vertical migration of radiocaesium?

    International Nuclear Information System (INIS)

    Vandenhove, H.; Bacquoy, C.; Hees, M. van; Lewyckyj, N.; Vandecasteele, C.

    1998-01-01

    The consideration of a possible enhanced vertical migration of radiocaesium with the application of ammonium-ferric-hexacyano-ferrate (AFCF) as countermeasure, due to the colloidal nature of AFCF, made us set up a series of migration experiments. For the study two soil types were considered, which were either left unplanted or cultivated with ryegrass. Two AFCF concentrations, 1 and 10 g m -2 , and an untreated control were applied. A simple diffusion-convection model was fitted to the data.The application of AFCF did not enhance the downward migration of radiocaesium in the profile. Moreover, for an unplanted sandy soil the application of AFCF significantly retarded the migration: 10 g AFCF m -2 decreased the convection term, V, from 0·78 to 0·42 cm a -1 and the diffusion component, D, from 0·21 to 0·09 cm 2 a -1 . For all other experimental conditions (unplanted loamy soil, ryegrass cultivated sandy and loamy soil), the application of AFCF did not have any effect on radiocaesium migration. Since AFCF does not promote the vertical migration of radiocaesium, enhanced groundwater contamination is improbable. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  6. Energy Efficiency instead of CO2 levy

    International Nuclear Information System (INIS)

    Uetz, R.

    2005-01-01

    This article takes a look at ways of avoiding a future, planned Swiss CO 2 levy by improving the efficiency of energy use. The political situation concerning the reduction of CO 2 emissions in Switzerland is reviewed and the likeliness of the introduction of a CO 2 levy is discussed. Strategies for the reduction of fossil fuel consumption and therefore of CO 2 emissions are looked at, including process optimisation. Recommendations are made on how to approach this work systematically - data collection, assessment of the potential for reduction and the planning of measures to be taken are looked at. The high economic efficiency of immediate action is stressed and typical middle and long-term measures are listed

  7. Immobilization of radium in uranium mine and mill tailings

    International Nuclear Information System (INIS)

    Lutwick, G.D.; Mosher, J.; Tizzard, R.

    1982-01-01

    Radium has been coprecipitated from solution as the arsenate in which ferric iron, barium, copper and lead are the macro ions. The order of efficiency of the macro ions in removing radium was found to be Ba > Fe > Pb > Cu at a pH of 6. It is expected that at higher pH's i.e., greater than 8, ferric iron will change positions. This change in position will be caused by the formation of ferrate ion hence increasing the solubility of ferric arsenate. The removal of radium from solution by ion exchangers consisting of the arsenates of ferric iron, barium, copper and lead was successful. As the pH is increased from 4 to 10 the efficiency of these exchangers in removing radium increases. The columns removed over 99 percent of the radium at pH's of 5.6 and higher. The order of efficiency of the exchangers in removing radium is not well defined. Thorium has been precipitated as the arsenate over the pH range of 2 to 9.6. This reaction suggests the possibility of using arsenate to remove thorium from uranium mill plant streams and as a reagent to keep thorium in the tailings ponds

  8. Are prices enough? The economics of material demand reduction

    Science.gov (United States)

    Aidt, Toke; Jia, Lili; Low, Hamish

    2017-05-01

    Recent policy proposals to achieve carbon targets have emphasized material demand reduction strategies aimed at achieving material efficiency. We provide a bridge between the way economists and engineers think about efficiency. We use the tools of economics to think about policies directed at material efficiency and to evaluate the role and rationale for such policies. The analysis highlights when prices (or taxes) can be used to induce changes in material use and when taxes may not work. We argue that the role of taxes is limited by concerns about their distributional consequences, by international trade and the lack of international agreement on carbon prices, and by investment failures. This article is part of the themed issue 'Material demand reduction'.

  9. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  10. Understanding of the mode of action of Fe(III)-EDDHA as iron chlorosis corrector based on its photochemical and redox behavior.

    Science.gov (United States)

    Gómez-Gallego, Mar; Pellico, Daniel; Ramírez-López, Pedro; Mancheño, María J; Romano, Santiago; de la Torre, María C; Sierra, Miguel A

    2005-10-07

    The very low reduction potential of the chelate Fe(III)-EDDHA (EDDHA = ethylenediamine N,N'-bis(2-hydroxy)phenylacetic acid) makes it unreactive in photochemically or chemically induced electron transfer processes. The lack of reactivity of this complex toward light invalidates photodegradation as an alternative mechanism for environmental elimination. However, in spite of its low reduction potential, the biological reduction of Fe(III)-EDDHA is very effective. Based on electrochemical measurements, it is proposed that Fe(III)-EDDHA itself is not the substrate of the enzyme ferric chelate reductase. Likely, at the more acidic pH in the vicinity of the roots, the ferric chelate in a closed form (FeL-) could generate a vacant coordination site that leads to an open hexacoordinate species (FeHL) where the reduction of the metal by the enzyme takes place.

  11. A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications

    Science.gov (United States)

    Arakeri, Jaywant H.; Shukla, Ratnesh K.

    2013-08-01

    An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.

  12. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  13. Preliminary comparison of different reduction methods of graphene ...

    Indian Academy of Sciences (India)

    diverse applications and developing a simple, green, and efficient method for the mass production of ... properties of graphene have driven the search to find methods ... Chemical reduction of GO sheets has been performed with ... efficient method for the mass production of graphene. 2. ... temperature was raised to 35.

  14. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO_2 nanocrystals

    International Nuclear Information System (INIS)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong; Chang, Qing

    2016-01-01

    Graphical abstract: - Highlights: • 4-Chlorophenol is dechlorinated over {0 0 1}/{1 0 1} co-exposed TiO_2 nanocrystals. • Photo-electrons are accumulated on {1 0 1} facets due to surface heterojunction. • Fluorine will trap photoelectrons to depress the dechlorination performance. • Sufficient isopropanol promotes the dechlorination activity and selectivity. - Abstract: 4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO_2 nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO_2 to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Ti−F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO_2 nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO_2, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO_2 P25.

  15. Optical and electrical properties of thin films of bismuth ferric oxide; Propiedades opticas y electricas de peliculas delgadas de oxido de bismuto ferrico

    Energy Technology Data Exchange (ETDEWEB)

    Cardona R, D.

    2014-07-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe{sub 2}O{sub 3}) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO{sub 3} in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO{sub 3} composition. These samples showed a secondary phase (Bi{sub 2}5FeO{sub 4}0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe{sub 2}O{sub 3}) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  16. Increasing the Energy Efficiency of Aluminum-Reduction Cells Using Modified Cathodes

    Science.gov (United States)

    Jianping, Peng; Yang, Song; Yuezhong, Di; Yaowu, Wang; Naixiang, Feng

    2017-10-01

    A cathode with an inclined surface (5°) and increased bar collector height (230 mm high) was incorporated into two 300-kA industrial aluminum-reduction cells. The voltage of the cells with the modified cathode was reduced by approximately 200 mV when compared with that of a conventional cell with a flat cathode. Through the use of simulations, the reduction in the cell voltage was attributed to the cathode modification (40 mV) and a reduced electrolyte level of 0.5 cm (160 mV). As a result of reduced anode cathode distance (ACD), the ledge toe was extended to the anode shadow by 12 cm. This caused a large inverted horizontal current and a velocity increase. The ledge profile returned to the desired position when the cells were insulated more effectively, and the metal velocity and metal crest in the modified cells were reduced accordingly.

  17. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    Science.gov (United States)

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Event-related potential evidence for the processing efficiency theory.

    Science.gov (United States)

    Murray, N P; Janelle, C M

    2007-01-15

    The purpose of this study was to examine the central tenets of the processing efficiency theory using psychophysiological measures of attention and effort. Twenty-eight participants were divided equally into either a high or low trait anxiety group. They were then required to perform a simulated driving task while responding to one of four target light-emitting diodes. Cortical activity and dual task performance were recorded under two conditions -- baseline and competition -- with cognitive anxiety being elevated in the competitive session by an instructional set. Although driving speed was similar across sessions, a reduction in P3 amplitude to cue onset in the light detection task occurred for both groups during the competitive session, suggesting a reduction in processing efficiency as participants became more state anxious. Our findings provide more comprehensive and mechanistic evidence for processing efficiency theory, and confirm that increases in cognitive anxiety can result in a reduction of processing efficiency with little change in performance effectiveness.

  19. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.

    Science.gov (United States)

    Sankari, Siva; O'Brian, Mark R

    2016-07-22

    The bacterium Bradyrhizobium japonicum USDA110 does not synthesize siderophores for iron utilization in aerobic environments, and the mechanism of iron uptake within symbiotic soybean root nodules is unknown. An mbfA bfr double mutant defective in iron export and storage activities cannot grow aerobically in very high iron medium. Here, we found that this phenotype was suppressed by loss of function mutations in the feoAB operon encoding ferrous (Fe(2+)) iron uptake proteins. Expression of the feoAB operon genes was elevated under iron limitation, but mutants defective in either gene were unable to grow aerobically over a wide external ferric (Fe(3+)) iron (FeCl3) concentration range. Thus, FeoAB accommodates iron acquisition under iron limited and iron replete conditions. Incorporation of radiolabel from either (55)Fe(2+) or (59)Fe(3+) into cells was severely defective in the feoA and feoB strains, suggesting Fe(3+) reduction to Fe(2+) prior to traversal across the cytoplasmic membrane by FeoAB. The feoA or feoB deletion strains elicited small, ineffective nodules on soybean roots, containing few bacteria and lacking nitrogen fixation activity. A feoA(E40K) mutant contained partial iron uptake activity in culture that supported normal growth and established an effective symbiosis. The feoA(E40K) strain had partial iron uptake activity in situ within nodules and in isolated cells, indicating that FeoAB is the iron transporter in symbiosis. We conclude that FeoAB supports iron acquisition under limited conditions of soil and in the iron-rich environment of a symbiotic nodule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  1. Sound reduction by metamaterial-based acoustic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  2. EPA’s Travel Efficiency Method (TEAM) AMPO Presentation

    Science.gov (United States)

    Presentation describes EPA’s Travel Efficiency Assessment Method (TEAM) assessing potential travel efficiency strategies for reducing travel activity and emissions, includes reduction estimates in Vehicle Miles Traveled in four different geographic areas.

  3. Microblowing Technique for Drag Reduction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks to develop technologies for aircraft drag reduction which contribute to improved aerodynamic efficiency in support of national goals for reducing fuel...

  4. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  5. Efficient solar-assisted O2 reduction by a cofacial iron porphyrin dimer integrated to a p-CuBi2O4 photocathode prepared by a simple novel method.

    Science.gov (United States)

    Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori; Haleem, Ashraf

    2017-10-04

    A cofacial iron porphyrin hetero-dimer, Fe2TPFPP-TMP showed high electro-catalytic activity, selectivity, and stability for the O2 reduction to H2O both in homogeneous non-aqueous and heterogeneous neutral aqueous solutions. Moreover, when it is integrated to FTO/p-CuBi2O4 (FTO = fluorine doped tin oxide) photocathode prepared by a simple novel method, a remarkable efficient solar-assisted O2 reduction is achieved in neutral potassium phosphate (KPi) or basic NaOH solutions saturated with O2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    López Alejandro

    2004-10-01

    Full Text Available Abstract Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS. Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS was totally oxidized too, anglesite (PbSO4 formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1. Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight of arsenic removal. Further studies are needed to determine other factors that influence specifically the

  7. The Multiple Benefits of Measures to Improve Energy Efficiency

    DEFF Research Database (Denmark)

    Puig, Daniel; Farrell, Timothy Clifford

    Understanding the barriers to, and enablers for, energy efficiency requires targeted information and analysis. This report is a summary of four detailed studies providing new insights on how to promote efficiency in selected priority areas. It complements initiatives such as the so-called energy...... efficiency accelerators, which seek to increase the uptake of selected technologies, as well as the work of many other institutions committed to improving energy efficiency. The modelling estimates and the case studies presented in this report illustrate that, while significant progress has already been...... achieved, the case for accelerating energy efficiency action is strong. Key highlights include: • At the global level, energy efficiency improvements would account for between 2.6 and 3.3 Gt CO2e of the reductions in 2030, equivalent to between 23 and 26 percent of the overall reductions achieved...

  8. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  9. SNCR technology for NO sub x reduction in the cement industry. [Selective non-catalytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kupper, D; Brentrup, L [Krupp Polysius AG, Beckum (Germany)

    1992-03-01

    This article discusses the selective non-catalytic (SNCR) process for reducing nitrogen oxides in exhaust gases from cement plants. Topics covered include operating experience, injection of additives, selection of the additive, operating costs, reduction efficiency of SNCR, capital expenditure, secondary emissions and cycles of ammonium. (UK).

  10. Evaluation of removal efficiency of residual diclofenac in aqueous solution by nanocomposite tungsten-carbon using design of experiment.

    Science.gov (United States)

    Salmani, M H; Mokhtari, M; Raeisi, Z; Ehrampoush, M H; Sadeghian, H A

    2017-09-01

    Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2'-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.

  11. Efficient Catalytic Reduction of Hexavalent Chromium With Pd-decorated Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Dang; Choi, Hyun Chul [Chonnam National University, Gwangju (Korea, Republic of)

    2016-05-15

    Heavy metal pollution is currently a serious environmental issue. Chromium (Cr) and chromium compounds are commonly found in wastewater discharged by various industries such as wood preservation, leather tanning, electroplating, metal finishing, and the production of chemicals. Pd nanoparticles can easily be introduced into CNTs by performing DCC-activated amidation. Our TEM and XRD results indicate that well-dispersed metallic Pd nanoparticles are anchored on the surface of the amidated CNTs. The XPS results suggest that the Pd content of the sample is approximately 9.8 atomic %. In comparison with the commercial Pd catalyst, the prepared Pd-CNTs were demonstrated to exhibit good catalytic activity in the reduction of 4-NP by NaBH4. Moreover, the Pd-CNT catalyst can easily be separated by performing a simple filtration and reused over at least 10 cycles. This Pd-CNT catalyst is therefore believed to have significant potential for use as a reusable catalyst in the reduction of Cr(Vi)

  12. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  13. Identifying Efficient Nitrate Reduction Strategies in the Upper Danube

    Directory of Open Access Journals (Sweden)

    Angel Udias

    2016-08-01

    Full Text Available Nitrogen losses in the form of Nitrate (N-NO3 from point and diffuse sources of pollution are recognized to be the leading cause of water body impairment throughout Europe. Implementation of conservation programs is perceived as being crucial for restoring and protecting the good ecological status of freshwater bodies. The success of conservation programs depends on the efficient identification of management solutions with respect to the envisaged environmental and economic objectives. This is a complex task, especially considering that costs and effectiveness of conservation strategies depend on their locations. We applied a multi-objective, spatially explicit analysis tool, the R-SWAT-DM framework, to search for efficient, spatially-targeted solution of Nitrate abatement in the Upper Danube Basin. The Soil Water Assessment Tool (SWAT model served as the nonpoint source pollution estimator for current conditions as well as for scenarios with modified agricultural practices and waste water treatment upgrading. A spatially explicit optimization analysis that considered point and diffuse sources of Nitrate was performed to search for strategies that could achieve largest pollution abatement at minimum cost. The set of optimal spatial conservation strategies identified in the Basin indicated that it could be possible to reduce Nitrate loads by more than 50% while simultaneously provide a higher income.

  14. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  15. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  16. Asymmetric Reduction of tert-Butanesulfinyl Ketimines by N-Heterocyclic Carbene Boranes.

    Science.gov (United States)

    Liu, Tao; Chen, Ling-yan; Sun, Zhihua

    2015-11-20

    N-heterocyclic carbene borane (NHC-borane) based on a triazole core is demonstrated for the first time to be efficient for reduction of a variety of tert-butanesulfinyl ketimines. Up to 95% yield and up to >99% diastereomeric excess were achieved. NHC-borane exhibited excellent activities that are more efficient than or comparable to commonly used reductive reagents such as NaBH4, NaBH3CN, l-selectride, Ru catalyst, or BH3-THF.

  17. Combining IPPC and emission trading: An assessment of energy efficiency and CO2 reduction potentials in the Austrian paper industry

    International Nuclear Information System (INIS)

    Starzer, Otto; Dworak, Oliver

    2005-01-01

    In the frame of an innovative project partnership E.V.A. - the Austrian Energy Agency accompanied the Austrian paper industry for the last 2.5 years in developing a branch specific climate change strategy. Within the scope of this project an assessment of the energy efficiency status of the branch was carried out as well as an evaluation of still realisable energy savings and CO 2 reduction potentials. The paper presents the methodology applied, which combines a top down approach (benchmarking and best practice) with a bottom up approach (on-site interviews and energy audits), supported by a huge data collection process. Within the benchmarking process all Austrian paper industry installations affected by the EU emission trading directive were benchmarked against their respective IPPC/BAT values. Furthermore an extensive list of best practice examples derived from existing or ongoing studies was compared with the energy efficiency measures already carried out by the companies ('early actions'). These theory-oriented findings were complemented by several on-site interviews with the respective energy managers as well as by detailed energy audits carried out by a consulting company, covering in total more than 80% of the Austrian paper industry's CO 2 emissions. The paper concludes with the main results of the project, presenting the pros and cons of working with IPPC documents and BAT values in terms of energy efficiency assessments. Recommendations are presented on how to improve the allocation exercise for the next emission trading period from 2008 to 2012

  18. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese

    DEFF Research Database (Denmark)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide an...

  19. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. In this paper, the material and energy requirements in two-step solar-thermochemical cycles are considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  20. Performance Limits of Photoelectrochemical CO2 Reduction Based on Known Electrocatalysts and the Case for Two-Electron Reduction Products

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Seger, Brian

    2016-01-01

    Solar-drivenreduction of CO2 to solar fuels as an alternative to H2 via water splitting is an intriguing proposition. We modelthe solar-to-fuel (STF) efficiencies using realistic parameters basedon recently reported CO2 reduction catalysts with a highperformance tandem photoabsorber structure. CO...... due to excessiveoverpotentials and poor selectivity. This work considers breakingup the multielectron reduction pathway into individually optimized,separate two-electron steps as a way forward....

  1. Personalized Energy Reduction Cyber-Physical System (PERCS): A gamified end-user platform for energy efficiency and demand response.

    Energy Technology Data Exchange (ETDEWEB)

    Sintov, Nicole; Orosz, Michael; Schultz, P. Wesley

    2015-01-01

    The mission of the Personalized Energy Reduction Cyber-physical System (PERCS) is to create new possibilities for improving building operating efficiency, enhancing grid reliability, avoiding costly power interruptions, and mitigating greenhouse gas emissions. PERCS proposes to achieve these outcomes by engaging building occupants as partners in a user-centered smart service platform. Using a non-intrusive load monitoring approach, PERCS uses a single sensing point in each home to capture smart electric meter data in real time. The household energy signal is disaggregated into individual load signatures of common appliances (e.g., air conditioners), yielding near real-time appliance-level energy information. Users interact with PERCS via a mobile phone platform that provides household- and appliance-level energy feedback, tailored recommendations, and a competitive game tied to energy use and behavioral changes. PERCS challenges traditional energy management approaches by directly engaging occupant as key elements in a technological system.

  2. Efficient electrocatalytic reduction and detection of hydrogen peroxide at an IrIVOx·H2O nanostructured electrode prepared by electroflocculation

    International Nuclear Information System (INIS)

    Liu, Pei-Yin; Sun, Sin-Cih; Chen, Yi-Shiang; Chuang, Min-Chieh

    2016-01-01

    An Ir IV Ox·nH 2 O nanostructured electrode prepared by electroflocculation is reported; the electrode efficiently catalyzes the electrochemical reduction of hydrogen peroxide (H 2 O 2 ). Linear sweep voltammograms reveal that the potential onset arising due to the reduction of H 2 O 2 (1 mM) occurs at -0.1 V (vs. Ag/AgCl), which is more anodic than the onset potential occurring on the glassy carbon electrode by 400 mV, thereby substantiating the catalytic utility of Ir IV Ox·nH 2 O. The number of electrons transferred in the process, estimated via the Koutecky-Levich equation, is 1.89 ± 0.30. The Tafel slope obtained from polarization measurements is ca. 240.9 mV/dec. Furthermore, the Ir IV Ox·nH 2 O nanostructured electrode exhibits response with linear relationship against H 2 O 2 concentrations ranging over 0-1 mM (when agitated) and 0-150 μM (in flow injection analysis); the limit of detection (3σ), as determined under flow injection analysis, is 5 μM. The as-fabricated electrode is insensitive to the oxidation of ascorbic acid (0.1 mM) and acetaminophen (0.1 mM) and exhibits stable amperometric response (over twenty successive trials), albeit a slight drift in the sensor response is observed during the initial six evaluations. Based on the results, the electrocatalytic mechanism involving the following steps is proposed: (1) the reduction of Ir from Ir IV to Ir III , (2) catalytic cleavage of the O-O bond to generate OH· radicals, and (3) the reduction of the OH· radicals to OH − via the reoxidation of Ir III to Ir IV .

  3. The effect of ammonium ferric hexacyanoferrate on reducing radiocaesium transfer from grass silage to sheep

    Directory of Open Access Journals (Sweden)

    A. PAASIKALLIO

    2008-12-01

    Full Text Available A study was carried out to examine the effect of ammonium ferric hexacyanoferrate (AFCF on the transfer of radiocaesium from grass silage to the tissues of male lambs. During ensiling, a formic acid based additive and AFCF were sprayed on grass contaminated with 134Cs and the mixture was allowed to incubate for 45 days. A dose of 21 mg AFCF d-1, fed to sheep offered contaminated silage for fourteen days, reduced 134Cs transfer to muscle by 45% compared to that of control sheep. An equivalent dose of AFCF administered in a capsule reduced transfer by only 3%. In another experiment, AFCF intake of 50, 100 and 150 mg d-1 for ten days reduced 134Cs transfer to sheep muscle by 75, 82 and 86%, respectively. In control lambs, of average live weight 38 and 47 kg, the feed to muscle 134Cs transfer coefficient averaged 0.15 d kg-1, but equilibrium between tissue and feed 134Cs had probably not been reached due to the short feeding period. Increasing doses of AFCF from 0 to 150 mg d-1 increased the faecal/urinary 134Cs ratio from 2 to 42.;

  4. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump

    International Nuclear Information System (INIS)

    Filippi, Michal; Drahota, Petr; Machovič, Vladimír; Böhmová, Vlasta; Mihaljevič, Martin

    2015-01-01

    A more than 250 year-old mine dump was studied to document the products of long-term arsenopyrite oxidation under natural conditions in a coarse-grained mine waste dump and to evaluate the environmental hazards associated with this material. Using complementary mineralogical and chemical approaches (SEM/EDS/WDS, XRD, micro-Raman spectroscopy, pore water analysis, chemical extraction techniques and thermodynamic PHREEQC-2 modeling), we documented the mineralogical/geochemical characteristics of the dumped arsenopyrite-rich material and environmental stability of the newly formed secondary minerals. A distinct mineralogical zonation was found (listed based on the distance from the decomposed arsenopyrite): scorodite (locally associated with native sulfur pseudomorphs) plus amorphous ferric arsenate (AFA/pitticite), kaňkite, As-bearing ferric (hydr)oxides and jarosite. Ferric arsenates and ferric (hydr)oxides were found to dissolve and again precipitate from downward migrating As-rich solutions cementing rock fragments. Acidic pore water (pH 3.8) has elevated concentrations of As with an average value of about 2.9 mg L −1 . Aqueous As is highly correlated with pH (R 2 = 0.97, p < 0.001) indicating that incongruent dissolution of ferric arsenates controls dissolved As well as the pH of the percolating waste solution. Arsenic released from the dissolution of ferric arsenates into the pore water is, however, trapped by latter and lower-down precipitating jarosite and especially ferric (hydr)oxides. The efficiency of As sequestration by ferric (hydr)oxides in the waste dump and underlying soil has been found to be very effective, suggesting limited environmental impact of the mine waste dump on the surrounding soil ecosystems. - Highlights: • More than 250 year-old arsenopyrite-rich mine waste dump was studied. • Mineral transformation and the environmental stability of different secondary arsenic mineral phases were assessed. • High efficiency of As

  5. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    Science.gov (United States)

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-06-02

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong [College of Chemistry and chemical engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China); Chang, Qing, E-mail: changqinghust@163.com [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-01-30

    Graphical abstract: - Highlights: • 4-Chlorophenol is dechlorinated over {0 0 1}/{1 0 1} co-exposed TiO{sub 2} nanocrystals. • Photo-electrons are accumulated on {1 0 1} facets due to surface heterojunction. • Fluorine will trap photoelectrons to depress the dechlorination performance. • Sufficient isopropanol promotes the dechlorination activity and selectivity. - Abstract: 4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO{sub 2} nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO{sub 2} to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Ti−F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO{sub 2} nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO{sub 2}, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO{sub 2} P25.

  7. Can environmental innovation facilitate carbon emissions reduction? Evidence from China

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Peng, Yu-Lu; Ma, Chao-Qun; Shen, Bo

    2017-01-01

    Environmental innovation has been recognized as an efficient way of addressing environmental problems. However, how environmental innovation may affect carbon emissions in China and whether the effect may differ among various environmental innovation variables remain to be investigated. Therefore, based on the panel data of China’s 30 provinces during 2000–2013, we use a system generalized method of moments (SGMM) technique to estimate the effect of environmental innovation on carbon emissions in China. Also, we evaluate the effect on carbon emission reduction of China’s initial carbon emissions trading (CET) scheme. Empirical results indicate that, most environmental innovation measures in China reduce carbon emissions effectively. Among the various environmental innovation factors, energy efficiency exerts the most evident effect on carbon emissions abatement in China; meanwhile, resources for innovation and knowledge innovation also play prominent roles in this regard. However, the impact of governmental environmental policies on curbing carbon emissions reduction suffers from a lag effect, which mainly occurred during 2006–2013. Finally, despite the short time of operation and incomplete market mechanism, the pilot CET in China has appeared relatively promising with regard to carbon emissions reduction. - Highlights: • The SGMM is used for the effect of environmental innovation on carbon emissions. • Energy efficiency proves the most effective way to reduce China’s carbon emissions. • Innovation resources and knowledge innovation are conducive for carbon reduction. • The governmental environmental policies have lag effect on carbon reduction. • The effect of China’s initial CET on carbon emissions reduction has appeared.

  8. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  9. Reduction operator for wide-SIMDs reconsidered

    NARCIS (Netherlands)

    Waeijen, L.J.W.; She, D.; Corporaal, H.; He, Y.

    2014-01-01

    It has been shown that wide Single Instruction Multiple Data architectures (wide-SIMDs) can achieve high energy efficiency, especially in domains such as image and vision processing. In these and various other application domains, reduction is a frequently encountered operation, where multiple input

  10. An efficient synthesis of 3 -indolyl substituted pyrido[1,2-a ...

    Indian Academy of Sciences (India)

    antioxidant activity was evaluated by ferric-reducing antioxidant power (FRAP) assay method. Compounds 4c,. 4e, 4l and 4q ... antioxidant activity have been found to posses anti- cancer ... reported to the best of our knowledge. In the radiance.

  11. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  12. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Kinetics of microbial Fe(III) oxyhydroxide reduction : The role of mineral properties

    NARCIS (Netherlands)

    Bonneville, S.C.

    2005-01-01

    In many soils, sediments and groundwaters, ferric iron is a major potential electron acceptor for the oxidation of organic matter. In contrast to other terminal electron acceptors (e.g. nitrate or sulfate), the concentration of Fe3+(aq), is limited by the low solubility of Fe(III) oxyhydroxides

  14. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  15. The relation between energy efficiency and general objectives

    International Nuclear Information System (INIS)

    Holmberg, John; Naessen, Jonas; Sprei, Frances

    2006-09-01

    Three overall objectives for energy efficiency programs are discussed: Reduction of negative externalities, esp. climatic change; Phase-out of nuclear power while limiting electricity imports; and creating welfare gains by correcting market failures of energy efficiency programs (rebound effects)

  16. Quantitative method of viral pollution determination for large volume of water using ferric hydroxide gel impregnated on the surface of glassfibre cartridge

    Directory of Open Access Journals (Sweden)

    Akira Homma

    1974-01-01

    Full Text Available Quantitative method of viral pollution determination for large volume of water using ferric hydroxide gel impregnated on the surface of glassfibre cartridge filter. The use of ferric hydroxide gel, impregnated on the surface of glassfibre cartridge filter enable us to recover 62.5% of virus (Poliomylitis type I, Lsc strain exsogeneously added to 400 liters of tap-water. The virus concentrator system consists of four cartridge filters, in which the three first one are clarifiers, where the contaminants are removed physically, without significant virus loss at this stage. The last cartridge filter is impregnated with ferric hydroxide gel, where the virus is adsorbed. After the required volume of water has been processed, the last filter is removed from the system and the viruses are recovered from the gel, using 1 liter of glycine/NaOH buffer, at pH 11. Immediately the eluate is clarified through series of cellulose acetate membranes mounted in a 142mm Millipore filter. For the second step of virus concentration, HC1 1N is added slowly to the eluate to achieve pH 3.5-4. MgC1, is added to give a final concentration of 0.05M and the viruses are readsorbed on a 0.45 , porosity (HA cellulose acetate membrane, mounted in a 90 mm Millipore filter. The viruses are recovered using the same eluent plus 10% of fetal calf serum, to a final volume of 3 ml. In this way, it was possible to concentrate virus from 400 liters of tap-water, into 1 liter in the first stage of virus concentration and just to 3 ml of final volume in a second step. The efficiency, simplicity and low operational cost, provded by the method, make it feasible to study viral pollution of recreational and tap-water sources.Relata-se o emprego de um concentrador portátil, o qual se mostrou capaz de recuperar 62,5% dos vírus (Polio I, amostra Lsc experimentalmente dispersos em 400 litros de água, os quais foram reduzidos a 3 ml. O sistema concentrador de vírus é composto de quatro

  17. Energy efficiency in Norway (1996). Cross Country Comparison on Energy Efficiency Indicators, Phase 4

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    1998-12-01

    This is the national report for Norway in phase 4 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. Final energy use per Gross Domestic Product (GDP) was reduced by approx 2.3% per year from 1990 to 1996. Doing detailed sector analysis we are applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity. Calculating an aggregate intensity index from the sector intensities gives an average intensity reduction of 0.4% per year. Thereby most of the reduction in final energy per unit GDP are due to structural changes, and not technical improvements. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  18. Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate

    Science.gov (United States)

    Deike, R.G.; Granina, L.; Callender, E.; McGee, J.J.

    1997-01-01

    Phosphate-bearing, ferric iron and siliceous crusts ranging in age from Recent to approximately 65,000 yr B.P. are observed in sediments of Lake Baikal. In younger sediments the crusts are at the base of a spectrum of secondary iron and manganese oxides that accumulate near the sediment/water interface in the zone of positive oxidation potential beneath an oxygenated water column. In areas where the average Quaternary sedimentation rates have been slow (e.g. 0.026 mm/yr), the crusts are more common, and span a wider range of ages. No crusts have been found where the Quaternary sedimentation mode has been deltaic and rapid (0.15 mm/yr). Independent core correlation based on magnetic properties of the sediment suggests that crusts can be correlated over most of Academician Ridge, an area that is particularly sensitive to climatic events affecting the concentration of suspended sediment. These crusts may be indicative of periods of low suspended sediment concentration, which occur during sustained transitions from glacial periods of high detrital input, to interglacial periods of high diatom sedimentation. The crusts are dominated by iron-rich and siliceous amorphous mineral phases, with an FeO:SiO2 by weight of 3:1. Regardless of age or location in the lake the Fe phase always includes Ca, P and Mn. Extensive microprobe data for these four elements recast as normalized elemental weight percent reveal linear trends of Ca:P and Fe:P. With increasing P, Ca also increases such that the two elements maintain a linear relationship passing very close to the origin and with a mean molar Ca:P=0.3 (too low for well-characterized apatite). Conversely, with increasing P, Fe decreases (mean molar Fe:P=3.4). There is no correlation between Mn and P. Molar Fe:P ratios for vivianite (an Fe(II) phosphate mineral observed in sediments closely below some crusts) are clustered around a stoichiometric composition. The covariant increase in Ca:P and the corresponding decrease in Fe:P may

  19. Redox transformations of iron at extremely low pH: fundamental and applied aspects

    OpenAIRE

    Johnson, D. Barrie; Kanao, Tadayoshi; Hedrich, Sabrina

    2012-01-01

    Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially-mediated cycling of iron in extremely acidic environments (pH <3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure a...

  20. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Huang, Liping, E-mail: lipinghuang@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Pan, Yuzhen [College of Chemistry, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2017-01-05

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO{sub 4}{sup −}) and dichromate (Cr{sub 2}O{sub 7}{sup 2−}) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  1. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    International Nuclear Information System (INIS)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-01

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO_4"−) and dichromate (Cr_2O_7"2"−) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  2. Assessment of CO2 emission reduction and identification of CDM potential in a township

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.; Aseri, Tarun Kumar; Jamuwa, Doraj Karnal [Department of Mechanical Engineering, Government Engineering College, Ajmer, Rajasthan (India); Bansal, V. [Department of Mechanical Engineering, Government Mahila Engineering College, Ajmer, Rajasthan (India)

    2012-11-15

    This paper presents the theoretical investigation of CDM opportunity in a township at Jaipur, India. The purpose of study is to identify and analyze the various opportunities viz., installation of solar water heater, energy efficient lighting, energy efficient air conditioners, and energy efficient submersible water pumps in desert coolers and thus achieve a considerable (65.7 %) reduction in GHG emissions. Out of the various opportunities considered, the retrofitting with solar water heater can be recommended for CDM. Though, the retrofitting with energy efficient lighting, energy efficient air conditioners and energy efficient submersible water pumps in desert coolers claimed CO2 emission reduction of 104.84, 25.92, and 36.94 tons per annum, respectively, but the only opportunity which got through CDM was retrofitting with solar water heater claiming 115.70 tCO2 (100 %) emission reductions per annum which could result into net earnings of 115.70 CERs. The simple and discounted payback period for all four project activities are also calculated with and without CDM and tax benefits.

  3. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.

    Science.gov (United States)

    Yoon, Ki Ro; Kim, Dae Sik; Ryu, Won-Hee; Song, Sung Ho; Youn, Doo-Young; Jung, Ji-Won; Jeon, Seokwoo; Park, Yong Joon; Kim, Il-Doo

    2016-08-23

    The development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.0 V at 400 mA g(-1) ), and superior cyclability for over 320 cycles. The outstanding performance arises from (1) the networked LaMnO3 NFs providing ORR/OER sites without severe aggregation, (2) the synergistic coupling of RuO2 NPs for further improving the OER activity and the electrical conductivity on the surface of the LaMnO3 NFs, and (3) the use of GNFs providing a fast electronic pathway as well as improved ORR kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  6. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  7. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  8. Papers of the Canadian Energy Pipeline Association's 7. annual climate change workshop : energy efficiency and greenhouse gas reduction opportunities

    International Nuclear Information System (INIS)

    2003-01-01

    This conference focused on the role that Canadian pipeline companies will play in addressing greenhouse gas emissions. Ninety-five per cent of Canada's oil and gas is transported by pipeline. The Canadian Energy Pipeline Association (CEPA) is a national association representing all the major crude oil and natural gas transportation companies in Canada which operate 100,000 kilometres of pipeline in the country. CEPA's ongoing commitment to climate change includes a commitment to participate in the climate change process, share best management practices, develop energy efficient technology, and position Canadian companies so that they can be part of the solution. It was emphasized that a strong commitment to an effective innovation strategy will be crucial to a successful long term energy policy that meets both economic and environmental objectives. One of the key messages at the conference was that Canada's climate change policies should be consistent with those of the United States, its major trading partner, to ensure that Canada is not placed at a competitive disadvantage within North American and world energy markets. It was also noted that greenhouse gas emissions should be reduced in all consuming and producing sectors of the economy through energy efficiency practices and not through reductions in Canadian industry output for domestic or export markets. Five presentations were indexed separately for inclusion in the database. tabs., figs

  9. Assessment of energy efficiency project financing alternatives for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    WDM Hunt; JC Hail; GP Sullivan

    2000-03-13

    Energy reduction goals for Federal agencies were first established in the National Energy Conservation Policy Act of 1988, and directed 10{percent} reduction in facility energy use based on a 1985 baseline. Since that time, Federal sites have been actively seeking and implementing a wide variety of energy-efficiency measures in facilities across the Federal sector. In the intervening years this energy reduction goal has been progressively increased to 20{percent} through legislation (Public Law 102-486, The Energy Policy Act of 1992) and a number of Executive Orders. Executive Order 13123, Greening the Government Through Efficient Energy management (signed June 3, 1999), further increased the facility energy-efficiency improvement goal from 30{percent} in 2005 to 35{percent} by 2010 relative to the 1985 baseline.

  10. Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink.

    Science.gov (United States)

    Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J

    2009-03-01

    Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P apple juice and is a potentially useful fortificant for liquid food products.

  11. Drag Reduction through Pulsed Plasma Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Drag reduction is a fundamental necessity in all aerodynamic designs, as it directly affects aircraft fuel efficiency which in turn affects endurance, range, and...

  12. Equating Efficiency with Reduction: A Self-Deception in Energy Policy

    DEFF Research Database (Denmark)

    Wilhite, Harold; Nørgaard, Jørgen

    2004-01-01

    power, mobility and so on). The policy makers at the centre of the policy discourse on energy sustainability suffer from a form for self-deception which revolves around the equation of ‘efficiency’ with ‘reduction’ and ‘sustainability’, i.e., the untenable contention that technological and market...... and infrastructure for homes, businesses, transport, health and public services, so that it is neither ethical nor even practical to argue for restrictions in overall energy growth in these and other developing countries. This places the onus for deep reductions in energy use on Europe, North America and the other...

  13. Final report. Renewable energy and energy efficiency in Mexico: Barriers and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Ashford, Mike

    2000-09-28

    The report describes the prospects for energy efficiency and greenhouse gas emissions reductions in Mexico, along with renewable energy potential. A methodology for developing emissions baselines is shown, in order to prepare project emissions reductions calculations. An application to the USIJI program was also prepared through this project, for a portfolio of energy efficiency projects.

  14. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fellahi, Ouarda [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique-CRTSE 02, Bd Frantz Fanon, BP. 140, Alger 7 Merveilles (Algeria); Barras, Alexandre [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Pan, Guo-Hui [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dong Nanhu Road, Changchun 130033 (China); Coffinier, Yannick [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Hadjersi, Toufik [Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique-CRTSE 02, Bd Frantz Fanon, BP. 140, Alger 7 Merveilles (Algeria); Maamache, Mustapha [Laboratoire de Physique Quantique et Systèmes Dynamiques, Département de Physique, Université de Sétif, Sétif 19000 (Algeria); Szunerits, Sabine [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); and others

    2016-03-05

    Highlights: • Cr(VI) reduction to Cr(III) using silicon nanowires decorated with Cu nanoparticles. • The reduction takes place at room temperature and neutral pH under visible light. • The photocatalytic reduction was enhanced by addition of adipic or citric acid. - Abstract: We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO{sub 3} aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K{sub 2}Cr{sub 2}O{sub 7} (10{sup −4} M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ > 420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

  15. Large Scale Reduction of Graphite Oxide Project

    Science.gov (United States)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  16. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    Science.gov (United States)

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An experimental study on accelerated fouling of aluminum oxide and ferric oxide particles in internally enhanced tubes

    Energy Technology Data Exchange (ETDEWEB)

    Abedin, Mohammad Zoynal; Kim, Nae Hyun [School of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2016-12-15

    This paper describes the results of accelerated particulate fouling tests performed on three enhanced tubes and a plain tube. The tests were performed using ferric oxide and aluminum oxide as foulant materials. Three enhanced tubes included 25 start, 10 start helically ribbed tubes and a ripple tube. Effects of the water velocity (0.9 to 1.8 m/s) and foulant concentration (750 to 2500 ppm) were investigated. At 750 ppm, the enhanced tubes fouled almost the same as the plain tube for the entire velocity range tested (0.9 to 1.8 m/s). The enhanced tube fouled faster than the plain tube for cases of high concentration combined with low velocities. Of the three enhanced tubes, the 25 start helically ribbed tube fouled faster than the ripple and the 10 start helically ribbed tubes. One thing to be noted is that the fouling concentrations used in the tests are significantly higher than would be expected in commercial heat exchangers. Also, the velocity range investigated is lower than would be expected in heat exchanger operation.

  18. A survey on radon reduction efficiency of zeolite and bentonite in a chamber with artificially elevated radon concentration

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.

    2007-01-01

    Complete text of publication follows. Objective: Zeolite which is made of a special crystalline structure is a naturally occurring mineral group and can be used in radioactive waste management for site remediation /decontamination. There are a wide variety of naturally occurring and synthetic zeolites, each with a unique structure. The cations in zeolite are highly mobile and can be exchanged for other cationic species. On the other hand, bentonite forms from weathering of volcanic ash. This material may be used as an engineering barrier to enclose nuclear waste. In this study, radon reducing properties of zeolite and bentonite have been investigated. Methods: Using radioactive lantern mantle, a radon prone area with radon levels reaching the EPA's action level (200 Bq/m 3 ) was designed. Two sets of identical chambers (cylindrical chambers, diameter 10 cm, height 16 cm) were used in this study. No zeolite/bentonite was used in the 1 st set of the chambers. A thin layer of either zeolite or bentonite powder was applied to the base of the first set of chambers. An unburned radioactive lantern mantle (activity 800 Bq) was placed in all chambers (both sets) to artificially increase the radon level inside the chamber and simulate the condition of a radon prone area. Radon level monitoring was performed by using a PRASSI portable radon gas survey meter. Results: After placing the cap on its place, the radon levels inside the 1 st set of the chambers were 871.9, 770.3, 769.2 and 635.7 Bq/m 3 after 15, 30, 45 and 60 minutes respectively. Zeolite significantly decreased the radon concentration inside the chambers and radon levels were 367.9, 435.4, 399.0 and 435.4 Bq/m 3 after 15, 30, 45 and 60 minutes. The observed reduction in the radon level was statistically significant. As the radon concentrations in identical chambers with Bentonite were 550.7, 526.5, 536.2 and 479.8 Bq/m 3 after 15, 30, 45 and 60 minutes respectively, it is evident that zeolite is more efficient in

  19. Continuous reduction of cyclic adsorbed and desorbed NO{sub x} in diesel emission using nonthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Takuya [Department of Products Engineering and Environmental Management, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-machi, Minamisaitama, Saitama 345-8501 (Japan); Nakaguchi, Harunobu; Kuroki, Tomoyuki [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Okubo, Masaaki, E-mail: mokubo@me.osakafu-u.ac.jp [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)

    2016-05-05

    Highlights: • High-efficiency continuous diesel NO{sub x} reduction method is proposed. • Characteristics of diesel NO{sub x} adsorption and desorption on adsorbent is provided. • Efficiency of NO{sub x} reduction with nonthermal plasma is evaluated. • Efficiency of NO{sub x} reduction with exhaust gas component recirculation is evaluated. • High NO{sub x} removal efficiency equal to only 1.0% penalty of engine power is achieved. - Abstract: Considering the recent stringent regulations governing diesel NO{sub x} emission, an aftertreatment system for the reduction of NO{sub x} in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NO{sub x} adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO{sub x} in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO{sub x} in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO{sub x} in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components’ recirculation (EGCR) achieves NO{sub x} reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO{sub x} removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO{sub 2})/kWh for NO{sub x} removal and continuous NO{sub x} reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5–7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power.

  20. FeCl 3 .nano SiO 2 : An Efficient Heterogeneous Nano Catalyst for ...

    African Journals Online (AJOL)

    dibenzo[a,j]xanthenes and 1,8-dioxo-octahydroxanthenes is described through one-pot condensation of 2-naphthol and dimedone with aryl aldehydes in the presence of nano silica-supported ferric chloride under solvent-free conditions.