WorldWideScience

Sample records for efficient biohydrogen production

  1. Comparison of biohydrogen production processes

    International Nuclear Information System (INIS)

    Manish, S.; Banerjee, Rangan

    2008-01-01

    For hydrogen to be a viable energy carrier, it is important to develop hydrogen generation routes that are renewable like biohydrogen. Hydrogen can be produced biologically by biophotolysis (direct and indirect), photo-fermentation and dark-fermentation or by combination of these processes (such as integration of dark- and photo-fermentation (two-stage process), or biocatalyzed electrolysis, etc.). However, production of hydrogen by these methods at commercial level is not reported in the literature and challenges regarding the process scale up remain. In this scenario net energy analysis (NEA) can provide a tool for establishing the viability of different methods before scaling up. The analysis can also be used to set targets for various process and design parameters for bio-hydrogen production. In this paper, four biohydrogen production processes (dark-fermentation, photo-fermentation, two-stage process and biocatalyzed electrolysis) utilizing sugarcane juice as the carbon source, are compared with base case method steam methane reforming (SMR) on the basis of net energy ratio, energy efficiency and greenhouse gas (GHG) emissions. It was found that when by-products are not considered, the efficiencies of biological hydrogen processes are lower than that of SMR. However, these processes reduce GHG emissions and non-renewable energy use by 57-73% and 65-79%, respectively, as compared to the SMR process. Efficiencies of biohydrogen processes increase significantly when by-products are considered hence by-products removal and utilization is an important issue in biological hydrogen production. (author)

  2. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  3. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  4. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  5. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  7. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  8. Improved biohydrogen production and treatment of pulp and paper mill effluent through ultrasonication pretreatment of wastewater

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2015-01-01

    Highlights: • Ultrasonication facilitated the reuse of PPME in biohydrogen production. • Ultrasonication at an amplitude of 60% for 45 min produced the highest biohydrogen. • Ultrasonication increased the solubilization of PPME. • Higher net savings were obtained in pretreated PPME compared to raw PPME. - Abstract: Pulp and paper mill effluent (PPME), a rich cellulosic material, was found to have great potential for biohydrogen production through a photofermentation process. However, pretreatments were needed for degrading the complex structure of PPME before biohydrogen production. The aim of this study was to gain further insight into the effect of an ultrasonication process on PPME as a pretreatment method and on photofermentative biohydrogen production using Rhodobacter sphaeroides NCIMB. The ultrasonication amplitudes and times were varied between 30–90% and 15–60 min, respectively, and no dilution or nutrient supplementation was introduced during the biohydrogen production process. A higher biohydrogen yield, rate, light efficiency and COD removal efficiency were attained in conditions using ultrasonicated PPME. Among these different pretreatment conditions, PPME with ultrasonication pretreatment employing an amplitude of 60% and time of 45 min (A60:T45) gave the highest yield and rate of 5.77 mL H_2/mL medium and 0.077 mL H_2/mL h, respectively, while the raw PPME without ultrasonication showed a significantly lower yield and rate of 1.10 mL H_2/mL medium and 0.015 mL H_2/mL h, respectively. The results of this study demonstrated the potential of using ultrasonication as a pretreatment for PPME because the yield and rate of biohydrogen production were highly enhanced compared to the raw PPME. Economic analysis was also performed in this study, and in comparison with raw PPME, the highest net saving was $0.2132 for A60:T45.

  9. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3.

    Science.gov (United States)

    Patel, Anil Kumar; Debroy, Arundhati; Sharma, Sandeep; Saini, Reetu; Mathur, Anshu; Gupta, Ravi; Tuli, Deepak Kumar

    2015-01-01

    Hydrogen producing bacteria IODB-O3 was isolated from sludge and identified as Clostridium sp. by 16S rDNA gene analysis. In this study, biohydrogen production process was developed using low-cost agro-waste. Maximum H2 was produced at 37°C and pH 8.5. Maximum H2 yield was obtained 2.54±0.2mol-H2/mol-reducing sugar from wheat straw pre-hydrolysate (WSPH) and 2.61±0.1mol-H2/mol-reducing sugar from pre-treated wheat straw enzymatic-hydrolysate (WSEH). The cumulative H2 production (ml/L), 3680±105 and 3270±100, H2 production rate (ml/L/h), 153±5 and 136±5, and specific H2 production (ml/g/h), 511±5 and 681±10 with WSPH and WSEH were obtained, respectively. Biomass pre-treatment via steam-explosion generates ample amount of WSPH which remains unutilized for bioethanol production due to non-availability of efficient C5-fermenting microorganisms. This study shows that Clostridium sp. IODB-O3 is capable of utilizing WSPH efficiently for biohydrogen production. This would lead to reduced economic constrain on the overall cellulosic ethanol process and also establish a sustainable biohydrogen production process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  11. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  12. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  14. Start up study of UASB reactor treating press mud for biohydrogen production

    International Nuclear Information System (INIS)

    Radjaram, B.; Saravanane, R.

    2011-01-01

    Anaerobic digestion of press mud mixed with water for biohydrogen production was performed in continuous fed UASB bioreactor for 120 days. Experiment was conducted by maintaining constant HRT of 30 h and the volume of biohydrogen evolved daily was monitored. Various parameters like COD, VFA, Alkalinity, EC, Volatile solids, pH with respect to biohydrogen production were monitored at regular interval of time. SBPR was 10.98 ml g -1 COD reduced d -1 and 12.77 ml g -1 VS reduced d -1 on peak yield of biohydrogen. COD reduction was above 70 ± 7%. Maximum gas yield was on the 78th day to 2240 ml d -1 . The aim of the experiment is to study the startup process of UASB reactor for biohydrogen production by anaerobic fermentation of press mud. The inoculum for the process is cow dung and water digested in anaerobic condition for 30 days with municipal sewage sludge. The study explores the viability of biohydrogen production from press mud which is a renewable form of energy to supplement the global energy crisis. -- Highlights: → Feasibility of biohydrogen production from press mud was explored in this study. The gas yield was maximum on the 78th day to 2240 ml d -1 with H 2 % of 52-59%. Biohydrogen yield was about 890 ml kg -1 press mud added d -1 . Press mud is identified as an excellent potential waste to tap energy.

  15. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  16. Improving photofermentative biohydrogen production by using intermittent ultrasonication and combined industrial effluents from palm oil, pulp and paper mills

    International Nuclear Information System (INIS)

    Budiman, Pretty Mori; Wu, Ta Yeong; Ramanan, Ramakrishnan Nagasundara; Md Jahim, Jamaliah

    2017-01-01

    Highlights: • Intermittent ultrasonication onto broth improved biohydrogen production. • A20T10 treatment produced 14.438 mL H_2/mL_m_e_d_i_u_m with 7.412% light efficiency. • Excessive ultrasonication (>306.1 J/mL) inhibited biohydrogen production. - Abstract: An ultrasonication technique was applied intermittently onto photofermentation broth during the first six hours of photofermentation to improve biohydrogen production by using Rhodobacter sphaeroides NCIMB8253. In this research, photofermentation broth consisted of a combination of palm oil (25%, v/v), pulp and paper (75%, v/v) mill effluents as well as liquid inoculum. The effects of amplitude (10, 20 and 30%, A) and ultrasonication duration (5, 10 and 15 min, T) were investigated in terms of their influences on photofermentative biohydrogen yield and total chemical oxygen demand (COD_t_o_t_a_l) removal. The recommended ultrasonication parameters were found at the middle range of amplitude and duration (A20T10). Using A20T10 intermittent treatment, the production of biohydrogen could be maximized up to 14.438 mL H_2/mL_m_e_d_i_u_m with a COD_t_o_t_a_l removal and light efficiency of 52.2% and 7.412%, respectively. By comparing the treatment without intermittent ultrasonication, an increase of biohydrogen yield by 44.6% was achieved in A20T10 treatment. A total energy input of 306.1 J/mL (A20T10 treatment) was supplied to improve substrate consumption and light distribution during the photofermentation, which led to the increase of biohydrogen yield.

  17. Biohydrogen Production from Glycerol using Thermotoga spp

    NARCIS (Netherlands)

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium,

  18. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bioelectrochemical Systems for Indirect Biohydrogen Production

    KAUST Repository

    Regan, John M.; Yan, Hengjing

    2014-01-01

    by exoelectrogens at the anode. As an indirect approach to biohydrogen production, these systems are not subject to the hydrogen yield constraints of fermentative processes and have been proven to work with virtually any biodegradable organic substrate

  20. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  1. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  2. Bioelectrochemical Systems for Indirect Biohydrogen Production

    KAUST Repository

    Regan, John M.

    2014-01-01

    Bioelectrochemical systems involve the use of exoelectrogenic (i.e., anode-reducing) microbes to produce current in conjunction with the oxidation of reduced compounds. This current can be used directly for power in a microbial fuel cell, but there are alternate uses of this current. One such alternative is the production of hydrogen in a microbial electrolysis cell (MEC), which accomplishes cathodic proton reduction with a slight applied potential by exploiting the low redox potential produced by exoelectrogens at the anode. As an indirect approach to biohydrogen production, these systems are not subject to the hydrogen yield constraints of fermentative processes and have been proven to work with virtually any biodegradable organic substrate. With continued advancements in reactor design to reduce the system internal resistance, increase the specific surface area for anode biofilm development, and decrease the material costs, MECs may emerge as a viable alternative technology for biohydrogen production. Moreover, these systems can also incorporate other value-added functionalities for applications in waste treatment, desalination, and bioremediation.

  3. High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge

    International Nuclear Information System (INIS)

    Wong, Y.M.; Juan, J.C.; Ting, Adeline; Wu, T.Y.

    2014-01-01

    Bio-hydrogen is a promising sustainable energy to replace fossil fuels. This study investigated bio-H 2 production from the inoculum of heat-pretreated landfill leachate sludge using glucose as model substrate. The seed sludge pretreated at 65 °C showed the highest amount of H 2 at the optimum condition of pH 6 and 37 °C. The maximum H 2 yield estimated by the modified Gompertz model was 6.43 mol H 2 /mol glucose. The high efficient of H 2 production is thermodynamically feasible with the Gibbs free energy of −34 kJ/mol. This study reveals that pretreated landfill leachate sludge has considerable potential for H 2 production. - Highlights: • Heat retreated landfill leachate sludge revealed high efficient H 2 production. • High efficient H 2 yield, 6.4 mol H 2 /mol glucose. • The synergisms between H 2 -producing bacteria may responsible for the high H 2 yield. • High H 2 yield is thermodynamically feasible with Gibbs free energy of −34 kJ/mol

  4. Biohydrogen production: prospects and limitations to practical application

    Energy Technology Data Exchange (ETDEWEB)

    Levin, D.B. [Univ. of Victoria, Dept. of Biology and Inst. for Integrated Energy Systems, Victoria, British Columbia (Canada); Pitt, L.; Love, M. [Univ. of Victoria, Inst. for Integrated Energy Systems, Victoria, British Columbia (Canada)

    2003-07-01

    Hydrogen may be produced by a number of processes, including electrolysis of water, thermocatalytic reformation of hydrogen rich organic compounds, and biological processes. Currently, hydrogen is produced, almost exclusively, by electrolysis of water or by steam reformation of methane. Biological production of hydrogen (Biohydrogen) technologies provide a wide range of approaches to generate hydrogen, including Direct biophotolysis, Indirect Biophotolysis, Photo-fermentations, and Dark-fermentation. The practical application of these technologies to every day energy problems, however, is unclear. In order to assess which biohydrogen systems may be practical when combined with fuel cell technologies, we have calculated the size of biohydrogen bioreactors that would be required to power Proton Exchange Membrane (PEM) Fuel Cells of various sizes. Our analysis suggests that light-driven biohydrogen systems (Direct Photolysis, Indirect Photolysis, and Photo-fermentation) do not produce H{sub 2} at rates that are sufficient to power PEMFCs of sufficient size to be of practical use. Thermophilic and extreme thermophilic biohydrogen systems would require very large bioreactors (in the range of approximately 2900 L to 14,600 L) to provide sufficient H{sub 2} to power PEMFCs of 1.5 kW to 5.0 kW, respectively. Some Dark-fermentation systems, however, appear promising. Bioreactors of 500 L and 1000 L, designed so that H{sub 2} is rapidly removed from the culture medium, would be sufficient to power PEMFCs of 2.5 kW and 5.0 kW, respectively. Further research and development aimed at increasing rates of synthesis and final yields of H{sub 2} are essential if biohydrogen systems are to be of practical use. (author)

  5. Biohydrogen production: prospects and limitations to practical application

    International Nuclear Information System (INIS)

    Levin, D.B.; Pitt, L.; Love, M.

    2003-01-01

    Hydrogen may be produced by a number of processes, including electrolysis of water, thermocatalytic reformation of hydrogen rich organic compounds, and biological processes. Currently, hydrogen is produced, almost exclusively, by electrolysis of water or by steam reformation of methane. Biological production of hydrogen (Biohydrogen) technologies provide a wide range of approaches to generate hydrogen, including Direct biophotolysis, Indirect Biophotolysis, Photo-fermentations, and Dark-fermentation. The practical application of these technologies to every day energy problems, however, is unclear. In order to assess which biohydrogen systems may be practical when combined with fuel cell technologies, we have calculated the size of biohydrogen bioreactors that would be required to power Proton Exchange Membrane (PEM) Fuel Cells of various sizes. Our analysis suggests that light-driven biohydrogen systems (Direct Photolysis, Indirect Photolysis, and Photo-fermentation) do not produce H 2 at rates that are sufficient to power PEMFCs of sufficient size to be of practical use. Thermophilic and extreme thermophilic biohydrogen systems would require very large bioreactors (in the range of approximately 2900 L to 14,600 L) to provide sufficient H 2 to power PEMFCs of 1.5 kW to 5.0 kW, respectively. Some Dark-fermentation systems, however, appear promising. Bioreactors of 500 L and 1000 L, designed so that H 2 is rapidly removed from the culture medium, would be sufficient to power PEMFCs of 2.5 kW and 5.0 kW, respectively. Further research and development aimed at increasing rates of synthesis and final yields of H 2 are essential if biohydrogen systems are to be of practical use. (author)

  6. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  7. Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak (Malaysia); Zhang, Zhen-Peng [Beijing Enterprises Water Group Limited, BLK 25, No. 3 Minzhuang Road, Beijing 100195 (China); Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue (Singapore); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei (China); Ren, Nanqi; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    Production of biohydrogen using dark fermentation has received much attention owing to the fact that hydrogen can be generated from renewable organics including waste materials. The key to successful application of anaerobic fermentation is to uncouple the liquid retention time and the biomass retention time in the reactor system. Various reactor designs based on biomass retention within the reactor system have been developed. This paper presents our research work on bioreactor designs and operation for biohydrogen production. Comparisons between immobilized-cell systems and suspended-cell systems based on biomass growth in the forms of granule, biofilm and flocs were made. Reactor configurations including column- and tank-based reactors were also assessed. Experimental results indicated that formation of granules or biofilms substantially enhanced biomass retention which was found to be proportional to the hydrogen production rate. Rapid hydrogen-producing culture growth and high organic loading rate might limit the application of biofilm biohydrogen production, since excessive growth of fermentative biomass would result in washout of support carrier. It follows that column-based granular sludge process is a preferred choice of process for continuous biohydrogen production from organic wastewater, indicating maximum hydrogen yield of 1.7 mol-H{sub 2}/mol-glucose and hydrogen production rate of 6.8 L-H{sub 2}/L-reactor h. (author)

  8. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  9. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H-2/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m(3)/kg volatile solids (VS)added, respectively....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus...

  10. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  11. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance

    International Nuclear Information System (INIS)

    Cheng, Jun; Ding, Lingkan; Lin, Richen; Yue, Liangchen; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-01-01

    Highlights: • Microanalyses revealed food waste had more gelatinized organics and less mineral ash. • Mixed food waste and sewage sludge at 5 ratios were used for H_2 and CH_4 co-production. • Highest H_2 yield of 174.6 mL/gVS was achieved when food waste:sewage sludge was 3:1. • Co-fermentation enhanced carbon conversion by strengthening hydrolysis of substrates. • Energy yield rose from 1.9 kJ/gVS in H_2 to 11.3 kJ/gVS in H_2 and CH_4 co-production. - Abstract: The accumulation of increasingly generated food waste and sewage sludge is currently a heavy burden on environment in China. In this study, the physiochemical properties of food waste and sewage sludge were identified using scanning electron microscopy and Fourier transform infrared spectroscopy to investigate the effects on the fermentation performance in the co-fermentation of food waste and sewage sludge for biohydrogen production. The high gelatinized organic components in food waste, the enhanced bioaccessibility due to the dilution of mineral compounds in sewage sludge, and the balanced C/N ratio synergistically improved the fermentative biohydrogen production through the co-fermentation of food waste and sewage sludge at a volatile solids (VS) mix ratio of 3:1. The biohydrogen yield of 174.6 mL/gVS was 49.9% higher than the weighted average calculated from mono-fermentation of food waste and sewage sludge. Co-fermentation also strengthened the hydrolysis and acidogenesis of the mixture, resulting in a total carbon conversion efficiency of 63.3% and an energy conversion efficiency of 56.6% during biohydrogen production. After the second-stage anaerobic digestion of hydrogenogenic effluent, the energy yield from the mixed food waste and sewage sludge significantly increased from 1.9 kJ/gVS in the first-stage biohydrogen production to 11.3 kJ/gVS in the two-stage fermentative biohydrogen and biomethane co-production.

  12. Biohydrogen production from beet molasses by sequential dark and photofermentation

    NARCIS (Netherlands)

    Özgür, E.; Mars, A.E.; Peksel, B.; Louwerse, A.; Yücel, M.; Gündüz, U.; Claassen, P.A.M.; Eroglu, I.

    2010-01-01

    Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile

  13. Biohydrogen production from organic waste and wastewater by dark fermentation. A promising module for renewable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, M.

    2007-07-01

    Fossil fuels are limited and global warming due to increased CO{sub 2}-emissions may lead to worldwide environmental disasters. Therefore energy production from renewable sources is the most important task in the future. In the contribution under consideration, the author reports on biohydrogen production from organic waste and wastewater by dark fermentation.An engineered approach was chosen to get more information about the technical feasibility of a process which has been studied intensively in the current century. The developed test method represents a functional tool for determination of the biohydrogen production potential of a wide variety of different substances. The implementation of the 'glucose equivalent' for estimation of the biohydrogen potential of a certain substrate was a successfull approach. With this parameter, the biohydrogen potential could be evaluated properly without severe influence from the boundary conditions. Within the continuous test trials it could be found that continuous biohydrogen production in a 30 L-scale is feasible without costly regulation and control mechanisms. The further test series conducted in 30 L-scale gave important results for pilot plant design. One main result of the test runs is that it was shown that the control mechanisms could be reduced to a simple pH-regulation by addition of sodium hydroxide. Other parameters like organic loading rate (OLR) and hydraulic retention time (HRT) were clearly more important to ensure a stable continuous process. A HRT of 15-20 hours combined with an OLR of up to 14 kg VS/(d m{sup 3}) resulted in very high hydrogen yields of 2.14-2.56 mol H{sub 2}/mol glucose. Another important result for pilot plant construction was the necessity of input cooling. Due to ambient temperatures in the input vessels the substrate tests failed. Hydrolysis took place in the input vessels, not in the reactors. Gas upgrading by membrane systems was tested as well as post-methanisation or

  14. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  15. Biohydrogen Production from Pineapple Waste: Effect of Substrate Concentration and Acid Pretreatment

    Science.gov (United States)

    Cahyari, K.; Putri, A. M.; Oktaviani, E. D.; Hidayat, M. A.; Norajsha, J. D.

    2018-05-01

    Biohydrogen is the ultimate choice of energy carrier in future due to its superior qualities such as fewer greenhouse gases emission, high energy density (142 kJ/gram), and high energy conversion using a fuel cell. Production of biohydrogen from organic waste e.g. pineapple waste offers a simultaneous solution for renewable energy production and waste management. It is estimated that pineapple cultivation in Indonesia generated more than 1 million ton/year comprising of rotten pineapple fruit, leaves, and stems. Majority of this waste is dumped into landfill area without any treatments which lead to many environmental problems. This research was meant to investigate the utilization of pineapple waste i.e. peel and the core of pineapple fruit and leaves to produce biohydrogen through mesophilic dark fermentation (30°C, 1 atm, pH 5.0). Effect of dilute acid treatment and substrate concentration was particularly investigated in these experiments. Peel and core of pineapple waste were subjected to fermentation at 3 various substrate concentration i.e. 8.8, 17.6 and 26.4-gram VS/liter. Meanwhile, pineapple leaves were pretreated using dilute acid (H2SO4) at 0.2, 0.3 and 0.4 N and followed by dark fermentation. Results show that the highest yield of biohydrogen was obtained at a substrate concentration of 26.4-gram VS/liter both for peel and core of the waste. Pretreatment using dilute acid (H2SO4) 0.3 N might improve fermentation process with a higher yield at 0.8 ml/gram VS. Hydrogen percentage in biogas produced during fermentation process was in the range between 5 – 32% of volume ratio. In summary, it is possible to utilize pineapple waste for production of biohydrogen at an optimum substrate concentration of 26.4-gram VS/liter and acid pretreatment (H2SO4) of 0.3 N.

  16. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m...... improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens...

  17. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  18. Simultaneous Decolorization and Biohydrogen Production from Xylose by Klebsiella oxytoca GS-4-08 in the Presence of Azo Dyes with Sulfonate and Carboxyl Groups

    Science.gov (United States)

    Cao, Ming-yue; Wang, Peng-tao; Wang, Shi; Yue, Ying-rong; Yuan, Wen-duo; Qiao, Wei-chuan; Wang, Fei

    2017-01-01

    ABSTRACT Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter−1 of xylose as the substrate, a maximum xylose utilization rate (URxyl) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H2 mol of xylose−1, respectively, were obtained. Biohydrogen kinetics and electron equivalent (e− equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes. IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such

  19. Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Ng, Boon Junn; Juan, Joon Ching; Md Jahim, Jamaliah

    2016-01-01

    Highlights: • Ultrasonication pretreatment on R. sphaeroides enhanced biohydrogen production. • Pretreatment using amplitude 30% for 10 min gave the highest biohydrogen yield. • Pretreatment using amplitude 45% for 15 min inhibited biohydrogen production. - Abstract: Pulp and paper industry is a water-intensive industry. This industry commonly produces considerable amount of effluent, especially from virgin raw materials processing. The effluent, namely pulp and paper mill effluent has the potential to adversely affect the receiving watercourses. However, the nutrients in the pulp and paper mill effluent could be reused as a substrate in biohydrogen production. In this study, photofermentative biohydrogen production was investigated using Rhodobacter sphaeroides and pulp and paper mill effluent as a substrate. An application of low power ultrasound on R. sphaeroides was predicted to increase photofermentative biohydrogen production but excessive ultrasound effects might inhibit the production due to possible cell disruption. Hence, various ultrasonication duration (5, 10 and 15 min) and amplitude (15%, 30% and 45%) were applied on the bacteria to determine the recommended ultrasonication conditions for improving biohydrogen production. The recommended conditions were operated at ultrasonication amplitude and duration of 30% and 10 min, respectively. A maximum biohydrogen yield of 9.62 mL bioH_2/mL medium was obtained under this condition, which was 66.7% higher than the result obtained using R. sphaeroides without undergoing ultrasonication (control). The light efficiency and cell concentration were increased by 67% and 150%, respectively, using ultrasonication amplitude and duration of 30% and 10 min, respectively as compared to the control. The present results demonstrated that moderate power of ultrasonication applied on R. sphaeroides was an effective method for enhancing photofermentative biohydrogen production using raw pulp and paper mill effluent as a

  20. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  1. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...

  2. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmidevi, Rajendran; Muthukumar, Karuppan [Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University Chennai, Chennai 600 025 (India)

    2010-04-15

    Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8-2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H{sub 2}/mol sugar and specific hydrogen production rate of 225 mmol of H{sub 2}/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production. (author)

  4. Enhancement of Biohydrogen Production via pH Variation using Molasses as Feedstock in an Attached Growth System

    Science.gov (United States)

    Che Zuhar, C. N. S.; Lutpi, N. A.; Idris, N.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    In this study, mesophilic biohydrogen production by a mixed culture, obtained from a continuous anaerobic reactor treating molasses effluent from sugarcane bagasse, was improved by using granular activated carbon (GAC) as the carrier material. A series of batch fermentation were performed at 37°C by feeding the anaerobic sludge bacteria with molasses to determine the effect of initial pH in the range of 5.5 to 7.5, and the effect of repeated batch cultivation on biohydrogen production. The enrichment of granular activated carbon (GAC) immobilised cells from the repeated batch cultivation were used as immobilised seed culture to obtain the optimal initial pH. The cumulative hydrogen production results from the optimal pH were fitted into modified Gompertz equation in order to obtained the batch profile of biohydrogen production. The optimal hydrogen production was obtained at an initial pH of 5.5 with the maximum hydrogen production (Hm) was found to be 84.14 ml, and maximum hydrogen production rate (Rm) was 3.63 mL/h with hydrogen concentration of 759 ppm. The results showed that the granular activated carbon was successfully enhanced the biohydrogen production by stabilizing the pH and therefore could be used as a carrier material for fermentative hydrogen production using industrial effluent.

  5. A comprehensive and quantitative review of dark fermentative biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rittmann Simon

    2012-08-01

    Full Text Available Abstract Biohydrogen production (BHP can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

  6. Enhancement of Biohydrogen Production via pH Variation using Molasses as Feedstock in an Attached Growth System

    Directory of Open Access Journals (Sweden)

    Che Zuhar C.N.S.

    2018-01-01

    Full Text Available In this study, mesophilic biohydrogen production by a mixed culture, obtained from a continuous anaerobic reactor treating molasses effluent from sugarcane bagasse, was improved by using granular activated carbon (GAC as the carrier material. A series of batch fermentation were performed at 37°C by feeding the anaerobic sludge bacteria with molasses to determine the effect of initial pH in the range of 5.5 to 7.5, and the effect of repeated batch cultivation on biohydrogen production. The enrichment of granular activated carbon (GAC immobilised cells from the repeated batch cultivation were used as immobilised seed culture to obtain the optimal initial pH. The cumulative hydrogen production results from the optimal pH were fitted into modified Gompertz equation in order to obtained the batch profile of biohydrogen production. The optimal hydrogen production was obtained at an initial pH of 5.5 with the maximum hydrogen production (Hm was found to be 84.14 ml, and maximum hydrogen production rate (Rm was 3.63 mL/h with hydrogen concentration of 759 ppm. The results showed that the granular activated carbon was successfully enhanced the biohydrogen production by stabilizing the pH and therefore could be used as a carrier material for fermentative hydrogen production using industrial effluent.

  7. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  8. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    Energy Technology Data Exchange (ETDEWEB)

    Damayanti, Astrilia, E-mail: liasholehasd@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Semarang State University, E1 Building, 2nd floor, Kampus Sekaran, Gunungpati, Semarang 50229 (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281 (Indonesia); Sarto,; Syamsiah, Siti; Sediawan, Wahyudi B. [Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281 (Indonesia)

    2015-12-29

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  9. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    Science.gov (United States)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-12-01

    Enriched-immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  10. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    International Nuclear Information System (INIS)

    Damayanti, Astrilia; Sarto,; Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-01-01

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid

  11. Biohydrogen Production and Kinetic Modeling Using Sediment Microorganisms of Pichavaram Mangroves, India

    Directory of Open Access Journals (Sweden)

    P. Mullai

    2013-01-01

    Full Text Available Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe2+ concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol−1 glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration—10,000 mg L−1, initial pH—6.0, and ferrous sulphate concentration—100 mg L−1, respectively. The addition of trace metal to the medium (100 mg L−1 FeSO4·7H2O enhanced the biohydrogen yield from 2.3 mol H2 mol−1 glucose to 2.6 mol H2 mol−1 glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92.

  12. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  13. Biohydrogen production from co-digestion of high carbohydrate containing food waste and combined primary and secondary sewage sludge

    International Nuclear Information System (INIS)

    Arain, M.; Sahito, R.

    2018-01-01

    In this paper, FW (Food Waste) and SS (Sewage Sludge) were co-digested for biohydrogen production. After characterization both FW and SS were found as better option for biohydrogen production. FW was rich in carbohydrate containing specially rice, which was added as more than 50% and easily hydrolyzable waste. FW is considered as an auxiliary substrate for biohydrogen production and high availability of carbohydrate in FW makes it an important substrate for the production of biohydrogen. On the contrary, SS was rich in protein and has a high pH buffering capacity, which makes it appropriate for codigestion. Adequate supplementation of inorganic salts, the addition of hydrogen producing inoculums, protein enrichment and pH buffering capacity of SS and carbohydrate content in FW increases the hydrogen production potential. Various experiments were performed by considering different mixing ratios like 90:10, 80:20, 70:30, 60:40 and 50:50 of FW and SS. The 50:50 and 90:10 mixing ratio of FW and SS were found as best among all other co-digested ratios. The maximum specific hydrogen yield 106.7 mL/gVS added was obtained at a waste composition of 50:50 followed by 92.35 mL/gVS added from 90:10 of FW to SS. The optimum pH and temperature for operating this process were in the range of 5.5-6.5 and 35°C. The production of clean energy and waste utilization in anaerobic co-digestion process makes biohydrogen generation a promising and novel approach to fulfilling the increasing energy needs as a substitute for fossil fuels. (author)

  14. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste...

  15. The organic agricultural waste as a basic source of biohydrogen production

    Science.gov (United States)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  16. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System

    Science.gov (United States)

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  17. Enterobacter aerogenes metabolites enhance Microcystis aeruginosa biomass recovery for sustainable bioflocculant and biohydrogen production.

    Science.gov (United States)

    Xu, Liang; Zhou, Mo; Ju, Hanyu; Zhang, Zhenxing; Zhang, Jiquan; Sun, Caiyun

    2018-04-07

    We report a recycling bioresource involving harvesting of Microcystis aeruginosa using the bioflocculant (MBF-32) produced by Enterobacter aerogenes followed by the recovery of the harvested M. aeruginosa as the main substrate for the sustainable production of MBF-32 and biohydrogen. The experimental results indicate that the efficiency of bioflocculation exceeded 90% under optimal conditions. The harvested M. aeruginosa was further recycled as the main substrate for the supply of necessary elements. The highest yield (3.6±0.1g/L) of MBF-32 could be obtained from 20g/L of wet biomass of M. aeruginosa with an additional 20g/L of glucose as the extra carbon source. The highest yield of biohydrogen was 35mL of H 2 /g (dw) algal biomass, obtained from 20g/L of wet biomass of M. aeruginosa with an additional 10g/L of glycerol. Transcriptome analyses indicated that MBF-32 was mainly composed of polysaccharide and tyrosine/tryptophan proteins. Furthermore, NADH synthase and polysaccharide export-related genes were found to be up-regulated. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; C. Ji; S. Sattar; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  19. Biohydrogen production from specified risk materials co-digested with cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Li, Chunli; Hao, Xiying; McAllister, Tim A. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Chu, Angus [Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2010-02-15

    Biohydrogen production from the anaerobic digestion of specified risk materials (SRM) co-digested with cattle manure was assessed in a 3 x 5 factorial design. Total organic loading rates (OLR) of 10, 20, and 40 g L{sup -1} volatile solids (VS) were tested using manure:SRM (wt/wt) mixtures of 100:0 (control), 90:10, 80:20, 60:40, and 50:50 using five 2 L continuously stirred biodigesters operating at 55 C. Gas samples were taken daily to determine hydrogen production, and slurry samples were analyzed daily for volatile fatty acid (VFA) concentration, total ammonia nitrogen (TAN), and VS degradation. Hydrogen production (mL g{sup -1} VS fed) varied quadratically according to OLR (P < 0.01), with maximum production at OLR20, while production decreased linearly (P < 0.0001) as SRM concentration increased. Reduced hydrogen production associated with SRM inclusion at >10% VS may be attributed to a rapid increase in TAN (r = -0.55) or other inhibitors such as long chain fatty acids. Reduced hydrogen production (P < 0.01) at OLR40 versus OLR20 may be related to increased rate of VFA accumulation and final VFA concentration (P < 0.001), as well as inhibition due to hydrogen accumulation (P < 0.001). Biohydrogen production from SRM co-digested with cattle manure may not be feasible on an industrial scale due to reduced hydrogen production with increasing levels of SRM. (author)

  20. Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2015-01-01

    Full Text Available BACKGROUND: The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth. Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium. Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation. RESULTS: The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 m

  1. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  2. Bio-hydrogen production by dark fermentation from organic wastes and residues

    DEFF Research Database (Denmark)

    Liu, Dawei

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to......-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen som første trin og bio-methan som andet trin, kunne der opnås 43mL-H2/gVSadded ved 37°C fra...... for en hurtig proces opstart og med højt brint effektivitet. Uden berigelseskulturer fejlede processen, på trods af gentagen genpodning. Optimale procesforhold for brint producerende processer blev bestemt. pH optimum af brintproducerende kulturer var 7.0 og acetat var hæmmende for brintproduktionen...

  3. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  4. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.

    Science.gov (United States)

    Han, Wei; Hu, Yun Yi; Li, Shi Yi; Li, Fei Fei; Tang, Jun Hong

    2016-12-01

    Biohydrogen production from waste bread in a continuous stirred tank reactor (CSTR) was techno-economically assessed. The treating capacity of the H 2 -producing plant was assumed to be 2 ton waste bread per day with lifetime of 10years. Aspen Plus was used to simulate the mass and energy balance of the plant. The total capital investment (TCI), total annual production cost (TAPC) and annual revenue of the plant were USD931020, USD299746/year and USD639920/year, respectively. The unit hydrogen production cost was USD1.34/m 3 H 2 (or USD14.89/kg H 2 ). The payback period and net present value (NPV) of the plant were 4.8years and USD1266654, respectively. Hydrogen price and operators cost were the most important variables on the NPV. It was concluded that biohydrogen production from waste bread in the CSTR was feasible for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Econometric models for biohydrogen development.

    Science.gov (United States)

    Lee, Duu-Hwa; Lee, Duu-Jong; Veziroglu, Ayfer

    2011-09-01

    Biohydrogen is considered as an attractive clean energy source due to its high energy content and environmental-friendly conversion. Analyzing various economic scenarios can help decision makers to optimize development strategies for the biohydrogen sector. This study surveys econometric models of biohydrogen development, including input-out models, life-cycle assessment approach, computable general equilibrium models, linear programming models and impact pathway approach. Fundamentals of each model were briefly reviewed to highlight their advantages and disadvantages. The input-output model and the simplified economic input-output life-cycle assessment model proved most suitable for economic analysis of biohydrogen energy development. A sample analysis using input-output model for forecasting biohydrogen development in the United States is given. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  7. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  9. Survey on the possibility of international cooperation on production technology of biohydrogen; Bio suiso seizo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    R and D on the production technology of hydrogen by biotechnology is one of the effective projects for worldwide energy supply technology and global environment protection technology in the 21st century. The research trend of various institutions promoting R and D on production technology of biohydrogen in the U.S.A. and other countries was surveyed together with the possibility of international cooperation. The production technology of biohydrogen is being watched over the world. Various researches are in promotion corresponding to environmental conditions as follows: search of not only photosynthetic bacteria but also such bacteria with hydrogen productivity as algae and anaerobic bacteria, and the gene engineering study for improving the hydrogen productivity of target microorganisms. All the institutions visited for this survey have great expectations in wide cooperative study in the future. On the possibility of international cooperation on the production technology of biohydrogen, the further precise survey should be promoted for developing more effective technologies based on the previous survey results. 156 refs., 10 tabs.

  10. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  11. AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length

    Directory of Open Access Journals (Sweden)

    D. A. Santos

    2014-09-01

    Full Text Available An anaerobic sequencing batch biofilm reactor (AnSBBR containing immobilized biomass and operating with recirculation of the liquid phase (total liquid volume 4.5 L; treated volume per cycle 1.9 L was used to treat sucrose-based wastewater at 30 ºC and produce biohydrogen. The influence of applied volumetric organic load was studied by varying the influent concentration at 3600 and 5400 mgCOD.L-1 and using cycle lengths of 4, 3 and 2 hours, obtaining in this manner volumetric organic loads of 9, 12, 13.5, 18 and 27 gCOD.L-1.d-1. Different performance indicators were used: productivity and yield of biohydrogen per applied and removed load, reactor stability and efficiency based on the applied and removed organic loads, both in terms of organic matter (measured as COD and carbohydrate (sucrose. The results revealed system stability (32-37% of H2 in biogas during biohydrogen production, as well as substrate consumption (12-19% COD; 97-99% sucrose. Conversion efficiencies decreased when the influent concentration was increased (at constant cycle length and when cycle lengths were reduced (at constant influent concentrations. The best yield was 4.16 mol-H2.kg-SUC-1 (sucrose load at 9 gCOD.L-1.d-1 (3600 mgCOD.L-1 and 4 h with H2 content in the biogas of 36% (64% CO2 and 0% CH4. However, the best specific molar productivity of hydrogen was 8.5 molH2.kgTVS-1.d-1 (32% H2; 68% CO2; 0% CH4, at 18 gCOD.L-1.d-1 (5400 mgCOD.L-1 and 3 h, indicating that the best productivity tends to occur at higher organic loads, as this parameter involves the "biochemical generation" of biogas, whereas the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves "biochemical consumption" of the substrate. The most significant metabolites were ethanol, acetic acid and butyric acid. Microbiological analyses revealed that the biomass contained bacilli and endospore filaments and showed no significant variations in morphology between

  12. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2010-07-01

    not necessary to protect the H2 production process from oxygen. Therefore, we propose that [NiFe]-hydrogenase can be successfully applied as an efficient biohydrogen production tool under micro-aerobic conditions.

  13. Ruminal Biohydrogenation Pattern of Poly-Unsaturated Fatty Acid as Influenced by Dietary Tannin

    Directory of Open Access Journals (Sweden)

    Anuraga Jayanegara

    2013-09-01

    Full Text Available Large amounts of polyunsaturated fatty acids undergo transformation processes in the rumen through microbial biohydrogenation to form fatty acids with higher saturation degree. The respective process explains the high content of saturated fatty acids in products of ruminants and the potential risk of consumers’ health by consuming such products. Various nutritional approaches have been attempted to modulate biohydrogenation process in order to obtain healthier fatty acid profile from consumers’ perspective. The present paper is aimed to review the influence of dietary tannin, a naturally produced plant secondary compound, on the pattern of polyunsaturated fatty acids biohydrogenation occurring in the rumen. The effect of tannin on some key fatty acids involved in biohydrogenation process is presented together with the underlying mechanisms, particularly from up-to-date research results. Accordingly, different form of tannin as well as different level of the application are also discussed.

  14. Effect of Inlet Velocity on Heat Transfer Process in a Novel Photo-Fermentation Biohydrogen Production Bioreactor using Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2014-11-01

    Full Text Available Temperature is one of the most important parameters in biohydrogen production by way of photo-fermentation. Enzymatic hydrolysate of corncob powder was utilized as a substrate. Computational fluid dynamics (CFD modeling was conducted to simulate the temperature distribution in an up-flow baffle photo-bioreactor (UBPB. Commercial software, GAMBIT, was utilized to mesh the photobioreactor geometry, while the software FLUENT was adopted to simulate the heat transfer in the photo-fermentation process. The inlet velocity had a marked impact on heat transfer; the most optimum velocity value was 0.0036 m•s-1 because it had the smallest temperature fluctuation and the most uniform temperature distribution. When the velocity decreased from 0.0036 m•s-1 to 0.0009 m•s-1, more heat was accumulated. The results obtained from the established model were consistent to the actual situation by comparing the simulation values and experimental values. The hydrogen production simulation verified that the novel UBPB was suitable for biohydrogen production by photosynthetic bacteria because of its uniform temperature and lighting distribution, with the serpentine flow pattern also providing mixing without additional energy input, thus enhancing the mass transfer and biohydrogen yield.

  15. Bayesian Computational Approaches for Gene Regulation Studies of Bioethanol and Biohydrogen Production. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, Lee; McCue, Lee Anne; Van Roey, Patrick

    2014-04-17

    The project developed mathematical models and first-version software tools for the understanding of gene regulation across multiple related species. The project lays the foundation for understanding how certain alpha-proteobacterial species control their own genes for bioethanol and biohydrogen production, and sets the stage for exploiting bacteria for the production of fuels. Enabling such alternative sources of fuel is a high priority for the Department of Energy and the public.

  16. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  17. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  18. Utilization of keratin-containing biowaste to produce biohydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Balint, B.; Rakhely, G.; Kovacs, K.L. [Szeged Univ. (Hungary). Dept. of Biotechnology; Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics; Bagi, Z.; Perei, K. [Szeged Univ. (Hungary). Dept. of Biotechnology; Toth, A. [Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics

    2005-12-01

    A two-stage fermentation system was constructed to test and demonstrate the feasibility of biohydrogen generation from keratin-rich biowaste. We isolated a novel aerobic Bacillus strain (Bacillus licheniformis KK1) that displays outstanding keratinolytic activity. The isolated strain was employed to convert keratin-containing biowaste into a fermentation product that is rich in amino acids and peptides. The process was optimized for the second fermentation step, in which the product of keratin fermentation-supplemented with essential minerals-was metabolized by Thermococcus litoralis, an anaerobic hyperthermophilic archaeon. T. litoralis grew on the keratin hydrolysate and produced hydrogen gas as a physiological fermentation byproduct. Hyperthermophilic cells utilized the keratin hydrolysate in a similar way as their standard nutrient, i.e., bacto-peptone. The generalization of the findings to protein-rich waste treatment and production of biohydrogen is discussed and possible means of further improvements are listed. (orig.)

  19. The operation characteristics of biohydrogen production in continuous stirred tank reactor with molasses

    Energy Technology Data Exchange (ETDEWEB)

    Hong, C.; Wei, H.; Jie-xuan, D.; Xin, Y.; Chuan-ping, Y. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering

    2010-07-01

    The anaerobic fermentation biohydrogen production in a continuous stirred tank reactor (CSTR) was investigated as a means for treating molasses wastewater. The research demonstrated that the reactor has the capacity of continuously producing hydrogen in an initial biomass (as volatile suspension solids) of 17.74 g/L, temperature of approximately 35 degrees Celsius, hydraulic retention time of 6 hours. The reactor could begin the ethanol-type fermentation in 12 days and realize stable hydrogen production. The study also showed that the CSTR reactor has a favourable stability even with an organic shock loading. The hydrogen yield and chemical oxygen demand (COD) increased, as did the hydrogen content.

  20. Acid Pretreatment of Sago Wastewater for Biohydrogen Production

    Science.gov (United States)

    Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin

    2018-03-01

    Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).

  1. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  2. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  3. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2012-01-01

    Full Text Available Abstract Background Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine γ-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2 production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions. Results Recombinant E. coli BL21(DE3 co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 μmole photon/(m2·s. We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 μmole photon/(m2·s led to an increase (~1.8-fold in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%. Conclusion Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3 in a light intensity-dependent manner. These results demonstrate that E. coli

  4. The influence of calcium supplementation on immobilised mixed microflora for biohydrogen production

    Science.gov (United States)

    Lutpi, Nabilah Aminah; Shian, Wong Yee; Izhar, Tengku Nuraiti Tengku; Zainol, Noor Ainee; Kiong, Yiek Wee

    2017-04-01

    This study is aim to study the effect of calcium as supplement in attached growth system towards the enhancement of the hydrogen production performance. The effects of calcium ion for thermophilic biohydrogen production were studied by using a mixed culture, from palm oil mill effluent sludge and granular activated carbon (GAC) as the support material. Batch experiments were carried out at 60°C by feeding the anaerobic sludge bacteria with sucrose-containing synthetic medium at an initial pH of 5.5 under anaerobic conditions. The repeated batch cultivation process was conducted by adding different concentration of calcium at range 0.025g/L to 0.15g/L. The results showed that the calcium at 0.1 g/L was the optimal concentration to enhance the fermentative hydrogen production under thermophilic (60°C) conditions.

  5. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2} g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2}/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge

  6. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/ g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2}/ g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2} / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/ g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from

  7. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 /g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 /g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 /g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  8. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 / g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 / g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 / g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  9. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    Science.gov (United States)

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  12. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro

    Directory of Open Access Journals (Sweden)

    Li Dan

    2012-02-01

    Full Text Available Abstract Background Optimization of the unsaturated fatty acid composition of ruminant milk and meat is desirable. Alteration of the milk and fatty acid profile was previously attempted by the management of ruminal microbial biohydrogenation. The aim of this study was to identify the group of ruminal trans-vaccenic acid (trans-11 C18:1, t-VA hydrogenating bacteria by combining enrichment studies in vitro. Methods The enrichment culture growing on t-VA was obtained by successive transfers in medium containing t-VA. Fatty acids were detected by gas chromatograph and changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. Results The growth of ruminal t-VA hydrogenating bacteria was monitored through the process of culture transfer according to the accumulation of stearic acid (C18:0, SA and ratio of the substrate (t-VA transformed to the product (SA. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in t-VA enrichment cultures clustered with t-VA biohydrogenated bacteria within Group B. Conclusions This study provides more insight into the pathway of biohydrogenation. It also may be important to control the production of t-VA, which has metabolic and physiological benefits, through management of ruminal biohydrogenation bacterium.

  13. Continuous biohydrogen production from fruit wastewater at low pH conditions.

    Science.gov (United States)

    Diamantis, Vasileios; Khan, Abid; Ntougias, Spyridon; Stamatelatou, Katerina; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2013-07-01

    Biohydrogen production from a simulated fruit wastewater (soluble COD = 3.17 ± 0.10 g L⁻¹) was carried out in a continuous stirred tank reactor (CSTR) of 2 L operational volume without biomass inoculation, heat pre-treatment or pH adjustment, resulting in a low operational pH (3.75 ± 0.09). The hydraulic retention time (HRT) varied from 15 to 5 h. A strong negative correlation (p CSTR was operated under the same HRT. The biogas hydrogen content was estimated as high as 55.8 ± 2.3 % and 55.4 ± 2.5 % at 25 and 30 °C, respectively. The main fermentation end products were acetic and butyric acids, followed by ethanol. Significant differences (p CSTR at 25 or 30 °C were identified for butyric acid at almost all HRTs examined. Simulation of the acidogenesis process in the CSTR (based on COD and carbon balances) indicated the possible metabolic compounds produced at 25 and 30 °C reactions and provided an adequate fit of the experimental data.

  14. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    Science.gov (United States)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  15. Biohydrogen production from renewable agri-waste blend: Optimization using mixer design

    Energy Technology Data Exchange (ETDEWEB)

    Prakasham, R.S.; Sathish, T.; Brahmaiah, P.; Subba Rao, Ch. [Bioengineering and Environmental Center, Indian Institute of Chemical Technology, Hyderabad 500 607 (India); Sreenivas Rao, R.; Hobbs, Phil J. [North-Wyke Research, Okehampton, Devon EX20 2SB (United Kingdom)

    2009-08-15

    Biohydrogen from untreated mixed renewable agri-waste using buffalo dung compost is reported. Corn husk (CH) supported 25% higher hydrogen (H{sub 2}) production and showed the maximum value (62.38%) with p value (1.2 x 10{sup -6}) revealing its significance at individual and interactive level, respectively, compared to ground nut shell (GNS) and rice husk (RH). Augmented-simplex-lattice design experimentation revealed that a partial supplementation of RH or GNS to CH improves H{sub 2} yield. Multiple-linear-regression analysis indicated that a quadratic model (low p = 0.0023, high F value = 35.99 and R{sup 2}{sub quadratic} = 0.99) was more significant compared to other (linear, cubic and special cubic) models. Acetate and butyrate were accounted >80% of the volatile fatty acids (VFAs). A maximum accumulation of 65.78 ml H{sub 2} g{sup -1} TVS was produced using agri-wastes in the ratio of CH:RH:GNS = 70:16:12. (author)

  16. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  18. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  19. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    Science.gov (United States)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  20. Rumen Biohydrogenation and Microbial Community Changes Upon Early Life Supplementation of 22:6n-3 Enriched Microalgae to Goats

    Directory of Open Access Journals (Sweden)

    Lore Dewanckele

    2018-03-01

    Full Text Available Dietary supplementation of docosahexaenoic acid (DHA-enriched products inhibits the final step of biohydrogenation in the adult rumen, resulting in the accumulation of 18:1 isomers, particularly of trans(t-11 18:1. Occasionally, a shift toward the formation of t10 intermediates at the expense of t11 intermediates can be triggered. However, whether similar impact would occur when supplementing DHA-enriched products during pregnancy or early life remains unknown. Therefore, the current in vivo study aimed to investigate the effect of a nutritional intervention with DHA in the early life of goat kids on rumen biohydrogenation and microbial community. Delivery of DHA was achieved by supplementing DHA-enriched microalgae (DHA Gold either to the maternal diet during pregnancy (prenatal or to the diet of the young offspring (postnatal. At the age of 12 weeks, rumen fluid was sampled for analysis of long-chain fatty acids and microbial community based on bacterial 16S rRNA amplicon sequencing. Postnatal supplementation with DHA-enriched microalgae inhibited the final biohydrogenation step, as observed in adult animals. This resulted particularly in increased ruminal proportions of t11 18:1 rather than a shift to t10 intermediates, suggesting that both young and adult goats might be less prone to dietary induced shifts toward the formation of t10 intermediates, in comparison with cows. Although Butyrivibrio species have been identified as the most important biohydrogenating bacteria, this genus was more abundant when complete biohydrogenation, i.e. 18:0 formation, was inhibited. Blautia abundance was positively correlated with 18:0 accumulation, whereas Lactobacillus spp. Dialister spp. and Bifidobacterium spp. were more abundant in situations with greater t10 accumulation. Extensive comparisons made between current results and literature data indicate that current associations between biohydrogenation intermediates and rumen bacteria in young goats

  1. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  2. Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70 degrees C) - Influence of pH and acetate concentration

    DEFF Research Database (Denmark)

    Liu, Dawei; Min, Booki; Angelidaki, Irini

    2008-01-01

    Hydrogen production from household solid waste (HSW) was performed via dark fermentation by using an extreme-thermophilic mixed culture, and the effect of pH and acetate on the biohydrogen production was investigated. The highest hydrogen production yield was 257 +/- 25 mL/gVS(added) at the optimum...... pH of 7.0. Acetate was proved to be inhibiting the dark fermentation process at neutral pH, which indicates that the inhibition was caused by total acetate concentration not by undissociated acetate. Initial inhibition was detected at acetate concentration of 50 mM, while the hydrogen fermentation...

  3. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  4. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  5. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Ranggina, Dian; Nurtono, Tantular; Widjaja, Arief

    2018-02-01

    The objective of this work is to develop an integrated green process of subcritical water (SCW), enzymatic hydrolysis and fermentation of coconut husk (CCH) to biohydrogen. The maximum sugar yield was obtained at mild severity factor. This was confirmed by the degradation of hemicellulose, cellulose and lignin. The tendency of the changing of sugar yield as a result of increasing severity factor was opposite to the tendency of pH change. It was found that CO 2 gave a different tendency of severity factor compared to N 2 as the pressurizing gas. The result of SEM analysis confirmed the structural changes during SCW pretreatment. This study integrated three steps all of which are green processes which ensured an environmentally friendly process to produce a clean biohydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  7. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  8. Evaluation and simultaneous optimization of bio-hydrogen production using 3 2 factorial design and the desirability function

    Science.gov (United States)

    Cuetos, M. J.; Gómez, X.; Escapa, A.; Morán, A.

    Various mixtures incorporating a simulated organic fraction of municipal solid wastes and blood from a poultry slaughterhouse were used as substrate in a dark fermentation process for the production of hydrogen. The individual and interactive effects of hydraulic retention time (HRT), solid content in the feed (%TS) and proportion of residues (%Blood) on bio-hydrogen production were studied in this work. A central composite design and response surface methodology were employed to determine the optimum conditions for the hydrogen production process. Experimental results were approximated to a second-order model with the principal effects of the three factors considered being statistically significant (P < 0.05). The production of hydrogen obtained from the experimental point at conditions close to best operability was 0.97 L Lr -1 day -1. Moreover, a desirability function was employed in order to optimize the process when a second, methanogenic, phase is coupled with it. In this last case, the optimum conditions lead to a reduction in the production of hydrogen when the optimization process involves the maximization of intermediary products.

  9. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Science.gov (United States)

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  11. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes.

    Science.gov (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-09-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

    International Nuclear Information System (INIS)

    Dasgupta, Chitralekha Nag; Suseela, M.R.; Mandotra, S.K.; Kumar, Pankaj; Pandey, Manish K.; Toppo, Kiran; Lone, J.A.

    2015-01-01

    Highlights: • Chlorella sp. NBRI029 and Scenedesmus sp. NBRI012 shows high biomass productivity. • Scenedesmus sp. NBRI012 shows maximum H 2 evolution in 6th day of fermentation. • Residual biomass after H 2 production contains high lipid content. • Lipid extracted from the residual biomass fulfills various biodiesel properties. - Abstract: Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31 ± 0.11 and 2.62 ± 0.13 g/L respectively) and lipid (244.44 ± 12.3 and 587.38 ± 20.2 mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H 2 (maximum evolution of 17.72% v/v H 2 of total gases) production; it produced H 2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H 2 production was found to increase the lipid content (410.03 ± 18.5 mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214

  13. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass.

    Science.gov (United States)

    Ghimire, Anish; Trably, Eric; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni; Cazier, Elisabeth A; Escudié, Renaud

    2018-01-01

    Production of biohydrogen and related metabolic by-products was investigated in Solid State Dark Fermentation (SSDF) of food waste (FW) and wheat straw (WS). The effect of the total solids (TS) content and H 2 partial pressure (pp H2 ), two of the main operating factors of SSDF, were investigated. Batch tests with FW at 10, 15, 20, 25 and 30% TS showed considerable effects of the TS on metabolites distribution. H 2 production was strongly inhibited for TS contents higher than 15% with a concomitant accumulation of lactic acid and a decrease in substrate conversion. Varying the pp H2 had no significant effect on the conversion products and overall degradation of FW and WS, suggesting that pp H2 was not the main limiting factor in SSDF. This study showed that the conversion of complex substrates by SSDF depends on the substrate type and is limited by the TS content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Analysis of energy consumption and CO{sub 2} emissions of the life cycle of bio-hydrogen applied to the Portuguese road transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Filipa; Baptista, Patricia; Silva, Carla [IDMEC (Portugal). Dept. of Mechanical Engineering

    2010-07-01

    In this work the main objective is to analyze energy consumption and CO{sub 2} emissions of biohydrogen for use in the transportation sector in Portugal. A life cycle assessment will be performed in order to evaluate bio-hydrogen pathways, having biodiesel and conventional fossil diesel as reference. The pathways were production of feedstock, pre-treatment, treatment, compression, distribution and applications. For the well-to-tank analysis the SimaPro 7.1 software and excel tools are used. This study includes not only a well-to-tank analysis but also a tank-to-wheel analysis (using ADVISOR software) estimating hydrogen consumption and electricity consumption of a fuel cell hybrid and a plug-in hybrid. Several bio-hydrogen feedstocks to produce hydrogen through fermentation processes will be considered: potato peels. (orig.)

  15. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  16. Fatty acid oxidation products ('green odour') released from perennial ryegrass following biotic and abiotic stress, potentially have antimicrobial properties against the rumen microbiota resulting in decreased biohydrogenation.

    Science.gov (United States)

    Huws, S A; Scott, M B; Tweed, J K S; Lee, M R F

    2013-11-01

    In this experiment, we investigated the effect of 'green odour' products typical of those released from fresh forage postabiotic and biotic stresses on the rumen microbiota and lipid metabolism. Hydroperoxyoctadecatrienoic acid (HP), a combination of salicylic and jasmonic acid (T), and a combination of both (HPT) were incubated in vitro in the presence of freeze-dried ground silage and rumen fluid, under rumen-like conditions. 16S rRNA (16S cDNA) HaeIII-based terminal restriction fragment length polymorphism-based (T-RFLP) dendrograms, canonical analysis of principal coordinates graphs, peak number and Shanon-Weiner diversity indices show that HP, T and HPT likely had antimicrobial effects on the microbiota compared to control incubations. Following 6 h of in vitro incubation, 15.3% of 18:3n-3 and 4.4% of 18:2n-6 was biohydrogenated in control incubations, compared with 1.3, 9.4 and 8.3% of 18:3n-3 for HP, T and HPT treatments, respectively, with negligible 18:2n-6 biohydrogenation seen. T-RFLP peaks lost due to application of HP, T and HPT likely belonged to as yet uncultured bacteria within numerous genera. Hydroperoxyoctadecatrienoic acid, T and HPT released due to plant stress potentially have an antimicrobial effect on the rumen microbiota, which may explain the decreased biohydrogenation in vitro. These data suggest that these volatile chemicals may be responsible for the higher summer n-3 content of bovine milk. © 2013 The Society for Applied Microbiology.

  17. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    Science.gov (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  19. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control.

    Science.gov (United States)

    Tenca, A; Schievano, A; Perazzolo, F; Adani, F; Oberti, R

    2011-09-01

    Hydrogen production by dark fermentation may suffer of inhibition or instability due to pH deviations from optimality. The co-fermentation of promptly degradable feedstock with alkali-rich materials, such as livestock wastes, may represent a feasible and easy to implement approach to avoid external adjustments of pH. Experiments were designed to investigate the effect of the mixing ratio of fruit-vegetable waste with swine manure with the aim of maximizing biohydrogen production while obtaining process stability through the endogenous alkalinity of manure. Fruit-vegetable/swine manure ratio of 35/65 and HRT of 2d resulted to give the highest production rate of 3.27 ± 0.51 L(H2)L(-1)d(-1), with a corresponding hydrogen yield of 126 ± 22 mL(H2)g(-1)(VS-added) and H2 content in the biogas of 42 ± 5%. At these operating conditions the process exhibited also one of the highest measured stability, with daily productions deviating for less than 14% from the average. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum

    International Nuclear Information System (INIS)

    Ortigueira, Joana; Pinto, Tiago; Gouveia, Luísa; Moura, Patrícia

    2015-01-01

    The biological hydrogen production from Spirogyra sp. biomass was studied in a SBR (sequential batch reactor) equipped with a biogas collecting and storage system. Two acid hydrolysis pre-treatments (1N and 2N H 2 SO 4 ) were applied to the Spirogyra biomass and the subsequent fermentation by Clostridium butyricum DSM 10702 was compared. The 1N and 2N hydrolyzates contained 37.2 and 40.8 g/L of total sugars, respectively, and small amounts of furfural and HMF (hydroxymethylfurfural). These compounds did not inhibit the hydrogen production from crude Spirogyra hydrolyzates. The fermentation was scaled up to a batch operated bioreactor coupled with a collecting system that enabled the subsequent characterization and storage of the biogas produced. The cumulative hydrogen production was similar for both 1N and 2N hydrolyzate, but the hydrogen production rates were 438 and 288 mL/L.h, respectively, suggesting that the 1N hydrolyzate was more suitable for sequential batch fermentation. The SBR with 1N hydrolyzate was operated continuously for 13.5 h in three consecutive batches and the overall hydrogen production rate and yield reached 324 mL/L.h and 2.59 mol/mol, respectively. This corresponds to a potential daily production of 10.4 L H 2 /L Spirogyra hydrolyzate, demonstrating the excellent capability of C. butyricum to produce hydrogen from microalgal biomass. - Highlights: • Production of biohydrogen from crude Spirogyra hydrolyzates. • Set-up of a collecting and storage system for continuous biogas sampling. • The hydrogen production rate is 324 mL/L.h in the SBR (sequential batch reactor). • The SBR produces daily an equivalent to 10.4 L H 2 /L of crude Spirogyra hydrolyzate

  1. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO{sub 2}-free biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Chen, Chun-Yen [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Center for Biosciences and Biotechnology, National Cheng Kung University, Tainan (China)

    2010-10-15

    Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO{sub 2}-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark-photo fermentation was stably operated for nearly 80 days, giving a maximum H{sub 2} yield of 11.61 mol H{sub 2}/mol sucrose and a H{sub 2} production rate of 673.93 ml/h/l. The biogas produced from the sequential dark-photo fermentation (containing ca. 40.0% CO{sub 2}) was directly fed into a microalga culture (Chlorella vulgaris C-C) cultivated at 30 C under 60 {mu}mol/m{sup 2}/s illumination. The CO{sub 2} produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C-C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid. (author)

  2. Application of polymeric membranes in biohydrogen purification and storage

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Peter, Jakub; Žitka, Jan; Bakonyi, P.

    2014-01-01

    Roč. 1, č. 2 (2014), s. 99-105 ISSN 2212-7119 R&D Projects: GA ČR(CZ) GPP106/12/P643 Institutional support: RVO:61389013 Keywords : biohydrogen * hydrogen * membrane Subject RIV: CD - Macromolecular Chemistry

  3. Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wan-Qian; Ren, Nan-Qi; Liu, Bing-Feng; Ding, Jie [State Key Lab of Urban Water Resource and Environ, Harbin Institute of Technology, Harbin 150090 (China); Chen, Zhao-Bo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Wang, Xiang-Jing; Xiang, Wen-Sheng [Research Center of Life Science and Biotechnology, Northeast Agricultural University, Harbin 150030 (China)

    2008-12-15

    The biofilm-based expanded granular sludge bed (EGSB) reactor was developed to treat starch-containing wastewater and simultaneously recovery hydrogen by mixed microbial culture. Granular activated carbon (GAC) was used as the support media. Operating at the temperature of 30 C for over 400 days (data not shown), the EGSB reactor presented high efficiency in hydrogen production and COD removal ability. The maximum hydrogen production rate (HPR) was found to be 1.64 L/L.d under the organic loading rate (OLR) of 1.0 g-starch/L.d, pH of 4.42 and HRT of 4 h. The hydrogen yield (HY) peaked at 0.11 L/g-COD, under the OLR of 0.5 g-starch/L.d, pH of 3.95 and HRT of 8 h. Hydrogen volume content was estimated to be 35-65% of the total biogas. The average COD removal rate was 31.1% under the OLR of 0.125 g-starch/L.d and HRT of 24 h. The main dissolved fermentation products were ethanol, acetate and butyrate. The average attached biofilm concentration was estimated to be 8.26 g/L, which favored hydrogen production and COD removal. It is speculated that the low pH operation in the present system would contribute significantly to lower the cost of alkaline amount required for pH control in the continuous operation, especially in the scale-up biohydrogen producing system. A model, built on the back propagation neural network (BPNN) theory and linear regression techniques, was developed for the simulation of EGSB system performance in the biodegradation of starch synthesis-based wastewater and simultaneous hydrogen production. The model well fitted the laboratory data, and could well simulate the removal of COD and the production of hydrogen in the EGSB reactor. (author)

  4. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  5. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    Science.gov (United States)

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review)

    International Nuclear Information System (INIS)

    Sewsynker-Sukai, Yeshona; Faloye, Funmilayo; Kana, Evariste Bosco Gueguim

    2016-01-01

    In view of the looming energy crisis as a result of depleting fossil fuel resources and environmental concerns from greenhouse gas emissions, the need for sustainable energy sources has secured global attention. Research is currently focused towards renewable sources of energy due to their availability and environmental friendliness. Biofuel production like other bioprocesses is controlled by several process parameters including pH, temperature and substrate concentration; however, the improvement of biofuel production requires a robust process model that accurately relates the effect of input variables to the process output. Artificial neural networks (ANNs) have emerged as a tool for modelling complex, non-linear processes. ANNs are applied in the prediction of various processes; they are useful for virtual experimentations and can potentially enhance bioprocess research and development. In this study, recent findings on the application of ANN for the modelling and optimization of biohydrogen, biogas, biodiesel, microbial fuel cell technology and bioethanol are reviewed. In addition, comparative studies on the modelling efficiency of ANN and other techniques such as the response surface methodology are briefly discussed. The review highlights the efficiency of ANNs as a modelling and optimization tool in biofuel process development

  7. Study on Molasses Concentration from Sugarcanne Bagasse for Biohydrogen Production using Enriched Granular Activated Carbon (GAC) Immobilised Cells by Repeated Batch Cultivation

    Science.gov (United States)

    Idris, Norfatiha; Aminah Lutpi, Nabilah; Ruhaizul Che Ridzuan, Che Mohd; Shian, Wong Yee; Nuraiti Tengku Izhar, Tengku

    2018-03-01

    Repeated batch cultivation is known as most attractive method in improving hydrogen productivity, due to the facts that this approach could minimize the reuse of the cell and the inoculum preparation. In addition, with the combination of attach growth system during the fermentation processes to produce biohydrogen, the density of cells will be increased and the cell washout could be avoided. Therefore, this study aimed to examine the effectiveness of repeated batch cultivation for enrichment of anaerobic mixed culture onto granular activated carbon (GAC) and investigate the effect of molasses concentration during immobilization of mixed culture onto the GAC. The molasses concentration using 50 %, 40 %, 30 %, 20 % and 10 % of diluted molasses were used as feedstock in the fermentation process. The maximum hydrogen production of 60 ml was obtained at 30 % of molasses concentration with 831 ppm of hydrogen concentration. Thus, the kinetic parameter obtained from the batch profiling based on modified Gompertz equation are, Hm= 58 ml for the maximum hydrogen production and Rm= 2.02 ml/h representing the hydrogen production rate.

  8. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 oC)

    International Nuclear Information System (INIS)

    Kotsopoulos, Thomas A.; Fotidis, Ioannis A.; Tsolakis, Nikolaos; Martzopoulos, Gerassimos G.

    2009-01-01

    A continuous stirred tank reactor (CSTR) (750 cm 3 working volume) was operated with pig slurry under hyper-thermophilic (70 o C) temperature for hydrogen production. The hydraulic retention time (HRT) was 24 h and the organic loading rate was 24.9 g d -1 of volatile solid (VS). The inoculum used in the hyper-thermophilic reactor was sludge obtained from a mesophilic methanogenic reactor. The continuous feeding with active biomass (inoculum) from the mesophilic methanogenic reactor was necessary in order to achieve hydrogen production. The hyper-thermophilic reactor started to produce hydrogen after a short adapted period of 4 days. During the steady state period the mean hydrogen yield was 3.65 cm 3 g -1 of volatile solid added. The high operation temperature of the reactor enhanced the hydrolytic activity in pig slurry and increased the volatile fatty acids (VFA) production. The short HRT (24 h) and the hyper-thermophilic temperature applied in the reactor were enough to prevent methanogenesis. No pre-treatment methods or other control methods for preventing methanogenesis were necessary. Hyper-thermophilic hydrogen production was demonstrated for the first time in a CSTR system, fed with pig slurry, using mixed culture. The results indicate that this system is a promising one for biohydrogen production from pig slurry.

  11. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    Directory of Open Access Journals (Sweden)

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  12. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons.

    Science.gov (United States)

    Bakonyi, Péter; Kumar, Gopalakrishnan; Koók, László; Tóth, Gábor; Rózsenberszki, Tamás; Bélafi-Bakó, Katalin; Nemestóthy, Nándor

    2018-03-01

    Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H 2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Feasibility study on the application of rhizosphere microflora of rice for the biohydrogen production from wasted bread

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Tetsuya [Field Production Science Center, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan); Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Matsumoto, Hisami [Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Abe, Jun [AE-Bio, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Morita, Shigenori [Field Production Science Center, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan)

    2009-02-15

    We performed an experiment of continuous anaerobic hydrogen fermentation as a pilot-plant-scale test, in which waste from a bread factory was fermented by microflora of rice rhizosphere origin. The community structure of microflora during anaerobic hydrogen fermentation was analyzed using PCR-DGGE, FISH, and quinone profiles. The relation of those results to hydrogen generation was discussed. Results show that a suitable condition was a reactor temperature of 35 C, with HRT 12-36 h, volume load of 30-70 kg-COD{sub Cr}/m{sup 3} day, and maximum hydrogen production rate of 1.30 mol-H{sub 2}/mol-hexose. Regarding characteristics of microflora during fermentation, PCR-DGGE results show specific 16S rDNA band patterns; Megasphaera elsdenii and Clostridium sp. of the hydrogen-producing bacteria were identified. M. elsdenii was detected throughout the fermentation period, while Clostridium sp. of hydrogen-producing bacteria was detected on the 46th day. Furthermore, FISH revealed large amounts of Clostridium spp. in the sample. The quinone profile showed that the dominant molecular species of quinone is MK-7. Because Clostridium spp. belong to MK-7, results suggest that the quinone profile result agrees with the results of PCR-DGGE and FISH. Microflora in the rhizosphere of rice plants can be a possible resource for effective bacteria of biohydrogen production. (author)

  14. Biohydrogen recovery and purification by gas separation method

    Czech Academy of Sciences Publication Activity Database

    Búcsú, D.; Pientka, Zbyněk; Kovács, S.; Bélafi-Bakó, K.

    2006-01-01

    Roč. 200, 1-3 (2006), s. 227-229 ISSN 0011-9164. [Conference Euromembrane. Giardini Naxos - Taormina, 24.09.2006-28.09.2006] R&D Projects: GA ČR GA203/06/1207 Grant - others:Czech-Hungarian Bilateral Research Programme(HU) CZN-16/2005 Institutional research plan: CEZ:AV0Z40500505 Keywords : biohydrogen * gas separation membranes * polymer membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.917, year: 2006

  15. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.

    Science.gov (United States)

    Wirth, Roland; Lakatos, Gergely; Maróti, Gergely; Bagi, Zoltán; Minárovics, János; Nagy, Katalin; Kondorosi, Éva; Rákhely, Gábor; Kovács, Kornél L

    2015-01-01

    The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable

  16. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    laboratory results, with a typical hydrogen and methane specific productivity of 2.2 and 0.5 Nm3/m3reactor per day, in the first and second stage of the plant respectively. At our best knowledge, this plant is one of the very first prototypes producing biohydrogen at farm scale, and it represents a distributed, small scale demonstration to obtain hydrogen from renewable waste-sources.

  17. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste

    Science.gov (United States)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.

    2016-11-01

    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  18. Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures.

    Science.gov (United States)

    Li, Yameng; Zhang, Zhiping; Zhu, Shengnan; Zhang, Huan; Zhang, Yang; Zhang, Tian; Zhang, Quanguo

    2018-01-01

    Taken common agricultural residues as substrate, dark fermentation bio-hydrogen yield capacity from asynchronous saccharification and fermentation (ASF) and simultaneous saccharification and fermentation (SSF) was investigated. The highest hydrogen yield of 472.75mL was achieved with corncob using ASF. Hydrogen yield from corn straw, rice straw, corncob and sorghum stalk by SSF were 20.54%,10.31%,13.99% and 5.92% higher than ASF, respectively. The experimental data fitted well to the modified Gompertz model. SSF offered a distinct advantage over ASF with respect to reducing overall process time (60h of SSF, 108h of ASF). Meanwhile, SSF performed better than SSF with respect to shortening the lag-stage. The major metabolites of anaerobic fermentation hydrogen production by ASF and SSF were butyric acid and acetic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Temperature and duration of heating of sunflower oil affect ruminal biohydrogenation of linoleic acid in vitro

    OpenAIRE

    Privé , Florence; Combes, Sylvie; Cauquil, Laurent; Farizon, Yves; Enjalbert, Francis; Troegeler-Meynadier, Annabelle

    2010-01-01

    Sunflower oil heated at 110 or 150°C for 1, 3, or 6 h was incubated with ruminal content in order to investigate the effects of temperature and duration of heating of oil on the ruminal biohydrogenation of linoleic acid in vitro. When increased, these 2 parameters acted together to decrease the disappearance of linoleic acid in the media by inhibiting the isomerization of linoleic acid, which led to a decrease in conjugated linoleic acids and trans-C18:1 production. Nevertheless, trans-10 iso...

  20. Production of Bio-Hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-02-01

    Full Text Available Waste cooking oil with a high-acid-value (28.7 mg-KOH/g-oil was converted to bio-hydrogenated diesel by a hydrotreatment process over supported Ru catalysts. The standard reaction temperature, H2 pressure, liquid hourly space velocity (LHSV, and H2/oil ratio were 350 °C, 2 MPa, 15.2 h–1, and 400 mL/mL, respectively. Both the free fatty acids and the triglycerides in the waste cooking oil were deoxygenated at the same time to form hydrocarbons in the hydrotreatment process. The predominant liquid hydrocarbon products (98.9 wt% were n-C18H38, n-C17H36, n-C16H34, and n-C15H32 when a Ru/SiO2 catalyst was used. These long chain normal hydrocarbons had high melting points and gave the liquid hydrocarbon product over Ru/SiO2 a high pour point of 20 °C. Ru/H-Y was not suitable for producing diesel from waste cooking oil because it formed a large amount of C5–C10 gasoline-ranged paraffins on the strong acid sites of HY. When Al-polyoxocation-pillared montmorillonite (Al13-Mont was used as a support for the Ru catalyst, the pour point of the liquid hydrocarbon product decreased to −15 °C with the conversion of a significant amount of C15–C18 n-paraffins to iso-paraffins and light paraffins on the weak acid sites of Al13-Mont. The liquid product over Ru/Al13-Mont can be expected to give a green diesel for current diesel engines because its chemical composition and physical properties are similar to those of commercial petro-diesel. A relatively large amount of H2 was consumed in the hydrogenation of unsaturated C=C bonds and the deoxygenation of C=O bonds in the hydrotreatment process. A sulfided Ni-Mo/Al13-Mont catalyst also produced bio-hydrogenated diesel by the hydrotreatment process but it showed slow deactivation during the reaction due to loss of sulfur. In contrast, Ru/Al13-Mont did not show catalyst deactivation in the hydrotreatment of waste cooking oil after 72 h on-stream because the waste cooking oil was not found to contain sulfur

  1. Hydrogen production by Escherichia coli {delta}hycA {delta}lacI using cheese whey as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Colunga, Luis Manuel; Ordonez, Leandro G.; De Leon-Rodriguez, Antonio (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Col. Lomas 4a secc. CP 78216, San Luis Potosi, SLP. Mexico); Razo-Flores, Elias; Alatriste-Mondragon, Felipe (Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Col. Lomas 4a secc. CP 78216, San Luis Potosi, SLP. Mexico)

    2010-01-15

    This study reports a fermentative hydrogen production by Escherichia coli using cheese whey as substrate. To improve the biohydrogen production, an E. coli {delta}hycA {delta}lacI strain (WDHL) was constructed. The absence of hycA and lacI genes had a positive effect on the biohydrogen production. The strain produced 22% more biohydrogen in a shorter time than the wild-type (WT) strain. A Box-Behnken experimental design was used to optimize pH, temperature and substrate concentration. The optimal initial conditions for biohydrogen production by WDHL strain were pH 7.5, 37 C and 20 g/L of cheese whey. The specific production rate was improved from 3.29 mL H{sub 2}/optical density at 600 nm (OD{sub 600nm}) unit-h produced by WDHL under non-optimal conditions to 5.88 mL H{sub 2}/OD{sub 600nm} unit-h under optimal conditions. Using optimal initial conditions, galactose can be metabolized by WDHL strain. The maximum yield obtained was 2.74 mol H{sub 2}/mol lactose consumed, which is comparable with the yield reached in other hydrogen production processes with Clostridium sp. or mixed cultures. (author)

  2. An integrated system for hydrogen and methane production during landfill leachate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Civil and Environmental Engineering Department, University of Western Ontario, London, Ontario (Canada)

    2010-05-15

    The patent-pending integrated waste-to-energy system comprises both a novel biohydrogen reactor with a gravity settler (Biohydrogenator), followed by a second stage conventional anaerobic digester for the production of methane gas. This chemical-free process has been tested with a synthetic wastewater/leachate solution, and was operated at 37 C for 45 d. The biohydrogenator (system (A), stage 1) steadily produced hydrogen with no methane during the experimental period. The maximum hydrogen yield was 400 mL H{sub 2}/g glucose with an average of 345 mL H{sub 2}/g glucose, as compared to 141 and 118 mL H{sub 2}/g glucose for two consecutive runs done in parallel using a conventional continuously stirred tank reactor (CSTR, System (B)). Decoupling of the solids retention time (SRT) from the hydraulic retention time (HRT) using the gravity settler showed a marked improvement in performance, with the maximum and average hydrogen production rates in system (A) of 22 and 19 L H{sub 2}/d, as compared with 2-7 L H{sub 2}/d in the CSTR resulting in a maximum yield of 2.8 mol H{sub 2}/mol glucose much higher than the 1.1-1.3 mol H{sub 2}/mol glucose observed in the CSTR. Furthermore, while the CSTR collapsed in 10-15 d due to biomass washout, the biohydrogenator continued stable operation for the 45 d reported here and beyond. The methane yield for the second stage in system (A) approached a maximum value of 426 mL CH{sub 4}/gCOD removed, while an overall chemical oxygen demand (COD) removal efficiency of 94% was achieved in system (A). (author)

  3. Advances in biohydrogen production processes: An approach towards commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal (India)

    2009-09-15

    Biological H{sub 2} production has an edge over its chemical counterpart mainly because it is environmentally benign. Despite having simpler technology, higher evolution rate of H{sub 2} and the wide spectrum of substrate utilization, the major deterrent of anaerobic dark fermentation process stems from its lower achievable yields. Theoretically, the maximum H{sub 2} yield is 4 mol H{sub 2}/mol glucose when glucose is completely metabolized to acetate or acetone in the anaerobic process. But it is somewhat difficult to achieve the complete degradation of glucose to carbon dioxide and H{sub 2} through anaerobic dark fermentation. Moreover, this yield appears too low to be economically viable as an alternative to the existing chemical or electrochemical processes of hydrogen generation. Intensive research studies have already been carried out on the advancement of these processes, such as the development of genetically modified microorganism, improvement of the reactor designs, use of different solid matrices for the immobilization of whole cells, development of two-stage processes, and higher H{sub 2} production rates. Maximum H{sub 2} yield is found to be 5.1 mol H{sub 2}/mol glucose. However, major bottlenecks for the commercialization of these processes are lower H{sub 2} yield and rate of H{sub 2} production. Competent microbial cultures are required to handle waste materials efficiently, which are usually complex in nature. This will serve dual purposes: clean energy generation and bioremediation. Scale-up studies on fermentative H{sub 2} production processes have been done successfully. Pilot plant trials of the photo-fermentation processes require more attention. Use of cheaper raw materials and efficient biological H{sub 2} production processes will surely make them more competitive with the conventional H{sub 2} generation processes in near future. (author)

  4. Continuous thermophilic biohydrogen production in packed bed reactor

    International Nuclear Information System (INIS)

    Roy, Shantonu; Vishnuvardhan, M.; Das, Debabrata

    2014-01-01

    Highlights: • Continuous H 2 production in whole cell immobilized system was compared with CSTR. • Suitability of environment friendly support matrix for immobilization of whole cells was explored. • Pack bed reactor showed higher stability as compared to CSTR at lower HRTs. • Flow cytometry study showed the influence of recycle ratio on viability of cells. • Novel approach to find out the effect of NADH/NAD + ratio during H 2 production. - Abstract: The present research work deals with the performance of packed bed reactor for continuous H 2 production using cane molasses as a carbon source. Maximum H 2 production rate of 1.7 L L −1 h −1 was observed at a dilution rate and recycle ratio of 0.8 h −1 and 0.6, respectively which was corresponding to the lowest NADH/NAD + ratio. This suggests that the utilization of NADH pool for H 2 and metabolite production might lead to decrement in NADH/NAD + ratio. Thus NADH/NAD + ratio show inverse relation with hydrogen production. The substrate degradation kinetics was investigated as a function of flow rate considering the external film diffusion model. At a flow rate of 245 mL h −1 , the contribution of external film mass transfer coefficient and first order substrate degradation constant were 55.4% and 44.6% respectively. Recycle ratio of 0.6 improved the hydrogen production rates by 9%. The viable cell count was directly proportional to the recycle ratio (within the range 0.1–0.6). Taguchi design showed the significant influence of the feed pH on continuous H 2 production followed by dilution rate and recycle ratio. Thus environmentally friendly and cheaper solid matrix like coconut coir could be efficiently used for thermophilic continuous hydrogen production

  5. Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol

    International Nuclear Information System (INIS)

    Elreedy, Ahmed; Ibrahim, Eman; Hassan, Nazly; El-Dissouky, Ali; Fujii, Manabu; Yoshimura, Chihiro; Tawfik, Ahmed

    2017-01-01

    Highlights: • Ni-graphene nanocomposite (Ni-Gr NC) showed superiority in biohydrogenation process. • Ni-Gr NC dose of 60 mg/L exhibited the highest improvement (105%) in H_2 production. • H_2 production was improved by 67% compared with supplementation of Ni nanoparticles. • Graphene presence in Ni-Gr NC didn’t show additional inhibition at the higher doses. • Net profit from energy recovery, including nanomaterials cost, was improved by 21%. - Abstract: The impact of Ni nanoparticles (NPs) and Ni-graphene nanocomposite (Ni-Gr NC) on hydrogen production from industrial wastewater containing mono-ethylene glycol (MEG) via anaerobic digestion was investigated. Batch reactors were supplemented with different dosages of Ni NPs and Ni-Gr NC ranging from 0 to 100 mg/L. Maximum hydrogen yields (HYs) of 24.73 ± 1.12 and 41.28 ± 1.69 mL/gCOD_i_n_i_t_i_a_l were achieved at a dosage of 60 mg/L for Ni NPs and Ni-Gr NC, respectively. Substantial improvements of 23% and 105% in hydrogen production were registered at an optimum dosage of 60 mg/L for Ni NPs and Ni-Gr NC, respectively, compared with the control without nanomaterials addition. However, increasing the dosage of Ni NPs and Ni-Gr NC to 100 mg/L resulted in a significant decrease in HY to 20.80 ± 1.12 and 24.24 ± 1.13 mL/gCOD_i_n_i_t_i_a_l, respectively. A non-linear regression model revealed that the higher maximum hydrogen production (129% improvement) could be achieved at a dosage of 50 mg/L Ni-Gr NC and an initial pH of 5.0. Economic and environmental revenues due to bioenergy recovery from MEG-containing wastewater were also estimated.

  6. Fiscal 1997 survey report on a feasibility of international collaboration on bio-hydrogen R and D; 1997 nendo chosa hokokusho (bio suiso seizo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the production technology of biohydrogen is an option effective for the world energy supply technology and the world environmental preservation technology in the 21st century. At present, a project named `R and D of the environment harmony type hydrogen production technology` tackles the R and D of the hydrogen production technology using photosynthetic microorganisms, and promotes the R and D in this field from both aspects of a basis and application as seen in a workshop held including interchanges with researchers and research institutes overseas. With the recently increasing interest in bio-hydrogen production technology also overseas, search and bleeding/improvement of microorganisms related to the hydrogen production and utilization technology of biomass have been advancing. For development in this field, it is necessary to construct a widespread research network and promote the comprehensive research and development. In this survey, most of the research institutes visited recognized an importance of international cooperation in this field and agreed to make future research interchanges in a wide range. Based on the survey, a feasibility of concrete international collaboration is searched. 146 refs., 2 figs., 11 tabs.

  7. Reverse micelles as suitable microreactor for increased biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Anjana [Nanotechnology and Molecular Biology Laboratory, Centre of Biotechnology, University of Allahabad, Allahabad 211002 (India); Pandey, Ashutosh [Centre of Energy Studies, MNNIT, Allahabad 211004 (India)

    2008-01-15

    Reverse micelles have been shown to act as efficient microreactors for enzymic reactions and whole cell entrapment in organic (non-aqueous) media wherein the reactants are protected from denaturation by the surrounding organic solvent. These micelles are thermodynamically stable, micrometer sized water droplets dispersed in an organic phase by a surfactant. It has been observed that when whole cells of photosynthetic bacteria (Rhodopseudomonas sphaeroides or Rhodobacter sphaeroides 2.4.1) are entrapped inside these reverse micelles, the H{sub 2} production enhanced from 25 to 35 folds. That is, 1.71mmol(mgprotein){sup -1}h{sup -1} in case of R. sphaeroides which is 25 fold higher in benzene-sodium lauryl sulfate reverse micelles. Whereas, in case of R. sphaeroides 2.4.1 the H{sub 2} production was increased by 35 fold within AOT-isooctane reverse micelles i.e. 11.5mmol(mgprotein){sup -1}h{sup -1}. The observations indicate that the entrapment of whole cells of microbes within reverse micelles provides a novel and efficient technique to produce hydrogen by the inexhaustible biological route. The two microorganisms R. sphaeroides 2.4.1 (a photosynthetic bacteria) and Citrobacter Y19 (a facultative anaerobic bacteria) together are also entrapped within AOT-isooctane and H{sub 2} production was measured i.e. 69mmol(mgprotein){sup -1}h{sup -1}. The nitrogenase enzyme responsible for hydrogen production by R. sphaeroides/R. sphaeroides 2.4.1 cells is oxygen sensitive, and very well protected within reverse micelles by the use of combined approach of two cells (R. sphaeroides 2.4.1 and Citrobacter Y19). In this case glucose present in the medium of Citrobacter Y19 serves double roles in enhancing the sustained production rate of hydrogen. Firstly, it quenches the free O{sub 2}liberated as a side product of reaction catalyzed by nitrogenase, which is O{sub 2} labile. Secondly, organic acid produced by this reaction is utilized by the Citrobacter Y19 as organic substrate in

  8. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  9. Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production.

    Science.gov (United States)

    Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2011-02-01

    This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kotay, Shireen Meher; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur (India)

    2009-09-15

    The present study summarizes the observations on various nutrient and seed formulation methods using sewage sludge that have been aimed at ameliorating the biohydrogen production potential. Pretreatment methods viz., acid/base treatment, heat treatment, sterilization, freezing-thawing, microwave, ultrasonication and chemical supplementation were attempted on sludge. It was observed that pretreatment was essential not only to reduce the needless, competitive microbial load but also to improve the nutrient solublization of sludge. Heat treatment at 121 C for 20 min was found to be most effective in reducing the microbial load by 98% and hydrolyzing the organic fraction of sludge. However, this pretreatment alone was either not sufficient or inconsistent in developing a suitable microbial consortium for hydrogen production. Hydrogen yield was found to improve 1.5-4 times upon inoculation with H{sub 2}-producing microorganisms. A defined microbial consortium was developed consisting of three established bacteria viz., Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. Following pretreatments soluble proteins and lipids (the major component of the sludge) were also found to be consumed besides carbohydrates. This laid out the concurrent proteolytic/lipolytic ability of the developed H{sub 2}-producing consortium. 1:1:1 v/v ratio of these bacteria in consortium was found to give the maximum yield of H{sub 2} from sludge, 39.15 ml H{sub 2}/g COD{sub reduced}. 15%v/v dilution and supplementation with 0.5%w/v cane molasses prior to heat treatment was found to further improve the yield to 41.23 ml H{sub 2}/g COD{sub reduced}. (author)

  11. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yonghua; Bruns, Mary Ann [Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Husen; Salerno, Michael; Logan, Bruce E. [Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-11-15

    Bacterial community composition during steady-state, fermentative H{sub 2} production was compared across a range of organic loading rates (OLRs) of 0.5-19 g COD l{sup -1} h{sup -1} in a 2-l continuous flow reactor at 30 C. The varied OLRs were achieved with glucose concentrations of 2.5-10 g l{sup -1} and hydraulic retention times of 1-10 h. The synthetic wastewater feed was amended with L-cysteine and maintained at a pH of 5.5. For each run at a given glucose concentration, the reactor was inoculated with an aliquot of well-mixed agricultural topsoil that had been heat-treated to reduce numbers of vegetative cells. At OLRs less than 2 g COD l{sup -1} h{sup -1}, DNA sequences from ribosomal RNA intergenic spacer analysis profiles revealed more diverse and variable populations (Selenomonas, Enterobacter, and Clostridium spp.) than were observed above 2 g COD l{sup -1} h{sup -1} (Clostridium spp. only). An isolate, LYH1, was cultured from a reactor sample (10 g glucose l{sup -1} at a 10-h HRT) on medium containing L-cysteine. In confirming H{sub 2} production by LYH1 in liquid batch culture, lag periods for H{sub 2} production in the presence and absence of L-cysteine were 5 and 50 h, respectively. The 16S rRNA gene sequence of LYH1 indicated that the isolate was a Clostridium sp. affiliated with RNA subcluster Ic, with >99% similarity to Clostridium sp. FRB1. In fluorescent in situ hybridization tests, an oligonucleotide probe complementary to the 16S rRNA of LYH1 hybridized with 90% of cells observed at an OLR of 2 g COD h{sup -1}, compared to 26% of cells at an OLR of 0.5 g COD l{sup -1} h{sup -1}. An OLR of 2 g COD l{sup -1} h{sup -1} appeared to be a critical threshold above which clostridia were better able to outcompete Enterobacteriaceae and other organisms in the mixed soil inoculum. Our results are discussed in light of other biohydrogen studies employing pure cultures and mixed inocula. (author)

  13. Ruminal biohydrogenation kinetics of defatted flaxseed and sunflower is affected by heat treatment

    DEFF Research Database (Denmark)

    Lashkari, Saman; Hymøller, Lone; Jensen, Søren Krogh

    2017-01-01

    The effect of heat treatment on biohydrogenation of linoleic acid (LA) and linolenic acid (LNA) and formation of stearic acid (SA), cis-9, trans-11 conjugated LA (CLA), trans-10, cis-12 CLA and trans-vaccenic acid (VA) was studied in in vitro incubations with diluted rumen fluid as inoculum...

  14. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    Directory of Open Access Journals (Sweden)

    Ana Susmozas

    2015-06-01

    Full Text Available Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

  15. Chemoselective biohydrogenation of chalcone (2Ε)-3-(1,3-benzodioxole-5-yl)-1-phenyl-2-propen-1-one mediated by baker yeasts immobilized in polymeric supports

    International Nuclear Information System (INIS)

    Mundstock, Flavia L.S.; Silva, Vanessa D.; Nascimento, Maria da G.

    2009-01-01

    In this study, the yeast Saccharomyces cerevisiae, baker's yeast (BY) was immobilized in poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), sodium caseinate (SC), gelatin (G) films and in agar (A) and gelatin (G) gels, and used as a biocatalyst in the biohydrogenation reaction of (2Ε)-3-(1,3-benzodioxyl-5-yl)-1-phenyl-2-propen-1-one (1). The transformation of (1) into the corresponding dehydro chalcone (2) through biohydrogenation reactions was carried out in n-hexane at 25 or 35 deg C, for 4-48 h reaction. The product conversion, under different experimental conditions, was evaluated by hydrogen nuclear magnetic resonance, 1 H NMR.The highest conversion degrees were achieved using BY immobilized in agar gel, (29-47%), depending also on the temperature. Using BY immobilized in PEO, PVA, SC and G films, the conversion into (2) was lower (0-21%). The results show the feasibility of the use of BY immobilized in polymeric materials to reduce a,b-unsaturated carbonyl compounds. (author)

  16. Integrating large-scale functional genomics data to dissect metabolic networks for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline S

    2012-12-17

    The goal of this project is to identify gene networks that are critical for efficient biohydrogen production by leveraging variation in gene content and gene expression in independently isolated Rhodopseudomonas palustris strains. Coexpression methods were applied to large data sets that we have collected to define probabilistic causal gene networks. To our knowledge this a first systems level approach that takes advantage of strain-to strain variability to computationally define networks critical for a particular bacterial phenotypic trait.

  17. Dose and time response of ruminally infused algae on rumen fermentation characteristics, biohydrogenation and Butyrivibrio group bacteria in goats.

    Science.gov (United States)

    Zhu, Honglong; Fievez, Veerle; Mao, Shengyong; He, Wenbo; Zhu, Weiyun

    2016-01-01

    Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, biohydrogenation and Butyrivibrio group bacteria in goats. Six goats were used in a repeated 3 × 3 Latin square design, and offered a fixed diet. Algae were infused through rumen cannule with 0 (Control), 6.1 (L-Alg), or 18.3 g (H-Alg) per day. Rumen contents were sampled on d 0, 3, 7, 14 and 20. H-Alg reduced total volatile fatty acid concentration and acetate molar proportion (P Algae induced a dose-dependent decrease in 18:0 and increased trans-18:1 in the ruminal content (P Algae had no effect on the abundances of Butyrivibrio spp. and Butyrivibrio proteoclasticus (P > 0.10), while H-Alg reduced the total bacteria abundance (P algae were related to the supplementation level, but there was no evidence of shift in ruminal biohydrogenation pathways towards t10-18:1. L-Alg mainly induced a transient effect on rumen biohydrogenation of 18-carbon UFAs, while H-Alg showed an acute inhibition and these effects were not associated with the known hydrogenating bacteria.

  18. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    Science.gov (United States)

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Prathima Devi, M.; Peri, Dinakar; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP 500 007 (India)

    2009-09-15

    Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H{sub 2}) through photo-fermentation process using mixed culture at mesophilic temperature (34 C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H{sub 2} production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H{sub 2} production and substrate degradation were observed with acetic acid [3.51 mol/Kg COD{sub R}-day; 1.22 Kg COD{sub R}/m{sup 3}-day (92.96%)] compared to butyric acid [3.33 mol/Kg COD{sub R}-day; 1.19 Kg COD{sub R}/m{sup 3}-day (88%)]. Higher H{sub 2} yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H{sub 2} production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate. (author)

  20. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.

    Science.gov (United States)

    Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun

    2010-01-01

    Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.

  1. Trends of bio-hydrogen research and development in Europe. Report for the Research Institute of Innovative Technology for the Earth (RITE), Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Huesing, B.

    1997-03-01

    Research into applied aspects of biological hydrogen production is carried out on a much lower level in Europe than basic hydrogenase research. However, the screening for good H{sub 2} producers, their cultivation, and the development of optimised culture and bioreactor systems has never been a strength in Europe. Although there are a few good groups in Europe major contributions in this field traditionally come from countries outside Europe. However, in the nineties a special application-oriented research subfield has begun to evolve in Europe: the use of genetic enginering to rationally optimise H{sub 2} producing organisms. The most important players who focus on green algae, cyanobacteria, and purple bacteria can be found in Germany, France, and Sweden. In European biohydrogen research, a large and diverse variety of organisms is investigated. Among the organisms most thoroughly studied are Alcaligenes eutrophus, Escherichia coli, Rhodobacter capsulatus, sulfate-reducing bacteria, and methanogenic bacteria. Moreover, a leading position has been obtained with respect to molecular genetics of green algae and cyanobacteria, albeit on a low level. The fact that such a broad range of diverse organisms is studied has advantages and disadvantages. A positive aspect is that the multitude of different approaches had led to several unexpected results which had otherwise been overlooked. On the other hand, an obvious link to biohydrogen production is often lacking. Moreover, there are many 'me-too' approaches and results in which previous findings are only reproduced for another organism as well. (orig.)

  2. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  4. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  5. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas

  6. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources.

    Science.gov (United States)

    Costa, Mónica; Alves, Susana P; Cabo, Ângelo; Guerreiro, Olinda; Stilwell, George; Dentinho, Maria T; Bessa, Rui Jb

    2017-01-01

    Tannins are polyphenolic compounds able to modify the ruminal biohydrogenation (BH) of unsaturated fatty acids, but their activity may vary among different tannin sources. The effect of rockrose (Cistus ladanifer) on BH has never been compared with other more common tannin sources. Tannin extracts (100 g kg -1 substrate dry matter) from chestnut (CH), quebracho (QB), grape seed (GS) and rockrose (CL) were incubated in vitro for 6 h with ruminal fluid using as substrate a feed containing 60 g kg -1 of sunflower oil. A control treatment with no added tannins was also included. Compared with the control, GS and CL, but not CH and QB, increased (P 0.05) were observed for the disappearance of c9-18:1 and c9,c12,c15-18:3. The production of 18:0 was not different (P > 0.05) among treatments, although its proportion in the total BH products was lower (P < 0.05) for GS than for the other treatments. Condensed tannins from GS and, to a lesser extent, from CL stimulate the first steps of BH, without a clear inhibition of 18:0 production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water.

    Science.gov (United States)

    Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito; Sakurai, Hidehiro; Hausinger, Robert P

    2012-01-01

    To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H(2) production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H(2) for extended periods even in the presence of evolved O(2). This review summarizes our efforts to improve the rate of photobiological H(2) production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H(2) also are discussed.

  8. An integrated system for hydrogen and methane production during landfill leachate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, H.M.; Nakhla, G.; El Naggar, H. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2009-07-01

    This paper described a patent-pending integrated waste-to-energy system that includes a novel biohydrogen reactor with a gravity settler and a second stage conventional anaerobic digester for the production of methane gas. This chemical-free process was tested using a synthetic wastewater/leachate solution at 37 degrees C for 45 days. During the experimental period, the biohydrogenator steadily produced hydrogen (H{sub 2}) with no methane. The maximum hydrogen yield was 400 ml H{sub 2}/g glucose with an average of 345 ml H{sub 2}/g glucose, as compared to 141 and 118 ml H{sub 2}/g glucose for two consecutive runs done in parallel using a conventional continuously stirrer tank reactor. The maximum and average hydrogen production rates in the biohydrogen reactor with gravity settler were 22 and 19 L H{sub 2}/day, the maximum yield was 2.8 mol H{sub 2} /mol glucose higher than 1.6-2.3 mol H{sub 2}/mol glucose reported for continuous-flow reactors. The methane yield for the second stage approached a maximum value of 426 ml methane/g chemical oxygen demand (COD) removed.

  9. Evidence for the Initial Steps of DHA Biohydrogenation by Mixed Ruminal Microorganisms from Sheep Involves Formation of Conjugated Fatty Acids.

    Science.gov (United States)

    Aldai, Noelia; Delmonte, Pierluigi; Alves, Susana P; Bessa, Rui J B; Kramer, John K G

    2018-01-31

    Incubation of DHA with sheep rumen fluid resulted in 80% disappearance in 6 h. The products were analyzed as their fatty acid (FA) methyl esters by GC-FID on SP-2560 and SLB-IL111 columns. The GC-online reduction × GC and GC-MS techniques demonstrated that all DHA metabolites retained the C22 structure (no evidence of chain-shortening). Two new transient DHA products were identified: mono-trans methylene interrupted-DHA and monoconjugated DHA (MC-DHA) isomers. Identification of MC-DHA was confirmed by their predicted elution using equivalent chain length differences from C18 FA, their molecular ions, and the 22:5 products formed which were the most abundant at 6 h. The 22:5 structures were established by fragmentation of their 4,4-dimethyloxazoline derivatives, and all 22:5 products contained an isolated double bond, suggesting formation via MC-DHA. The most abundant c4,c7,c10,t14,c19-22:5 appeared to be formed by unknown isomerases. Results suggest that the initial biohydrogenation of DHA was analogous to that of C18 FA.

  10. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    Science.gov (United States)

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  11. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  12. Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System

    Directory of Open Access Journals (Sweden)

    George Nakhla

    2009-06-01

    Full Text Available The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 °C, hydraulic retention time 8 h and solids retention time ranging from 2.2–2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobicaly-digested sludge from the St. Mary’s wastewater treatment plant (St. Mary, Ontario, Canada was used as the seed, and was heat treated at 70 °C for 30 min to inhibit methanogens. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H2/L·d to 34 L H2/L·d with the increase of organic loading rate (OLR from 26 to 81 gCOD/L·d, while a maximum hydrogen yield of 430 mL H2/gCOD was achieved in the system with an overall average of 385 mL H2/gCOD.

  13. Effect of Light Intensities and Atmospheric Gas Conditions on Biohydrogen Production of Microalgae Isolated from Fisheries Wastewater

    Directory of Open Access Journals (Sweden)

    Mujalin Pholchan

    2017-06-01

    Full Text Available Recently, the fishery farming industry has been developed rapidly due to increasing demand and consumption as well as the depletion of wild fish resources. Production processes in the industry usually generate large amounts of wastewater containing high nutrients, posing a threat to downstream water. However, phytoplankton removal techniques commonly used to counteract the threat, though appearing to have low efficiency, are timeconsuming and less sustainable. Microalgae are photosynthetic microorganisms that convert solar energy into hydrogen. Using the isolated algae from fish farms as a source of renewable energy production could be a promising choice for handling fisheries wastewater in a more efficient manner. However, hydrogen production processes from algae still need more studies as their efficiencies vary between algae species and growth factors. In this work, the efficiency of hydrogen production from Scenedesmus accuminatus and Arthrospira platensis harvested from fish farms under three different light intensity conditions and three atmospheric gas conditions was determined. The results showed that the best conditions for hydrogen production from both species included 24 h darkness and carbon dioxide addition. Under the atmospheric gas combination of 99% argon and 1% carbon dioxide, S. accuminatus could produce hydrogen gas as high as 0.572 mol H2/mgCh h within 12 h, while the highest hydrogen production (0.348 mol H2/mgCh h obtained from A. platensis was found under the atmospheric gas mixture of 98% argon and 2% carbon dioxide. Interestingly, S. accuminatus appeared to produce more hydrogen than A. platensis under the same conditions.

  14. Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling.

    Science.gov (United States)

    Kumar, M Dinesh; Tamilarasan, K; Kaliappan, S; Banu, J Rajesh; Rajkumar, M; Kim, Sang Hyoun

    2018-05-01

    The present study aimed to increase the disintegration potential of marine macroalgae, (Ulva reticulata) through chemo mechanical pretreatment (CMP) in an energy efficient manner. By combining surfactant with disperser, the specific energy input was considerably reduced from 437.1 kJ/kg TS to 264.9 kJ/kg TS to achieve 10.7% liquefaction. A disperser rpm (10,000), pretreatment time (30 min) and tween 80 dosage (21.6 mg/L) were considered as an optimum for effective liquefaction of algal biomass. CMP was designated as an appropriate pretreatment resulting in a higher soluble organic release 1250 mg/L, respectively. Anaerobic fermentation results revealed that the volatile fatty acid (VFA) concentration was doubled (782 mg/L) in CMP when compared to mechanical pretreatment (MP) (345 mg/L). CMP pretreated algal biomass was considered as the suitable for biohydrogen production with highest H 2 yield of about 63 mL H 2 /g COD than (MP) (45 mL H 2 /g COD) and control (10 mL H 2 /g COD). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Eco-efficiency in industrial production

    NARCIS (Netherlands)

    von Raesfeld Meijer, Ariane M.; de Bakker, F.G.A.; Groen, Arend J.

    2001-01-01

    English AbstractThis report of the MATRIC project investigated 'Eco-efficiency in industrial production'. After a general introduction into the domain of eco-efficiency, the first part of this report further focusses on the organisation of Product-Oriented Environmental Management (POEM), which is

  16. Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdiyeva, Yagut; Leino, Hannu; Shunmugam, Sumathy; Aro, Eva-Mari [Department of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, Tykistokatu 6 A, FIN-20014 Turku (Finland); Saari, Lyudmila; Fewer, David P.; Sivonen, Kaarina [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, FI-00014 (Finland)

    2010-02-15

    Cyanobacteria are the only bacteria capable of performing oxygenic photosynthesis in which they harness solar energy and convert it into chemical energy stored in carbohydrates. Under specific conditions, cyanobacteria can use solar energy to produce also molecular hydrogen. Biodiversity among cyanobacteria for H{sub 2} production has not been efficiently studied. Here we report the screening of 400 cyanobacterial strains isolated from the Baltic Sea and Finnish lakes for efficient H{sub 2} producers. Approximately 50% of these strains produced detectable amounts of H{sub 2}. Ten strains produced similar or up to 4 times as much of H{sub 2} as the hydrogenase mutants of Anabaena PCC 7120 and Nostoc punctiforme ATCC 29133 specifically engineered in different laboratories to produce higher amounts of H{sub 2}. All ten H{sub 2} producers are N{sub 2}-fixing filamentous, heterocystous strains, seven of them are benthic and three are planktonic strains. Different culturing parameters, such as light intensity, cell density, pH and temperature had a pronounced effect on the H{sub 2} production rates of the two good H{sub 2} producers, Calothrix 336/3 and XPORK 5E strains. Notably, the culture conditions for optimal H{sub 2} production varied between different cyanobacterial strains. (author)

  17. Prospective of biodiesel production utilizing microalgae as the cell ...

    African Journals Online (AJOL)

    Microalgae are sunlight-driven miniature factories that convert atmospheric CO2 to polar and neutral lipids which after esterification can be utilized as an alternative source of petroleum. Further, other metabolic products such as bioethanol and biohydrogen produced by algal cells are also being considered for the same ...

  18. Contracting for Efficiency. A Best Practices Guide for Energy-Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Saralyn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Payne, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  19. Contracting for Efficiency: A Best Practices Guide for Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Saralyn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Payne, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-11-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  20. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  1. Technical efficiency in milk production in underdeveloped production environment of India*.

    Science.gov (United States)

    Bardhan, Dwaipayan; Sharma, Murari Lal

    2013-12-01

    The study was undertaken in Kumaon division of Uttarakhand state of India with the objective of estimating technical efficiency in milk production across different herd-size category households and factors influencing it. Total of 60 farm households having representation from different herd-size categories drawn from six randomly selected villages of plain and hilly regions of the division constituted the ultimate sampling units of the study. Stochastic frontier production function analysis was used to estimate the technical efficiency in milk production. Multivariate regression equations were fitted taking technical efficiency index as the regressand to identify the factors significantly influencing technical efficiency in milk production. The study revealed that variation in output across farms in the study area was due to difference in their technical efficiency levels. However, it was interesting to note that smallholder producers were more technically efficient in milk production than their larger counterparts, especially in the plains. Apart from herd size, intensity of market participation had significant and positive impact on technical efficiency in the plains. This provides definite indication that increasing the level of commercialization of dairy farms would have beneficial impact on their production efficiency.

  2. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    Science.gov (United States)

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wan-Qian; Ren, Nan-Qi; Ding, Jie; Qu, Yuan-Yuan; Zhang, Lu-Si [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Haihe Road 204, Nangang District, Harbin, Heilongjiang 150090 (China); Wang, Xiang-Jing; Xiang, Wen-Sheng [Research Center of Life Science and Biotechnology, Northeast Agricultural University, Harbin 150030 (China); Meng, Zhao-Hui [The Architectural Design and Research Institute of Harbin Institute of Technology, Harbin 150090 (China)

    2008-10-15

    An expanded granular sludge bed (EGSB) process with granular activated carbon (GAC) was developed for fermentative hydrogen production from molasses-containing wastewater by mixed microbial cultures. No pH regulation was performed during the whole operation period. Running at the temperature of 35 C, the EGSB reactor presented a high hydrogen production ability as the hydrogen production rate (HPR) maximized at 0.71 L/L h. At the same time, the hydrogen yield (HY) peaked at 3.47 mol/mol sucrose and the maximum specific hydrogen production rate (SHPR) was found to be 3.16 mmol H{sub 2}/g VSS h. Hydrogen volume content was estimated to be 30-53% of the total biogas and the biogas was free of methane throughout the study. Dissolved fermentation products were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. It was found that high hydrogen yield was always associated with a high level of ethanol production. When the pH value and alkalinity ranged from 4.2-4.4 mg CaCO{sub 3}/L to 280-340 mg CaCO{sub 3}/L, respectively, stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.1% to the total liquid products. The average attached biofilm concentration was estimated to be 17.1 g/L, which favored hydrogen production efficiently. With high biomass retention at high organic loading rate (OLR), this EGSB system showed to be a promising high-efficient bioprocess for hydrogen production from high-strength wastewater. (author)

  4. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  5. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids.

    Science.gov (United States)

    Zened, A; Troegeler-Meynadier, A; Nicot, M C; Combes, S; Cauquil, L; Farizon, Y; Enjalbert, F

    2011-11-01

    Trans isomers of fatty acids exhibit different health properties. Among them, trans-10,cis-12 conjugated linoleic acid has negative effects on milk fat production and can affect human health. A shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of dairy cows receiving high-concentrate diets, especially when the diet is supplemented with highly unsaturated fat sources. The differences of BH patterns between linoleic acid (LeA) and linolenic acid (LnA) in such ruminal conditions remain unknown; thus, the aim of this work was to investigate in vitro the effects of starch and sunflower oil in the diet of the donor cows and starch level in the incubates on the BH patterns and efficiencies of LeA and LnA. The design was a 4 × 4 Latin square design with 4 cows, 4 periods, and 4 diets with combinations of 21 or 34% starch and 0 or 5% sunflower oil. The rumen content of each cow during each period was incubated with 4 substrates, combining 2 starch levels and either LeA or LnA addition. Capillary electrophoresis single-strand conformation polymorphism of incubates showed that dietary starch decreased the diversity of the bacterial community and the high-starch plus oil diet modified its structure. High-starch diets poorly affected isomerization and first reduction of LeA and LnA, but decreased the efficiencies of trans-11,cis-15-C18:2 and trans C18:1 reduction. Dietary sunflower oil increased the efficiency of LeA isomerization but decreased the efficiency of trans C18:1 reduction. An interaction between dietary starch and dietary oil resulted in the highest trans-10 isomers production in incubates when the donor cow received the high-starch plus oil diet. The partition between trans-10 and trans-11 isomers was also affected by an interaction between starch level and the fatty acid added to the incubates, showing that the trans-10 shift only occurred with LeA, whereas LnA was mainly hydrogenated via the more usual trans-11

  6. Efficiency and Import Penetrationon the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the ave-rage level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  7. Ownership and efficiency in nuclear power production

    International Nuclear Information System (INIS)

    Pollitt, M.G.

    1995-01-01

    This paper aims to contribute to the relatively small amount of academic literature on the efficiency of nuclear power production. The author draws on world-wide comparisons to illustrate the situation in the United Kingdom, where the nuclear generating capacity, conceived of and constructed as a public concern, has recently been privatised. The theory and evidence for links between ownership and productive efficiency is received. Efficiency measures used are explained as are the linear programs required to generate them. Data Envelopment Analysis (DEA) is used to analyse productive efficiency of nuclear power plants before and after privatisation. Results of the DEA are used to test the hypothesis that ownership has no effect on productive efficiency. (UK)

  8. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  9. Halophilic biohydrogen and 1,3-propanediol production from raw glycerol: A genomic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kivisto, A.

    2013-11-01

    Glycerol is produced in large amounts as a by-product in biodiesel industry (10 kg per 100 kg biodiesel). By-products and waste materials are typically economical substrates for bioprocesses. Furthermore, microorganisms are able to combine the degradation of organic material with production of a wide range of metabolites and other cellular products. The current biotechnological interest of industrial glycerol lies on bioprocesses yielding environmentally friendly energy carrier molecules (hydrogen, methane, ethanol, butanol) and reduced chemicals (1,3-propanediol, dihydroxyacetone). Industrial glycerol also called as raw or crude glycerol, however, is a challenging substrate for microorganisms due to its impurities including alcohol, soaps, salts and metals. Halophiles (the salt-loving microorganisms) require salt for growth and heavy metal resistances have been characterized for numerous halophiles. Therefore, halophiles are potentially useful for the utilization of raw glycerol from biodiesel waste streams without pre-processing. Another challenge for large-scale microbial bioprocesses is a potential contamination with unfavorable microorganisms. For example, H{sub 2}-producing systems tend to get contaminated with H{sub 2}-consuming microorganisms. Extremophiles are organisms that have been adapted for life under extreme conditions, such as high salinity, high or low temperature, asidic or basic pH, dryness or high pressure. For extremophilic pure cultures contamination and thus the need to ensure a sterile environment might not be a problem due to the extreme process conditions that efficiently prevent the growth of most other bacteria. In addition, hypersaline environments (above 12 % NaCl) do not support the growth of H{sub 2} utilizing methanogens due to bioenergetic reasons. Halophilic fermentative H{sub 2} producers, on the other hand, have been shown to be active up to near salt saturation. The aims of the present study can be divided into two categories

  10. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  11. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    two phase and sub optimal conditions improves the energy potential to 8.27 MW/tonne VS{sub fed} with VS(removal) efficiency as 80.7% in total 15 days of HRT. The net energy balance results indicated the co-digestion of IFW with waste products of SS treatment plant viz. primary sludge (PS) and waste activated sludge (WAS) are amenable substrates for the two-stage anaerobic bio-hydrogen and biomethane digestion process. (orig.)

  12. Efficiency and Import Penetration on the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the average level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  13. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part B)

    Science.gov (United States)

    2015-03-20

    SUBJECT TERMS Biohydrogen, biofuels, cyanobacteria, photosynthesis, fermentation , transcription profiling, metabolic engineering, TCA cycle...transcription regulators, including RbcR, Fur, and ChlR, were identified and characterized, and a global model of the transcription network was...enhance hydrogen production. These data have recently been analyzed to produce a global transcription network model for this cyanobacterium [17]. At

  14. Malmquist Productivity Index on Efficiency Layers

    Directory of Open Access Journals (Sweden)

    F. Rezai balf ∗

    2012-09-01

    Full Text Available Data Envelopment Analysis (DEA, a popular linear programming technique is useful to rate comparatively operational effiency of decision Making Unit (DMU based on the their deterministic inputoutput data. The Malmquist productivity index in DEA, calculable with the distance function, for measurement the productivity change among two variant time period or two variant group in the same time. This index is based on two factor of efficiency change index and a technological change index. In this paper, we operate on the collective Malmquist productivity index, which performs clustering operation DMUs with classification into different levels of efficient frontier, and then we discuss on the relation between Malmquist index on the efficiency layers and their attractiveness and progress

  15. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  16. Characteristics of biohydrogen production by ethanoligenens R{sub 3} isolated from continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, A.Y.; Liu, K. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering; Liu, B. [Northeast Forestry Univ., Harbin (China). School of Material Science and Engineering; Xu, J.L. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    This study investigated the fermentative hydrogen production characteristics of ethanoligenens R{sub 3} isolated from anaerobic sludge in a continuous stirred tank reactor. The effects of the initial pH value, the proportion of carbon and nitrogen sources, and the effects of fermentation temperature were investigated in a series of batch experiments. Substrates for the hydrogen production of glucose and peptone were used as carbon and nitrogen sources. Results of the experiments showed that a maximum hydrogen production yield of 834 mlH{sub 2}/L culture was obtained with a fermentation temperature of 35 degrees C and an initial pH value of 5.5. The maximum average hydrogen production rate of 10.87 mmolH{sub 2}/g cell dry weight per hour was obtained at a carbon-nitrogen source ratio of 3.3. The degradation efficiency of the glucose used as a carbon source ranged from 91.5 to 95.43 per cent during the conversion of glucose to hydrogen by the bacteria.

  17. Efficiency and productivity of hospitals in Vietnam.

    Science.gov (United States)

    Pham, Thuy Linh

    2011-01-01

    The purpose of this paper is to examine the relative efficiency and productivity of hospitals during the health reform process. Data envelopment analyses method (DEA) with the input-oriented variable-returns-to-scale model was used to calculate efficiency scores. Malmquist total factor productivity index approach was then employed to calculate productivity of hospitals. Data of 101 hospitals was extracted from databases of the Ministry of Health, Vietnam from the years 1998 to 2006. There was evidence of improvement in overall technical efficiency from 65 per cent in 1998 to 76 per cent in 2006. Hospitals' productivity progressed around 1.4 per cent per year, which was mainly due to the technical efficiency improvement. Furthermore, provincial hospitals were more technically efficient than their central counterparts and hospitals located in different regions performed differently. The paper provides an insight in the performance of Vietnamese public hospitals that has been rarely examined before and contributes to the existing literature of hospital performance in developing countries

  18. Productivity and production efficiency among small scale irrigated ...

    African Journals Online (AJOL)

    The study examined productivity and production efficiency among small scale irrigated sugarcane farmers in Niger State, Nigeria using a stochastic translog frontier function. Data for the study were obtained using structured questionnaires administered to 100 randomly selected sugarcane farmers from Paiko and Gurara ...

  19. Changes in production efficiency in China identification and measuring

    CERN Document Server

    Xu, Bing; Watada, Junzo

    2014-01-01

    Evaluating  Production Efficiency in China examines production from engineering and statistics perspectives rather than from economics and mathematics perspectives. The authors present an observable benchmark as the criterion of the production efficiency to replace the unobservable production frontier surface. This book discusses several different computing technologies, controllable variable as a path of identification, changes in production efficiency by decision making on specific operating conditions, and optimal resource allocation. The book provides a channel to tap inside the success stories of China, exploiting the way of changes in production efficiency during China’s development in the past 30 years. This book examines the concepts and realization of production efficiencies across all areas of the economy. Also the book provides the perspective of foreign direct investment (FDI) absorption to identify how Chinese economy changes in production efficiency.

  20. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    dominated by relatives of Clostridium kluyveri. VFA could also be reduced to alcohols. Acetic, propionic and butyric acids were biohydrogenated with hydrogen and acetic acid also with an electrode. Observed alcohol concentrations were 0.62 g L{sup -1} ethanol, 0.49 g L{sup -1} propanol and 0.27 g L{sup -1} n-butanol. Methanogenesis was successfully inhibited after thermal pre-treatment incubated at pH 6, while acetate reduction was enhanced. In the second study, ethanol (0.084 g L{sup -1}) was produced at the cathodic compartment of a bioelectrochemical system, in which the electron transport was mediated by methyl viologen. The ethanol production activity at the cathode was only of very short term, since the mediator irreversibly reacted at the surface of the cathode. Of the two VFA conversion processes, biohydrogenation and chain elongation, the latter was a more dominant process that consumes ethanol with acetate to medium chain fatty acids. With this technology, wet organic waste can be converted to biofuels carbon and energy efficient. The technology is promising due to the good fuel and separation properties of medium chain fatty acids, and the possibility to produce them at high concentrations and specific production rates comparable to other anaerobic conversions.

  1. Valorization of crude glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  2. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  3. From Policy to Compliance: Federal Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    DeMates, Laurèn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scodel, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-09-06

    Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resources available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater

  4. Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Nagy, Valéria; Podmaniczki, Anna; Vidal-Meireles, André; Tengölics, Roland; Kovács, László; Rákhely, Gábor; Scoma, Alberto; Tóth, Szilvia Z

    2018-01-01

    Photobiological H 2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H 2 , only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O 2 -sensitive. Sulphur deprivation is a common way to induce H 2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. We report on the establishment of an alternative H 2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O 2 . Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H 2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H 2 production, which enables industrial application of algal biohydrogen production.

  5. The efficiency of aerodynamic force production in Drosophila.

    Science.gov (United States)

    Lehmann, F O

    2001-12-01

    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  6. Production and efficiency analysis with R

    CERN Document Server

    Behr, Andreas

    2015-01-01

    This textbook introduces essential topics and techniques in production and efficiency analysis and shows how to apply these methods using the statistical software R. Numerous small simulations lead to a deeper understanding of random processes assumed in the models and of the behavior of estimation techniques. Step-by-step programming provides an understanding of advanced approaches such as stochastic frontier analysis and stochastic data envelopment analysis. The text is intended for master students interested in empirical production and efficiency analysis. Readers are assumed to have a general background in production economics and econometrics, typically taught in introductory microeconomics and econometrics courses.

  7. Biological Hydrogen Production: Simultaneous Saccharification and Fermentation with Nitrogen and Phosphorus Removal from Wastewater Effluent

    Science.gov (United States)

    2012-03-01

    process.7 The reaction is of great economic importance given that the world’s industrial production of nitrogenous fertilizer increased 27-fold between... Enzymatic Saccharification and Fermentation of Paper and Pulp Industry Effluent for Biohydrogen Production . Int. J. Hydrogen Energy 2010, 35, pp...Reactor Setup and Operation 11 4.2 Operational Comparison: SBR and CBR 12 4.3 Effect of pH and Loading on Hydrogen Production 13 4.4 Enzymatic Source

  8. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ge-Fu; Wu, Peng; Wei, Qun-Shan; Lin, Jian-yi; Liu, Hai-Ning [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Gao, Yan-Li [China University of Geosciences, Wuhan 430074 (China)

    2010-08-15

    Purified terephthalic acid (PTA) processing wastewater was evaluated as a fermentable substrate for hydrogen (H{sub 2}) production with simultaneous wastewater treatment by dark-fermentation process in a continuous stirred-tank reactor (CSTR) with selectively enriched acidogenic mixed consortia under continuous flow condition in this paper. The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. Under the conditions of the inoculants not less than 6.3 gVSS/L, the organic loading rate (OLR) of 16 kgCOD/m{sup 3} d, hydraulic retention time (HRT) of 6 h and temperature of (35 {+-} 1) C, when the pH value, alkalinity and oxidation-reduction potential (ORP) of the effluent ranged from 4.2 to 4.4, 280 to 350 mg CaCO{sub 3}/L, and -220 to -250 mV respectively, soluble metabolites were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 70.31% to the total liquid products after 25 days operation. The H{sub 2} volume content was estimated to be 48-53% of the total biogas and the biogas was free of methane throughout the study. The average biomass concentration was estimated to be 10.82 gVSS/L, which favored H{sub 2} production efficiently. The rate of chemical oxygen demand (COD) removal reached at about 45% and a specific H{sub 2} production rate achieved 0.073 L/gMLVSS d in the study. This CSTR system showed a promising high-efficient bioprocess for H{sub 2} production from high-strength chemical wastewater. (author)

  9. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  10. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  11. Multidirectional analysis of technical efficiency for pig production systems

    DEFF Research Database (Denmark)

    Labajavo, Katarina; Hansson, Helena; Asmild, Mette

    2016-01-01

    Declining profitability and ongoing structural changes in the pig sector require thorough efficiency analysis of individual production factors. In this study we calculated technical efficiency indices for each input and output using multidirectional efficiency analysis and examined the relationship...... between ‘farm-specific characteristics’ and input and output technical efficiencies by production type (piglet, growing-finishing, finish-to-farrow). The results indicated that advisory services and farm location were not significantly correlated with technical efficiency. Similar results were obtained...... for ‘housing practices’, with the exception of the latest technology such as heated floors in relation to input labour technical efficiency for growing-finishing and finish-to-farrow productions. Use of written instructions for feeding for growing-finishing and finish-to-farrow production and written...

  12. PRODUCT EFFICIENCY IN THE SPANISH AUTOMOBILE MARKET

    Directory of Open Access Journals (Sweden)

    González, Eduardo

    2013-01-01

    Full Text Available This paper evaluates product efficiency in the Spanish automobile market. We use non parametric frontier techniques in order to estimate product efficiency scores for each model. These scores reflect the minimum price for which each car could be sold, given the bundle of tangible features it offers in comparison to the best-buy models. Unlike previous research, we use discounted prices which have been adjusted by car dealerships to meet sale targets. Therefore, we interpret the efficiency scores as indicators of the value of the intangible features of the brand. The results show that Audi, Volvo, Volkswagen and Mercedes offer the greatest intangible value, since they are heavily overpriced in terms of price/product ratios. Conversely, Seat, Kia, Renault and Dacia are the brands that can be taken as referent in terms of price/product ratios.

  13. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Shing [Department of Safety Health and Environmental Engineering, Chung tai Institute of Health Sciences and Technology, Taichung (China); Lin, Ping-Jei [Department of Chemical Engineering, Feng Chia University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China)

    2006-03-15

    Temperature effects on H{sub 2} production performance of a novel carrier-induced granular sludge bed (CIGSB) reactor were investigated. Using sucrose-based synthetic wastewater as the feed, the CIGSB system was operated at 30-45 {sup 0}C to identify the optimal working temperature. It was found that H{sub 2} production was the most efficient at 40 {sup 0}C, especially when it was operated at a low hydraulic retention time (HRT) of 0.5h. The overall maximal hydrogen production rate and yield were 7.66l/h/l and 3.88mol H{sub 2}/mol sucrose, respectively, both of them occurred at 40 {sup 0}C. The biomass content tended to decrease as the temperature was increased, suggesting that granular sludge formation may be inhibited at high temperatures. However, increasing temperature gave better specific H{sub 2} production rate, signifying that the average cellular activity for H{sub 2} production may be enhanced as the temperature was increased. The H{sub 2} yield and gas phase H{sub 2} content did not vary considerably regardless of changes in temperature and HRT. This reflects that the CIGSB was a relatively stable H{sub 2}-producing system. The major soluble products from hydrogen fermentation were butyric acid and acetic acid, accounting for 46+-3% and 28+-2% of total soluble microbial products (SMP), respectively. Thus, the dominant H{sub 2} producers in the mixed culture belonged to acidogenic bacteria that underwent butyrate-type fermentation. (author)

  14. Development of Technology and Installation for Biohydrogen Production

    Science.gov (United States)

    Pridvizhkin, S. V.; Vyguzova, M. A.; Bazhenov, O. V.

    2017-11-01

    The article discusses the method for hydrogen production and the device this method application. The relevance of the use of renewable fuels and the positive impact of renewable energy on the environment and the economy is also considered. The presented technology relates to a method for hydrogen production from organic materials subject to anaerobic fermentation, such as the components of solid municipal waste, sewage sludge and agricultural enterprises wastes, sewage waste. The aim of the research is to develop an effective eco-friendly technology for hydrogen producing within an industrial project To achieve the goal, the following issues have been addressed in the course of the study: - development of the process schemes for hydrogen producing from organic materials; - development of the technology for hydrogen producing; - optimization of a biogas plant with the aim of hydrogen producing at one of the fermentation stages; - approbation of the research results. The article is recommended for engineers and innovators working on the renewable energy development issues.

  15. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  16. Effects of a tannin-rich legume (Onobrychis viciifolia on in vitro ruminal biohydrogenation and fermentation

    Directory of Open Access Journals (Sweden)

    Gonzalo Hervás

    2016-03-01

    Full Text Available There is still controversy surrounding the ability of tannins to modulate the ruminal biohydrogenation (BH of fatty acids (FA and improve the lipid profile of milk or meat without conferring a negative response in the digestive utilization of the diet. Based on this, an in vitro trial using batch cultures of rumen microorganisms was performed to compare the effects of two legume hays with similar chemical composition but different tannin content, alfalfa and sainfoin (Onobrychis viciifolia, on the BH of dietary unsaturated FA and on the ruminal fermentation. The first incubation substrate, alfalfa, was practically free of tannins, while the second, sainfoin, contained 3.5% (expressed as tannic acid equivalents. Both hays were enriched with sunflower oil as a source of unsaturated FA. Most results of the lipid composition analysis (e.g., greater concentrations of 18:2n-6, cis-9 18:1 or total polyunsaturated FA in sainfoin incubations showed the ability of this tannin-containing legume to inhibit the BH process. However, no significant differences were detected in the accumulation of cis-9 trans-11 conjugated linoleic acid, and variations in trans-11 18:1 and trans-11 cis-15 18:2 did not follow a regular pattern. Regarding the rumen fermentation, gas production, ammonia concentration and volatile FA production were lower in the incubations with sainfoin (-17, -23 and -11%, respectively. Thus, although this legume was able to modify the ruminal BH, which might result in improvements in the meat or milk lipid profile, the present results were not as promising as expected or as obtained before with other nutritional strategies.

  17. Effects of a tannin-rich legume (Onobrychis viciifolia) on in vitro ruminal biohydrogenation and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    González, M.A.; Peláez, F.R.; Martínez, A.L.; Avilés, C.; Peña, F.

    2016-11-01

    There is still controversy surrounding the ability of tannins to modulate the ruminal biohydrogenation (BH) of fatty acids (FA) and improve the lipid profile of milk or meat without conferring a negative response in the digestive utilization of the diet. Based on this, an in vitro trial using batch cultures of rumen microorganisms was performed to compare the effects of two legume hays with similar chemical composition but different tannin content, alfalfa and sainfoin (Onobrychis viciifolia), on the BH of dietary unsaturated FA and on the ruminal fermentation. The first incubation substrate, alfalfa, was practically free of tannins, while the second, sainfoin, contained 3.5% (expressed as tannic acid equivalents). Both hays were enriched with sunflower oil as a source of unsaturated FA. Most results of the lipid composition analysis (e.g., greater concentrations of 18:2n-6, cis-9 18:1 or total polyunsaturated FA in sainfoin incubations) showed the ability of this tannin-containing legume to inhibit the BH process. However, no significant differences were detected in the accumulation of cis-9 trans-11 conjugated linoleic acid, and variations in trans-11 18:1 and trans-11 cis-15 18:2 did not follow a regular pattern. Regarding the rumen fermentation, gas production, ammonia concentration and volatile FA production were lower in the incubations with sainfoin (‒17, ‒23 and ‒11%, respectively). Thus, although this legume was able to modify the ruminal BH, which might result in improvements in the meat or milk lipid profile, the present results were not as promising as expected or as obtained before with other nutritional strategies. (Author)

  18. Annex 15 of the IEA Hydrogen Implementing Agreement : Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, P. [Uppsala Univ., Uppsala (Sweden)]|[International Energy Agency, Paris (France)

    2004-07-01

    Task 15 of the Hydrogen Implementation Agreement of the International Energy Agency is to advance the science of biophotosynthesis of hydrogen, which is the biological production of hydrogen from water and sunlight using microalgal photosynthesis. A practical process for biophotolysis would result in an innovative biological source of sustainable and environmentally benign renewable energy source. Japan, Norway, Sweden and the United States initially committed to the project. Since then Canada, the Netherlands and the United Kingdom have joined. The current task is to produce hydrogen from both green algae and cyanobacteria with focus on early-stage applied research on biophotolysis processes with intermediate carbon dioxide fixation. Significant advances have also occurred in the scientific field of cyanobacterial biohydrogen. Cyanobacteria has enzymes that metabolise hydrogen. Photosynthetic cyanobacteria have simple nutritional requirements and can grow in air, water, or mineral salts with light as the only source of energy. This research will help provide the advances needed to achieve practical efficiencies and cost objectives of biological hydrogen production. tabs., figs.

  19. Productivity, Efficiency, and Competitiveness of Small-Scale Organic Cotton Production in Tanzania

    DEFF Research Database (Denmark)

    Mgeni, Dotto; Henningsen, Arne

    cannot be adjusted in the short run. However, land, labor, and organic fertilizer can neither be traded on a perfect market nor are their quantities completely fixed for cotton production, but these input quantities can be adjusted by adjusting their use for other activities of the household. Hence......Cotton is known as the “white gold” of Africa since it is the only export crop in which the continent’s share in the world market has increased over the past decades. Total cotton production as well as productivity grew particularly in Western and Central Africa. In contrast, cotton production grew...... and output, as well as socio-economic and agronomic factors, but also on the shadow prices of all sparsely traded inputs, i.e. land, labor, and organic fertilizer. Hence, we can not only analyze productivity, technical efficiency, and scale efficiency, but also allocative efficiency, profitability...

  20. Efficiency of dairy production on a family farm

    Directory of Open Access Journals (Sweden)

    Zoran Grgić

    2002-01-01

    Full Text Available This paper presents the evaluation of economic efficiency of dairyproduction on a family farm with 14 dairy cows in the breeding stock, and with average production from 3.206 to 3.407 lit. of milk annually. On the basis of survey data for three-year period from 1998 to 2000, economic indicators were calculated, as well as the cost price of milk, income and the revenue of total production and per production head. In the family farm with an average annual sale from 2.827 to 2.972 lit. of milk per head, total revenue has been realized from 44.884 to 47.695 kuna and the profit from 606 to 8.515 kuna. Revenues per production head were from 5.655 to 6.495 kuna and the profitfrom 177 to 726 kuna. The milk cost price in the analyzed period was 1.71, 1.66 and 1.69 kn. per lit, and the profit per liter of milk was 0.06, and 0.21 kn. Basic economic indicators point out on efficiency of dairy production for the investigated farm on the stated production level. The biggest influence on the dairy production efficiency on the farm, regarding the cost price structure, has been registered from the costs of fodder production, while the favorable parity of the cost price and producer-sale price of milk determines the increase in dairy production efficiency and income from dairy production in the analyzed period.

  1. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty. PMID:25901325

  2. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  3. Biodiversity influences plant productivity through niche-efficiency.

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  4. Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Ika Rinawati Dyah

    2018-01-01

    Full Text Available Furniture is one of Indonesia’s main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.

  5. Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sriyanto; Sari, Diana Puspita; Prayodha, Andana Cantya

    2018-02-01

    Furniture is one of Indonesia's main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.

  6. Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors.

    Science.gov (United States)

    Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F

    2011-09-01

    This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Biocatalysis and bacterial cells; problems and prospects for biohydrogen

    International Nuclear Information System (INIS)

    Hallenbeck, P.C.; Viger, J.-F.

    2000-01-01

    Biological hydrogen production, studied in a number of model and small-scale systems over the last twenty-five years, has been advanced as a potential technology for producing clean energy. However, the rates and efficiencies of hydrogen production by any system fall far short of economic feasibility at present. A number of different systems have been proposed and studied including direct biophotolytic processes and two stage systems. Direct biophotolytic processes, though inherently attractive, suffer from the perhaps insurmountable barriers of the oxygen sensitivity of the enzymes involved and intrinsic limitations in light conversion efficiencies. Fermentative processes, using either biomass obtained in a first stage light conversion process or perhaps more attractively, various waste streams, present an interesting yet largely unexplored avenue for the biological production of hydrogen. Much is presently known about the molecular biology and biochemistry of the hydrogen producing enzymes, reductant generating systems, and physiology of many hydrogen producing organisms. The potential of metabolic engineering for redirecting electron flux to hydrogen production is discussed. Some of the relevant details of hydrogen evolving systems are reviewed in the hopes of identifying potentially limiting factors and therefore indicating directions for future research aimed at increasing production rates and conversion efficiencies to economically feasible levels. (author)

  8. Chemoselective biohydrogenation of chalcone (2{Epsilon})-3-(1,3-benzodioxole-5-yl)-1-phenyl-2-propen-1-one mediated by baker yeasts immobilized in polymeric supports; Bioidrogenacao quimioseletiva da chalcona (2{Epsilon})-3-(1,3-benzodioxol-5-il)-1-fenil-2-propen-1-ona mediada por fermentos de pao imobilizado em suportes polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Mundstock, Flavia L.S.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: mundstock@qmc.ufsc.b [Universidade Federal de Santa Catarina (DQ/UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2009-07-01

    In this study, the yeast Saccharomyces cerevisiae, baker's yeast (BY) was immobilized in poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), sodium caseinate (SC), gelatin (G) films and in agar (A) and gelatin (G) gels, and used as a biocatalyst in the biohydrogenation reaction of (2{Epsilon})-3-(1,3-benzodioxyl-5-yl)-1-phenyl-2-propen-1-one (1). The transformation of (1) into the corresponding dehydro chalcone (2) through biohydrogenation reactions was carried out in n-hexane at 25 or 35 deg C, for 4-48 h reaction. The product conversion, under different experimental conditions, was evaluated by hydrogen nuclear magnetic resonance, {sup 1}H NMR.The highest conversion degrees were achieved using BY immobilized in agar gel, (29-47%), depending also on the temperature. Using BY immobilized in PEO, PVA, SC and G films, the conversion into (2) was lower (0-21%). The results show the feasibility of the use of BY immobilized in polymeric materials to reduce a,b-unsaturated carbonyl compounds. (author)

  9. Environmental assessment for the Consumer Products Efficiency Standards program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-23

    The Energy Policy and Conservation Act of 1975 as amended by the National Energy Conservation Policy Act of 1978, requires the DOE to prescribe energy efficiency standards for thirteen consumer products. The Consumer Products Efficiency Standards (CPES) program covers the following products: refrigerators and refrigerator-freezers; freezers;clothes dryers;water heaters; room air conditioners; home heating equipment (not including furnaces); kitchen ranges and ovens; central air conditioners (cooling and heat pumps); furnaces; dishwashers; television sets; clothes washers; and humidifiers and dehumidifiers. DOE is proposing two sets of standards for all thirteen consumer products: intermediate standards to become effective in 1981 for the first nine products and in 1982 for the second four products, and final standards to become effective in 1986 and 1987, respectively. The final standards are more restrictive than the intermediate standards and will provide manufacturers with the maximum time permitted under the Act to plan and develop extensive new lines of efficient consumer products. The final standards proposed by DOE require the maximum improvements in efficiency which are technologically feasible and economically justified, as required by Section 325(c) of EPCA. The thirteen consumer products account for approximately 90% of all the energy consumed in the nation's residences, or more than 20% of the nation's energy needs. Increases in the energy efficiency of these consumer products can help to narrow the gap between the nation's increasing demand for energy and decreasing supplies of domestic oil and natural gas. Improvements in the efficiency of consumer products can thus help to solve the nation's energy crisis.

  10. Total Factor Productivity and Efficiency Analysis on Islamic Banks in Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Aisyah

    2018-02-01

    Full Text Available The aims of this study are to measure productivity and efficiency, to analyze factors which affect the level of efficiency and to analyze correlation between productivity and efficiency of Islamic Banking in Indonesia. The objects of this study are 11 (eleven Islamic Banks (BUS in Indonesia which are analyzed from the second quarter of 2010 to the third quarter of 2015. The result shows only six of the eleven banks that have a good productivity levels, otherwise for efficiency there are only three banks that efficient enough. Furthermore, the relationship between productivity and efficiency levels that are categorized into 4 (four quadrants. In quadrant I, three banks have high productivity and efficiency namely Syariah Mandiri, Panin Syariah and Victoria Syariah; quadrant IV two banks in low level of productivity and efficiency namely Mega Syariah and Bukopin Syariah. While the quadrant II namely BCA Syariah, BRI syariah and Muamalat and quadrant III namely BJB Syariah, BNI Syariah and Maybank Syariah required further research to determine the factors that affect the productivity and efficiency relationships that occur. 

  11. Estimating Production Technical Efficiency of Irvingia Seed (Ogbono ...

    African Journals Online (AJOL)

    This study estimated the production technical efficiency of irvingia seed (Ogbono) farmers in Nsukka agricultural zone in Enugu State, Nigeria. This is against the backdrop of the importance of efficiency as a factor of productivity in a growing economy like Nigeria where resources are scarce and opportunities for new ...

  12. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  13. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark); Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90120 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark)

    2008-11-15

    Biohydrogen production from Thermoanaerobacterium thermosaccharolyticum strain PSU-2 was examined in upflow anaerobic sludge blanket (UASB) reactor and carrier-free upflow anaerobic reactor (UA), both fed with sucrose and operating at 60 C. Heat-pretreated methanogenic granules were used as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24 h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l{sup -1} h{sup -1}. In comparison with hydrogen production rate of 12.1 mmol H{sub 2} l{sup -1} h{sup -1} obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H{sub 2} l{sup -1} h{sup -1} was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (author)

  14. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    Science.gov (United States)

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. BOREAS TE-17 Production Efficiency Model Images

    Data.gov (United States)

    National Aeronautics and Space Administration — A BOREAS version of the Global Production Efficiency Model(www.inform.umd.edu/glopem) was developed by TE-17 to generate maps of gross and net primary production,...

  16. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Determination of Energy Use Efficiency of Sesame Production

    OpenAIRE

    BARAN, Mehmet Firat

    2018-01-01

    In this research it was aimed to determine an energy use efficiency of sesame production in Şanlıurfa province, during the production season of 2015. In order to determine the energy use efficiency of sesame production, trials and measurement were performed in sesame farm in the Bozova district of Şanlıurfa province. As energy inputs, human labour energy, machinery energy, chemical fertilizers energy, irrigation water energy, chemicals energy, diesel fuel energy and seed energy as were calcul...

  18. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cue Effectiveness in Communicatively Efficient Discourse Production

    Science.gov (United States)

    Qian, Ting; Jaeger, T. Florian

    2012-01-01

    Recent years have seen a surge in accounts motivated by information theory that consider language production to be partially driven by a preference for communicative efficiency. Evidence from discourse production (i.e., production beyond the sentence level) has been argued to suggest that speakers distribute information across discourse so as to…

  20. Estimating shadow prices and efficiency analysis of productive inputs and pesticide use of vegetable production

    NARCIS (Netherlands)

    Singbo, Alphonse G.; Lansink, Alfons Oude; Emvalomatis, Grigorios

    2015-01-01

    This paper analyzes technical efficiency and the value of the marginal product of productive inputs vis-a-vis pesticide use to measure allocative efficiency of pesticide use along productive inputs. We employ the data envelopment analysis framework and marginal cost techniques to estimate

  1. Milk fat depression in dairy ewes fed fish oil: Might differences in rumen biohydrogenation, fermentation, or bacterial community explain the individual variation?

    Science.gov (United States)

    Frutos, P; Toral, P G; Belenguer, A; Hervás, G

    2018-07-01

    Dairy ewes show large individual variation in the extent of diet-induced milk fat depression (MFD) but reasons behind this variability remain uncertain. Previous results offered no convincing support for these differences being related to relevant changes in the milk fatty acid (FA) profile, including potentially antilipogenic FA, or in the transcript abundance of candidate genes involved in mammary lipogenesis. Therefore, we hypothesized that alterations in the processes of rumen biohydrogenation and fermentation, as well as in the bacterial community structure, might account for individual variation in fish oil-induced MFD severity. To test this explanation, 15 ewes received a total mixed ration without lipid supplementation (control; n = 5) or supplemented with 20 g of fish oil/kg of dry matter [10 animals divided into those showing a strong (RESPON+; -25.4%; n = 5) or a mild (RESPON-; -7.7%; n = 5) decrease in milk fat concentration] for 5 wk. Rumen fermentation parameters, biohydrogenation metabolites, and bacterial structure and diversity were analyzed in rumen samples collected before and after treatments. Although the fish oil supplementation increased the concentration of demonstrated or putative antilipogenic FA (e.g., cis-9 16:1, cis-11 18:1, or trans-10,cis-12 CLA), surprisingly, none of them differed significantly in relation to the extent of MFD (i.e., between RESPON- and RESPON+), and this was the case only for a few minor FA (e.g., cis-6+7 16:1 or 17:0 anteiso). Changes in total volatile FA, acetate, and propionate concentrations were associated with MFD severity, with higher decreases in more susceptible animals. Individual responses were not related to shifts in rumen bacterial structure but some terminal restriction fragments compatible with Clostridiales, Ruminococcaceae, Lachnospiraceae, and Succiniclasticum showed greater abundances in RESPON-, whereas some others that may correspond to Prevotella, Mogibacterium, and Quinella-related spp. were

  2. Advances and bottlenecks in microbial hydrogen production.

    Science.gov (United States)

    Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E

    2017-09-01

    Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    OpenAIRE

    Susmozas, Ana; Iribarren, Diego; Dufour, Javier

    2015-01-01

    Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydroge...

  4. Environmental assessment. Energy efficiency standards for consumer products

    Energy Technology Data Exchange (ETDEWEB)

    McSwain, Berah

    1980-06-01

    The Energy Policy and Conservation Act of 1975 requires DOE to prescribe energy efficiency standards for 13 consumer products. The Consumer Products Efficiency Standards (CPES) program covers: refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners (cooling and heat pumps), furnaces, dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers. This Environmental Assessment evaluates the potential environmental and socioeconomic impacts expected as a result of setting efficiency standards for all of the consumer products covered by the CPES program. DOE has proposed standards for eight of the products covered by the Program in a Notice of Proposed Rulemaking (NOPR). DOE expects to propose standards for home heating equipment, central air conditioners (heat pumps only), dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers in 1981. No significant adverse environmental or socioeconomic impacts have been found to result from instituting the CPES.

  5. The Efficiency of Damage Production in Silicon Carbide

    International Nuclear Information System (INIS)

    Weber, William J.; Gao, Fei; Devanathan, Ram; Jiang, Weilin

    2004-01-01

    Molecular dynamics simulations are used to study the statistics of damage production in 3C-SiC due to C, Si and Au primary knock-on atoms (PKAs) over energies from 0.25 to 50 keV. In order to account for the different displacement energies on the Si and C sublattices and accurately assess the damage efficiency, a modified version of the SRIM (Stopping and Range of Ions in Matter) code, with the electronic stopping turned off to duplicate the molecular dynamics conditions, was used to calculate the statistics of damage production for the same PKAs over the energy range from 0.1 to 400 keV under the binary collision approximation using threshold displacement energies of 20 and 35 eV for C and Si, respectively. Using the modified SRIM predictions as a reference, the efficiencies of total damage production are determined for C, Si and Au PKAs as functions of energy. The efficiency for production of C displacements is similar for all PKAs; however, C PKAs have a much lower efficiency for producing stable Si displacements than Si and Au PKAs, which leads to a much higher ratio of C to Si displacements for C PKAs. These results are consistent with the experimental damage production behavior observed in SiC irradiated with C, Si and Au ions at 150 K

  6. The efficiency of damage production in silicon carbide

    International Nuclear Information System (INIS)

    Weber, W.J.; Gao, F.; Devanathan, R.; Jiang, W.

    2004-01-01

    Molecular dynamics (MD) simulations are used to study the statistics of damage production in 3C-SiC due to C, Si and Au primary knock-on atoms (PKAs) over energies from 0.25 to 50 keV. In order to account for the different displacement energies on the Si and C sublattices and accurately assess the damage efficiency, a modified version of the SRIM (stopping and range of ions in matter) code, with the electronic stopping turned off to duplicate the MD conditions, was used to calculate the statistics of damage production for the same PKAs over the energy range from 0.1 to 400 keV under the binary collision approximation using threshold displacement energies of 20 and 35 eV for C and Si, respectively. Using the modified SRIM predictions as a reference, the efficiencies of total damage production are determined for C, Si and Au PKAs as functions of energy. The efficiency for production of C displacements is similar for all PKAs; however, C PKAs have a much lower efficiency for producing stable Si displacements than Si and Au PKAs, which leads to a much higher ratio of C to Si displacements for C PKAs. These results are consistent with the experimental damage production behavior observed in SiC irradiated with C, Si and Au ions at 150 K

  7. Crop and soil specific N and P efficiency and productivity in Finland

    Directory of Open Access Journals (Sweden)

    S. BÄCKMAN

    2008-12-01

    Full Text Available This paper estimates a stochastic production frontier based on experimental data of cereals production in Finland over the period 1977-1994. The estimates of the production frontier are used to analyze nitrogen and phosphorous productivity and efficiency differences between soils and crops. For this input specific efficiencies are calculated. The results can be used to recognize relations between fertilizer management and soil types as well as to learn where certain soil types and crop combinations require special attention to fertilization strategy. The combination of inputs as designed by the experiment shows significant inefficiencies for both N and P. The measures of mineral productivity and efficiency indicate that clay is the most mineral efficient and productive soil while silt and organic soils are the least efficient and productive soils. Furthermore, a positive correlation is found between mineral productivity and efficiency. The results indicate that substantial technical efficiency differences between different experiments prevail.;

  8. Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge

    Directory of Open Access Journals (Sweden)

    Wei Han

    2011-01-01

    Full Text Available The effects of organic loading rates (OLRs on fermentative productions of hydrogen and ethanol were investigated in a continuous stirred tank reactor (CSTR with attached sludge using molasses as substrate. The CSTR reactor with attached sludge was operated under different OLRs, ranging from 8 to 24 kg/m3·d. The H2 and ethanol production rate essentially increased with increasing OLR. The highest H2 production rate (10.74 mmol/h⋅L and ethanol production rate (11.72 mmol/h⋅L were obtained both operating at OLR = 24 kg/m3·d. Linear regression results show that ethanol production rate ( and H2 production rate ( were proportionately correlated and can be expressed as =1.5365−5.054 (2=0.9751. The best energy generation rate was 19.08 kJ/h⋅L, which occurred at OLR = 24 kg/m3·d. In addition, the hydrogen yield was affected by the presence of ethanol and acetic acid in the liquid phase, and the maximum hydrogen production rate occurred while the ratio of ethanol to acetic acid was close to 1.

  9. Relation between hydrogen production and photosynthesis in the green algae Chlamydomonas reinhardtii

    OpenAIRE

    Basu, Alex

    2015-01-01

    The modernized world is over-consuming low-cost energy sources that strongly contributes to pollution and environmental stress. As a consequence, the interest for environmentally friendly alternatives has increased immensely. One such alternative is the use of solar energy and water as a raw material to produce biohydrogen through the process of photosynthetic water splitting. In this work, the relation between H2-production and photosynthesis in the green algae Chlamydomonas reinhardtii was ...

  10. Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge

    Science.gov (United States)

    Han, Wei; Wang, Zhanqing; Chen, Hong; Yao, Xin; Li, Yongfeng

    2011-01-01

    The effects of organic loading rates (OLRs) on fermentative productions of hydrogen and ethanol were investigated in a continuous stirred tank reactor (CSTR) with attached sludge using molasses as substrate. The CSTR reactor with attached sludge was operated under different OLRs, ranging from 8 to 24 kg/m3·d. The H2 and ethanol production rate essentially increased with increasing OLR. The highest H2 production rate (10.74 mmol/h·L) and ethanol production rate (11.72 mmol/h·L) were obtained both operating at OLR = 24 kg/m3·d. Linear regression results show that ethanol production rate (y) and H2 production rate (x) were proportionately correlated and can be expressed as y = 1.5365x − 5.054 (r2 = 0.9751). The best energy generation rate was 19.08 kJ/h·L, which occurred at OLR = 24 kg/m3·d. In addition, the hydrogen yield was affected by the presence of ethanol and acetic acid in the liquid phase, and the maximum hydrogen production rate occurred while the ratio of ethanol to acetic acid was close to 1. PMID:21799660

  11. Using Data Envelopment Analysis to Measure International Agricultural Efficiency and Productivity

    OpenAIRE

    Arnade, Carlos Anthony

    1994-01-01

    Numerous methods for measuring multifactor productivity have been used by economists. This report uses a recently developed approach, data envlopment analysis, to measure productivity. This method can be used not only to calculate productivity but also to divide productivity measures into indices that measure technical efficiency and technical change. Technical efficiency measures the efficiency with which resources are used. Technical change measures changes in output arising from improved t...

  12. Technical efficiency of irrigated vegetable production among ...

    African Journals Online (AJOL)

    This study was carried out to analyse the technical efficiency of irrigated vegetable production among smallholder farmers in the guinea savannah, Nigeria, and determine the cost and returns on irrigated vegetable production. Two-stage sampling technique was used, purposive selection of two states and three Local ...

  13. Novel Hydrogen Production Systems Operative at Thermodynamic Extremes

    Energy Technology Data Exchange (ETDEWEB)

    Gunsalus, Robert

    2012-11-30

    We have employed a suite of molecular, bioinformatics, and biochemical tools to interrogate the thermodynamically limiting steps of H{sub 2} production from fatty acids in syntrophic communities. We also developed a new microbial model system that generates high H{sub 2} concentrations (over 17% of the gas phase) with high H{sub 2} yields of over 3 moles H{sub 2} per mole glucose. Lastly, a systems-based study of biohydrogen production in model anaerobic consortia was performed to begin identifying key regulated steps as a precursor to modeling co-metabolism. The results of these studies significantly expand our ability to predict and model systems for H{sub 2} production in novel anaerobes that are currently very poorly documented or understood.

  14. Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    In a single year, energy-efficient product purchases could save the federal government almost a half billion dollars worth of energy. By purchasing products that exceed the minimum required efficiency levels, buyers can save the government even more energy and money. Federal employees and contractors must take an active role in ensuring that the government receives products that meet efficiency requirements. This document provides an overview of product purchasing requirements and shows you how to write compliant contracts, find funding, and confirm product compliance.

  15. RESOURCE USE EFFICIENCY OF GROUNDNUT PRODUCTION IN ...

    African Journals Online (AJOL)

    AGROSEARCH UIL

    2012-09-28

    Sep 28, 2012 ... A stratified sampling technique was employed to select 58 respondents. ... there is still opportunity to increase their production to attain optimal economic efficiency. The ... metric tons and an average productivity of 1.4 metric tons /ha. Developing ... The educated population are gainfully employed in some.

  16. POSSIBILITIES OF INCREASING EFFICIENCY WITHIN SERIAL PRODUCTION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    CODRUŢA DURA

    2010-01-01

    Full Text Available Under the impact of transition to the new post-industrial society, massproduction recently faced the most numerous difficulties. They are caused by turbulences in theexternal environment in which companies operate, manifested in particular by enhancing thedynamism of markets and by deep changes in the structure of consumers’ demands. In thiscontext, specialized literature records the concerns for increasing the efficiency and flexibilityof products, elements involving radical changes of management and manufacturingtechnologies methods. Given these issues, the paper approaches two separate ways to improvethe management of serial production: increasing economic efficiency by optimizing the size ofbatches and flexible production systems by implementing techniques to reduce the change-overtime.

  17. Technical efficiency of watermelon ( Citrullus lanatus ) production in ...

    African Journals Online (AJOL)

    This study was designed to measure the level of technical efficiency, its determinants in watermelon (Citrullus lanatus) production and the constraints in the production system in Yewa North Local Government of Ogun State using a stochastic frontier production function. A combination of purposive and random sampling ...

  18. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...

  19. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced......) and Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation....... The enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...

  20. Evaluation of biohydrogenation rate of canola vs. soya bean seeds as unsaturated fatty acids sources for ruminants in situ.

    Science.gov (United States)

    Pashaei, S; Ghoorchi, T; Yamchi, A

    2016-04-01

    An experiment was conducted to study disappearance of C14 to C18 fatty acids, lag times and biohydrogenation (BH) rates of C18 fatty acids of ground soya bean and canola seeds in situ. Three ruminally fistulated Dallagh sheep were used to determine ruminal BH of unsaturated fatty acids (UFAs). Differences in the disappearance of fatty acids through the bags and lag times were observed between the oilseeds. We saw that the longer the incubation time of the oilseeds in the rumen, the lower the content of C18:2 and C18:3. Significantly higher lag times for both C18:2 and C18:3 were observed in ground canola compared to ground soya bean. BH rates of C18:2 and C18:3 fatty acids in soya bean were three times higher than those of canola. These results suggest that the fatty acid profile of fat source can affect the BH of UFAs by rumen micro-organisms. So that UFAs of canola had higher ability to escape from ruminal BH. It seems that fatty acid profile of ruminant products is more affected by canola seed compared to soya bean seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  1. Biodiesel and biohydrogen production from cotton-seed cake in biorefinery concept

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Pasias, S.; Bakker, R.R.C.; Vrije, de G.J.; Papayannakos, N.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Biodiesel production from cotton-seed cake (CSC) and the pretreatment of the remaining biomass for dark fermentative hydrogen production was investigated. The direct conversion to biodiesel with alkali free fatty acids neutralization pretreatment and alkali transesterification resulted in a

  2. Improving radiation use efficiency in greenhouse production systems

    OpenAIRE

    Li, Tao

    2015-01-01

    SUMMARY A large increase in agricultural production is needed to feed the increasing world population with their increasing demand per capita. However, growing competition for arable land, water, energy, and the degradation of the environment impose challenges to improve crop production. Hence agricultural production efficiency needs to increase. Greenhouses provide the possibility to create optimal growth conditions for crops, thereby improving production and product quality. Light is the dr...

  3. Production System of Peranakan Etawah Goat under Application of Feed Technology: Productivity and Economic Efficiency

    Directory of Open Access Journals (Sweden)

    Akhmad Sodiq

    2009-09-01

    Full Text Available Feed resources are the major constraint in increasing goat production in the village. The main constraints to goat raising are related to feeds (i the high cost of transport of crop residues and grass to the homesteads, (ii the low nutritive value of feeds used, particularly in the dry period. This research was design to evaluate goat productivity and economic efficiency of goat farming under application of feed technology production system in Peranakan Etawah goat farmer group of Gumelar Banyumas Central Java. All farmers were taken as respondents using census methods. On farm research with participative focused group discussion, indepth interview, and farm observation. Descriptive analysis and independent t test methods were used to analyze the data. Results of this study showed that there was a significant improvement goat productivity on production system with the application of feed technology. Body weight at weaning, survival rate till weaning, and doe productivity were increased 7%, 2% and 5%, respectively. There was no evidence of significant different of farmers income and economic efficiency before and after the applied feed technology (P>0.05. The calculation was based on cash flow. Before application, farmers income per year and economic efficiency were Rp14.404.520,00 and 1.21, then insignificantly improve into Rp16.487.100,00 and 1.27, respectively. (Animal Production 11(3: 202-208 (2009 Key Words: Livestock production system, Peranakan Etawah goat, feed technology aplication, productivity and economic efficiency

  4. [Carbon efficiency of double-rice production system in Hunan Province, China].

    Science.gov (United States)

    Chen, Zhong-du; Wu, Yao; Ti, Jin-song; Chen, Fu; Li, Yong

    2015-01-01

    Improving the carbon efficiency of crop production systems is one of the important ways to realize low-carbon agriculture. A life cycle assessment approach and input-output calculation method was applied for a double-rice production system in the Hunan Province. Based on statistical data of crop yield and investment in the production system in the period from 2004 to 2012, carbon emission, carbon absorption, carbon efficiency and their dynamic changes of the double rice production systems were estimated. The results showed that the average of annual carbon emission from 2004 to 2012 was 656.4 x 10(7) kg CE. Carbon emissions from production and transport of fertilizer and pesticide accounted for a majority of agricultural input carbon emissions, approximately 70.0% and 15.9%, respectively. The carbon emission showed a decreasing trend from 2004 to 2012 in the Hunan Province, with an annual reduction rate of 2.4%, but the carbon emission intensity was in a trend of increase. The average of annual carbon absorption was 1547.0 x 10(7) kg C. The annual carbon absorption also showed a decreasing trend from 2004 to 2012 in Hunan Province, with an average annual reduction rate of 1.2%, and the carbon absorption intensity showed a trend of increase. Furthermore, production efficiency of carbon showed a slow upward trend. The economic efficiency of carbon showed a larger increasing rate with time, with an average annual growth rate of 9.9%. Ecological efficiency of carbon was stable and low, maintained at about 2.4 kg C . kg-1 CE. It indicated that the integrated carbon efficiency of Hunan double rice crop production system improved slowly with time and the key to improve the carbon efficiency of double rice production systems lies in reducing the rates of nitrogen fertilizer and pesticide, and improving their use efficiencies.

  5. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – A review

    International Nuclear Information System (INIS)

    Ghosh, Shiladitya; Dairkee, Umme Kulsoom; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2017-01-01

    Highlights: • Food processing wastes/wastewaters are potential feedstocks for PNSB-bioH_2 systems. • Several bottlenecks exist in efficient usage of food processing wastes/wastewaters by PNSBs. • Pretreatment of feedstocks is a challenging issue. • Genetic modification significantly enhances the H_2 outcome of PNSBs. • Food waste/wastewater - PNSB is a sustainable combination for production of H_2. - Abstract: Purple non-sulfur bacteria (PNSB) mediated production of biohydrogen utilizing solid food waste and food processing wastewater possess enormous potential to be implemented as an ideal “green energy technology”. This paper reviews the current state-of-the-art utilization of solid wastes and wastewaters of several food and beverage processing industries in photofermentative H_2 production systems. Detailed accounts of the complex composition of various solid food wastes and food processing wastewaters along with the pretreatments used for enhancement of H_2 production by PNSBs have been presented. Factors like compositional complexity, presence of inhibitory compounds and resistance to light penetration are identified as the prime bottlenecks hindering the efficient utilization of food waste and wastewaters in photofermentative H_2 production. Genetic manipulation of the PNSBs to overcome the inherent metabolic complications has been discussed as a probable amelioration strategy for enhancement of H_2 yield. Based on profound discussions the scopes for upgradation of the photofermentative biohydrogen systems using food waste/wastewater have been highlighted and recommended for the overall enhancement of the sustainability of the processes.

  6. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition. As...

  7. Effect of spring versus autumn grass/clover silage and rapeseed supplementation on milk production, composition and quality in Jersey cows

    DEFF Research Database (Denmark)

    Larsen, Mette Krogh; Vogdanou, Stefania; Hellwing, Anne Louise Frydendahl

    2016-01-01

    of C16 : 0, riboflavin and α-tocopherol were decreased with autumn silage. The majority of C18 FAs in milk and α-tocopherol concentration increased with rapeseed whereas C11 : 0 to C16 : 0 FA were reduced. Autumn silage reduced biohydrogenation of C18 : 2n6, whereas rapeseed increased biohydrogenation...

  8. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  9. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  10. Analysis of Production Funds Efficiency in the Country’s Crane Sector

    Directory of Open Access Journals (Sweden)

    Edita Valėnaitė

    2012-07-01

    Full Text Available The article deals with methodological aspects of the production funds analysis. In this work the study of literature which examines the basic and transferable funds is presented. Much attention is paid to the analysis of basic production funds in the crane sector. Analysis of the basic production funds in the country’s crane sector is presented. Special attention is paid to the structure of the cranes park and crane utilization efficiency. In the analysis of basic production funds, the factors that impede the efficiency of production funds were established as follows: the greatest negative impact on basic production funds efficiency of businesses was in small tower crane fleet; a small range of tower cranes in the park is reducing the technical possibilities of the lease. Basing on the analysis and observation of tower cranes installation and dismantling, the poor supply of the parts for the work place, lack of competence and motivation of the support staff have been ascertained. After elimination of these factors it is possible to raise the efficiency of the main production funds.Article in Lithuanian

  11. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  12. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  13. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  14. An Empirical Study of Strategic Positioning and Production Efficiency

    OpenAIRE

    Hsihui Chang; Guy D. Fernando; Arindam Tripathy

    2015-01-01

    We examine the relationship between strategic positioning of firms and their production efficiency. Firms with competitive advantages based on either cost leadership or differentiation are able to outperform their competitors. Firms pursuing a cost leadership strategy seek to be the lowest cost producer, primarily by minimizing inputs for a given level of output, thus concentrating on increasing the efficiency of their production processes. On the other hand, firms that pursue a differentiat...

  15. Endogeneity Corrected Stochastic Production Frontier and Technical Efficiency

    NARCIS (Netherlands)

    Shee, A.; Stefanou, S.E.

    2015-01-01

    A major econometric issue in estimating production parameters and technical efficiency is the possibility that some forces influencing production are only observed by the firm and not by the econometrician. Not only can this misspecification lead to a biased inference on the output elasticity of

  16. What factors affect the productivity and efficiency of physician practices?

    Science.gov (United States)

    Sunshine, Jonathan H; Hughes, Danny R; Meghea, Cristian; Bhargavan, Mythreyi

    2010-02-01

    Increasing the productivity and efficiency of physician practices could help relieve the rapid growth of US healthcare costs and the expected physician shortage. Radiology practices are an attractive specific focus for research on practices' productivity and efficiency because they are home to many purportedly productivity-enhancing operational technologies. This affords an opportunity to study the effect of production technology on physicians' output. As well, radiology is a leader in the general movement of physicians out of very small practices. And imaging is by the fastest-growing category of physician expenditure. Using data from 2003 to 2007 surveys of radiologists, we estimate a stochastic frontier model to study the effects of practice characteristics, such as work hours, practice size, and output mix, and technologies used in work production, on practices' productivity and efficiency. At the mean, the elasticities of output with respect to practice size and annual hours worked per full-time physician were 0.73 and 0.51, respectively. Some production technologies increase productivity by 15% to 20%; others generate no increase. Using "nighthawks"--ie, contracting out after-hours work to external firms that consolidate workflow--significantly increases practice efficiency. The general US trend toward larger practice size is unlikely to relieve cost or physician shortage pressures. The actual effect of purportedly productivity-enhancing operational technologies needs to be carefully evaluated before they are widely adopted. As the recently-developed innovations of nighthawks and hospitalists show, practices should give more attention to a possible choice to "buy," rather than "make," part of their output.

  17. Productive efficiency in the banking industry

    Directory of Open Access Journals (Sweden)

    Martín Leandro Dutto Giolongo

    2016-07-01

    Full Text Available The goal of this paper is to estimate the productive efficiency of Argentine banks. For this purpose, panel data of the universe of banks under the supervision of the Central Bank of the Republic of Argentina (BCRA has been collected. In order to build the bank´s indicators, we used a database of 66 institutions, with annual information for the period 2009-2013. The sources of information were both the BCRA´s web site (www.bcra.gov.ar, and the Buenos Aires Stock Exchange´s web site (www.bolsar.com. It has been selected an efficiency indicator ranging between 0 and 1, meaning the lowest and highest level of efficiency, respectively. The concept of efficiency used here is a relative one, because it considers a Bank´s performance in relation to the behavior of the best players in the industry, being the latter the base of the industry benchmark or frontier. The results show that the mean efficiency of Argentine banks is 0,8277 in the specific period under consideration. The comparison with the results of other studies relating efficiency and competitive pressure, didn´t allow us to infer that the Argentine banking industry experienced in the period a high level of competition

  18. Productivity and technical efficiency of suckler beef production systems: trends for the period 1990 to 2012.

    Science.gov (United States)

    Veysset, P; Lherm, M; Roulenc, M; Troquier, C; Bébin, D

    2015-12-01

    Over the past 23 years (1990 to 2012), French beef cattle farms have expanded in size and increased labour productivity by over 60%, chiefly, though not exclusively, through capital intensification (labour-capital substitution) and simplifying herd feeding practices (more concentrates used). The technical efficiency of beef sector production systems, as measured by the ratio of the volume value (in constant euros) of farm output excluding aids to volume of intermediate consumption, has fallen by nearly 20% while income per worker has held stable thanks to subsidies and the labour productivity gains made. This aggregate technical efficiency of beef cattle systems is positively correlated to feed self-sufficiency, which is in turn negatively correlated to farm and herd size. While volume of farm output per hectare of agricultural area has not changed, forage feed self-sufficiency decreased by 6 percentage points. The continual increase in farm size and labour productivity has come at a cost of lower production-system efficiency - a loss of technical efficiency that 20 years of genetic, technical, technological and knowledge-driven progress has barely managed to offset.

  19. ECONOMIC EFFICIENCY OF DIFFERENT PROTECTION TREATMENTS IN APPLE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Vesna Tomaš

    2015-06-01

    Full Text Available Apple is the most represented fruit species in Croatia. Codling moth, Cydia pomonella L, is one of the most important apple pests whose population is growing from year to year. The aim of this study was to determine the economic effectiveness of four treatments against codling moth (1 - based on baculovirus; 2 - based on the group of synthetic pyrethroid; 3 - based on kaolin, 4 - control treatment, on the three apple varieties. The experiment was performed at the Agricultural Institute Osijek, Croatia, during three years (2012-2014. In order to analyze the results of apple production it was necessary to calculate production efficiency, labor productivity, and profitability of production. The results of the research of economic efficiency according to market prices treatment 1 and treatment 2 had economic coefficient above 1 with tendency of significant growth, while treatment 3 and 4 were uneconomical. The treatment 1showed advantage over the treatment 2 because of its positive effects on human health and biodiversity, as well as satisfactory economic efficiency.

  20. Separating environmental efficiency into production and abatement efficiency. A nonparametric model with application to U.S. power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hampf, Benjamin

    2011-08-15

    In this paper we present a new approach to evaluate the environmental efficiency of decision making units. We propose a model that describes a two-stage process consisting of a production and an end-of-pipe abatement stage with the environmental efficiency being determined by the efficiency of both stages. Taking the dependencies between the two stages into account, we show how nonparametric methods can be used to measure environmental efficiency and to decompose it into production and abatement efficiency. For an empirical illustration we apply our model to an analysis of U.S. power plants.

  1. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Mars, Astrid E.; Veuskens, Teun; Budde, Miriam A.W.; van Doeveren, Patrick F.N.M.; Lips, Steef J.; Bakker, Robert R.; de Vrije, Truus; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-08-15

    Production of hydrogen by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana was studied in serum flasks and in pH-controlled bioreactors with glucose, and hydrolyzed and untreated potato steam peels (PSP) as carbon sources. Two types of PSP hydrolysates were used: one in which the starch in the PSP was liquefied with alpha-amylase, and one in which the liquefied starch was further hydrolyzed to glucose by amyloglucosidase. When the PSP hydrolysates or untreated PSP were added at circa 10-14 g/L of glucose units, both strains grew well and produced hydrogen with reasonable to high molar yields (2.4-3.8 moles H{sub 2}/mole glucose units), and no significant production of lactate. The hydrogen production rates and yields were similar with untreated PSP, hydrolyzed PSP, and pure glucose, showing that C. saccharolyticus and T. neapolitana are well equipped for the utilization of starch. When the concentrations of the substrates were increased, growth and hydrogen production of both strains were hampered. At substrate concentrations of circa 30-40 g/L of glucose units, the molar hydrogen yield of C. saccharolyticus was severely reduced due to the formation of high amounts of lactate, while T. neapolitana was unable to grow at all. The results showed that PSP and PSP hydrolysates are very suitable substrates for efficient fermentative hydrogen production at moderate substrate loadings. (author)

  2. Economic efficiency of extensive livestock production in the European Union

    Directory of Open Access Journals (Sweden)

    Nastić Lana

    2017-01-01

    Full Text Available Various types of extensive livestock production are present worldwide, primarily in regions where natural resources such as pastures and meadows could be used. Extensive livestock production is common in the EU, as well. Therefore the goal of this research was to establish economic efficiency of extensive livestock production types and to compare their efficiency with some intensive livestock production types. In order to achieve that goal FADN (Farm Accountancy Data Network methodology was used. Source of information was FADN database as well as appropriate sector analysis and publications of European commission. It has been determined that sheep and goat production is competitive with intensive production types (dairy and granivores - pigs and poultry. Cattle production (other than dairy production proved to be economically inefficient due to low output level.

  3. Bio-hydrogen production from waste fermentation. Mixing and static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Cuetos, M.J.; Prieto, J.I.; Moran, A. [Chemical Engineering Dept. IRENA, University of Leon, Avda. de Portugal 41, 24071 Leon (Spain)

    2009-04-15

    One of the main disadvantages of the dark fermentation process is the cost associated with the stages needed for obtaining H{sub 2} producing microorganisms. Using anaerobic microflora in fermentation systems directly is an alternative which is gaining special interest when considering the implementation of large-scale plants and the use of wastes as substrate material. The performance of two H{sub 2} producing microflora obtained from different anaerobic cultures was studied in this paper. Inoculum obtained from a waste sludge digester and from a laboratory digester treating slaughterhouse wastes were used to start up H{sub 2} fermentation systems. Inoculum acclimatized to slaughterhouse wastes gave better performance in terms of stability. However, due to the limited availability of this seed material, further work was performed to study the behaviour of the inoculum obtained from the municipal wastewater treatment plant. The process was evaluated under static and mixing conditions. It was found that application of a low organic loading rate favoured the performance of the fermentation systems, and that agitation of the reacting mass could alleviate unsteady performance. Specific H{sub 2} production obtained was in the range of 19-26 L/kg SV{sub fed} with maximum peak production of 38-67 L/kg SV{sub fed}. Although the performance of the systems was unsteady, recovery could be achieved by suspending the feeding process and controlling the pH in the range of 5.0-5.5. Testing the recovery capacity of the systems under temperature shocks resulted in total stoppage of H{sub 2} production. (author)

  4. Light quality and efficiency of consumer grade solid state lighting products

    Science.gov (United States)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff

    2013-03-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.

  5. ECONOMIC EFFICIENCY IN TOMATOES PRODUCTION IN GREENHOUSES

    Directory of Open Access Journals (Sweden)

    A POPESCU

    2003-07-01

    Full Text Available This study aimed to appreciate the evolution of economic efficiency in tomatoes production in greenhouses within a private firm situated next to the capital. The firm owns 4 ha greenhouses and the weight of tomatoes crop in the cultivated area is just 38.75 %. In fact, during the last three years, the tomatoes cultivated surface has been diminished in favour of flowers production which, like tomatoes production is an important income source for any producer. The reduction of the tomatoes cultivated area was compensated by the increase of intensification grade using new high performance hybrids and modern technologies. Thus, the scientific production management has been looking for maintaining the total production at the same level from a year to another by an increased average tomatoes yield by 53.33 % . The continuous increase of farm input price has doubled the cost per surface unit and increased the cost per tomatoes kilogram by 33 %. The increase of tomatoes demand and of market price by 31 % have had a positive influence on the farm incomes which has doubled during the last three years. In the year 2000, the company has obtained USD 41,818 income/ha of which subtracting the related production cost we can easily get USD 4,815 profit/ha. The average profit rate recorded by the firm is 13 % in the period 2000-2002, when the study was made. As a conclusion, tomatoes production in greenhouses is a good deal. To keep a high economic efficiency, under the diminishing of the cultivated area, the producers have to increase average tomatoes production by using high performance technology based on high economic value hybrids.

  6. Piecewise Loglinear Estimation of Efficient Production Surfaces

    OpenAIRE

    Rajiv D. Banker; Ajay Maindiratta

    1986-01-01

    Linear programming formulations for piecewise loglinear estimation of efficient production surfaces are derived from a set of basic properties postulated for the underlying production possibility sets. Unlike the piecewise linear model of Banker, Charnes, and Cooper (Banker R. D., A. Charnes, W. W. Cooper. 1984. Models for the estimation of technical and scale inefficiencies in data envelopment analysis. Management Sci. 30 (September) 1078--1092.), this approach permits the identification of ...

  7. Informatics in radiology: Efficiency metrics for imaging device productivity.

    Science.gov (United States)

    Hu, Mengqi; Pavlicek, William; Liu, Patrick T; Zhang, Muhong; Langer, Steve G; Wang, Shanshan; Place, Vicki; Miranda, Rafael; Wu, Teresa Tong

    2011-01-01

    Acute awareness of the costs associated with medical imaging equipment is an ever-present aspect of the current healthcare debate. However, the monitoring of productivity associated with expensive imaging devices is likely to be labor intensive, relies on summary statistics, and lacks accepted and standardized benchmarks of efficiency. In the context of the general Six Sigma DMAIC (design, measure, analyze, improve, and control) process, a World Wide Web-based productivity tool called the Imaging Exam Time Monitor was developed to accurately and remotely monitor imaging efficiency with use of Digital Imaging and Communications in Medicine (DICOM) combined with a picture archiving and communication system. Five device efficiency metrics-examination duration, table utilization, interpatient time, appointment interval time, and interseries time-were derived from DICOM values. These metrics allow the standardized measurement of productivity, to facilitate the comparative evaluation of imaging equipment use and ongoing efforts to improve efficiency. A relational database was constructed to store patient imaging data, along with device- and examination-related data. The database provides full access to ad hoc queries and can automatically generate detailed reports for administrative and business use, thereby allowing staff to monitor data for trends and to better identify possible changes that could lead to improved productivity and reduced costs in association with imaging services. © RSNA, 2011.

  8. Biohydrogen production from combined dark-photo fermentation under a high ammonia content in the dark fermentation effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; Lo, Yung-Chung; Yeh, Kuei-Ling [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Chang, Jo-Shu [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; National Cheng Kung Univ., Tainan, Taiwan (China). Microalgae Biotechnology and Bioengineering Lab.

    2010-07-01

    Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H{sub 2} production. First, the continuous dark fermentation using indigenous Clostridium butyricum CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H{sub 2} production rate and H{sub 2} yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H{sub 2}/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H{sub 2} production process inoculated with Rhodopseudomonas palutris WP 3-5 under the condition of 35oC, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H{sub 2}/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H{sub 2} yield dramatically increased from 1.015 mol H{sub 2}/mol sucrose (in dark fermentation only) to 6.04 mol H{sub 2}/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH{sub 3}-N removal efficiency of 92%, implying that our photo-H{sub 2} production system has a higher NH{sub 3}-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. (orig.)

  9. SWEET CORN FARMING: THE EFFECT OF PRODUCTION FACTOR, EFFICIENCY AND RETURN TO SCALE

    Directory of Open Access Journals (Sweden)

    Dwijatenaya I.B.M.A.

    2017-10-01

    Full Text Available This research aims to determine the effect of production factors on the sweet corn production, the efficiency of sweet corn farming, and the return to scale of sweet corn production. The sampling technique was taken by proportionate stratified random sampling method with the sample number of 57 people while the analyzer used was the program of Frointer 4.1c. The results show that the production factors of the land farm, seed, and fertilizer have a positive and significant effect on sweet corn production. On the other hand, labor production factors have a positive but not significant effect on sweet corn production. It also found that technical efficiency, price efficiency, and economic efficiency of sweet corn farming in Muara Wis Sub-district of Kutai Kartanegara Regency are not efficient yet. The return to scale of sweet corn yield has an increasing return to scale condition.

  10. Eco-efficiency analysis methodology on the example of the chosen polyolefins production

    OpenAIRE

    K. Czaplicka-Kolarz; D. Burchart-Korol; P. Krawczyk

    2010-01-01

    the chosen polyolefins production. The article presents also main tools of eco-efficiency analysis: Life Cycle Assessment (LCA) and Net Present Value (NPV).Design/methodology/approach: On the basis of LCA and NPV of high density polyethylene (HDPE) and low density polyethylene (LDPE) production, eco-efficiency analysis is conducted.Findings: In this article environmental and economic performance of the chosen polyolefins production was presented. The basis phases of eco-efficiency methodology...

  11. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  12. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  13. THE EFFECT OF EXTERNAL TRANSPORT ON ENERGETIC EFFICIENCY OF BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Olga Anna Orynycz

    2017-03-01

    Full Text Available In several our publications energetic efficiency of biofuel production was defined as a ratio of the amount of energy obtained in a form of biofuel to the sum of energy contributions necessary to conduct production processes on all the production stages. It was also shown that such a definition enables subsequent inclusion of production steps due to additivity of reciprocals of energetic efficiency determined separately for each step. In the present work, several scenarios of the transport of biomass between plantation and industrial facility converting biomass into biofuel are considered, appropriate values of energetic efficiency are computed and compared. The analysis is confined to biodiesel production based on rapeseed. The results show substantial differences caused by various approaches to that stage of transport.

  14. Improving Farmers' Efficiency in Rice Production In Nigeria: The ...

    African Journals Online (AJOL)

    This paper assesses the effects of extension services on farmers' efficiency and productivity in rice production in Kano State, Nigeria. Data for the study were collected from 126 rice farmers selected using multi stage sampling technique. Stochastic production frontier function was estimated to ascertain the effects of ...

  15. Efficient protein production by yeast requires global tuning of metabolism

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bao, Jichen; Hallstrom, Bjorn M.

    2017-01-01

    The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous...... intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular...... that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion....

  16. ADDED VALUE AS EFFICIENCY CRITERION FOR INDUSTRIAL PRODUCTION PROCESS

    Directory of Open Access Journals (Sweden)

    L. M. Korotkevich

    2016-01-01

    Full Text Available Literary analysis has shown that the majority of researchers are using classical efficiency criteria for construction of an optimization model for production process: profit maximization; cost minimization; maximization of commercial product output; minimization of back-log for product demand; minimization of total time consumption due to production change. The paper proposes to use an index of added value as an efficiency criterion because it combines economic and social interests of all main interested subjects of the business activity: national government, property owners, employees, investors. The following types of added value have been considered in the paper: joint-stock, market, monetary, economic, notional (gross, net, real. The paper makes suggestion to use an index of real value added as an efficiency criterion. Such approach permits to bring notional added value in comparable variant because added value can be increased not only due to efficiency improvement of enterprise activity but also due to environmental factors – excess in rate of export price increases over rate of import growth. An analysis of methods for calculation of real value added has been made on a country-by-country basis (extrapolation, simple and double deflation. A method of double deflation has been selected on the basis of the executed analysis and it is counted according to the Laspeyires, Paasche, Fischer indices. A conclusion has been made that the used expressions do not take into account fully economic peculiarities of the Republic of Belarus: they are considered as inappropriate in the case when product cost is differentiated according to marketing outlets; they do not take account of difference in rate of several currencies and such approach is reflected in export price of a released product and import price for raw material, supplies and component parts. Taking this into consideration expressions for calculation of real value added have been specified

  17. Management of efficiency of agricultural production on the basis of ...

    African Journals Online (AJOL)

    Management of efficiency of agricultural production on the basis of margin approach. ... Journal of Fundamental and Applied Sciences ... and systematized to the management of production costs of agricultural products, the proposed definition ...

  18. Development of an eco-efficient product/process for the vulcanising industry

    Directory of Open Access Journals (Sweden)

    Becerra, M. B.

    2014-08-01

    Full Text Available This paper presents the development of an eco-efficient product/process, which has improved mechanical properties from the introduction of natural fibres in the EPDM (Ethylene-Propylene-Diene-Terpolymer rubber formulation. The optimisation analysis is made by a fractional factorial design 211-7. Different formulations were evaluated using a multi-response desirability function, with the aim of finding efficient levels for the manufacturing time-cycle, improving the mechanical properties of the product, and reducing the raw material costs. The development of an eco-efficient product/process generates a sustainable alternative to conventional manufacturing.

  19. Essays on pig production efficiency and farmers' financial decisions under uncertainty

    OpenAIRE

    Labajova, Katarina.

    2018-01-01

    Recent structural changes in agricultural production towards fewer, but larger, units pose challenges for farmers in decision making about practical production and about managerial practices to increase efficiency, which are vital for farm productivity and profitability. In studies using mathematical programming and econometric models, this thesis evaluated farm-specific characteristics related to the individual technical efficiency (TE) of each input and output factor and of managerial chara...

  20. Methodical Approach to Diagnostics of Efficiency of Production Economic Activity of an Enterprise

    Directory of Open Access Journals (Sweden)

    Zhukov Andrii V.

    2014-03-01

    Full Text Available The article offers developments of a methodical approach to diagnostics of efficiency of production economic activity of an enterprise, which, unlike the existing ones, is realised through the following stages: analysis of the enterprise external environment; analysis of the enterprise internal environment; identification of components of efficiency of production economic activity for carrying out complex diagnostics by the following directions: efficiency of subsystems of the enterprise production economic activity, efficiency of use of separate types of resources and socio-economic efficiency; scorecard formation; study of tendencies of change of indicators; identification of cause-effect dependencies between the main components of efficiency for diagnosing reasons of its level; diagnosing deviations of indicator values from their optimal values; development of a managerial decision on preserving and increasing efficiency of production economic activity of the enterprise.

  1. Energy sources consumption: end uses, efficiency and productivity

    International Nuclear Information System (INIS)

    Martin, J.M.

    2005-01-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  2. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact...... production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...

  3. Efficient promotion of electricity production from offshore wind

    International Nuclear Information System (INIS)

    Panzer, Christian; Auer, Hans; Lettner, Georg

    2014-01-01

    Efficient promotion of electricity production from offshore wind stands in dynamic relationship with various influence factors, the most important of which are promotion instruments, topographic givens, regulation of grid connection, and supraregional market integration concepts. Using three case studies from different countries to highlight national differences in the promotion of offshore wind power plants the present analysis points out ways of improving the efficiency of promotion instruments.

  4. Profitability and Technical Efficiency of Soybean Production in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    Ugbabe, OO.

    2017-01-01

    Full Text Available The International Institute of Tropical Agriculture and collaborating partners have been introducing and disseminating short season soybean varieties among farm households in the Sudan savannas of Northern Nigeria since 2008. Yet, there is no empirical information on the profitability and technical efficiency of soybean production. This study estimated the profitability and efficiency of production of the early maturing soybean. Nine hundred soybean farming households in thirty communities from three Local Government Areas (LGAs in Kano State were sampled for the study. Partial budget technique and stochastic frontier production function were used to analyze the data elicited from the sampled farm households. Results from the study established the profitability of soybean production in all the three LGAs of Kano State. The highest profit of N178,613/ha and returns per naira invested of 2.5 respectively was earned by the soybean producing households of Dawakin-Tofa LGA. Net profit was N157,261in Shanono with a returns of 1.75 per naira invested. In Bunkure, net benefit was N143,342 with returns of 1.66 per Naira invested. The mean technical efficiency was highest for the Dawakin-Tofa LGA soybean growing households (87%, followed by Bunkure LGA (68%, and Shanono LGA (59%. This result implies that given the current level of resources available to the soybean producing households, they can increase their soybean output in the short run by a margin 13%, 32% and 41% in Dawakin-Tofa, Bunkure and Shanono LGAs respectively through efficient utilization of their available resources. Farmer-specific efficiency factors, which comprise age, education, access to credit, extension contact and farming experience, were found to be the significant factors that account for the observed variation in efficiency among the farmers in the 3 LGAs. It was recommended that the soybean farmers through the assistance of extension agents should be encouraged to adhere

  5. Resource use efficiency in small-scale rice production in Nigeria ...

    African Journals Online (AJOL)

    The production function for rice, elasticity of production, return to scale, marginal productivity and level of efficiency of inputs used in rice production were determined. ... With the exception of fertilizer that was over-utilized, all other inputs were underutilized with ratios of marginal value products to unit prices greater than unity ...

  6. Relationships of efficiency to reproductive disorders in Danish milk production: a stochastic frontier analysis.

    Science.gov (United States)

    Lawson, L G; Bruun, J; Coelli, T; Agger, J F; Lund, M

    2004-01-01

    Relationships of various reproductive disorders and milk production performance of Danish dairy farms were investigated. A stochastic frontier production function was estimated using data collected in 1998 from 514 Danish dairy farms. Measures of farm-level milk production efficiency relative to this production frontier were obtained, and relationships between milk production efficiency and the incidence risk of reproductive disorders were examined. There were moderate positive relationships between milk production efficiency and retained placenta, induction of estrus, uterine infections, ovarian cysts, and induction of birth. Inclusion of reproductive management variables showed that these moderate relationships disappeared, but directions of coefficients for almost all those variables remained the same. Dystocia showed a weak negative correlation with milk production efficiency. Farms that were mainly managed by young farmers had the highest average efficiency scores. The estimated milk losses due to inefficiency averaged 1142, 488, and 256 kg of energy-corrected milk per cow, respectively, for low-, medium-, and high-efficiency herds. It is concluded that the availability of younger cows, which enabled farmers to replace cows with reproductive disorders, contributed to high cow productivity in efficient farms. Thus, a high replacement rate more than compensates for the possible negative effect of reproductive disorders. The use of frontier production and efficiency/inefficiency functions to analyze herd data may enable dairy advisors to identify inefficient herds and to simulate the effect of alternative management procedures on the individual herd's efficiency.

  7. Environmental policy and the energy efficiency of vertically differentiated consumer products

    International Nuclear Information System (INIS)

    Brzeskot, Magdalena; Haupt, Alexander

    2013-01-01

    We analyse optimal environmental policies in a market that is vertically differentiated in terms of the energy efficiency of products. Considering energy taxes, subsidies to firms for investment in more eco-friendly products, and product standards, we are particularly interested in how distributional goals in addition to environmental goals shape the choice of policy instruments. We find that an industry-friendly government levies an energy tax to supplement a lax product standard, but shies away from subsidies to firms. By contrast, a consumer-friendly government relies heavily on a strict product standard and additionally implements a moderate subsidy to firms, but avoids energy taxes. - Highlights: ► We analyse how distributional goals shape environmental policy. ► Firms invest in the energy efficiency of their products and compete in prices. ► An industry-friendly government implements an energy tax and a lax product standard. ► A consumer-friendly government chooses a subsidy to firms instead of an energy tax. ► A consumer-friendly government implements a strict energy efficiency standard

  8. IT support of energy-sensitive product development. Energy-efficient product and process innovations in production engineering. Virtual product development for energy-efficient products and processes; IT-Unterstuetzung zur energiesensitiven Produktentwicklung. Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik. Handlungsfeld virtuelle Produktentwicklung fuer energieeffiziente Produkte und Prozesse (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Thomas; Ruenger, Gudula; Steger, Daniel; Xu, Haibin

    2010-07-07

    The development of low-cost, energy-saving and resources-saving products is increasingly important. Thecalculation of the life cycle cost is an important basis for this. For this, it is necessary to extract empirical, decision-relevant data from IT systems of product development (e.g. product data management systems) and operation (e.g. enterprise resource planning systems), and to give the planner appropriate methods for data aggregation. Life cycle data are particularly important for optimising energy efficiency, which may be achieved either by enhanced productivity at constant energy consumption or by reduced energy consumption at constant productivity. The report presents an IT view of the product development process. First, modern methods of product development are analysed including IT support and IT systems. Requirements on IT systems are formulated which enable energy efficiency assessment and optimisation in all phases of product development on the basis of the IT systems used. IT systems for energy-sensitive product development will support the construction engineer in the development of energy-efficient products. For this, the functionalities of existing PDM systems must be enhanced by methods of analysis, synthesis and energy efficiency assessment. Finally, it is shown how the methods for analyzing energy-relevant data can be integrated in the work flow.

  9. Production Efficiency Audit on Tea Beverage Agroindustry

    Directory of Open Access Journals (Sweden)

    Hendra Adiyatna, . Marimin

    2001-04-01

    Full Text Available The objective of this work was to investigate and to apply economic efficiency performance measurement methods for tea beverage agroindustry. These measurements were based on twelve technique and economic efficiency criteria, which illustrate the condition of the processes. This illustration was able to explain the material and the energy utilization, variance of the processes and product, handling of the waste and acceptance in the market. The methodology was divided into three steps: (1 defining the technique and the economic criteria, appropriate to the circumstance of the processes, (2 state efficiency the level status, (3 evaluation and structure prioritizing of the processes improvement alternatives. The results of this work indicates that there are seven appropriate criteria. The status of the efficiency is in the medium level. The improvement priorities recommended include optimization of material and energy usage and minimization of breaktime of the critical processes

  10. Methionine supplementation in the productive efficiency, carcass ...

    African Journals Online (AJOL)

    The effect of dietary methionine supplementation at varying levels on the productive efficiency, carcass characteristics and economics of growing indigenous turkey was investigated. Four Isocaloric and Isonitrogenous diets were formulated. The diets were supplemented with 0.00%, 0.05%, 0.10%, and 0.15% respectively.

  11. Labour productivity and resource use efficiency amongst ...

    African Journals Online (AJOL)

    The study examined labour productivity and resource efficiency amongst smallholder cocoa farmers in Abia State, Nigeria. A purposive random sampling technique was adopted in selecting 60 cocoa farmers from three agricultural zones in the State. The analytical techniques used involve inferential statistics like means, ...

  12. Strategies of Production Control as Tools of Efficient Management of Production Enterprises

    Science.gov (United States)

    Budynek, Mateusz; Celińska, Elżbieta; Dybikowska, Adrianna; Kozak, Monika; Ratajczak, Joanna; Urban, Jagoda; Materne, Karolina

    2016-03-01

    The paper discusses the problem of principle methods of production control as a strategy supporting the production system and stimulating efficient solutions in respect management in production enterprises. The article describes MRP, ERP, JIT, KANBAN and TOC methods and focuses on their main goals, principles of functioning as well as benefits resulting from their application. The methods represent two diverse strategies of production control, i.e. pull and push strategies. Push strategies are used when the plans apply to the first and principle part of production and are based on the demand forecasts. Pull strategies are used when all planning decisions apply to the final stage and depend on the actual demand or orders from customers.

  13. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akihiro; Bando, Yukiko; Fujimoto, Naoshi; Suzuki, Masaharu [Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1 Sakuragaoka 1-chome, Setagaya-ku, Tokyo 156-8502 (Japan)

    2010-08-15

    In order to ensure efficient functioning of hydrogen fermentation systems that use Clostridium as the dominant hydrogen producer, energy-intensive process such as heat pretreatment of inoculum and/or substrate, continuous injection, and control of anaerobic conditions are required. Here, we describe a simple hydrogen fermentation system designed using microflora from leaf-litter cattle-waste compost. Hydrogen and volatile fatty acid production was measured at various hydraulic retention times, and bacterial genera were determined by PCR amplification and sequencing. Although hydrogen fermentation yield was approximately one-third of values reported in previous studies, this system requires no additional treatment and thus may be advantageous in terms of cost and operational control. Interestingly, Clostridium was absent from this system. Instead, Megasphaera elsdenii was the dominant hydrogen-producing bacterium, and lactic acid-producing bacteria (LAB) were prevalent. This study is the first to characterize M. elsdenii as a useful hydrogen producer in hydrogen fermentation systems. These results demonstrate that pretreatment is not necessary for stable hydrogen fermentation using food waste. (author)

  14. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    International Nuclear Information System (INIS)

    Cheng, Dan; He, Qingfang

    2014-01-01

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  15. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Dan, E-mail: dxcheng@ualr.edu; He, Qingfang, E-mail: dxcheng@ualr.edu [Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR (United States)

    2014-07-07

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  16. Roots, plant production and nutrient use efficiency

    NARCIS (Netherlands)

    Willigen, de P.; Noordwijk, van M.

    1987-01-01

    The role of roots in obtaining high crop production levels as well as a high nutrient use efficiency is discussed. Mathematical models of diffusion and massflow of solutes towards roots are developed for a constant daily uptake requirement. Analytical solutions are given for simple and more

  17. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.S. III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S.L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I.A.

    2015-01-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the

  18. Measuring efficiency of cotton cultivation in Pakistan: a restricted production frontier study.

    Science.gov (United States)

    Watto, Muhammad Arif; Mugera, Amin

    2014-11-01

    Massive groundwater pumping for irrigation has started lowering water tables rapidly in different regions of Pakistan. Declining water tables have thus prompted research efforts to improve agricultural productivity and efficiency to make efficient use of scarce water resources. This study employs a restricted stochastic production frontier to estimate the level of, and factors affecting, technical efficiency of groundwater-irrigated cotton farms in the Punjab province of Pakistan. The mean technical efficiency estimates indicate substantial technical inefficiencies among cotton growers. On average, tube-well owners and water buyers can potentially increase cotton production by 19% and 28%, respectively, without increasing the existing input level. The most influential factors affecting technical efficiency positively are the use of improved quality seed, consultation with extension field staff and farmers' perceptions concerning the availability of groundwater resources for irrigation in the future. This study proposes that adopting improved seed for new cotton varieties and providing better extension services regarding cotton production technology would help to achieve higher efficiency in cotton farming. Within the context of falling water tables, educating farmers about the actual crop water requirements and guiding them about groundwater resource availability may also help to achieve higher efficiencies. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  19. Productive efficiency of tea industry: A stochastic frontier approach ...

    African Journals Online (AJOL)

    In an economy where recourses are scarce and opportunities for a new technology are lacking, studies will be able to show the possibility of raising productivity by improving the industry's efficiency. This study attempts to measure the status of technical efficiency of tea-producing industry for panel data in Bangladesh using ...

  20. Efficient recombinant production of prodigiosin in Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    Andreas eDomröse

    2015-09-01

    Full Text Available Serratia marcescens and several other bacteria produce the red-colored pigment prodigiosin which possesses bioactivities as an antimicrobial, anticancer and immunosuppressive agent. Therefore, there is a great interest to produce this natural compound. Efforts aiming at its biotechnological production have so far largely focused on the original producer and opportunistic human pathogen S. marcescens. Here, we demonstrate efficient prodigiosin production in the heterologous host Pseudomonas putida. Random chromosomal integration of the 21 kb prodigiosin biosynthesis gene cluster of S. marcescens in P. putida KT2440 was employed to construct constitutive prodigiosin production strains. Standard cultivation parameters were optimized such that titers of 94 mg/L culture were obtained upon growth of P. putida at 20 °C using rich medium under high aeration conditions. Subsequently, a novel, fast and effective protocol for prodigiosin extraction and purification was established enabling the straightforward isolation of prodigiosin from P. putida growth medium. In summary, we describe here a highly efficient method for the heterologous biosynthetic production of prodigiosin which may serve as a basis to produce large amounts of this bioactive natural compound and may provide a platform for further in-depth studies of prodiginine biosynthesis.

  1. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    DEFF Research Database (Denmark)

    De Abreu, Angela Alexandra Valente; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2012-01-01

    .0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. DGGE results revealed no significant difference on the bacterial community composition between operational periods...

  2. Biohydrogen production in integrated system

    Czech Academy of Sciences Publication Activity Database

    Bélafi-Bakó, K.; Bakonyi, P.; Nemestóthy, N.; Pientka, Zbyněk

    2010-01-01

    Roč. 14, 1-3 (2010), s. 116-118 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] R&D Projects: GA MŠk MEB040920 Institutional research plan: CEZ:AV0Z40500505 Keywords : escherichia coli * gas separation * sodium formate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.752, year: 2010

  3. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  4. An analysis of the productivity and technical efficiency of smallholder ...

    African Journals Online (AJOL)

    This study used the stochastic frontier production function to analyse the productivity and technical efficiency of 4 different agricultural production systems in Ethiopia; namely, irrigated seasonal farms on traditional irrigation systems, irrigated seasonal farms on modern communal irrigation systems, rainfed seasonal farms for ...

  5. STRATEGIES OF PRODUCTION CONTROL AS TOOLS OF EFFICIENT MANAGEMENT OF PRODUCTION ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Mateusz BUDYNEK

    2016-01-01

    Full Text Available The paper discusses the problem of principle methods of production control as a strategy supporting the production system and stimulating efficient solutions in respect management in production enterprises. The article describes MRP, ERP, JIT, KANBAN and TOC methods and focuses on their main goals, principles of functioning as well as benefits re-sulting from their application. The methods represent two diverse strategies of production control, i.e. pull and push strategies. Push strategies are used when the plans apply to the first and principle part of production and are based on the demand forecasts. Pull strategies are used when all planning decisions apply to the final stage and depend on the actual demand or orders from customers.

  6. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  7. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  8. AN ESTIMATION OF TECHNICAL EFFICIENCY OF GARLIC PRODUCTION IN KHYBER PAKHTUNKHWA PAKISTAN

    Directory of Open Access Journals (Sweden)

    Nabeel Hussain

    2014-04-01

    Full Text Available This study was conducted to estimate the technical efficiency of farmers in garlic production in Khyber Pakhtunkhwa province, Pakistan. Data was randomly collected from 110 farmers using multistage sampling technique. Maximum likelihood estimation technique was used to estimate Cob-Douglas frontier production function. The analysis revealed that the estimated mean technical efficiency was 77 percent indicating that total output can be further increased with efficient use of resources and technology. The estimated gamma value was found to be 0.93 which shows 93% variation in garlic output due to inefficiency factors. The analysis further revealed that seed rate, tractor hours, fertilizer, FYM and weedicides were positive and statistically significant production factors. The results also show that age and education were statistically significant inefficiency factors, age having positive and education having negative relationship with the output of garlic. This study suggests that in order to increase the production of garlic by taking advantage of their high efficiency level, the government should invest in the research and development aspects for introducing good quality seeds to increase garlic productivity and should organize training programs to educate farmers about garlic production.

  9. Overview on the current trends in biodiesel production

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z.

    2011-01-01

    Research highlights: → Various method for the production of biodiesel from vegetable oil were reviewed. → Such as direct use and blending, microemulsion, pyrolysis and transesterification. → The advantages and disadvantages of the different biodiesel-production methods are also discussed. → Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  10. Overview on the current trends in biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusuf, N.N.A.N. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Kamarudin, S.K., E-mail: ctie@eng.ukm.m [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaakub, Z. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-07-15

    Research highlights: {yields} Various method for the production of biodiesel from vegetable oil were reviewed. {yields} Such as direct use and blending, microemulsion, pyrolysis and transesterification. {yields} The advantages and disadvantages of the different biodiesel-production methods are also discussed. {yields} Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  11. Cambridge journals blog: Improving feed efficiency in dairy production

    Science.gov (United States)

    Because the cost of feeding animals is one of the greatest expenses in dairy production (40-60% of production costs), research focused on ways to identify and select for animals that are the most efficient at converting feed into milk has greatly expanded during the last decade. The animal Article o...

  12. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    Science.gov (United States)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  13. Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis

    International Nuclear Information System (INIS)

    Wang, H.; Zhou, P.; Zhou, D.Q.

    2013-01-01

    Improving energy efficiency and productivity is one of the most cost-effective ways for achieving the sustainable development target in China. This paper employs non-radial directional distance function approach to empirically investigate energy efficiency and energy productivity by including CO 2 emissions as an undesirable output. Three production scenarios, namely energy conservation (EC), energy conservation and emission reduction (ECER), and energy conservation, emission reduction and economic growth (ECEREG), are specified to assess China's energy efficiency and productivity growth during the period of Eleventh Five-Year Plan. Our empirical results show that there exist substantial differences in China's total-factor energy efficiency and productivity under different scenarios. Under the ECEREG scenario, the national average total-factor energy efficiency score was 0.6306 in 2005–2010, while the national average total-factor energy productivity increased by 0.27% annually during the period. The main driving force for energy productivity growth in China was energy technological change rather than energy efficiency change. - Highlights: • China's regional energy efficiency and productivity in 2005–2010 are evaluated. • Three production scenarios are considered. • Non-radial directional distance function with CO 2 emissions is employed. • Technological change is the main driver for China's energy productivity growth

  14. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Directory of Open Access Journals (Sweden)

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  15. Design of China Leading Energy Efficiency Program (LEP) for equipment and appliances and comparative study of international experience on super-efficient products

    Science.gov (United States)

    Liang, Xiuying; Zhu, Chunyan

    2017-11-01

    With rising global emphasizes on climate change and sustainable development, how to accelerate the transformation of energy efficiency has become an important question. Designing and implementing energy-efficiency policies for super-efficient products represents an important direction to achieve breakthroughs in the field of energy conservation. On December 31, 2014, China’s National Development and Reform Commission (NDRC) jointly six other ministerial agencies launched China Leading Energy Efficiency Program (LEP), which identifies top efficiency models for selected product categories. LEP sets the highest energy efficiency benchmark. Design of LEP took into consideration of how to best motivate manufacturers to accelerate technical innovation, promote high efficiency products. This paper explains core elements of LEP, such as objectives, selection criteria, implementation method and supportive policies. It also proposes recommendations to further improve LEP through international policy comparison with Japan’s Top Runner Program, U.S. Energy Star Most Efficient, and SEAD Global Efficiency Medal.

  16. The impact of ownership structure on bank productivity and efficiency: Evidence from semi-parametric Malmquist Productivity Index

    Directory of Open Access Journals (Sweden)

    Fadzlan Sufian

    2014-12-01

    Full Text Available The present study employs the state of the art bias-corrected Malmquist Productivity Index method to examine the sources of efficiency and productivity of the foreign and domestic banks operating in the Malaysian banking sector. The preferred methodology enables us to isolate efforts to catch up to the frontier (efficiency change from shifts in the frontier (technological change [TECHCH]. The results indicate that the Malaysian banking sector has exhibited productivity progress mainly attributed to technological progress. The empirical findings suggest that both the domestic and foreign banks have exhibited productivity progress albeit at different quantum attributed mainly to progress in TECHCH.

  17. Enhanced biohydrogen production from oat straw co-digested with cow dung / sewage sludge by combined aerobic digestion and anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Loretta Li

    2016-03-01

    Full Text Available Hydrogen was produced from oat straw by combined aerobic and anaerobic fermentation with fungi and cow dung. With aerobic pre-digestion, the maximum hydrogen production rate reached 133 ml/g volatile suspended solids per hour. The maximum hydrogen yield was 71.5 ml/g straw in 6 days by biological process. The lignocellulosic conversion of oak-straw waste was 39%, with the complex component converting 68% of the hemi-cellulose and 61% of the cellulose, but only 34% of lignin conversion. Aerobic pre-digestion by Trichoderma viride and Saccharomyces cerevisiae was significantly effective for lignin degradation.  Combining aerobic and anaerobic fermentation is a promising low-cost efficient and environmentally friendly method, compared with hydrogen fermentation, not only for hydrogen production, but also for converting straw biomass.

  18. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy - shaking and extra-light supplementation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu; Wang, Yong-Hong; Zhang, Si-Liang; Chu, Ju; Zhang, Ming; Huang, Ming-Zhi; Zhuang, Ying-Ping [State Key Laboratory of Bioreactor Engineering, P.O. Box 329, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2009-12-15

    Biohydrogen has gained attention due to its potential as a sustainable alternative to conventional methods for hydrogen production. In this study, the effect of light intensity as well as cultivation method (standing- and shaking-culture) on the cell growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated in 38-ml anaerobic photobioreactor with RCVBN medium. Thus, a novel shaking and extra-light supplementation (SELS) approach was developed to enhance the phototrophic H{sub 2} production by R. sphaeroides ZX-5 using malate as the sole carbon source. The optimum illumination condition for shaking-culture by strain ZX-5 increased to 7000-8000 lux, markedly higher than that for standing-culture (4000-5000 lux). Under shaking and elevated illumination (7000-8000 lux), the culture was effective in promoting photo-H{sub 2} production, resulting in a 59% and 56% increase of the maximum and average hydrogen production rate, respectively, in comparison with the culture under standing and 4000-5000 lux conditions. The highest hydrogen-producing rate of 165.9 ml H{sub 2}/l h was observed under the application of SELS approach. To our knowledge, this record is currently the highest hydrogen production rate of non-immobilized purple non-sulphur (PNS) bacteria. This optimal performance of photo-H{sub 2} production using SELS approach is a favorable choice of sustainable and economically feasible strategy to improve phototrophic H{sub 2} production efficiency. (author)

  19. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.

    Science.gov (United States)

    Chandrasekhar, K; Amulya, K; Mohan, S Venkata

    2015-11-01

    A novel solid state bio-electrofermentation system (SBES), which can function on the self-driven bioelectrogenic activity was designed and fabricated in the laboratory. SBES was operated with food waste as substrate and evaluated for simultaneous production of electrofuels viz., bioelectricity, biohydrogen (H2) and bioethanol. The system illustrated maximum open circuit voltage and power density of 443 mV and 162.4 mW/m(2), respectively on 9 th day of operation while higher H2 production rate (21.9 ml/h) was observed on 19th day of operation. SBES system also documented 4.85% w/v bioethanol production on 20th day of operation. The analysis of end products confirmed that H2 production could be generally attributed to a mixed acetate/butyrate-type of fermentation. Nevertheless, the presence of additional metabolites in SBES, including formate, lactate, propionate and ethanol, also suggested that other metabolic pathways were active during the process, lowering the conversion of substrate into H2. SBES also documented 72% substrate (COD) removal efficiency along with value added product generation. Continuous evolution of volatile fatty acids as intermediary metabolites resulted in pH drop and depicted its negative influence on SBES performance. Bio-electrocatalytic analysis was carried out to evaluate the redox catalytic capabilities of the biocatalyst. Experimental data illustrated that solid-state fermentation can be effectively integrated in SBES for the production of value added products with the possibility of simultaneous solid waste remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enhancing biohydrogen production through sewage supplementation of composite vegetable based market waste

    International Nuclear Information System (INIS)

    Mohanakrishna, G.; Kannaiah Goud, R.; Venkata Mohan, S.; Sarma, P.N.

    2010-01-01

    The function of domestic sewage supplementation as co-substrate with composite vegetable based market waste was studied during the process of fermentative hydrogen (H 2 ) production. Significant improvement in H 2 production and substrate degradation were noticed upon supplementing the waste with domestic sewage. Maximum H 2 production (cummulative) was observed at 5.2 kg COD/m 3 with pulp operation and 4.8 kg COD/m 3 with non-pulp operation accounting for improvement of 51 and 55% respectively after sewage upplementation. Substrate degradation was also found to improve with respect to both carbohydrates [8% (with pulp); 5% (non-pulp)] and chemical oxygen demand [COD, 12% (with pulp); 13% (non-pulp)] after adding domestic sewage. Specific H 2 yield improved especially at lower concentrations. Supplementation of waste with co-substrate helps to maintain good buffering microenvironment supports fermentation process and in addition provides micro-nutrients, organic matter and microbial biomass. Variation in the outlet pH was less in supplementation experiments compared to normal operation. (author)

  1. International benchmaking: Supplying the information for product efficiency policy makers

    NARCIS (Netherlands)

    Siderius, H.P.; Jeffcott, S.; Blok, K.

    2012-01-01

    In the development of effective product efficiency policy, the critical element for policy makers is comprehensive, independent information. However, easily accessible, reliable information on the energy performance of products and policies is often scarce within a particular market, and rarer still

  2. Harnessing biofuels. A global Renaissance in energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Jegannathan, Kenthorai Raman; Chan, Eng-Seng; Ravindra, Pogaku [Centre of Materials and Minerals, School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2009-10-15

    Biofuel, peoples' long awaiting alternative fuel, is yet to struggle a long way to reach in retail outlet all over the world as an economical and environmental friendly fuel. Biofuels include bioethanol, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Among these bioethanol, biodiesel, biogas are predominant which can be produced either using chemical catalyst or biocatalyst from biomass. At present, the conventional process involves the chemical catalyst while a rigorous research is focused on using a biocatalyst. This review brings out the advantages and disadvantages of using different type of catalyst in biofuel production and emphasis on new technologies as an alternative to conventional technologies. (author)

  3. Cyanobacterial hydrogenases and biohydrogen: present status and future potential

    International Nuclear Information System (INIS)

    Lindblad, P.; Tamagnini, P.

    2000-01-01

    Molecular hydrogen (H 2 ) is an environmentally clean energy-carrier that may be a valuable alternative to the limited fossil fuel resources of today. For photobiological H 2 production, photosynthetic cyanobacteria are among the ideal candidates since they have the simplest nutritional requirements: they can grow in air (N 2 and CO 2 ), water (electrons and reductant), and mineral salts with light (solar energy) as the only source of energy. In N 2 -fixing cyanobacteria, H 2 is mainly produced by nitrogenases, but its partial consumption is quickly catalyzed by a unidirectional uptake hydrogenase. In addition, a bidirectional (reversible) enzyme may also oxidize some of the molecular hydrogen. The same enzyme will, under certain conditions, evolve H 2 Filamentous cyanobacteria have been used in bioreactors for the photobiological conversion of water to hydrogen. However, the conversion efficiencies achieved are low because the net H 2 production is the result of H 2 evolution via a nitrogenase and H 2 consumption mainly via an uptake hydrogenase. Consequently, the improvements of the conversion efficiencies are achieved e.g. through the optimization of the conditions for H 2 evolution by nitrogenase, through the production of mutants deficient in H 2 uptake activity and by an increased H 2 -evolution by a bidirectional enzyme. Symbiotic cells are of fundamental interest since they in situ 'function as a bioreactor', High metabolism, transfer of metabolite(s) from symbiont to host but almost no growth. In the present communication we will present the general knowledge about hydrogen metabolism/hydrogenases in filamentous cyanobacteria focusing on recent advances using molecular techniques, outline strategies for improving the capacity of H 2 -production by filamentous strains, and stress the importance of international cooperations and networks. (author)

  4. Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite

    Directory of Open Access Journals (Sweden)

    Moh Djaeni

    2013-06-01

    Full Text Available Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60% and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified by zeolite. As a result humidity of air can be reduced up to 0.1 ppm. So, for heat sensitive products, the drying process can be performed in low or medium temperature with high driving force. The study has been conducted in three steps: designing the dryer, performing laboratory scale equipment (tray, spray, and fluidised bed dryers with zeolite, and evaluating the dryer performance based on energy efficiency and product quality. Results showed that the energy efficiency of drying process is 15-20% higher than that of conventional dryer. In additon, the dryer can speed up drying time as well as retaining product quality.

  5. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis.

    Science.gov (United States)

    Katuwal, Hari; Calkin, David E; Hand, Michael S

    2016-01-15

    This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  7. Scaling production and improving efficiency in DEA: an interactive approach

    Science.gov (United States)

    Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas

    2017-10-01

    DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.

  8. Light quality and efficiency of consumer grade solid state lighting products

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders

    2013-01-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality...... of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been...... on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light...

  9. Efficiency, Effectiveness and Productivity: The Abstract Measures of ...

    African Journals Online (AJOL)

    This paper makes a case for reviving the system. Efficiency, effectiveness and productivity which are all quality indices are carefully discussed and synthesized into management techniques that will create in the staff and management officials the culture of excellent performance in our higher educational system.

  10. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  11. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  12. EFFICIENCY THE KEY TO FUTURE PIG PRODUCTION E.H. Kemm

    African Journals Online (AJOL)

    The continued production of pigs and pig products will no doubt greatly ..... body mass to 56 days of age has increased fronr l.5kpl to. Thc overall efficiency with ... Braude believes that the annual output of lean meat per sow can be increased ...

  13. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. In this paper, the material and energy requirements in two-step solar-thermochemical cycles are considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  14. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  15. Ecology versus economy: is biohydrogen the fuel of the future?; Ecologia contra Economia: ¿es el biohidrogeno el combustible del futuro?

    Energy Technology Data Exchange (ETDEWEB)

    Patino, Rodrigo [Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Merida, Yucatan (Mexico)] e-mail: rtarkus@mda.cinvestav.mx

    2009-09-15

    This work presents a literature review of scientific research on different methodologies developed to produce hydrogen. Current processes to obtain commercial hydrogen are completely unsustainable in terms of the use of natural resources and environmental degradation. Different bioprocesses have been proposed in recent years as environmentally clean alternatives to produce combustible gases, but balance has not yet been obtained between production costs and performance. Therefore, a comparative analysis is performed of the different methods to obtain hydrogen, their limitations and the future prospects for each one. An in-depth reflection is also provided about challenges and recommendations for scientific and technological research aimed at proposing hydrogen (or biohydrogen) as the substitute for fossil fuels over the course of the 21st century, including not only its production but also storage and energy transformation mechanisms. [Spanish] En este trabajo se presenta una revision bibliografica acerca de las distintas metodologias desarrolladas en investigacion cientifica para producir hidrogeno. Los procesos actuales por los que se obtiene hidrogeno comercial son completamente insostenibles en cuanto a la utilizacion de recursos naturales y deterioro del medio ambiente. En los ultimos anos se han propuesto distintos bioprocesos como alternativas medioambientalmente limpias para la produccion del combustible gaseoso, pero aun no se llega a obtener un balance entre los costos y los rendimientos de produccion. Se hace entonces un analisis comparativo de los distintos metodos de obtencion de hidrogeno, de las limitantes presentes y las perspectivas futuras para cada uno de ellos. Tambien se hace una profunda reflexion acerca del reto y la orientacion que deben tener las investigaciones cientificas y tecnologicas para proponer al hidrogeno (o al biohidrogeno) como el combustible que deba sustituir a los combustibles fosiles durante el transcurso del siglo XXI

  16. Problems of Development and Increase of Economic Efficiency of Sugar Beet Production

    Directory of Open Access Journals (Sweden)

    Tomashevska Olga A.

    2017-06-01

    Full Text Available The aim of the article is the studying of the trends of development and economic efficiency of sugar beet production (using the example of agricultural enterprises of Rokytne district of Kyiv region and an attempt to outline the directions for improvement of the situation in the sugar beet industry. As a result of the research, the dynamics of development and economic efficiency of sugar beet production at farms of Rokytne district of Kyiv region is analyzed, and the break-even volume of sugar beet production by agrarian enterprises of Kiev region and an individual enterprise of Rokytne district is determined. Particular attention is paid to the dynamics of profitability of sugar beet production in the period from 2011 to 2015. The main problems hindering the development of sugar beet production are identified, namely, the lack of sales channels and high production costs. Prospects for further research in this area are to increase the economic efficiency of sugar beet production and find ways to develop this sector, provided that the production is properly organized, the manufacturing process is followed, the fertilizers are properly used, the seeds are chosen correctly, advanced technologies and high-performance equipment are applied, etc.

  17. Maximum herd efficiency in meat production I. Optima for slaughter ...

    African Journals Online (AJOL)

    Profit rate for a meat production enterprise can be decomposedinto the unit price for meat and herd ... supply and demand, whereas breeding improvement is gen- ... Herd efficiency is total live mass for slaughter divided by costs .... tenance and above-maintenance components by Dickerson, and ..... Growth and productivity.

  18. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  19. HelioTrope: An innovative and efficient prototype for solar power production

    Directory of Open Access Journals (Sweden)

    Papageorgiou George

    2014-01-01

    Full Text Available The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.

  20. Effect of voltage waveform on dielectric barrier discharge ozone production efficiency

    Science.gov (United States)

    Mericam-Bourdet, N.; Kirkpatrick, M. J.; Tuvache, F.; Frochot, D.; Odic, E.

    2012-03-01

    Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge - it does this by tailoring the duration of the current peak into the tens of nanosecond range.

  1. Efficiency of resource-use and elasticity of production among catfish ...

    African Journals Online (AJOL)

    This study employed the use of the Stochastic Frontier Production Function in the empirical analysis of efficiency of resource-use and elasticity of production among catfish farmers in Kaduna, Nigeria. The simple random sampling technique was employed in selecting 60 catfish farmers drawn from the sampling frame ...

  2. Resource Use Efficiency in Rice Production in Jere Local ...

    African Journals Online (AJOL)

    acer

    Descriptive statistics and production function were used as analytical tools. The result ..... women's active participation in agriculture. The result also .... Poverty Reduction. Through the ... and the Efficiencies of India Farm Using. Panel Data ...

  3. Resource Use Efficiency Analysis for Potato Production in Nepal

    Directory of Open Access Journals (Sweden)

    Mahesh Sapkota

    2018-05-01

    Full Text Available Potato is one of the most important staple foods supporting food security and livelihood to millions of marginalized and poor farmers in Nepal. Generally the smallholders’ farmers, especially those located in remote villages are inadequately informed about technical knowledge, inputs and efficient use of resources causing poor production and low productivity. Thus, the present survey aimed to examine the efficiency of resources used in potato production in Baglung District, one of the remote hilly place located in Central Himalaya. The total of 120 potato growing households was selected using simple random sampling technique from the two potato pocket in 2016. The regression coefficients of each inputs using Cobb-Douglas production function were estimated using Stata software. Our results showed that major inputs such as labor, bullock, Farm Yard Manure (FYM and intercultural operations were overused and need to decrease in terms of cost by 109, 177, 51 and 185%, respectively for its optimum allocation. Similarly, seed was found underused and need to increase its cost by 70% for optimum allocation. We concluded that inadequate training, exposure, knowledge gap and extension service to farmers in study sites were the reasons that farmers were using their resources inefficiently. It is recommended that the farmers involved in potato farming in the surveyed sites should be provided with additional proper technical knowledge for optimizing the use of resources which would help to increase the production and return from potato production.

  4. Efficiency increase of complex production and transport systems management

    Directory of Open Access Journals (Sweden)

    Kornilov S.

    2017-01-01

    Full Text Available This article deals with the problem of the reduced efficiency of management in complex production - transport systems due to the lack of co-ordination in the operation of industrial enterprises and transport carrying out their maintenance. The existing transport service schedules for auxiliary departments do not take into account possible changes in operating conditions, the probability of malfunctions and the amount of reserves, which leads to an increase in general production costs. To solve this problem, we propose to use the interval regulation of production and transport processes in all departments of the complex production and transport systems. Also, such regulation involves the determination of traffic service priority. This will allow passing on from the regulated control of production and transport processes to the situational one, adapted to specific conditions, and reducing losses from untimely transport servicing, which will lead to a stores reduction and efficiency increase of the enterprise circulating facilities use. Testing the effectiveness of interval regulation was performed on the system and dynamics simulation model of liquid iron transportation in the oxygen converter shop of the metallurgical enterprise. It was established that the use of interval regulation processes in iron production and its transportation will allow decreasing non-productive downtime by 21% and the amount of the liquid iron in anticipation of recasting in the oxygen converter shop – by 33%. Economical effect of reducing the liquid iron downtime during transportation to the oxygen converter shop will be about 30 million rubles per year.

  5. ANALYSIS AND IMPROVEMENT OF PRODUCTION EFFICIENCY IN A CONSTRUCTION MACHINE ASSEMBLY LINE

    Directory of Open Access Journals (Sweden)

    Alidiane Xavier

    2016-07-01

    Full Text Available The increased competitiveness in the market encourages the ongoing development of systems and production processes. The aim is to increase production efficiency to production costs and waste be reduced to the extreme, allowing an increased product competitiveness. The objective of this study was to analyze the overall results of implementing a Kaizen philosophy in an automaker of construction machinery, using the methodology of action research, which will be studied in situ the macro production process from receipt of parts into the end of the assembly line , prioritizing the analysis time of shipping and handling. The results show that the continuous improvement activities directly impact the elimination of waste from the assembly process, mainly related to shipping and handling, improving production efficiency by 30% in the studied processes.

  6. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Technical efficiency in pig production in Akwa Ibom State, Nigeria ...

    African Journals Online (AJOL)

    This study was designed to measure the level of technical efficiency and its determinants in pig production in Akwa Ibom State, Nigeria using a stochastic frontier production function. Multistage random sampling technique was used to select 60 pig farms from which input-output data were collected in 2004. The estimated ...

  8. Development, Qualification and Production of Space Solar Cells with 30% EOL Efficiency

    Science.gov (United States)

    Guter, Wolfgang; Ebel, Lars; Fuhrmann, Daniel; Kostler, Wolfgang; Meusel, Matthias

    2014-08-01

    AZUR SPACE's latest qualified solar cell product 3G30-advanced provides a high end-of-life (EOL) efficiency of 27.8% for 5E14 (1 MeV e-/cm2) at low production costs. In order to further reduce the mass, the 3G30-advanced was thinned down to as thin as 20 μm and tested in space. Next generation solar cells must exceed the EOL efficiency of the 3G30-advanced and therefore will utilize the excess current of the Ge subcell. This can be achieved by a metamorphic cell concept. While average beginning-of-life efficiencies above 31% have already been demonstrated with upright metamorphic triple-junction cells, AZUR's next generation product will comprise a metamorphic 4- junction device targeting 30% EOL.

  9. Crop and soil specific N and P efficiency and productivity in Finland

    NARCIS (Netherlands)

    Bäckman, S.; Oude Lansink, A.G.J.M.

    2005-01-01

    This paper estimates a stochastic production frontier based on experimental data of cereals production in Finland over the period 1977-1994. The estimates of the production frontier are used to analyze nitrogen and phosphorous productivity and efficiency differences between soils and crops. For this

  10. Impacts of Rural Labor Resource Change on the Technical Efficiency of Crop Production in China

    Directory of Open Access Journals (Sweden)

    Ning Yin

    2017-03-01

    Full Text Available This paper probes effects of the evolvement of labor resources on technical efficiency in crop production in rural China. Based on twelve years of data on crop production of 30 provinces in China, a stochastic frontier production function model is used to measure crop production efficiency in three crop-functional areas—the production area, the consumption area, and the balanced area. Then effects of both quantity and quality change in labor force on technical efficiency in different regions of China are analyzed. Results show that rural China generally has an increasing number of employees shifted to non-agricultural sectors and a decreasing trend of the stock of human capital. However, both these two changes in rural labor force have significantly positive effects on improving crop production efficiency. In addition, China’s technical inefficiency is at an average of 22.2%. Dynamically, the technical efficiencies show a tendency to rise steadily throughout China and in three areas, while the consumption area possesses the highest technical efficiency. Those results may lend some experience for other countries that are currently experiencing rural labor force and economic transition.

  11. Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Gonzalez, L.J.; Moreno-Davila, I.M.; Rodriguez-Martinez, J.; Garza-Garcia, Y. [Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico)]. E-mail: leopoldo.rios@mail.uadec.mx

    2009-09-15

    This article describes biological hydrogen production from diary wastewater via anaerobic fermentation using pretreated heat shock (100 degrees Celsius, 30 min.) and acid (pH 3.0, 24 h) treatment procedures to selectively enrich the hydrogen producing mixed consortia prior to inoculation to batch reactors. Bioreactor used for immobilization consortia was operated at mesophilic (room) temperature (20{+-}3 degrees Celsius), under acidophilic conditions (pH 4.0-4.5), HRT (2h), and a natural support for generate hydrogen producing mixed consortia biofilm: Opuntia imbricata. Reactor was initially operated with sorbitol (5g/L) for 60 days of operation. Batch tests were conducted using 20{+-}0.02g of natural support with biofilm. Batch experiments were conducted to investigate the effect of COD (2.9-21.1 g-COD/L), at initial pH of 7.0, 32{+-}1 degrees Celsius. Maximum hydrogen yield was obtained at 21.1 g-COD/L. Experiments of pH effect were conducted using the optimal substrate concentration (21.2 g-COD/L), at pH 4 to 7 and 11.32 (pH diary wastewater) ,and 32{+-}1 degrees Celsius. Experiments results indicate the optimum initial cultivation was pH 4.0, but we can consider also a stable hydrogen production at pH 11.32 (pH diary wastewater), so we can avoid to fit the pH, and use diary wastewater as it left the process of cheese manufacture. The operational pH of 4.0 is 1.5 units below that of previously reported hydrogen producing organisms. The influence of the effect of temperature were conducted using the optimal substrate concentration (21.2 g-COD/L), two pH levels: 4.0 and 11.32, and four different temperatures: 16{+-}3 degrees Celsius (room temperature), 3 C, 45{+-}1 degrees Celsius y 55{+-}1 degrees Celsius.Optimal temperature for hydrogen production from diary wastewater at pH 4.0 was 55{+-}1 degrees Celsius, and for pH 11.32 was 16{+-}3 degrees Celsius.Therefore, the results suggests biofilm reactors in a natural support like Opuntia imbricata have good potential

  12. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  13. Achieving energy efficiency through product policy: the UK experience

    International Nuclear Information System (INIS)

    Boardman, Brenda

    2004-01-01

    The focus of this paper is on energy efficiency of domestic equipment. It is contended that, in the UK and--by extension--elsewhere. Government has to take the lead in defining low-energy standards for products. In the absence of policy, manufacturers do not recognize the need for carbon reductions in the equipment they design and consumers are unaware of the variation in energy performance in the product range. At present, neither market pull nor technology push can be relied upon to deliver energy savings. The imposition of a weak minimum standard on domestic fridges and freezers in 1999 will, over the lifetime of the appliances already sold by December 2002, save 1 Mt C of carbon dioxide at nil cost to government or to the manufacturers, and a net benefit to consumers of pound 855 m: a highly cost-effective policy. The difference between energy efficiency and energy conservation is that it takes time for the cumulative benefits of an energy efficiency improvement to result in the maximum effect on energy demand reduction: the benefits of the 1999 energy efficiency standard will accumulate until at least 2020. This period is equivalent to the cycle of stock replacement for that particular object. The final level of energy conservation depends upon the offsetting effects of growth in ownership levels and the size of new equipment purchases

  14. Material efficiency: providing material services with less material production.

    Science.gov (United States)

    Allwood, Julian M; Ashby, Michael F; Gutowski, Timothy G; Worrell, Ernst

    2013-03-13

    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

  15. Small Ruminant Production System Efficiency under Abu-Dhabi, United Arab Emirates Arid Land Conditions

    Directory of Open Access Journals (Sweden)

    Eihab Fathelrahman

    2014-12-01

    Full Text Available Sheep and goat production systems in the United Arab Emirates (UAE operate under scarce natural resource constraints. A cross-sectional survey that covered 661 mixed farms, including major sheep and goat production, was conducted in the three regions of Abu Dhabi Emirate (Al-Ain, Western Region and Abu Dhabi city during 2012. A Cobb-Douglas, double-logarithmic stochastic frontier production function and maximum likelihood estimation were applied to estimate important economic derivatives and the associated risk of small ruminant production in this arid area. The highest impact of an input on the output level was found to be labor for raising sheep and alfalfa grass for raising goats. Both labor and alfalfa variables were found to be overutilized for sheep and goat production, respectively. Overall, the results indicate that average technical efficiency is 0.62 for raising sheep and only 0.34 for raising goats in the study area. Technical efficiency analysis included measuring the frequency of farms at each level of estimated technical efficiency in the range between zero and one. Zero for the technical efficiency coefficient indicates a lack of technical efficiency in resource use. The results of this study indicated that only 1% of the sheep farms show a technical efficiency coefficient of 0.25 or less; the same can be said for 41% of goat producers. However, these technical efficiencies were found to be more than 0.75 for 12% and 5% of the sheep and goat farms, respectively. Overall, goat farming in the UAE was found to be less efficient than sheep production. The results also indicated that flock size and type of breed were the most influential factors relative to other factors, and both show a positive relationship with technical efficiency. Other than flock size, factors, such as owners’ years of experience and management practices, were found to be more influential on goat farming system efficiency relative to sheep farming.

  16. Efficiency and productivity assessment of public hospitals in Greece during the crisis period 2009-2012.

    Science.gov (United States)

    Xenos, P; Yfantopoulos, J; Nektarios, M; Polyzos, N; Tinios, P; Constantopoulos, A

    2017-01-01

    This study is an initial effort to examine the dynamics of efficiency and productivity in Greek public hospitals during the first phase of the crisis 2009-2012. Data were collected by the Ministry of Health after several quality controls ensuring comparability and validity of hospital inputs and outputs. Productivity is estimated using the Malmquist Indicator, decomposing the estimated values into efficiency and technological change. Hospital efficiency and productivity growth are calculated by bootstrapping the non-parametric Malmquist analysis. The advantage of this method is the estimation efficiency and productivity through the corresponding confidence intervals. Additionally, a Random-effects Tobit model is explored to investigate the impact of contextual factors on the magnitude of efficiency. Findings reveal substantial variations in hospital productivity over the period from 2009 to 2012. The economic crisis of 2009 had a negative impact in productivity. The average Malmquist Productivity Indicator (MPI) score is 0.72 with unity signifying stable production. Approximately 91% of the hospitals score lower than unity. Substantial increase is observed between 2010 and 2011, as indicated by the average MPI score which fluctuates to 1.52. Moreover, technology change scored more than unity in more than 75% of hospitals. The last period (2011-2012) has shown stabilization in the expansionary process of productivity. The main factors contributing to overall productivity gains are increases in occupancy rates, type and size of the hospital. This paper attempts to offer insights in efficiency and productivity growth for public hospitals in Greece. The results suggest that the average hospital experienced substantial productivity growth between 2009 and 2012 as indicated by variations in MPI. Almost all of the productivity increase was due to technology change which could be explained by the concurrent managerial and financing healthcare reforms. Hospitals operating

  17. Breed of cow and herd productivity affect milk nutrient recovery in curd, and cheese yield, efficiency and daily production.

    Science.gov (United States)

    Stocco, G; Cipolat-Gotet, C; Gasparotto, V; Cecchinato, A; Bittante, G

    2018-02-01

    Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual

  18. Potential benefits from improved energy efficiency of key electrical products: The case of India

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie E.; McMahon, James E.

    2008-01-01

    The economy of the world's second most populous country continues to grow rapidly, bringing prosperity to a growing middle class while further straining an energy infrastructure already stretched beyond capacity. At the same time, efficiency policy initiatives have gained a foothold in India, and promise to grow in number over the coming years. This paper considers the maximum cost-effective potential of efficiency improvement for key energy-consuming products in the Indian context. The products considered are: household refrigerators, window air conditioners, motors and distribution transformers. Together, these products account for about 27% of delivered electricity consumption in India. The analysis estimates the minimum Life-Cycle Cost option for each product class, according to use patterns and prevailing customer marginal rates in each sector. This option represents an efficiency improvement ranging between 12% and 60%, depending on product class. If this level of efficiency was achieved starting in 2010, we estimate that total electricity consumption in India could be reduced by 4.7% by 2020, saving over 74 million tons of oil equivalent and over 246 million tons of carbon dioxide emissions. Net present financial savings of this efficiency improvement totals 8.1 billion dollars

  19. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  20. Can Differentiated Production Planning and Control enable both Responsiveness and Efficiency in Food Production?

    Directory of Open Access Journals (Sweden)

    Anita Romsdal

    2014-07-01

    Full Text Available This paper addresses the complex production planning and control (PPC challenges in food supply chains. The study illustrates how food producers' traditional make‐to‐stock (MTS approach is not well suited to meet the trends of increasing product variety, higher demand uncertainty, increasing sales of fresh food products and more demanding customers. The paper proposes a framework for differentiated PPC that combines MTS with make‐to‐order (MTO.The framework matches products with the most appropriate PPC approaches and buffering techniques depending on market and product characteristics. The core idea is to achieve more volume flexibility in the production system by exploiting favourable product and market characteristics (high demand predictability, long customer order leadtime allowances and low product perishability. A case study is used to demonstrate how the framework can enable food producers to achieve efficiency in production, inventory and PPC processes – and simultaneously be responsive to market requirements.

  1. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    Science.gov (United States)

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Electronic medical records and efficiency and productivity during office visits.

    Science.gov (United States)

    Furukawa, Michael F

    2011-04-01

    To estimate the relationship between electronic medical record (EMR) use and efficiency of utilization and provider productivity during visits to US office-based physicians. Cross-sectional analysis of the 2006-2007 National Ambulatory Medical Care Survey. The sample included 62,710 patient visits to 2625 physicians. EMR systems included demographics, clinical notes, prescription orders, and laboratory and imaging results. Efficiency was measured as utilization of examinations, laboratory tests, radiology procedures, health education, nonmedication treatments, and medications. Productivity was measured as total services provided per 20-minute period. Survey-weighted regressions estimated association of EMR use with services provided, visit intensity/duration, and productivity. Marginal effects were estimated by averaging across all visits and by major reason for visit. EMR use was associated with higher probability of any examination (7.7%, 95% confidence interval [CI] = 2.4%, 13.1%); any laboratory test (5.7%, 95% CI = 2.6%, 8.8%); any health education (4.9%, 95% CI = 0.2%, 9.6%); and fewer laboratory tests (-7.1%, 95% CI = -14.2%, -0.1%). During pre/post surgery visits, EMR use was associated with 7.3% (95% CI= -12.9%, -1.8%) fewer radiology procedures. EMR use was not associated with utilization of nonmedication treatments and medications, or visit duration. During routine visits for a chronic problem, EMR use was associated with 11.2% (95% CI = 5.7%, 16.8%) more diagnostic/screening services provided per 20-minute period. EMR use had a mixed association with efficiency and productivity during office visits. EMRs may improve provider productivity, especially during visits for a new problem and routine chronic care.

  3. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov

    2008-01-01

    fermentation (24 h) and stopped at pH 4.5 due to the accumulation of organic acids. The maximum H(2) production yield and rate at sucrose concentration of 20 gl(-1), pH 6.25 and temperature 60 degrees C were 2.53 mol H(2) mol(-1) hexose and 12.12 mmol H(2) l(-1) h(-1), respectively. Organic nitrogen amended......A thermophilic H(2)-producing bacterial strain was isolated from a biohydrogen reactor fed with palm oil mill effluent (POME) and identified as Thermoanaerobacterium thermosaccharolyticum using 16S rRNA gene analysis. The isolated bacterium, designated as T thermosaccharolyticum PSU-2, showed...... a high yield and production rate of H(2). Temperature optimum, pH optimum and substrate utilization for H(2) production were investigated in batch conditions. All of tested substrate was utilized for H(2) production, while sucrose, xylose and starch were the preferred substrates. The strain produced H(2...

  4. Industrial policy, production efficiency improvement and the Chinese county economic growth

    Directory of Open Access Journals (Sweden)

    Wang Zhenhua

    2016-12-01

    Full Text Available This study aims at analyzing the difference in the level of economic development between China’s counties from the two perspectives of industrial policy and production efficiency. Based on panel data of 1830 Chinese counties, this study employs the new classical economic growth theory framework to analyze the counties’ economic growth by the perpetual inventory method, Malmquist index, among others. The results show that the economy of the counties exhibits δ convergence since 2004, and the absolute differences in the different counties are expanding. Industrial policy ensures the additional deepening of the level of capital in the county. Additionally, a substantial difference was observed between the agricultural sector and the non-agricultural sector, whereby the total factor productivity and the technical efficiency are on the rise, resulting in the phenomenon of dual paths of technological progress. In summary, the capital deepening difference between the sectors, production efficiency, and dual paths of technological progress owing to the counties’ industrial policy are the basic reasons for the regional differences in the level of economic development in China.

  5. The productive efficiency of organic farming: the case of grape sector in Catalonia

    Energy Technology Data Exchange (ETDEWEB)

    Guesmi, B.; Serra, T.; Kallas, Z.; Gil Roig, J. M.

    2012-11-01

    Knowledge about productivity and efficiency differences between conventional and organic farms has important implications for the evaluation of the economic viability of these two agricultural practices. The main purpose of this study was to compare the efficiency ratings of organic and conventional grape farms in Catalonia. To do so, we fit a stochastic production frontier to cross sectional, farm-level data collected from a sample of 141 Catalan farms that specialize in grape growing. Results show that organic farmers, on average, are more efficient than their conventional counterparts (efficiency ratings are on the order of 0.80 and 0.64, respectively). Apart from adoption of organic practices, experience is also found to improve technical efficiency. Conversely, technical efficiency tends to decrease with the relevance of unpaid family labor, farm location in less favored areas, and farmers strong environmental preservation preferences. (Author) 41 refs.

  6. Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow.

    Science.gov (United States)

    Moallem, U

    2016-04-01

    The objectives were to examine the gross and marginal production efficiencies in high-yielding dairy cows and the future consequences on dairy industry profitability. Data from 2 experiments were used in across-treatments analysis (n=82 mid-lactation multiparous Israeli-Holstein dairy cows). Milk yields, body weights (BW), and dry matter intakes (DMI) were recorded daily. In both experiments, cows were fed a diet containing 16.5 to 16.6% crude protein and net energy for lactation (NEL) at 1.61 Mcal/kg of dry matter (DM). The means of milk yield, BW, DMI, NEL intake, and energy required for maintenance were calculated individually over the whole study, and used to calculate gross and marginal efficiencies. Data were analyzed in 2 ways: (1) simple correlation between variables; and (2) cows were divided into 3 subgroups, designated low, moderate, and high DMI (LDMI, MDMI, and HDMI), according to actual DMI per day: ≤ 26 kg (n=27); >26 through 28.2 kg (n=28); and >28.2 kg (n=27). The phenotypic Pearson correlations among variables were analyzed, and the GLM procedure was used to test differences between subgroups. The relationships between milk and fat-corrected milk yields and the corresponding gross efficiencies were positive, whereas BW and gross production efficiency were negatively correlated. The marginal production efficiency from DM and energy consumed decreased with increasing DMI. The difference between BW gain as predicted by the National Research Council model (2001) and the present measurements increased with increasing DMI (r=0.68). The average calculated energy balances were 1.38, 2.28, and 4.20 Mcal/d (standard error of the mean=0.64) in the LDMI, MDMI, and HDMI groups, respectively. The marginal efficiency for milk yields from DMI or energy consumed was highest in LDMI, intermediate in MDMI, and lowest in HDMI. The predicted BW gains for the whole study period were 22.9, 37.9, and 75.8 kg for the LDMI, MDMI, and HDMI groups, respectively. The

  7. PRODUCTIVITY AND EFFICIENCY OF AGRICULTURAL AND NON AGRICULTURAL BANKS IN THE UNITED STATES: DEA APPROACH

    OpenAIRE

    Dias, Weeratilake

    1998-01-01

    Efficient operation of agricultural credit markets is very important both for the producer as well as for the policy makers. DEA approach is used to calculate productivity analysis which allows decomposition of sources of productivity changes into efficiency and technical change. Measured efficiencies are comparable to most recent parametric studies.

  8. Dietary ascorbic acid normalizes ribosomal efficiency for collagen production in skin of streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Schneir, M.; Imberman, M.; Ramamurthy, N.; Golub, L.

    1987-01-01

    The objective of this study was to quantify the contribution of both ribosome amount and ribosomal efficiency to decreased collagen production in skin of diabetic rats and diabetic rats treated with dietary ascorbic acid. Male Sprague-Dawley rats were distributed equally into the following categories: non-diabetic controls; diabetics; ascorbic acid-treated diabetics. On day-20, all rats were injected with ( 3 H)proline and killed after 2 h. Absolute rate of collagen production, ribosome content, and ribosomal efficiency of collagen production were quantified. Also ribosomal efficiency was quantified for ribosomes in sucrose-gradient fractionated post-mitochondrial supernatants. The results indicate that decreased ribosomal efficiency was responsible for 70% of the decreased collagen production with 30% caused by decreased ribosome content, when measured for total skin or sucrose gradient-isolated ribosomes. At both levels of analysis, ascorbic acid treatment normalized ribosomal efficiency, indicating diabetes-mediated decreased ribosomal efficiency for collagen production is related to a co-translational event, such as procollagen underhydroxylation

  9. Non-parametric analysis of production efficiency of poultry egg ...

    African Journals Online (AJOL)

    Non-parametric analysis of production efficiency of poultry egg farmers in Delta ... analysis of factors affecting the output of poultry farmers showed that stock ... should be put in place for farmers to learn the best farm practices carried out on the ...

  10. Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow

    DEFF Research Database (Denmark)

    Brask, Maike; Weisbjerg, Martin Riis; Hellwing, Anne Louise Frydendahl

    2015-01-01

    Many feeding trials have been conducted to quantify enteric methane (CH(4)) production in ruminants. Although a relationship between diet composition, rumen fermentation and CH(4) production is generally accepted, the efforts to quantify this relationship within the same experiment remain scarce....... In the present study, a data set was compiled from the results of three intensive respiration chamber trials with lactating rumen and intestinal fistulated Holstein cows, including measurements of rumen and intestinal digestion, rumen fermentation parameters and CH(4) production. Two approaches were used...... for endogenous matter, and contribution of fermentation in the large intestine was accounted for. Hydrogen (H(2)) arising from fermentation was calculated using the fermentation pattern measured in rumen fluid. CH(4) was calculated from H(2) production corrected for H(2) use with biohydrogenation of fatty acids...

  11. Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2017-08-01

    Full Text Available Large amounts of waste biomass are generated in sugar factories from the processing of sugar beets. After diffusion with hot water to draw the sugar from the beet pieces, a wet material remains called pulp. In this study, waste sugar beet pulp biomass was enzymatically depolymerized, and the obtained hydrolyzates were subjected to fermentation processes. Bioethanol, biomethane, and biohydrogen were produced directly from the substrate or in combined mode. Stillage, a distillery by-product, was used as a feedstock for anaerobic digestion. During biosynthesis of ethanol, most of the carbohydrates released from the sugar beet pulp were utilized by a co-culture of Saccharomyces cerevisiae Ethanol Red, and Scheffersomyces stipitis LOCK0047 giving 12.6 g/L of ethanol. Stillage containing unfermented sugars (mainly arabinose, galactose and raffinose was found to be a good substrate for methane production (444 dm3 CH4/kg volatile solids (VS. Better results were achieved with this medium than with enzymatic saccharified biomass. Thermal pre-treatment and adjusting the pH of the inoculum resulted in higher hydrogen production. The largest (p < 0.05 hydrogen yield (252 dm3 H2/kg VS was achieved with sugar beet stillage (SBS. In contrast, without pre-treatment the same medium yielded 35 dm3 H2/kg VS. However, dark fermentation of biohydrogen was more efficient when sugar beet pulp hydrolyzate was used.

  12. Eco-efficiency of intensification scenarios for milk production in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Basset-Mens, Claudine; Ledgard, Stewart; Boyes, Mark [AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton (New Zealand)

    2009-04-15

    New Zealand (NZ) dairy farms used to be the lowest input and most efficient dairy farms of the world. However, intensification of the traditional pasture-based system has occurred over the last decade and has not always been accompanied by increased efficiency. The purpose of this paper is to produce an updated reference of the eco-efficiency of NZ dairy farm systems and to analyse the implications of intensification on their eco-efficiency. Results for an average NZ dairy farm system were compared with those for three dairy farmlet systems representing a wide range in intensification practices. A low input system (LI) (no N fertiliser, no brought-in feed supplement, stocking rate of 2.3 cows/ha) was compared with an N-fertilised farm system (NF) (170 kg fertiliser-N/ha/year, 3 cows/ha) representing a first level of intensification and with an N-fertilised and maize silage supplemented system (NFMS) (170 kg fertiliser-N/ha/year, 13 t DM maize silage/ha/year, 5.2 cows/ha), representing a possible future intensification option. Their eco-efficiency in terms of milk production and land use was compared using Life Cycle Assessment (LCA) methodology. NZ dairy farm systems rely on favourable temperate climate conditions and long-term perennial ryegrass/white clover pasture, to achieve eco-efficient milk production and land use compared to European systems. However, intensification of NZ dairy farms was shown to be detrimental to their eco-efficiency in terms both of milk production and land use functions and could greatly reduce their advantage compared to European systems. The eco-efficiency of LI was very high whatever the functional unit which is remarkable from an LCA perspective. NF and NFMS had a similar eco-efficiency except for energy use which corresponded to the most critical hot spot of NFMS. All studied NZ systems presented some areas for improvement where some new technologies available for dairy farms might play a promising role in the future. Finally, it

  13. Energy efficiency of an innovative vertical axial rotary kiln for pottery production

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Forero Núñez

    2015-01-01

    Full Text Available Colombia is a remarkablecoal producer and exporter worldwide; several sectors use this resource for electricity and thermal energy production. Among them, the ceramic industry consumed 118,590 tons in 2011. Most of the pottery production companies in this country arelocated in rural areas and use old coal fired kilns with low energy efficiencies, generating environmental effects to the population nearby. Despite of the importance of these industries to the small rural economies, the government agencies have closed them due to the lack of development on cleaner devices. This work aims to analyze the thermal behavior of an innovative vertical axial rotary kiln for pottery production, and the energy efficiency varying operation mode. The kiln operated during seven hours needed three hours for stabilizing sintering temperature at 800°C. The mean temperatures of the loading, drying, sintering and cooling stage were 204°C, 223°C, 809°C and 321°C respectively. The convection and radiation heat losses were 15 % whereas the flue gas heat losses 18 %.During continuous operation, the kiln energy efficiency was about 60 %. This design proven to reach the temperatures required in the firing stage of the pottery production; moreover, a gas fuel was fuelled making the process cleaner and more efficient than coal-fired systems.

  14. Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery

    International Nuclear Information System (INIS)

    Motte, Jean-Charles; Sambusiti, Cecilia; Dumas, Claire; Barakat, Abdellatif

    2015-01-01

    Highlights: • A novel combination of solid-state fermentation and fine milling was developed. • Biological pretreatment produces valuable bioproducts (VFA and biohydrogen). • Solid-state dark fermentation improves considerably the milling efficiency. • Bioethanol yield was higher after a strong particle size reduction. • Substrate conversion was two times higher than conventional processes. - Abstract: In the present study, the feasibility of combining dry dark fermentation and mechanical pretreatment of wheat straw was studied in order to improve substrate valorization, save energy input, decrease the environmental impact and diversify biofuels and volatile fatty acids production. To this end, dark fermentation of wheat straw was performed at 55 °C and 35 °C under solid-state conditions (23% of total solid content) and it was considered as a biological pretreatment. Both biologically treated and raw straws were reduced at four particles size to cover the range of fine (50 < X < 500 μm) and ultrafine milling (<50 μm). Biological pretreatment led to a substrate conversion of 16% and 14%, mainly into volatile fatty acids and biohydrogen. Biological pretreatment improved the substrate grindability with a reduction of mean particle size up to 31% and a reduction of the milling specific energy consumption up to 35% compared to untreated straw. Finally, related to untreated straw, this combination of biological and mechanical treatments improved the bioethanol yield up to 83%, which leads to an enhancement of the overall substrate conversion up to 131%. Based on these high yields, this combination of dry biological–mechanical pretreatments appears more attractive and efficient in terms of bioproducts production, energy efficiency and environmental impact, compared to conventional pretreatments

  15. Surgeons' efficiency change is a major determinant of their productivity change.

    Science.gov (United States)

    Nakata, Yoshinori; Watanabe, Yuichi; Narimatsu, Hiroto; Yoshimura, Tatsuya; Otake, Hiroshi; Sawa, Tomohiro

    2016-05-09

    Purpose - The sustainability of the Japanese healthcare system is in question because the government has had a huge fiscal debt. Despite an enormous effort to cut the deficit, our healthcare expenditure is increasing every year because of the rapidly aging population. One of the solutions for this problem is to improve the productivity of healthcare. The purpose of this paper is to determine the factors that change surgeons' productivity in one year. Design/methodology/approach - The authors collected data of all surgical procedures performed at Teikyo University Hospital from April 1 through September 30 in 2014 and 2015, and computed the surgeons' Malmquist index (MI), efficiency change (EC) and technical change (TC) using non-radial and non-oriented Malmquist model under the constant returns-to-scale assumptions. The authors then divided the surgeons into two groups; one whose productivity progressed and the other whose productivity regressed. These two groups were compared to identify factors that may influence their MI. Findings - The only significant difference between the two groups was ECs (p productivity change. The best way to improve surgeons' productivity may be to enhance their efficiency regardless of their surgical volume and personal backgrounds.

  16. Sustainable fermentative hydrogen production: challenges for process optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, F.R.; Dinsdale, R. [University of Glamorgan, Pontypridd (United Kingdom). School of Applied Sciences; Hawkes, D.L.; Hussy, I. [University of Glamorgan, Pontypridd (United Kingdom). School of Technology

    2002-12-01

    This paper reviews information from continuous laboratory studies of fermentative hydrogen production useful when considering practical applications of the technology. Data from reactors operating with pure cultures and mixed microflora enriched from natural sources are considered. Inocula have been derived from heat-treated anaerobically digested sludge, activated sludge, aerobic compost and soil, and non-heat-treated aerobically composted activated sludge. Most studies are on soluble defined substrates, and there are few reports of continuous operation on complex substrates with mixed microflora to produce H{sub 2}. Methanogenesis which consumes H{sub 2} may be prevented by operation at short hydraulic retention times (around 8-12 h on simple substrates) and/or pH below 6. Although the reactor technology for anaerobic digestion and biohydrogen production from complex substrates may be similar, there are important microbiological differences, including the need to manage spore germination and oxygen toxicity on start-up and control sporulation in adverse circumstances during reactor operation. (Author)

  17. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    Directory of Open Access Journals (Sweden)

    Feng Tao

    2012-01-01

    Full Text Available The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  18. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    Science.gov (United States)

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  19. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    Science.gov (United States)

    Tao, Feng; Li, Ling; Xia, X. H.

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  20. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  1. Improved production efficiency in cattle to reduce their carbon ...

    African Journals Online (AJOL)

    p2492989

    Keywords: Methane, global warming, greenhouse gas, crossbreeding, residual feed intake, feed efficiency. #Corresponding ... improved production per constant unit, crossbreeding and selection for residual feed intake. ... convert such a measure into kg calf produced per kg CO2 equivalent (CH4 can be converted to a CO2.

  2. Cost-efficiency of animal welfare in broiler production systems

    NARCIS (Netherlands)

    Gocsik, Éva; Brooshooft, Suzanne D.; Jong, de Ingrid C.; Saatkamp, Helmut W.

    2016-01-01

    Broiler producers operate in a highly competitive and cost-price driven environment. In addition, in recent years the societal pressure to improve animal welfare (AW) in broiler production systems is increasing. Hence, from an economic and decision making point of view, the cost-efficiency of

  3. Isolation and characterization of Ethanologenbacterium HitB49 gen. nov. sp. nov., an anaerobic, high hydrogen-producing bacterium with a special ethanol-type-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering]|[Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering; Ren, N.Q.; Wang, A.J. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering; Liang, D.T.; Tay, J.H. [Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering

    2004-07-01

    Hydrogen, an important future energy source, can be produced by several fermentative microorganisms. The factor that prevents widespread biohydrogen production is the difficulty in isolating the ideal high hydrogen-producing bacterium (HPB). In this study, the Hungate technology was used to isolate and cultivate 210 strains of dominant fermentative bacteria. They were isolated from 6 sludges with ethanol-type fermentation (ETF) bioreactors. The study examined the production of hydrogen in pH 4, very low pH in ETF. The maximum rate in the biohydrogen-producing reactor was promising under continuous flow condition. The novel genus of HPB was Ethanologenbacterium Hit, of which strain B49 belonged to the ETF bacteria.

  4. Challenges in biobutanol production: How to improve the efficiency?

    International Nuclear Information System (INIS)

    Garcia, Veronica; Paekkilae, Johanna; Muurinen, Esa; Keiski, Riitta L.; Ojamo, Heikki

    2011-01-01

    There is an increasing interest in the production of chemicals and fuels from renewable resources due to the continuing price increase of fossil resources, the insecurity of the availability of fossil resources in the future, and additionally environmental concerns and legislations. Biobutanol may be produced by the acetone-butanol-ethanol (ABE) fermentation. This paper reviews the biobutanol production bringing up the problems and challenges to overcome. The aim of the paper is to help in finding opportunities to make the process feasible in the near future. The analysis stresses the idea of improving the efficiency of the fermentation stage by altering the up (pretreatment of the raw material) and downstream (product recovery and purification) processes. The paper also explores the biobutanol production from the biorefinery perspective. Finally the review brings up the important role of research in developing and implementing the production of biobutanol by the ABE fermentation. (author)

  5. Challenges in biobutanol production: How to improve the efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Veronica; Paekkilae, Johanna; Muurinen, Esa; Keiski, Riitta L. [Mass and Heat Transfer Process Laboratory, Department of Process and Environmental Engineering, POB 4300, FI-90014 University of Oulu, Oulu (Finland); Ojamo, Heikki [Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, POB 4300, FI-90014 University of Oulu, Oulu (Finland)

    2011-02-15

    There is an increasing interest in the production of chemicals and fuels from renewable resources due to the continuing price increase of fossil resources, the insecurity of the availability of fossil resources in the future, and additionally environmental concerns and legislations. Biobutanol may be produced by the acetone-butanol-ethanol (ABE) fermentation. This paper reviews the biobutanol production bringing up the problems and challenges to overcome. The aim of the paper is to help in finding opportunities to make the process feasible in the near future. The analysis stresses the idea of improving the efficiency of the fermentation stage by altering the up (pretreatment of the raw material) and downstream (product recovery and purification) processes. The paper also explores the biobutanol production from the biorefinery perspective. Finally the review brings up the important role of research in developing and implementing the production of biobutanol by the ABE fermentation. (author)

  6. Efficient STEP (solar thermal electrochemical photo) production of hydrogen - an economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Licht, Stuart [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Solar Institute, George Washington University, Washington, DC 20052 (United States); Chitayat, Olivia; Bergmann, Harry; Dick, Andrew; Ayub, Hina [Solar Institute, George Washington University, Washington, DC 20052 (United States); Ghosh, Susanta [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Department of Chemistry, Visva-Bharati, Santiniketan (India)

    2010-10-15

    A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H{sub 2} at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H{sub 2} production, (3) 25% CPV driven molten electrolysis H{sub 2} production, and (4) 35% CPV driven solid oxide electrolysis H{sub 2} production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from 5.74 to 4.96 to 3.01 to 2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H{sub 2}/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi{sup 2} in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and

  7. Economic efficiency of maize production in Yola North Local ...

    African Journals Online (AJOL)

    Similarly, the efficiency ratio computed showed that land, seed and fertilizer had MVP/MFC ratio greater than unity implying that the inputs were underutilized and output could be increased by increasing the levels of their utilization. The elasticity of production was greater than 1.00 which implied increasing return to scale.

  8. STRUCTURE OF THE MARKET OF INNOVATIVE PRODUCTS: APPROACH TO ASSESSING THE IMPACT ON EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Anna Elagina

    2015-06-01

    Full Text Available The formation of innovation policy innovative economy is impossible without an understanding of the conceptual basis of the efficiency of production of innovative products. In particular, determination of the influence of market structure on the possibility of expanded reproduction of innovative products. The article is devoted to consideration of existing in this field of research and definition of the limits of quantitative assessment of the influence of defects of market structures on efficiency.

  9. Resource Use Efficiency in Part-time Food Crop Production: The ...

    African Journals Online (AJOL)

    Analysis of inefficiency factors reveal the significant inefficiency variables to include; level of education, household size ... Economic efficiency is a product of technical and allocative ... the work of Chava and Aliber (1983) and Chava and Cox ...

  10. Marketing the Eco-Efficiency of a Finnish Product in Russia

    OpenAIRE

    Sattarova, Asiia

    2016-01-01

    The purpose of this qualitatitive research was to find the way for a Finnish company to market the eco-efficient characteristics as an advantage of their products and bring the message effectively to their consumers in Russia. The core objective was to create a strategic marketing plan; the goal was to work out an efficient strategy, practical marketing steps and effective solutions. The first theory part focused on the comparison of general eco-awareness in Europe and Russia. The part rev...

  11. Analysis of economic efficiency in cocoa production in Ghana ...

    African Journals Online (AJOL)

    The main purpose of this study was to analyze the economic efficiency of resource utilization in cocoa production of the cocoa farmers in Ghana to provide information for effective application and management of farm inputs on cocoa farms and policy recommendation. A random sample of 300 farmers in the Eastern, Ashanti ...

  12. Economic efficiency of cocoa production in Ghana | Aneani | Journal ...

    African Journals Online (AJOL)

    The main purpose of this study was to analyze the economic efficiency of resource utilization in cocoa production among cocoa farmers in Ghana to provide information for effective application and management of farm input on cocoa farms. A random sample of 300 farmers was selected in six cocoa growing districts in ...

  13. 75 FR 32177 - Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for...

    Science.gov (United States)

    2010-06-07

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket Number EERE-BT-PET-0024] Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for Exemption From Federal Preemption of Massachusetts' Energy Efficiency Standard for Residential Non...

  14. FORAGES AND PASTURES SYMPOSIUM: Improving efficiency of production in pasture- and range-based beef and dairy systems.

    Science.gov (United States)

    Mulliniks, J T; Rius, A G; Edwards, M A; Edwards, S R; Hobbs, J D; Nave, R L G

    2015-06-01

    Despite overall increased production in the last century, it is critical that grazing production systems focus on improving beef and dairy efficiency to meet current and future global food demands. For livestock producers, production efficiency is essential to maintain long-term profitability and sustainability. This continued viability of production systems using pasture- and range-based grazing systems requires more rapid adoption of innovative management practices and selection tools that increase profitability by optimizing grazing management and increasing reproductive performance. Understanding the genetic variation in cow herds will provide the ability to select cows that require less energy for maintenance, which can potentially reduce total energy utilization or energy required for production, consequently improving production efficiency and profitability. In the United States, pasture- and range-based grazing systems vary tremendously across various unique environments that differ in climate, topography, and forage production. This variation in environmental conditions contributes to the challenges of developing or targeting specific genetic components and grazing systems that lead to increased production efficiency. However, across these various environments and grazing management systems, grazable forage remains the least expensive nutrient source to maintain productivity of the cow herd. Beef and dairy cattle can capitalize on their ability to utilize these feed resources that are not usable for other production industries. Therefore, lower-cost alternatives to feeding harvested and stored feedstuffs have the opportunity to provide to livestock producers a sustainable and efficient forage production system. However, increasing production efficiency within a given production environment would vary according to genetic potential (i.e., growth and milk potential), how that genetic potential fits the respective production environment, and how the grazing

  15. Measuring efficiency and productivity change (PTF) in the Peruvian electricity distribution companies after reforms

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Reyes, Raul [Organismo Supervisor de la Inversion en Energia y Mineria, Osinergmin (Peru); Tovar, Beatriz [Infrastructure and Transport Research Group (EIT), Department of Applied Economics, University of Palmas de Gran Canaria (Spain)

    2009-06-15

    This paper analyzes the evolution of productivity of the electricity distribution companies in Peru, to assess whether reforms have improved the efficiency in this sector. The paper also identifies potential sources of productivity changes, based on market restructuring the electricity sector and changes in property. To do this, we rely on a set of data for 14 distribution companies, for the period 1996-2006. Our analysis suggests that improvements in the efficiency and productivity of electricity distribution in Peru have occurred, and that there is a relationship between the restructuring of distribution sector and the enhancement of productivity. (author)

  16. Measuring efficiency and productivity change (PTF) in the Peruvian electricity distribution companies after reforms

    International Nuclear Information System (INIS)

    Perez-Reyes, Raul; Tovar, Beatriz

    2009-01-01

    This paper analyzes the evolution of productivity of the electricity distribution companies in Peru, to assess whether reforms have improved the efficiency in this sector. The paper also identifies potential sources of productivity changes, based on market restructuring the electricity sector and changes in property. To do this, we rely on a set of data for 14 distribution companies, for the period 1996-2006. Our analysis suggests that improvements in the efficiency and productivity of electricity distribution in Peru have occurred, and that there is a relationship between the restructuring of distribution sector and the enhancement of productivity. (author)

  17. A chain information model for structured knowledge management: Towards effective and efficient food product improvement

    NARCIS (Netherlands)

    Benner, M.; Geerts, R.F.R.; Linnemann, A.R.; Jongen, W.M.F.; Folstar, P.; Cnossen, H.J.

    2003-01-01

    New food products often fail, because they are not designed according to consumers' wishes or not produced efficiently. Frequently, the information required for an effective and efficient product development process is not relayed to the appropriate actor in the chain. This article presents a

  18. A chain information model for structured knowledge management: towards effective and efficient food product improvement

    NARCIS (Netherlands)

    Benner, M.; Geerts, R.F.R.; Linnemann, A.R.; Jongen, W.M.F.; Folstar, P.; Cnossen, H.J.

    2003-01-01

    New food products often fail, because they are not designed according to consumers' wishes or not produced efficiently. Frequently, the information required for an effective and efficient product development process is not relayed to the appropriate actor in the chain. This article presents a

  19. Evaluating and Directions for Improving the Efficiency of Use of the Main Production Assets of Enterprise

    Directory of Open Access Journals (Sweden)

    Chumak Larysa F.

    2017-04-01

    Full Text Available The article is aimed at studying the existing approaches to evaluation, as well as analyzing and determining the relevant directions for improving the efficiency of use of the enterprise’s main production assets. The article explores the issues such as development of the theoretical-methodical approaches to evaluating and improving the efficiency of use, finding practical ways and forms to implement innovations and upgrade the main production assets. It has been found that ensuring the efficient use of the main production assets goes along with application of technical, organizational-productive and organizational-administrative activities that are not only related to the technical side of the use, but also require the involvement and training of highly qualified professionals capable of providing with the appropriate productivity a high level of all the types of the work needed. The introduction of modern achievements in the sphere of management automation, production, advanced technologies, and the development of an optimal structure of the main assets would improve the efficiency of use of the main production assets.

  20. Expanded function allied dental personnel and dental practice productivity and efficiency.

    Science.gov (United States)

    Beazoglou, Tryfon J; Chen, Lei; Lazar, Vickie F; Brown, L Jackson; Ray, Subhash C; Heffley, Dennis R; Berg, Rob; Bailit, Howard L

    2012-08-01

    This study examined the impact of expanded function allied dental personnel on the productivity and efficiency of general dental practices. Detailed practice financial and clinical data were obtained from a convenience sample of 154 general dental practices in Colorado. In this state, expanded function dental assistants can provide a wide range of reversible dental services/procedures, and dental hygienists can give local anesthesia. The survey identified practices that currently use expanded function allied dental personnel and the specific services/procedures delegated. Practice productivity was measured using patient visits, gross billings, and net income. Practice efficiency was assessed using a multivariate linear program, Data Envelopment Analysis. Sixty-four percent of the practices were found to use expanded function allied dental personnel, and on average they delegated 31.4 percent of delegatable services/procedures. Practices that used expanded function allied dental personnel treated more patients and had higher gross billings and net incomes than those practices that did not; the more services they delegated, the higher was the practice's productivity and efficiency. The effective use of expanded function allied dental personnel has the potential to substantially expand the capacity of general dental practices to treat more patients and to generate higher incomes for dental practices.

  1. Algae biofuels: versatility for the future of bioenergy.

    Science.gov (United States)

    Jones, Carla S; Mayfield, Stephen P

    2012-06-01

    The world continues to increase its energy use, brought about by an expanding population and a desire for a greater standard of living. This energy use coupled with the realization of the impact of carbon dioxide on the climate, has led us to reanalyze the potential of plant-based biofuels. Of the potential sources of biofuels the most efficient producers of biomass are the photosynthetic microalgae and cyanobacteria. These versatile organisms can be used for the production of bioethanol, biodiesel, biohydrogen, and biogas. In fact, one of the most economic methods for algal biofuels production may be the combined biorefinery approach where multiple biofuels are produced from one biomass source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 04 Yeshi, Düvel & Steyn - Maize production efficiency.....…

    African Journals Online (AJOL)

    lynette

    Differences in production efficiency between male and female farmers can probably be ... The total sample size (153) ultimately consisted of .... of the female respondents and 10 percent of the male respondents were unsure of their age .... 30. 40. 50. 60. 70. 80. Used credit last 3 yrs. Used credit 2 years. Used credit one year.

  3. Resource Use Efficiency in Rice Production in Jere Local ...

    African Journals Online (AJOL)

    The study was carried-out on resource use efficiency in rice production in Jere Local Government Area of Borno State, Nigeria. Data were obtained using structured questionnaire. Five (5) wards were purposely selected out of the twelve (12) wards to reflect areas where rice is mainly grown. A total of 100 respondents were ...

  4. Growth, light interception, radiation use efficiency and productivity of ...

    African Journals Online (AJOL)

    The purpose of this study was to assess the influence of sowing date on growth, light interception, radiation use efficiency and productivity of mungbean cultivars. The experiment comprised four sowing dates at ten days interval, viz. 08, 18, 28 July and 07 August 2006 and two cultivars, viz. Gofa local and MH-97-6.

  5. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    Science.gov (United States)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  6. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW...

  7. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...

  8. Analyzing cost efficient production behavior under economies of scope : A nonparametric methodology

    NARCIS (Netherlands)

    Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.

    2008-01-01

    In designing a production model for firms that generate multiple outputs, we take as a starting point that such multioutput production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost-efficient

  9. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  10. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  11. Efficiency and productivity measurement of rural township hospitals in China: a bootstrapping data envelopment analysis

    Science.gov (United States)

    Cheng, Zhaohui; Cai, Miao; Tao, Hongbing; He, Zhifei; Lin, Xiaojun; Lin, Haifeng; Zuo, Yuling

    2016-01-01

    Objective Township hospitals (THs) are important components of the three-tier rural healthcare system of China. However, the efficiency and productivity of THs have been questioned since the healthcare reform was implemented in 2009. The objective of this study is to analyse the efficiency and productivity changes in THs before and after the reform process. Setting and participants A total of 48 sample THs were selected from the Xiaogan Prefecture in Hubei Province from 2008 to 2014. Outcome measures First, bootstrapping data envelopment analysis (DEA) was performed to estimate the technical efficiency (TE), pure technical efficiency (PTE) and scale efficiency (SE) of the sample THs during the period. Second, the bootstrapping Malmquist productivity index was used to calculate the productivity changes over time. Results The average TE, PTE and SE of the sample THs over the 7-year period were 0.5147, 0.6373 and 0.7080, respectively. The average TE and PTE increased from 2008 to 2012 but declined considerably after 2012. In general, the sample THs experienced a negative shift in productivity from 2008 to 2014. The negative change was 2.14%, which was attributed to a 23.89% decrease in technological changes (TC). The sample THs experienced a positive productivity shift from 2008 to 2012 but experienced deterioration from 2012 to 2014. Conclusions There was considerable space for TE improvement in the sample THs since the average TE was relatively low. From 2008 to 2014, the sample THs experienced a decrease in productivity, and the adverse alteration in TC should be emphasised. In the context of healthcare reform, the factors that influence TE and productivity of THs are complex. Results suggest that numerous quantitative and qualitative studies are necessary to explore the reasons for the changes in TE and productivity. PMID:27836870

  12. The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures

    International Nuclear Information System (INIS)

    Long, Xingle; Zhao, Xicang; Cheng, Faxin

    2015-01-01

    This paper mainly compares total factor productivity and eco-efficiency in China's cement manufactures from 2005 to 2010. First, we evaluate total factor productivity and eco-efficiency of China's cement manufactures through distance function and directional slack-based measure (DSBM) respectively. Furthermore, we also explore the difference of total factor productivity and eco-efficiency. Last, we investigate the determinants of Malmquist, Mamlquist–Luenberger of China's cement manufactures through random-effect Tobit and bootstrap truncated econometric methods. We find that there are some gaps between Malmquist and Mamlquist–Luenberger of China's cement manufactures. Per labor cement industry value has U-shape relationship with both Malmquist and Malmquist–Luenberger. It is necessary to adopt advanced technology to reduce pollutant emissions. -- Highlights: •Eco-efficiency of cement manufactures is evaluated through slack-based measure. •Eco-efficiency of China's cement manufactures has biases with total factor productivity. •Environmental Kuznets curve is existed for China's cement manufactures

  13. Strategies for improving water use efficiency in livestock feed production in rain-fed systems

    NARCIS (Netherlands)

    Kebebe, E.G.; Oosting, S.J.; Haileslassie, A.; Duncan, A.J.; Boer, de I.J.M.

    2015-01-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall

  14. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  15. Analyzing Cost Efficient Production Behavior Under Economies of Scope : A Nonparametric Methodology

    NARCIS (Netherlands)

    Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.

    2006-01-01

    In designing a production model for firms that generate multiple outputs, we take as a starting point that such multi-output production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost efficient

  16. Estimation of Resource Productivity and Efficiency: An Extended Evaluation of Sustainability Related to Material Flow

    Directory of Open Access Journals (Sweden)

    Pin-Chih Wang

    2014-09-01

    Full Text Available This study is intended to conduct an extended evaluation of sustainability based on the material flow analysis of resource productivity. We first present updated information on the material flow analysis (MFA database in Taiwan. Essential indicators are selected to quantify resource productivity associated with the economy-wide MFA of Taiwan. The study also applies the IPAT (impact-population-affluence-technology master equation to measure trends of material use efficiency in Taiwan and to compare them with those of other Asia-Pacific countries. An extended evaluation of efficiency, in comparison with selected economies by applying data envelopment analysis (DEA, is conducted accordingly. The Malmquist Productivity Index (MPI is thereby adopted to quantify the patterns and the associated changes of efficiency. Observations and summaries can be described as follows. Based on the MFA of the Taiwanese economy, the average growth rates of domestic material input (DMI; 2.83% and domestic material consumption (DMC; 2.13% in the past two decades were both less than that of gross domestic product (GDP; 4.95%. The decoupling of environmental pressures from economic growth can be observed. In terms of the decomposition analysis of the IPAT equation and in comparison with 38 other economies, the material use efficiency of Taiwan did not perform as well as its economic growth. The DEA comparisons of resource productivity show that Denmark, Germany, Luxembourg, Malta, Netherlands, United Kingdom and Japan performed the best in 2008. Since the MPI consists of technological change (frontier-shift or innovation and efficiency change (catch-up, the change in efficiency (catch-up of Taiwan has not been accomplished as expected in spite of the increase in its technological efficiency.

  17. Considerations for higher efficiency and productivity in research activities.

    Science.gov (United States)

    Forero, Diego A; Moore, Jason H

    2016-01-01

    There are several factors that are known to affect research productivity; some of them imply the need for large financial investments and others are related to work styles. There are some articles that provide suggestions for early career scientists (PhD students and postdocs) but few publications are oriented to professors about scientific leadership. As academic mentoring might be useful at all levels of experience, in this note we suggest several key considerations for higher efficiency and productivity in academic and research activities. More research is needed into the main work style features that differentiate highly productive scientists and research groups, as some of them could be innate and others could be transferable. As funding agencies, universities and research centers invest large amounts of money in order to have a better scientific productivity, a deeper understanding of these factors will be of high academic and societal impact.

  18. Statistical media design for efficient polyhydroxyalkanoate production in Pseudomonas sp. MNNG-S.

    Science.gov (United States)

    Saranya, V; Rajeswari, V; Abirami, P; Poornimakkani, K; Suguna, P; Shenbagarathai, R

    2016-07-03

    Polyhydroxyalkanoate (PHA) is a promising polymer for various biomedical applications. There is a high need to improve the production rate to achieve end use. When a cost-effective production was carried out with cheaper agricultural residues like molasses, traces of toxins were incorporated into the polymer, which makes it unfit for biomedical applications. On the other hand, there is an increase in the popularity of using chemically defined media for the production of compounds with biomedical applications. However, these media do not exhibit favorable characteristics such as efficient utilization at large scale compared to complex media. This article aims to determine the specific nutritional requirement of Pseudomonas sp. MNNG-S for efficient production of polyhydroxyalkanoate. Response surface methodology (RSM) was used in this study to statistically design for PHA production based on the interactive effect of five significant variables (sucrose; potassium dihydrogen phosphate; ammonium sulfate; magnesium sulfate; trace elements). The interactive effects of sucrose with ammonium sulfate, ammonium sulfate with combined potassium phosphate, and trace element with magnesium sulfate were found to be significant (p production more than fourfold (from 0.85 g L(-1) to 4.56 g L(-1)).

  19. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012

    Directory of Open Access Journals (Sweden)

    Khetkorn Wanthanee

    2012-10-01

    Full Text Available Abstract Background Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase. Results An engineered strain lacking a functional uptake hydrogenase (∆hupS produced about 4-folds more hydrogen than the wild type strain. Moreover, the ∆hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ∆hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ∆hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ∆hupS strain. Conclusions Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.

  20. Technical efficiency and productivity of Chinese county hospitals: an exploratory study in Henan province, China

    Science.gov (United States)

    Cheng, Zhaohui; Tao, Hongbing; Cai, Miao; Lin, Haifeng; Lin, Xiaojun; Shu, Qin; Zhang, Ru-ning

    2015-01-01

    Objectives Chinese county hospitals have been excessively enlarging their scale during the healthcare reform since 2009. The purpose of this paper is to examine the technical efficiency and productivity of county hospitals during the reform process, and to determine whether, and how, efficiency is affected by various factors. Setting and participants 114 sample county hospitals were selected from Henan province, China, from 2010 to 2012. Outcome measures Data envelopment analysis was employed to estimate the technical and scale efficiency of sample hospitals. The Malmquist index was used to calculate productivity changes over time. Tobit regression was used to regress against 4 environmental factors and 5 institutional factors that affected the technical efficiency. Results (1) 112 (98.2%), 112 (98.2%) and 104 (91.2%) of the 114 sample hospitals ran inefficiently in 2010, 2011 and 2012, with average technical efficiency of 0.697, 0.748 and 0.790, respectively. (2) On average, during 2010–2012, productivity of sample county hospitals increased by 7.8%, which was produced by the progress in technical efficiency changes and technological changes of 0.9% and 6.8%, respectively. (3) Tobit regression analysis indicated that government subsidy, hospital size with above 618 beds and average length of stay assumed a negative sign with technical efficiency; bed occupancy rate, ratio of beds to nurses and ratio of nurses to physicians assumed a positive sign with technical efficiency. Conclusions There was considerable space for technical efficiency improvement in Henan county hospitals. During 2010–2012, sample hospitals experienced productivity progress; however, the adverse change in pure technical efficiency should be emphasised. Moreover, according to the Tobit results, policy interventions that strictly supervise hospital bed scale, shorten the average length of stay and coordinate the proportion among physicians, nurses and beds, would benefit hospital efficiency

  1. Enhancing efficiency of production cost on seafood process with activity based management method

    Science.gov (United States)

    Tarigan, U.; Tarigan, U. P. P.

    2018-02-01

    The efficiency of production costs has an important impact maintaining company presence in the business world, as well as in the face of increasingly sharp global competition. It was done by identifying and reducing non-value-added activities to decrease production costs and increase profits. The study was conducted at a company engaged in the production of squid (seafood). It has a higher product price than the market as Rp 50,000 per kg while the market price of squid is only Rp 35,000 per kg. The price of the product to be more expensive compared with market price, and thereby a lot more consumers choose the lower market price. Based on the discussions conducted, the implementation of Activity Based Management was seen in the reduction of activities that are not added value in the production process. Since each activities consumers cost, the reduction of nonvalue-added activities has effects on the decline of production cost. The production’s decline costs mainly occur in the reduction of material transfer costs. The results showed that there was an increase after the improvement of 2.60%. Increased production cost efficiency causes decreased production costs and increased profits.

  2. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito [Department of Chemistry, Keio University, Yokohama (Japan); Nakata, Kazuya [Photocatalysis International Research Center, Tokyo University of Science, Chiba (Japan); Einaga, Yasuaki [Department of Chemistry, Keio University, Yokohama (Japan); JST-ACCEL, Yokohama (Japan)

    2018-03-01

    High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO{sub 2}). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO{sub 2} to HCOOH was investigated in a flow cell using boron-doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m{sup -2} s{sup -1} at a current density of 15 mA cm{sup -2} with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes.

    Science.gov (United States)

    Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito; Nakata, Kazuya; Einaga, Yasuaki

    2018-03-01

    High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO 2 ). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO 2 to HCOOH was investigated in a flow cell using boron-doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m -2  s -1 at a current density of 15 mA cm -2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  5. Organisational determinants of production and efficiency in general practice: a population-based study

    DEFF Research Database (Denmark)

    Rose Olsen, Kim; Gyrd-Hansen, Dorte; Sørensen, Torben Højmark

    2013-01-01

    Shortage of general practitioners (GPs) and an increased political focus on primary care have enforced the interest in efficiency analysis in the Danish primary care sector. This paper assesses the association between organisational factors of general practices and production and efficiency. We a...

  6. Business strategies, profitability and efficiency of production

    Directory of Open Access Journals (Sweden)

    S. Alarcón

    2013-02-01

    Full Text Available The strategy choices of market-oriented companies are a topic now under wide investigation in the analysis of business performance antecedents. The purpose of this study is to examine the outcomes of the combination of three different organizational strategies (market orientation, innovativeness and entrepreneurial orientation on business performance indicators. Models using profitability and efficiency indicators are proposed with the specific aim of obtaining a deeper analysis of the relative roles played by each. The empirical work takes place in the agro-food industry in the Ebro Valley, one of Spain’s most competitive regions. The estimates from profitability quantile and truncated regressions of the efficiency scores reveal that market orientation has a positive effect on economic and productivity performance. The impact of pro-active, innovation-seeking, and risk-averse entrepreneurship is nevertheless more debatable, despite some influence of these entrepreneurial styles on observed performance values. This enables conclusions regarding the possibility of combining a market-oriented business culture with innovation and entrepreneurial activity with a view to obtaining business performance gains.

  7. Crop productivities and radiation use efficiencies for bioregenerative life support

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.

    NASA’s Biomass Production Chamber (BPC) at Kennedy Space Center was decommissioned in 1998, but several crop tests were conducted that have not been reported in the open literature. These include several monoculture studies with wheat, soybean, potato, lettuce, and tomato. For all of these studies, either 10 or 20 m2 of plants were grown in an atmospherically closed chamber (113 m3 vol.) using a hydroponic nutrient film technique along with elevated CO2 (1000 or 1200 μmol mol-1). Canopy light (PAR) levels ranged from 17 to 85 mol m-2 d-1 depending on the species and photoperiod. Total biomass (DM) productivities reached 39.6 g m-2 d-1 for wheat, 27.2 g m-2 d-1 for potato, 19.6 g m-2 d-1 for tomato, 15.7 g m-2 d-1 for soybean, and 7.7 g m-2 d-1 for lettuce. Edible biomass (DM) productivities reached 18.4 g m-2 d-1 for potato, 11.3 g m-2 d-1 for wheat, 9.8 g m-2 d-1 for tomato, 7.1 g m-2 d-1 for lettuce, and 6.0 g m-2 d-1 for soybean. The corresponding radiation (light) use efficiencies for total biomass were 0.64 g mol-1 PAR for potato, 0.59 g DM mol-1 for wheat, 0.51 g mol-1 for tomato, 0.46 g mol-1 for lettuce, and 0.43 g mol-1 for soybean. Radiation use efficiencies for edible biomass were 0.44 g mol-1 for potato, 0.42 g mol-1 for lettuce, 0.25 g mol-1 for tomato, 0.17 g DM mol-1 for wheat, and 0.16 g mol-1 for soybean. By initially growing seedlings at a dense spacing and then transplanting them to the final production area could have saved about 12 d in each production cycle, and hence improved edible biomass productivities and radiation use efficiencies by 66% for lettuce (to 11.8 g m-2 d-1 and 0.70 g mol-1), 16% for tomato (to 11.4 g m-2 d-1and 0.29 g mol-1), 13% for soybean (to 6.9 g m-2 d-1 and 0.19 g mol-1), and 13% for potato (to 20.8 g m-2 d-1 and 0.50 g mol-1). Since wheat was grown at higher densities, transplanting seedlings would not have improved yields. Tests with wheat resulted in a relatively low harvest index of 29%, which may have been

  8. Treat a new and efficient match algorithm for AI production system

    CERN Document Server

    Miranker, Daniel P

    1988-01-01

    TREAT: A New and Efficient Match Algorithm for AI Production Systems describes the architecture and software systems embodying the DADO machine, a parallel tree-structured computer designed to provide significant performance improvements over serial computers of comparable hardware complexity in the execution of large expert systems implemented in production system form.This book focuses on TREAT as a match algorithm for executing production systems that is presented and comparatively analyzed with the RETE match algorithm. TREAT, originally designed specifically for the DADO machine architect

  9. Factors affecting the efficiency of foal production by intracytoplasmic sperm injection (ICSI

    Directory of Open Access Journals (Sweden)

    Grady ST

    2016-08-01

    Full Text Available Equine embryo production by intracytoplasmic sperm injection (ICSI is currently effective enough to be used clinically. However, there are several factors that affect the efficiency of this procedure because, in addition to specialized equipment, skill in oocyte and embryo handling, and sperm preparation as well as knowledge of oocyte and embryo culture are required. To the best of our knowledge, there are currently only a couple of reports available on the expected efficiency of foal production by ICSI. Here we discuss the parameters that pertain to the Texas A&M Equine Embryo Laboratory only, as other laboratories may have different results.

  10. Testing improvements in the chocolate traceability system: Impact on product recalls and production efficiency

    DEFF Research Database (Denmark)

    Saltini, Rolando; Akkerman, Renzo

    2012-01-01

    hypothetical improvements of the traceability system within the chocolate production system and supply chain and we illustrate the resulting benefits by using a case study. Based on the case study, we quantify the influence of these improvements on production efficiency and recall size in case of a safety......The primary aim of food traceability is to increase food safety, but traceability systems can also bring other benefits to production systems and supply chains. In the literature these benefits are extensively discussed, but studies that quantify them are scarce. In this paper we propose two...... crisis by developing a simulation tool. These results are aimed to illustrate and quantify the additional benefits of traceability information, and could help food industries in deciding whether and how to improve their traceability systems....

  11. Non-parametric tests of productive efficiency with errors-in-variables

    NARCIS (Netherlands)

    Kuosmanen, T.K.; Post, T.; Scholtes, S.

    2007-01-01

    We develop a non-parametric test of productive efficiency that accounts for errors-in-variables, following the approach of Varian. [1985. Nonparametric analysis of optimizing behavior with measurement error. Journal of Econometrics 30(1/2), 445-458]. The test is based on the general Pareto-Koopmans

  12. Studies on bio-hydrogen production of different biomass fermentation types using molasses wastewater as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Jiao, A.Y.; Rao, P.H. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering; Li, W. [Beijing Normal Univ., Beijing (China)

    2010-07-01

    Anaerobic fermentation technology was used to treat molasses wastewater. This study compared the hydrogen production capability of different fermentation types involving dark fermentation hydrogen production. The paper discussed the experiment including the results. It was found that the fermentation type changed by changing engineered control parameters in a continuous stirred tank reactor (CSTR). It was concluded that ethanol-type fermentation resulted in the largest hydrogen production capability, while butyric acid-type fermentation took second place followed by propionic acid-type fermentation.

  13. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  14. Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors.

    Science.gov (United States)

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-12-01

    Efficiency and productivity are important measures for identifying best practice in businesses and optimising resource-use. This study analyses how these two measures change across the period 2003-2008 for 196 wastewater treatment plants (WWTPs) in Spain, by using the benchmarking methods of Data Envelopment Analysis and the Malmquist Productivity Index. To identify which variables contribute to the sustainability of the WWTPs, differences in efficiency scores and productivity indices for external factors are also investigated. Our results indicate that both efficiency and productivity decreased over the five years. We verify that the productivity drop is primarily explained by technical change. Furthermore, certain external variables affected WWTP efficiency, including plant size, treatment technology and energy consumption. However, plants with low energy consumption are the only ones which improve their productivity. Finally, the benchmarking analyses proved to be useful as management tools in the wastewater sector, by providing vital information for improving the sustainability of plants.

  15. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. PhD Thesis Summary: Energy Efficient Multistage Zeolite Drying for Heat-Sensitive Products

    NARCIS (Netherlands)

    Djaeni, M.; Boxtel, van A.J.B.

    2009-01-01

    Although drying takes a significant part of the total energy usage in industry, currently available drying technology is often not efficient in terms of energy consumption. Generally, the energy efficiency for drying processes ranges between 20 and 60% depending on the dryer type and product to be

  17. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  18. Overview and theory relating to the concepts of competitiveness, efficiency and productivity

    OpenAIRE

    Latruffe, Laure

    2017-01-01

    This is a brief overview and theory relating to the concepts of competitiveness, efficiency and productivity: concept of competitiveness, measurement of competitiveness, determinants of competitiveness.

  19. Development of a novel energy-efficient adsorption dryer with zeolite for food product

    NARCIS (Netherlands)

    Djaeni, M.; Boxtel, van A.J.B.

    2012-01-01

    Abstract: The demand of high quality dry products closing to the fresh condition increases significantly. Current drying technology have shown the significant improvement on product quality, but the breakthrough respecting to energy efficiency is scarce. Air dehumidification with adsorbent such as

  20. Hydrogen production from molasses by anaerobic fermentation in an activated sludge immobilized bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Yao, X.; Chen, H.; Yue, L.R. [Northeast Forestry Univ., Harbin (China). Forestry School; Li, Y.F. [Shanghai Univ. of Engineering and Science (China). School of Chemical Engineering; Northeast Forestry Univ., Harbin (China). Forestry School

    2010-07-01

    This study investigated the use of granular activated carbon as a support material for the production of biohydrogen in a continuous stirred tank reactor (CSTR) with 5.4 L of molasses as a substrate. The CSTR contained both granular activated carbon and pre-treated sludge operating and was operated at a temperature of 36 degrees C with a hydraulic retention time (HRT) of 6 hours. The procedure increased both biogas and hydrogen yields. The biogas was principally comprised of carbon dioxide (CO{sub 2}) and hydrogen (H{sub 2}). The H{sub 2} percentage ranged from 38.4 per cent to 41 per cent. The maximum H{sub 2} production rate of 3.56 L was obtained at an OLR of 24 kg/m{sup t}d. H{sub 2} yield was influenced by the presence of ethanol to acetic acid in the liquid phase. Maximum H{sub 2} production rates occurred when the ratio of ethanol to acetic acid was close to 1. The study indicated that granular activated carbon can help to stabilize H{sub 2} production systems.

  1. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sittijunda, Sureewan [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002 (Thailand); O-thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand)

    2010-12-15

    Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H{sub 2}/g TS with a hydrogen production rate of 2.56 mL H{sub 2}/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H{sub 2}/g TS) was 15 times higher than that of the raw sludge (8.83 mL H{sub 2}/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%. (author)

  2. Production and efficiency of organic compost generated by millipede activity

    Directory of Open Access Journals (Sweden)

    Luiz Fernando de Sousa Antunes

    2016-05-01

    Full Text Available ABSTRACT: The putrefactive activity of organisms such as diplopods in the edaphic macrof auna can be leveraged to promote the transformation of agricultural and urban waste into a low-cost substrate for the production of vegetable seedlings. This research aimed to evaluate: (1 the quantity of Gervais millipedes ( Trigoniulus corallinus needed to produce an acceptable quantity of organic compost; (2 the main physical and chemical characteristics of different compost types; and (3 compost efficiency in the production of lettuce seedlings. The first experiment lasted 90 days and was conducted using 6.5L of Gliricidia, 6.5L of Flemingia, 13.5L of grass cuttings, 4.5L of cardboard, 4.5L of coconut husk, and 4.5L of corncob. Treatments consisting of 0, 0.10, 0.30, 0.50, and 0.90L of millipedes were applied. This experiment compared millicompost and vermicompost, using four repetitions. After 23 days, the heights of grown lettuce plants and the weights of the fresh and dry mass of above ground lettuce and of the roots were assessed. A millipede volume of 0.1L proved to be sufficient for the production of an acceptable volume of organic compost. However, the addition of greater volumes leads to increased calcium, magnesium, and phosphorous content. Millicompost has similar physicochemical characteristics those of vermicompost, and both are equally efficient as a substrate for the production of lettuce seedlings.

  3. Resource Use Efficiency in Sweet Potato Production in Kwara State ...

    African Journals Online (AJOL)

    This paper examines resource use efficiency in sweet potato production in Offa and Oyun local government areas of Kwara State of Nigeria. Primary data were collected from one hundred sweet potato farmers who were selected from the two local government areas during the 2003/2004 farming season. The data was ...

  4. Efficient Provision of Employment Service Outputs: A Production Frontier Analysis.

    Science.gov (United States)

    Cavin, Edward S.; Stafford, Frank P.

    1985-01-01

    This article develops a production frontier model for the Employment Service and assesses the relative efficiency of the 51 State Employment Security Agencies in attaining program outcomes close to that frontier. This approach stands in contrast to such established practices as comparing programs to their own previous performance. (Author/CT)

  5. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  6. Technical efficiency and productivity of Chinese county hospitals: an exploratory study in Henan province, China.

    Science.gov (United States)

    Cheng, Zhaohui; Tao, Hongbing; Cai, Miao; Lin, Haifeng; Lin, Xiaojun; Shu, Qin; Zhang, Ru-Ning

    2015-09-09

    Chinese county hospitals have been excessively enlarging their scale during the healthcare reform since 2009. The purpose of this paper is to examine the technical efficiency and productivity of county hospitals during the reform process, and to determine whether, and how, efficiency is affected by various factors. 114 sample county hospitals were selected from Henan province, China, from 2010 to 2012. Data envelopment analysis was employed to estimate the technical and scale efficiency of sample hospitals. The Malmquist index was used to calculate productivity changes over time. Tobit regression was used to regress against 4 environmental factors and 5 institutional factors that affected the technical efficiency. (1) 112 (98.2%), 112 (98.2%) and 104 (91.2%) of the 114 sample hospitals ran inefficiently in 2010, 2011 and 2012, with average technical efficiency of 0.697, 0.748 and 0.790, respectively. (2) On average, during 2010-2012, productivity of sample county hospitals increased by 7.8%, which was produced by the progress in technical efficiency changes and technological changes of 0.9% and 6.8%, respectively. (3) Tobit regression analysis indicated that government subsidy, hospital size with above 618 beds and average length of stay assumed a negative sign with technical efficiency; bed occupancy rate, ratio of beds to nurses and ratio of nurses to physicians assumed a positive sign with technical efficiency. There was considerable space for technical efficiency improvement in Henan county hospitals. During 2010-2012, sample hospitals experienced productivity progress; however, the adverse change in pure technical efficiency should be emphasised. Moreover, according to the Tobit results, policy interventions that strictly supervise hospital bed scale, shorten the average length of stay and coordinate the proportion among physicians, nurses and beds, would benefit hospital efficiency. Published by the BMJ Publishing Group Limited. For permission to use (where

  7. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  8. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  9. Analysis the Efficiency and Productivity of Indonesian Pharmaceutical Public Companies Using Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Dewi Hanggraeni

    2014-08-01

    Full Text Available As one of the biggest medicines market in the South East Asia, the pharmaceutical industry inIndonesia has a huge potential market. However, the majority supply of raw materials has been imported.Besides, regulations of the Health Ministry and the Trade Ministry have still hampered mostplayers in Indonesia pharmaceutical industry. Therefore, this study used Data Envelopment Analysis(DEA models to analyze efficiency and productivity change in the Indonesian pharmaceutical industrybetween 2006 and 2011, listed in the Indonesia Stock Exchange and also supported by applyingefficiency financial ratio. This study finds that the decision for the most relatively efficient companyis different using DEA compared to efficiency financial ratios, yet DEA has better measurement ofefficiency. It is proven by one of State-owned Enterprises has been evaluated underperformed by thefinancial ratio analysis, unexpectedly is efficient using the DEA approach. This study has also proposedand tested a hypothesis on the average efficiency to check if the domestic and foreign pharmaceuticalcompanies differ in their efficiency but the result implies that there is no significant statisticaldifference among them. This study indicates that firms having dominant contribution in selling overthe-counter medicines are more efficient than selling ethical medicines. Lastly, technological changecontribution has more influence to productivity change instead of pure technical efficiency change inIndonesia pharmaceutical companies.

  10. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  11. Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 C) mixed culture

    DEFF Research Database (Denmark)

    Chenxi, Zhao; Karakashev, Dimitar Borisov; Lu, W.

    2010-01-01

    -xylose corresponding to 55% of the theoretical hydrogen yield based on acetate metabolic pathway. An empirical model was established to reveal the quantitative effect of factors significant for biohydrogen (quadratic model) production and for bioethanol (linear model) production. Changes in hydrogen/ethanol yields...

  12. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    Science.gov (United States)

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  13. Impact of Erratic Rainfall from Climate Change on Pulse Production Efficiency in Lower Myanmar

    Directory of Open Access Journals (Sweden)

    Sein Mar

    2018-02-01

    Full Text Available Erratic rainfall has a detrimental impact on crop productivity but rainfall during the specific growth stage is rarely used in efficiency analysis. This study focuses on this untapped point and examines the influence of rainfall specifically encountered during the sowing stage and early vegetative growth stage and the flowering stage of pulses on productivity and efficiency in Lower Myanmar using data from 182 sample farmers. The results of a stochastic frontier production function reveal that rainfall incidence during the flowering season of pulses has a negatively significant effect on yield while replanting crops after serious damage by rain increases productivity. Controlled rainfall variables, seed rate, human labor and land preparation cost are important parameters influencing pulses yield. In the efficiency model, levels of yield loss have a negative impact while being a male household head, access to government credit, access to training, locating farms in the Bago Region and possessing a large area of pulses have a positively significant effect on technical efficiency. Policy recommendations include the establishment of a safety network, such as crop insurance to protect farmers from losses due to unpredictable weather conditions, promoting training programs on cultural practices adapted to climate change, wide coverage of extension activities, giving priority to small-scale farmers and female farmer participation in training and extension activities and increasing the rate of credit availability to farmers.

  14. Decomposing productivity growth allowing efficiency gains and price-induced technical progress

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Silva, E.; Stefanou, S.

    2000-01-01

    Time- and firm-specific output technical efficiency measures are generated within a price-induced technological change framework. The firm-specific production frontier incorporates past prices as an argument encouraging innovation and a time trend to account for exogenous technical change. The

  15. Strategies for improving water use efficiency of livestock production in rain-fed systems.

    Science.gov (United States)

    Kebebe, E G; Oosting, S J; Haileslassie, A; Duncan, A J; de Boer, I J M

    2015-05-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall water use efficiency of agriculture. Previous studies have reported significant variation in livestock water productivity (LWP) within and among farming systems. Underlying causes of this variation in LWP require further investigation. The objective of this paper was to identify the factors that explain the variation in LWP within and among farming systems in Ethiopia. We quantified LWP for various farms in mixed-crop livestock systems and explored the effect of household demographic characteristics and farm assets on LWP using ANOVA and multilevel mixed-effect linear regression. We focused on water used to cultivate feeds on privately owned agricultural lands. There was a difference in LWP among farming systems and wealth categories. Better-off households followed by medium households had the highest LWP, whereas poor households had the lowest LWP. The variation in LWP among wealth categories could be explained by the differences in the ownership of livestock and availability of family labor. Regression results showed that the age of the household head, the size of the livestock holding and availability of family labor affected LWP positively. The results suggest that water use efficiency could be improved by alleviating resource constraints such as access to farm labor and livestock assets, oxen in particular.

  16. JIT maintenance improves the productivity and energy efficiency of the system

    Directory of Open Access Journals (Sweden)

    Marković Željko M.

    2016-01-01

    Full Text Available Maintenance planning in order to ensure the smooth functioning of the system, optimal interaction of system with the environment, and timely responses to the set requirements is one of the most important internal resources of the organization. Just-In-Time Maintenance enables rarely downtime and lower maintenance costs throughout the life cycle of the system, and dramatically increases the productivity and energy efficiency of the entire system. By adopting of the Just-In-Time Maintenance philosophy, minimum of objective function of energy or production system, as well as of production of services system, is achieved.

  17. The Productivity and Technical Efficiency of Textile Industry Clusters in India

    Science.gov (United States)

    Bhaskaran, E.

    2013-09-01

    The Indian textile industry is one the largest and oldest sectors in the country and among the most important in the economy in terms of output, investment and employment (E). The sector employs nearly 35 million people and after agriculture, is the second-highest employer in the country. Its importance is underlined by the fact that it accounts for around 4 % of Gross Domestic Product, 14 % of industrial production, 9 % of excise collections, 18 % of E in the industrial sector, and 16 % of the country's total exports (Ex) earnings. For inclusive growth and sustainable development most of the Textile Manufacturers has adopted the Cluster Development Approach. The objective is to study the physical and financial performance, correlation, regression and Data Envelopment Analysis by measuring technical efficiency (Ø), peer weights (λi), input slacks (S-), output slacks (S+) and return to scale of four textile clusters (TCs) namely IchalKaranji Textile Cluster, Maharashtra; Ludhiana Textile Cluster, Punjab; Tirupur Textile Cluster, Tamilnadu and Panipat Textile Cluster, Haryana in India. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper Model by taking number of units (U) and number of E as inputs and sales (S) and Ex in crores as an outputs. The non-zero λi's represents the weights for efficient clusters. The S > 0 obtained for one TC reveals the excess U (S-) and E (S-) and shortage in sales (S+) and Ex (S+). To conclude, for inclusive growth and sustainable development, the inefficient TC should increase their S/turnover and Ex, as decrease in number of enterprises and E is practically not possible. Moreover for sustainable development, the TC should strengthen infrastructure interrelationships, technology interrelationships, procurement interrelationships, production interrelationships and marketing interrelationships to decrease cost, increase productivity and efficiency to compete in the world market.

  18. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jinming [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Zhang, Ruihong; Sun, Huawei [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); El-Mashad, Hamed M. [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Department of Agricultural Engineering, Mansoura University, El-Mansoura (Egypt); Ying, Yibin [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-12-15

    The effect of different food to microorganism ratios (F/M) (1-10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 {+-} 2 C and 50 {+-} 2 C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H{sub 2}/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H{sub 2}/g VS at the F/M of 6. A modified Gompertz equation adequately (R{sup 2} > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation. (author)

  19. A Study of Efficiency, Effectiveness and Productivity of Filipino Administrative Agencies

    Directory of Open Access Journals (Sweden)

    Santiago Simpas

    1980-01-01

    Full Text Available The public in general would have different ideas regarding "efficiency, effectiveness and productivity" because these concepts have apparently different meanings and purposes. Properly understood and utilized, however, these concepts can be useful tools for improving management in the public service.Employees, supervisors and administrators themselves would have different views of these concepts. Several variables affect the interrelationships between the three factors and it is quite difficult to tell whether or not an agency is really efficient, effective and productive.Intending to operationalize and provide measurements of these concepts in the Philippine setting, this study is a survey on efficiency, effectiveness and productivity of Philippine administrative agencies. Furthermore, insights into the relationships that exist among these three concepts have been obtained and the key variables affecting them identified.More specifically, this study is an examination of the effects of four structural variables – centralization, complexity, formalization and stratification – on efficiency, effectiveness and productivity.During the first phase of the research project, the research team examined organizational records as the basis for the preparation of schedules for study. Pre-tests were done during the first six months of research. Immediately after the formulation of the initial questionnaire, the development of the final questionnaire started. The first set was administered to supervisory personnel of selected units of the four agencies under study - the Department of Health (DOH, the Department of Local Government and Community Development (DLGCD, the Development Bank of the Philippines (DBP and the Government Service Insurance System (GSIS. These agencies were selected on the basis of the primary function of financing and service. The original plan was to have at least six representative agencies of the government for the survey, but due

  20. Enhancing Efficiency of Water Supply – Product Market Competition versus Trade

    OpenAIRE

    Reto Foellmi; Urs Meister

    2004-01-01

    This paper analyses and compares potential efficiency gains induced by the introduction of product market competition and cross boarder trade in the piped water market. We argue that due to the specific circumstances in the water sector product market competition, i.e. competition by common carriage is not expected to be very intensive. The connection of networks could alternatively be used for cross boarder trade between neighboured water utilities. We show that competition by common carriag...

  1. A Survey on Efficient Collaboration of Design and Simulation in Product Development

    OpenAIRE

    Kreimeyer, M.;Deubzer, F.;Herfeld, U..;Lindemann, U.

    2017-01-01

    Efficient collaboration is a popular topic in all kinds of industry with products evolving into evermore complex sytems and with taylorism in product development increasing. With the goal of satisfying the customer’s functional desires for the product, the cooperation of embodiment design, simulation and testing departments in a company plays an essential role. The results of a survey to explore problems and chances of the former two are layed out in the following. For the survey, about 50 qu...

  2. Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor.

    Science.gov (United States)

    Lu, Chaoyang; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Ge, Xumeng; Xia, Chenxi; Zhao, Jia; Wang, Yi; Jing, Yanyan; Li, Yameng; Zhang, Quanguo

    2018-01-01

    Effect of substrate concentration on photo-fermentative hydrogen production was studied with a self-designed 4m 3 pilot-scale baffled photo-fermentative hydrogen production reactor (BPHR). The relationships between parameters, such as hydrogen production rate (HPR, mol H 2 /m 3 /d), hydrogen concentration, pH value, oxidation-reduction potential, biomass concentration (volatile suspended solids, VSS) and reducing sugar concentration, during the photo-fermentative hydrogen production process were investigated. The highest HPR of 202.64±8.83mol/m 3 /d was achieved in chamber #3 at a substrate concentration of 20g/L. Hydrogen contents were in the range of 42.19±0.94%-49.71±0.27%. HPR increased when organic loading rate was increased from 3.3 to 20g/L/d, then decreased when organic loading rate was further increased to 25g/L/d. A maximum HPR of 148.65±4.19mol/m 3 /d was obtained when organic loading rate was maintained at 20g/L/d during continuous bio-hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Evaluation of Efficiency of Production Management at Forestry Enterprise: Experience with Discriminantal and Applied Econometric Models

    Directory of Open Access Journals (Sweden)

    Pilko Andriy D.

    2017-07-01

    Full Text Available The publication is aimed at coverage of the results of a study on existing approaches to the setting and solving the task of evaluation and analysis of efficiency of management of production processes at forestry enterprises, as well as implementation and development (in line with the industry specificity of the previously proposed approach to evaluating, analyzing and forecasting the efficiency of management of the production process by means of development and application of the economic-mathematical modeling capabilities. A study on the efficiency of the production process management and the usage of enterprise’s basic production assets has been conducted with application of discriminantal and simultative econometric models. Further development of the proposed approach could provide an additional methodical basis for planning activities to improve the management of production at forestry enterprises.

  4. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  5. A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook

    Directory of Open Access Journals (Sweden)

    Nelson Mango

    2015-12-01

    Full Text Available This article analyses the technical efficiency of maize production in Zimbabwe’s smallholder farming communities following the fast-track land reform of the year 2000 with a view of highlighting key entry points for policy. Using a randomly selected sample of 522 smallholder maize producers, a stochastic frontier production model was applied, using a linearised Cobb–Douglas production function to determine the production elasticity coefficients of inputs, technical efficiency and the determinants of efficiency. The study finds that maize output responds positively to increases in inorganic fertilisers, seed quantity, the use of labour and the area planted. The technical efficiency analysis suggests that about 90% of farmers in the sample are between 60 and 75% efficient, with an average efficiency in the sample of 65%. The significant determinants of technical efficiency were the gender of the household head, household size, frequency of extension visits, farm size and the farming region. The results imply that the average efficiency of maize production could be improved by 35% through better use of existing resources and technology. The results highlight the need for government and private sector assistance in improving efficiency by promoting access to productive resources and ensuring better and more reliable agricultural extension services.

  6. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  7. Relative efficiency and productivity: a preliminary exploration of public hospitals in Beijing, China.

    Science.gov (United States)

    Li, Hao; Dong, Siping; Liu, Tingfang

    2014-04-06

    Third-grade hospitals in Beijing have been rapidly developing in capacity and scale for many years. These hospitals receive a large number of patients, and ensuring their efficient operation is crucial in meeting people's healthcare needs. In this context, a study of their relative efficiency and productivity would be helpful to identify the driving factors and further improve their performance. After a review of literature, the current numbers of open beds and employees were selected as input variables. The number of outpatient and emergency visits and the number of discharged patients were selected as output variables. A total of 12 third-grade Class A general public hospitals in Beijing were selected for a preliminary study. The panel data from 2006-2009 were collected by the National Institute of Hospital Administration, Ministry of Health of P.R. China. Descriptive analysis and data envelopment analysis were used to analyze the data using Stata 10.0 and DEAP(V2.1) software. In the 2006-2009 period, descriptive results show that sample hospitals continuously expanded their capacity and scale, with growth rate of total revenue being the highest among all variables. The DEA results show that the average annual growth rate of productivity was 26.7%, and the rates were 47.3%, 21.3% and 13.8% respectively for two consecutive years. The average annual growth rate of technological change was 28.3%, and the rates were 49.4%, 21.5% and 16.4% respectively for two consecutive years. The average annual growth rate of technical efficiency change was -1.3%, and the rates were -1.4%, -0.02% and -2.2% respectively for two consecutive years. The sample hospitals in Beijing experienced substantial productivity growth, but annual growth rates were declining. Substantial technological change was the main contributor to the growth. Although some hospitals exhibited improvements in technical efficiency, there was a slight decline in general. To improve overall efficiency and

  8. Relative efficiency and productivity: a preliminary exploration of public hospitals in Beijing, China

    Science.gov (United States)

    2014-01-01

    Background Third-grade hospitals in Beijing have been rapidly developing in capacity and scale for many years. These hospitals receive a large number of patients, and ensuring their efficient operation is crucial in meeting people’s healthcare needs. In this context, a study of their relative efficiency and productivity would be helpful to identify the driving factors and further improve their performance. Methods After a review of literature, the current numbers of open beds and employees were selected as input variables. The number of outpatient and emergency visits and the number of discharged patients were selected as output variables. A total of 12 third-grade Class A general public hospitals in Beijing were selected for a preliminary study. The panel data from 2006–2009 were collected by the National Institute of Hospital Administration, Ministry of Health of P.R. China. Descriptive analysis and data envelopment analysis were used to analyze the data using Stata 10.0 and DEAP(V2.1) software. Results In the 2006–2009 period, descriptive results show that sample hospitals continuously expanded their capacity and scale, with growth rate of total revenue being the highest among all variables. The DEA results show that the average annual growth rate of productivity was 26.7%, and the rates were 47.3%, 21.3% and 13.8% respectively for two consecutive years. The average annual growth rate of technological change was 28.3%, and the rates were 49.4%, 21.5% and 16.4% respectively for two consecutive years. The average annual growth rate of technical efficiency change was -1.3%, and the rates were -1.4%, -0.02% and -2.2% respectively for two consecutive years. Conclusions The sample hospitals in Beijing experienced substantial productivity growth, but annual growth rates were declining. Substantial technological change was the main contributor to the growth. Although some hospitals exhibited improvements in technical efficiency, there was a slight decline in

  9. Cooperative procurement: market transformation for energy efficient products

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K.; Dreher, C.

    1999-07-01

    Cooperative procurement is a variation of public purchasing which may be used as an instrument to transform the market and stimulate innovation enhancing environmental performance. The core of the procedure is the following: Coordinated by a central agency a group of buyers - public administrations, but also private companies, associations, etc. - gets together and jointly formulates a catalogue of performance requirements for a specific product truly suiting their preferences. This catalogue may contain (combinations of) requirements not yet available on the market and includes energy efficiency and/or environmental performance among other preferences important to the users. On the basis of the product requirements the buyer group launches a call for tenders, evaluates the bids received from the manufacturers and commits to buying the winning product. Thus, a market is provided for the most successful innovators in a given area of technology. The paper discusses the effectiveness of cooperative procurement as a policy instrument in the context of innovation theory and learning curves and it presents some empirical results on the feasibility of the transfer of this policy instruments to a wider range of European countries and/or to the European level. (orig.)

  10. HE CONVERSION OF THE EFFICIENCY OF LABOR, RESPECTIVELY OF LABOR PRODUCTIVITY IN THE ECONOMIC AND COMMERCIAL RATE OF RETURN

    Directory of Open Access Journals (Sweden)

    Constantin CĂRUNTU

    2010-12-01

    Full Text Available Generally, an activity is considered to be efficient if the production implies low costs or if the revenues from selling the products on the market outweigh the expenditures that were made to achieve them. Labor productivity as an efficiency indicator of a production process represents an expression of the relationship between effect (products, services and effort (work means, labor force, work items. Through the labor productivity conversion in rates of return (economic and commercial is determined an evolution and an influence on these rates, driving the company’s own efforts to innovate, produce and harness goods, works and services with maximum utility, efficiency and competitiveness services. The aim of this paper is to highlight the work efficiency, respectively the labor productivity detached from the factorial context in the trade and economic rates of return. The introduction presents some general aspects referring to labor productivity, then it will be presented and discussed the analytical methods used in the process of reflecting the labor productivity in the rates of return, the results analysis, and at the end of this paper it will be presented some conclusions based on the study case. The expected results consist in identifying the mechanisms by which labor efficiency is converted into the company’s economic and financial performance.

  11. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exploiting hydrophobicity for efficient production of transmembrane helices for structure determination by NMR spectroscopy

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard; Steinocher, Helena; Brooks, Andrew J.

    2015-01-01

    -labeled protein. In this work, we have exploited the hydrophobic nature of membrane proteins to develop a simple and efficient production scheme for isotope-labeled single-pass transmembrane domains (TMDs) with or without intrinsically disordered regions. We have evaluated the applicability and limitations...... of the strategy using seven membrane protein variants that differ in their overall hydrophobicity and length and show a recovery for suitable variants of >70%. The developed production scheme is cost-efficient and easy to implement and has the potential to facilitate an increase in the number of structures...

  13. Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Pongpat, Patcharaporn

    2015-01-01

    Highlights: • Sugarcane biorefinery in Thailand is evaluated using the eco-efficiency concept. • Green cane along with cane trash use for electricity yields highest eco-efficiency. • Proposed biorefinery system increases eco-efficiency by 20–70%. - Abstract: The study aims to evaluate the sugarcane biorefinery and molasses ethanol production in Thailand using the combined environmental and economic sustainability indicator, so called “Eco-efficiency”. Four sugarcane biorefinery scenarios in Thailand are evaluated. The total output values (US$) and the life cycle greenhouse gas (GHG) emissions (kg CO_2eq) are selected as the indicators for characterizing economic and environmental performance, respectively. The results show that the biorefinery system of mechanized farming along with cane trash utilization for power generation yields the highest eco-efficiency. The benefits come from the increased value added of the biorefinery together with the decreased GHG emissions of the biorefinery system. As compared to the base case scenario, the new systems proposed result in the eco-efficiency improvement by around 20–70%. The biorefinery concept induces reduction of GHG emissions attributed to molasses ethanol. Green cane production and harvesting results in further lowering of the GHG emissions. Integration of sugarcane biomass utilization across the entire sugarcane complex would enhance the sustainability of the sugarcane production system.

  14. Energy efficiency and econometric analysis of broiler production farms

    International Nuclear Information System (INIS)

    Heidari, M.D.; Omid, M.; Akram, A.

    2011-01-01

    The objective of this study was to determine the energy consumption per 1000 bird for the broiler production in Yazd province, Iran. The data were collected from 44 farms by using a face-to-face questionnaire method during January–February 2010. The collected information was analyzed using descriptive statistics, economic analysis and stochastic frontier production function. The production technology of the farmer was assumed to be specified by the Cobb–Douglas (CD) production function. Total input energy was found to be 186,885.87 MJ (1000 bird) −1 while the output energy was 27,461.21 MJ (1000 bird) −1 . The values of specific energy and energy ratio were calculated at 71.95 MJ kg −1 and 0.15, respectively. The sensitivity of energy inputs was estimated using the marginal physical productivity (MPP) method. The MPP value showed the high impact of human labor and machinery energy inputs on output energy. Returns to scale (RTS) values for broiler were found to be 0.96; thus, there prevailed a decreasing RTS for the estimated model. The net return was found positive, as 1386.53 $ (1000 bird) −1 and the benefit to cost ratio from broiler production was calculated to be 1.38. The study revealed that production of meat was profitable in the studied area. -- Highlights: ► We determined the energy use efficiency (EUE) for the broiler production as 0.15, indicating inefficiency use of energy in these farms. ► Total input and output energies were found to be 186,885.87 MJ (1000 bird) −1 and 27,461.21 MJ (1000 bird) −1 , respectively. ► Cobb–Douglas (CD) frontier production function was found useful in developing econometric model for broiler production. ► The results of budgetary analysis indicate production of meat in broiler farms is profitable in the studied area.

  15. Utility and performance relative to consumer product energy efficiency standards. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Coggins, J.L.

    1979-12-14

    An investigation of the relative utility and performance of nine major household consumer products covered by the Energy Policy and Conservation Act is summarized. The objective was to define the terms utility and performance, to recommend methods for quantifying these two concepts, and to recommend an approach for dealing with utility and performance issues in the energy efficiency standards program. The definitions developed are: performance of a consumer product is the objective measure of how well, with the expected level of consumer input (following the manufacturer's instructions for installation and operation), the product does its intended job; and utility of a consumer product is a subjective measure, based on the consumer's perception, of the capability of the product to satisfy human needs. Quantification is based on test procedures and consumer survey methods which are largely already in use by industry. Utility and performance issues are important in product classification for prescribing energy efficiency standards. The recommended approach to utility and performance issues and classification is: prior to setting standards, evaluate utility and performance issues in the most quantitative way allowed by resources and schedules in order to develop classification guidelines. This approach requires no changes in existing Department of Energy test procedures.

  16. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  17. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    International Nuclear Information System (INIS)

    Mohammadi, Parviz; Ibrahim, Shaliza; Ghafari, Shahin; Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam; Zinatizadeh, Ali Akbar

    2012-01-01

    Hydrogen (H 2 ) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H 2 O). The biological production of H 2 is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Parviz [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ibrahim, Shaliza; Ghafari, Shahin [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam [Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur (Malaysia); Zinatizadeh, Ali Akbar [Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Water and Wastewater Research Center (WWRC), Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-11-15

    Hydrogen (H{sub 2}) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H{sub 2}O). The biological production of H{sub 2} is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Investigations of the efficiency of enzyme production technologies using modelling tools

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten Skov

    Growing markets and new innovative applications of industrial enzymes leads to increased interest in efficient production of these products. Most industrial enzymes are currently produced in traditional stirred tank reactors in submerged fed batch culture. The limiting parameter in such processes...... fermentations of the filamentous fungus Trichoderma reesei in 550litre pilot scale stirred tank reactors for a range of process conditions. Based on the experimental data a process model has been created, which satisfactory simulates the effect of the changing process conditions: Aeration rate, agitation speed...

  20. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)