WorldWideScience

Sample records for efficient asymmetric synthesis

  1. Efficient Asymmetric Synthesis of S,S-2-methylsulfanyl-2-methylsulfinyl-1-indanone

    OpenAIRE

    Derisvaldo Rosa Paiva; Roberto da Silva Gomes

    2013-01-01

    Diastereoselective synthesis of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanol by reduction of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanone optically enriched demonstrating to be highly efficiency using the sulfanyl group as asymmetric induction control agent during an addition reaction to carbonyl group.The 2-methylsulfinyl-1-indanone was obtained for the first time in one unique step without further oxidation steps. The synthesis of SR, SS of 2-methylsulphinyl-1-indanone optically enrich...

  2. Efficient Asymmetric Synthesis of S,S-2-methylsulfanyl-2-methylsulfinyl-1-indanone

    Directory of Open Access Journals (Sweden)

    Derisvaldo Rosa Paiva

    2013-05-01

    Full Text Available Diastereoselective synthesis of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanol by reduction of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanone optically enriched demonstrating to be highly efficiency using the sulfanyl group as asymmetric induction control agent during an addition reaction to carbonyl group.The 2-methylsulfinyl-1-indanone was obtained for the first time in one unique step without further oxidation steps. The synthesis of SR, SS of 2-methylsulphinyl-1-indanone optically enriched in good yield and good enantiomeric excess determined by nuclear magnetic resonance technique employing the Kagan reagent as chiral shift agent.

  3. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  4. Asymmetric Synthesis of Apratoxin E.

    Science.gov (United States)

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  5. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  6. Copper-Catalyzed Asymmetric Allylic Alkylation of Halocrotonates : Efficient Synthesis of Versatile Chiral Multifunctional Building Blocks

    NARCIS (Netherlands)

    Hartog, Tim den; Maciá, Beatriz; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    The highly enantioselective synthesis of α-methyl-substituted esters is reported in up to 90% yield and up to 99% ee using copper-TaniaPhos as chiral catalyst. The transformation proved scalable to at least 6.6 mmol (1.7 g scale). The products of this transformation have been further elaborated to

  7. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    Science.gov (United States)

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  8. Asymmetric Formal Synthesis of Azadirachtin.

    Science.gov (United States)

    Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori

    2015-12-01

    An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  10. Asymmetric total synthesis of cladosporin and isocladosporin.

    Science.gov (United States)

    Zheng, Huaiji; Zhao, Changgui; Fang, Bowen; Jing, Peng; Yang, Juan; Xie, Xingang; She, Xuegong

    2012-07-06

    The first asymmetric total syntheses of cladosporin and isocladosporin were accomplished in 8 steps with 8% overall yield and 10 steps with 26% overall yield, respectively. The relative configuration of isocladosporin was determined via this total synthesis.

  11. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  12. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    Science.gov (United States)

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  14. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  15. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  16. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  17. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    Science.gov (United States)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  18. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  19. Chiral ferrocenes in asymmetric catalysis: synthesis and applications

    National Research Council Canada - National Science Library

    Dai, Li-Xin; Hou, Xue-Long

    2010-01-01

    .... It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral...

  20. Asymmetric synthesis of cyclo-archaeol and ß-glucosyl cyclo-archaeol

    NARCIS (Netherlands)

    Ferrer, C.; Fodran, P.; Barroso, S.; Gibson, R.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.; Minnaard, A.J.

    2013-01-01

    An efficient asymmetric synthesis of cyclo-archaeol and beta-glucosyl cyclo-archaeol is presented employing catalytic asymmetric conjugate addition and catalytic epoxide ring opening as the key steps. Their occurrence in deep sea hydrothermal vents has been confirmed by chromatographic comparison

  1. An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    rate enantioselectivity using N,N-dialkylnorephedrines as chiral ligands. ..... temperatures also, there was no product conversion. ... Optimization of reaction conditions for asymmetric Reformatsky reaction between benzaldehyde and α-.

  2. Asymmetric Synthesis of Fluoroamines from Chiral Aziridines

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeonjeong; Yoon, Dooha; Ha, Hyunjoon [Hankuk Univ. of Foreign Studies, Yongin (Korea, Republic of); Son, Se In; Lee, Won Koo [Sogang Univ., Seoul (Korea, Republic of)

    2014-03-15

    We described an efficient preparation of fluoroamines by the ring-opening reactions of chiral aziridines with Et{sub 3}N·3HF. At most cases both regioisomers were obtained from the ring openings at C2 and C3 positions depending on the substituents at C2 of the starting substrates.The fluorinated organic molecules have attracted great attentions from synthetic and medicinal chemists with wide use of various agrochemicals and pharmaceuticals. Their uniqueness is originated from its electronic characteristics and the small size without altering the molecular conformations of non-fluorinated compounds. The fluorine is the second most widely used atom in the commercial drugs following the amine. Thereby, the elaboration of fluoro-amines bearing two most widely used atoms in drugs is one of the most challenging problems in drug synthesis and its development.

  3. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  4. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel

    2011-03-04

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  5. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel; McDougal, Nolan T.; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  6. New approaches in asymmetric synthesis using γ-alkoxybutenolides

    NARCIS (Netherlands)

    Lange, Ben de; Jansen, Johan F.G.A.; Jong, Johannes C. de; Lubben, Marcel; Faber, Wijnand; Schudde, Ebe P.; Feringa, Bernard

    1992-01-01

    The synthesis of a new class of auxiliary based chiral synthons, γ-alkoxy-2(5H)-furanones, is described. The multifunctional compounds enter a variety of asymmetric transformations leading to acyclic- and cyclic-products with up to four new stereogenic centers in a single operation with

  7. Early Universe synthesis of asymmetric dark matter nuggets

    Science.gov (United States)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  8. Asymmetric Total Synthesis of Ieodomycin B

    Directory of Open Access Journals (Sweden)

    Shuangjie Lin

    2017-01-01

    Full Text Available Ieodomycin B, which shows in vitro antimicrobial activity, was isolated from a marine Bacillus species. A novel asymmetric total synthetic approach to ieodomycin B using commercially available geraniol was achieved. The approach involves the generation of 1,3-trans-dihydroxyl at C-3 and C-5 positions via a Crimmins-modified Evans aldol reaction and a chelation-controlled Mukaiyama aldol reaction of a p-methoxybenzyl-protected aldehyde, as well as the generation of a lactone ring in a deprotection–lactonization one-pot reaction.

  9. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  10. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  11. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  12. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    Science.gov (United States)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  13. Catalytic asymmetric synthesis of enantiopure isoprenoid building blocks : application in the synthesis of apple leafminer pheromones

    NARCIS (Netherlands)

    Summeren, Ruben P. van; Reijmer, Sven J.W.; Minnaard, Adriaan J.; Feringa, Bernard

    2005-01-01

    The first catalytic asymmetric procedure capable of preparing all 4 diastereoisomers (ee > 99%, de > 98%) of a versatile saturated isoprenoid building block was developed and the value of this new method was demonstrated in its application to the concise total synthesis of two pheromones.

  14. Efficient Asymmetric Index Encapsulation Scheme for Anonymous Content Centric Networking

    Directory of Open Access Journals (Sweden)

    Rong Ma

    2017-01-01

    Full Text Available Content Centric Networking (CCN is an effective communication paradigm that well matches the features of wireless environments. To be considered a viable candidate in the emerging wireless networks, despite the clear benefits of location-independent security, CCN must at least have parity with existing solutions for confidential and anonymous communication. This paper designs a new cryptographic scheme, called Asymmetric Index Encapsulation (AIE, that enables the router to test whether an encapsulated header matches the token without learning anything else about both of them. We suggest using the AIE as the core protocol of anonymous Content Centric Networking. A construction of AIE which strikes a balance between efficiency and security is given. The scheme is proved to be secure based on the DBDH assumption in the random oracle with tight reduction, while the encapsulated header and the token in our system consist of only three elements.

  15. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  16. Chiral 1,3,2-oxazaborolidines in asymmetric synthesis: recent advances

    International Nuclear Information System (INIS)

    Glushkov, Vladimir A; Tolstikov, Alexander G

    2004-01-01

    The use of chiral 1,3,2-oxazaborolidines in asymmetric organic synthesis, particularly, in enantioselective reduction of ketones, imines and oxime ethers, asymmetric Diels-Alder reactions, aldol condensation and atroposelective reduction of lactones is reviewed. Reactions of immobilised 1,3,2-oxazaborolidines are also considered.

  17. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger; Knop, Nils; Rueping, Magnus

    2016-01-01

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted

  18. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    Science.gov (United States)

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fourier synthesis of asymmetrical optical potentials for atoms

    International Nuclear Information System (INIS)

    Ritt, G.

    2007-01-01

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  20. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  1. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  2. Studies Toward the Asymmetric Synthesis of the Right Part of the Mycalamides

    OpenAIRE

    Zhong, H. Marlon; Sohn, Jeong-Hun; Rawal, Viresh H.

    2007-01-01

    Described herein is the asymmetric synthesis of a functionalized, trioxadecalin unit that comprises the right-hand part of the mycalamides and related natural products. The synthetic route involves a 16-step sequence that accomplishes the formation of two heterocyclic rings and the generation of five stereocenters. The synthesis commenced with a C2 symmetric starting material, diethyl D-tartrate, and took advantage of a relay of diastereoselective reactions to extend this four-carbon chain an...

  3. Asymmetric, Stereodivergent Synthesis of (−)-Clusianone Utilizing a Biomimetic Cationic Cyclization **

    Science.gov (United States)

    Boyce, Jonathan H.

    2014-01-01

    We report a stereodivergent, asymmetric total synthesis of (−)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbons. Mechanistic studies point to the unique ability of formic acid to bring about successful cyclization to the clusianone framework. PMID:24916169

  4. Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet-Spengler-type

    NARCIS (Netherlands)

    Znabet, A.; Zonneveld, J.; Janssen, E.; de Kanter, F.J.J.; Helliwell, M.; Turner, N.J.; Ruijter, E.; Orru, R.V.A.

    2010-01-01

    We have combined the biocatalytic desymmetrization of 3,4-cis-substituted meso-pyrrolidines with an Ugi-type multicomponent reaction followed in situ by a Pictet-Spengler-type cyclization reaction sequence for the rapid asymmetric synthesis of alkaloid-like polycyclic compounds. © The Royal Society

  5. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes

    Czech Academy of Sciences Publication Activity Database

    Šámal, Michal; Chercheja, Serghei; Rybáček, Jiří; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Šaman, David; Stará, Irena G.; Starý, Ivo

    2015-01-01

    Roč. 137, č. 26 (2015), s. 8469-8474 ISSN 0002-7863 R&D Projects: GA ČR GA203/09/1766 Institutional support: RVO:61388963 Keywords : helicenes * asymmetric synthesis * cycloisomerization Subject RIV: CC - Organic Chemistry Impact factor: 13.038, year: 2015

  6. Asymmetric Synthesis of the Epimeric (3S-3-((E-Hex-1-enyl-2-methylcyclohexanones

    Directory of Open Access Journals (Sweden)

    Pierre J. De Clercq

    2007-02-01

    Full Text Available The asymmetric rhodium-catalysed 1,4-addition of alkenylzirconium reagents to 2-cyclohexenone can be useful in the synthesis of 3-alkenyl-2-methylcyclohexanones, provided that formaldehyde is used in trapping the intermediate zirconium enolates. In this manner a four-step sequence leading to the two epimeric 3-hexenyl-2-methylcyclohexanones in enantiomeric form was developed.

  7. Novel phosphonium salts and bifunctional organocatalysts in asymmetric synthesis

    OpenAIRE

    Moore, Graham

    2013-01-01

    This thesis details the syntheses of catalysts and their applications in asymmetric reactions. Initially, the project focused on phase transfer catalysts; quaternary phosphonium salts derived from diethyl tartrate or from commercially available phosphorus compounds and their use primarily in the alkylation of N,N-diphenyl methylene glycine tert-butyl ester. Although some of the salts showed the ability to catalyse the alkylation reaction, all products obtained were racemic. The project then f...

  8. Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

    Directory of Open Access Journals (Sweden)

    Ryota Miyaji

    2017-08-01

    Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.

  9. Efficient Strategy Computation in Zero-Sum Asymmetric Repeated Games

    KAUST Repository

    Li, Lichun

    2017-03-06

    Zero-sum asymmetric games model decision making scenarios involving two competing players who have different information about the game being played. A particular case is that of nested information, where one (informed) player has superior information over the other (uninformed) player. This paper considers the case of nested information in repeated zero-sum games and studies the computation of strategies for both the informed and uninformed players for finite-horizon and discounted infinite-horizon nested information games. For finite-horizon settings, we exploit that for both players, the security strategy, and also the opponent\\'s corresponding best response depend only on the informed player\\'s history of actions. Using this property, we refine the sequence form, and formulate an LP computation of player strategies that is linear in the size of the uninformed player\\'s action set. For the infinite-horizon discounted game, we construct LP formulations to compute the approximated security strategies for both players, and provide a bound on the performance difference between the approximated security strategies and the security strategies. Finally, we illustrate the results on a network interdiction game between an informed system administrator and uniformed intruder.

  10. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  11. Synthesis and preliminary pharmacological evaluation of asymmetric chloroquine analogues.

    Science.gov (United States)

    Witiak, D T; Grattan, D A; Heaslip, R J; Rahwan, R G

    1981-06-01

    Asymmetric chloroquine analogues (1-4) were prepared of known absolute configuration in order to assess stereochemical influences on selected biological activities. Since chloroquine has been shown to possess spasmolytic properties, analogues 1-4 were tested for similar pharmacological effects on smooth-muscle contraction. The (S)- and (R)-chlorochloroquine enantiomers (1 and 2, respectively) were more potent antispasmodics than the less lipophilic (S)- and (R)-hydroxychloroquines (3 and 4, respectively) when tested against KCl- or acetylcholine-induced contractions of the isolated mouse ileum. A membrane stabilizing mechanism of action for the chloroquine analogues is proposed since neither cellular toxicity nor calcium antagonism plays a role in the spasmolytic action of these compounds. Although compounds 1-4 also inhibited PGF2 alpha-induced contractions of the ileum, 1 was significantly more potent than 2; the latter in turn was equipotent to 3 and 4. It is tentatively proposed that 1 may possess stereoselective affinity for the PGF2 alpha receptor in the ileum. This observation may be further exploited to obtain more selective profiles of biological activity through molecular manipulation.

  12. Synthesis and optical properties of novel asymmetric perylene bisimides

    International Nuclear Information System (INIS)

    Tsai, Hsing-Yang; Chen, Kew-Yu

    2014-01-01

    A novel series of asymmetric perylene bisimides, 1-amino-7-nitroperylene bisimides (1a–1c), was synthesized and fully characterized. These molecules undergo an excited-state intramolecular electron transfer reaction, resulting in a unique charge transfer emission in the near-infrared region, of which the peak wavelength exhibits strong solvatochromism. The dipole moments of these compounds have been estimated using the Lippert–Mataga equation, and upon excitation, the molecules show larger dipole moment changes than those of the symmetric 1,7-diaminoperylene bisimides (2a–2c). Furthermore, these dyes undergo two quasi-reversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. They display good thermal stability and optical stability that can be used as stable near-infrared fluorescent dyes. Their spectroscopic properties in various conditions and complementary time-dependent density functional theory calculations are reported. - Highlights: • 1-amino-7-nitroperylene bisimide dyes were synthesized. • These molecules undergo an excited-state intramolecular electron transfer reaction. • They can be used as stable near-infrared fluorescent dyes

  13. Studies toward the asymmetric synthesis of the right part of the mycalamides.

    Science.gov (United States)

    Zhong, H Marlon; Sohn, Jeong-Hun; Rawal, Viresh H

    2007-01-19

    Described herein is the asymmetric synthesis of a functionalized, trioxadecalin unit that comprises the right-hand part of the mycalamides and related natural products. The synthetic route involves a 16-step sequence that accomplishes the formation of two heterocyclic rings and the generation of five stereocenters. The synthesis commenced with a C2-symmetric starting material, diethyl D-tartrate, and took advantage of a relay of diastereoselective reactions to extend this four-carbon chain and introduce new chiral centers. Subsequent electrophile-mediated cyclization afforded the desired pyran ring, which was then transformed into the desired, functionalized trioxadecalin skeleton.

  14. Asymmetric Total Synthesis of Four Stereoisomers of the Sex Pheromone of the Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Sun

    2018-03-01

    Full Text Available A convergent synthesis of four stereoisomers of the sex pheromone of the western corn rootworm (8-methyldecan-2-yl propionate, 1 from commercially available chiral starting materials is reported. The key step was Julia–Kocienski olefination between chiral BT-sulfone and chiral aldehyde. This synthetic route provided the four stereoisomers of 1 in 24–29% total yield via a six-step sequence. The simple scale-up strategy provides a new way to achieve the asymmetric synthesis of the sex pheromone.

  15. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...... the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.......A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed...... by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution...

  16. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy.

    Science.gov (United States)

    Zhao, Man; Gao, Liang; Zhang, Li; Bai, Yanbin; Chen, Liang; Yu, Meilan; Cheng, Feng; Sun, Jie; Wang, Zhao; Ying, Xiangxian

    2017-11-01

    To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL]. The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%. Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.

  17. Efficient Synthesis of Network Updates

    Science.gov (United States)

    2015-06-17

    mal Languages ]: Mathematical Logic—Temporal logic; C.2.3 [Computer-communication Networks]: Network Operations— Network Management Keywords synthesis...problem, and prove this algorithm to be correct (§4). • We present an incremental LTL model checker for loop-free models (§5). • We describe an OCaml ...canned” properties, we use a specification language that is expressive enough to encode these properties and others, as well as conjunctions

  18. A General Asymmetric Synthesis of (R-Matsutakeol and Flavored Analogs

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-02-01

    Full Text Available An efficient and practical synthetic route toward chiral matsutakeol and analogs was developed by asymmetric addition of terminal alkyne to aldehydes. (R-matsutakeol and other flavored substances were feasibly synthesized from various alkylaldehydes in high yield (up to 49.5%, in three steps and excellent enantiomeric excess (up to >99%. The protocols may serve as an alternative asymmetric synthetic method for active small-molecule library of natural fatty acid metabolites and analogs. These chiral allyl alcohols are prepared for food analysis and screening insect attractants.

  19. Efficient total synthesis of (S)-14-azacamptothecin.

    Science.gov (United States)

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  20. An efficient asymmetric synthesis of (–)-wodeshiol

    Indian Academy of Sciences (India)

    Herb Resources Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun,. Chungbuk, 367–805, Korea ..... (s, 2H), 4.0–2.8 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 149.0, 147.9, 128.3, 120.4, 108.8, 101.4, 87.3, 85.7,. 76.3; HRMS calcd for ...

  1. Catalytic Asymmetric Total Synthesis of (+)- and (-)-Paeoveitol via a Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Li, Tian-Ze; Geng, Chang-An; Yin, Xiu-Juan; Yang, Tong-Hua; Chen, Xing-Long; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-03

    The first catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol has been accomplished in 42% overall yield via a biomimetic hetero-Diels-Alder reaction. The chiral phosphoric acid catalyzed hetero-Diels-Alder reaction showed excellent diastereo- and enantioselectivity (>99:1 dr and 90% ee); two rings and three stereocenters were constructed in a single step to produce (-)-paeoveitol on a scale of 452 mg. This strategy enabled us to selectively synthesize both paeoveitol enantiomers from the same substrates by simply changing the enantiomer of the catalyst.

  2. Asymmetric synthesis including enzymatic catalysis of 11C and 13N labelled amino acids

    International Nuclear Information System (INIS)

    Langstrom, B.; Antonio, G.; Bjurling, P.; Fasth, K.J.; Westerberg, G.; Watanabe, Y.

    1993-01-01

    Use of asymmetric synthesis in production of 11 C- and 13 N-labelled amino acids has been shown to be a useful approach in order to prepare amino acids routinely for PET-studies. Such PET-studies are focused either on problems related to amino acid transport, protein synthesis rate or the turnover of neurotransmitters from amino acids. The paper discusses matters regarding synthetic strategies and techniques involving production of precursors, labelled intermediates and main reaction sequences. In synthesis using the short-lived β + -emitters like 11 C and 13 N with T 1/2 of 20.3 and 10.0 min respectively, many special aspects have to be considered. The use of enzymes as catalysts has shown to be a useful tool in such preparations. The design of the labelled amino acids especially considering the stereochemistry, the position of the label will be addressed since these points are important both with regard to the application of the labelled amino acids as well as to the synthesis itself. In this presentation of the synthesis of labelled amino acids these various aspects are discussed

  3. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  4. Process Considerations for the Asymmetric Synthesis of Chiral Amines using ω-Transaminase

    DEFF Research Database (Denmark)

    Lima Afonso Neto, Watson

    in order to eliminate infeasible routes. This work illustrates the Laboratory scale characterization of different process options for the asymmetric synthesis of chiral amines catalysed by ω-transaminase (ω –TAm). The studied process options include: (i) the immobilization of the biocatalyst to improve its...... focused on development of comprehensive screening methodologies and guidelines to aid (i) the selection and characterization of suitable biocatalysts for the process; (ii) the selection and characterization of suitable carriers for immobilization of (S)- and (R)-selective ω-TAm; and (iii) the selection...... of suitable polymeric resins for product removal. The work has been performed in collaboration with c-LEcta GmbH (Leipzig, Germany) and DSM Innovative Synthesis (Geleen, The Netherlands) who supplied the enzymes for the case study, making possible the successful demonstration of the screening methodologies...

  5. Asymmetric synthesis with microbes; Biseibutsu wo katsuyoshita kogaku kassei kagobutsu no koritsutekina gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, S. [Ritsumeikan Univ., Tokyo (Japan). Faculty of Science and Engineering

    1996-02-01

    Use of microbial enzymes have been widely extended as an effective means for asymmetric synthesis. However, the asymmetric selectivity often decreases due to competitive catalysis among plural enzymes in a microbe. The author has been studied development of methods for control of the stereo-selectivity using subtle difference of enzyme characteristics. When Michaelis constant (Km) differs between two enzymes, one enzyme of lower Km becomes active with decrease in concentration of substrate, expressing its stereo-selectivity. Reduction of {alpha}-ketoesters in water by bread yeast (Saccharomyces cerevisiae) yields products of S-configuration, whereas those of R-configuration are obtained in an organic solvent in the presence of small amount of water. This is because reaction field of the yeast is in water and because R-configuration enzyme of lower Km works for substrate whose concentration in water has decreased due to two phase partition of organic solvent and water system. Further, use of difference of decrease in enzyme activity by inhibitors in stereo-selective synthesis of {alpha}-hydroxyketones (I) from {alpha}-diketone and use of difference of thermal endurance in improvement of formation ratio among I, are also introduced. 6 refs., 3 figs., 2 tabs.

  6. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    Science.gov (United States)

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design of Asymmetrical Relay Resonators for Maximum Efficiency of Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Bo-Hee Choi

    2016-01-01

    Full Text Available This paper presents a new design method of asymmetrical relay resonators for maximum wireless power transfer. A new design method for relay resonators is demanded because maximum power transfer efficiency (PTE is not obtained at the resonant frequency of unit resonator. The maximum PTE for relay resonators is obtained at the different resonances of unit resonator. The optimum design of asymmetrical relay is conducted by both the optimum placement and the optimum capacitance of resonators. The optimum placement is found by scanning the positions of the relays and optimum capacitance can be found by using genetic algorithm (GA. The PTEs are enhanced when capacitance is optimally designed by GA according to the position of relays, respectively, and then maximum efficiency is obtained at the optimum placement of relays. The capacitance of the second resonator to nth resonator and the load resistance should be determined for maximum efficiency while the capacitance of the first resonator and the source resistance are obtained for the impedance matching. The simulated and measured results are in good agreement.

  8. The asymmetric synthesis of (+-sitophilure, the natural form of the aggregation pheromone of Sitophilus oryzae L. and Sitophilus zeamais M.

    Directory of Open Access Journals (Sweden)

    Pilli Ronaldo A.

    1999-01-01

    Full Text Available The asymmetric synthesis of (+-sitophilure, the aggregation pheromone of Sitophilus oryzae L. and Sitophilus zeamais M., was carried out in 12 steps, 18% overall yield and 82% enantiomeric excess from the enzymatic reduction of methyl 3-oxopentanoate with S. cerevisiae in the presence of ethyl chloroacetate.

  9. Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2017-10-01

    Full Text Available Electrostatic properties of asymmetrically contacted carbon nanotube barrier-free bipolar diode photodetector are studied by solving the Poisson equation self-consistently with equilibrium carrier statistics. For electric field parallel to tube’s axis, the maximum electric field occurs near contact but decays rapidly in a few nanometers, followed by a slowly increasing trend when it extends to the center of channel. By considering the field ionization and the diffusion effect of exciton, a model of estimation on quantum efficiency for the device is made. We find that the quantum efficiency increases with increasing exciton lifetime, decreasing diffusion constant and channel length. For devices with a channel length shorter than 50 nm, the contribution of field ionization to the quantum efficiency can reach 60%.

  10. Thiophenyl-substituted triazolyl-thione L-alanine: asymmetric synthesis, aggregation and biological properties.

    Science.gov (United States)

    Saghyan, Ashot S; Simonyan, Hayarpi M; Petrosyan, Satenik G; Geolchanyan, Arpine V; Roviello, Giovanni N; Musumeci, Domenica; Roviello, Valentina

    2014-10-01

    In this work, we report the asymmetric synthesis and characterization of an artificial amino acid based on triazolyl-thione L-alanine, which was modified with a thiophenyl-substituted moiety, as well as in vitro studies of its nucleic acid-binding ability. We found, by dynamic light scattering studies, that the synthetic amino acid was able to form supramolecular aggregates having a hydrodynamic diameter higher than 200 nm. Furthermore, we demonstrated, by UV and CD experiments, that the heteroaromatic amino acid, whose enzymatic stability was demonstrated by HPLC analysis also after 24 h of incubation in human serum, was able to bind a RNA complex, which is a feature of biomedical interest in view of innovative antiviral strategies based on modulation of RNA-RNA molecular recognition.

  11. Minimum detection efficiencies for a loophole-free observable-asymmetric Bell-type test

    International Nuclear Information System (INIS)

    Garbarino, G.

    2010-01-01

    We discuss the problem of finding the most favorable conditions for closing the detection loophole in a test of local realism with a Bell inequality. For a generic nonmaximally entangled two-qubit state and two incompatible bases to be adopted for alternative measurements of two observables a and b on each party, we apply Hardy's proof of nonlocality without inequality and derive an Eberhard-like inequality. For an infinity of nonmaximally entangled states we find that it is possible to refute local realism by requiring perfect detection efficiency for only one of the two observables, say b, to be measured on each party: The test is free from the detection loophole for any value of the detection efficiency corresponding to the other observable a. The maximum tolerable noise in such a loophole-free observable-asymmetric test is also evaluated.

  12. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics

    International Nuclear Information System (INIS)

    Li Yang; Wang Dong; Wang Lei; Li Zhengqiang; Cui Qing; Zhang Haiquan; Yang Huai

    2012-01-01

    A series of novel substituted pyrene derivatives with asymmetrical groups have been successfully synthesized in excellent yield. Structures of the asymmetrical compound were fully characterized by 1 H-NMR, IR spectroscopy and mass spectrometry. By introducing ethynyl functions to pyrene, we obtained highly efficient blue and green light emitting materials. It has been demonstrated that the emission characteristics of pyrene derivatives have been bathochromatically tuned in the visible region by extending the π-conjugation. The photophysical properties of these compounds were carefully examined in different organic solvents and different concentrations. The electrochemical properties and geometrical electronic structures of the new pyrene derivatives have been investigated by cyclic voltammograms and density functional theory (DFT) calculations. - Highlights: ► It is the first research about asymmetrial pyrene derivatives as highly efficient light emitting materials. ► The solvatochromism and concentration effect of the new compounds have been discussed. ► Furthermore, the electrochemical properties and geometrical electronic structures were also investigated in this paper.

  13. Enantiopure N-Acyldihydropyridones as Synthetic Intermediates: Asymmetric Synthesis of (-)-Septicine and (-)-Tylophorine.

    Science.gov (United States)

    Comins, Daniel L.; Chen, Xinghai; Morgan, Lawrence A.

    1997-10-17

    A concise asymmetric synthesis of (-)-septicine (1) and (-)-tylophorine (2) was accomplished with a high degree of stereocontrol in eight and nine steps, respectively. Addition of 4-(1-butenyl)magnesium bromide to 1-acylpyridinium salt 3, prepared in situ from 4-methoxy-3-(triisopropylsilyl)pyridine and the chloroformate of (-)-trans-2-(alpha-cumyl)cyclohexanol, gave a 91% yield of diastereomerically pure dihydropyridone 7. Oxidative cleavage of 7 and subsequent reduction provided alcohol 6 in 81% yield. Conversion of 6 to the chloride followed by treatment with sodium methoxide gave indolizidinone 9 in high yield. Bromination and conjugate reduction of 9 with L-Selectride, and trapping the intermediate enolate with N-(5-chloro-2-pyridyl)triflimide, provided bromovinyl triflate 11. Palladium-catalyzed cross-coupling of excess (3,4-dimethoxyphenyl)zinc bromide and 11 gave (-)-septicine (1). On the basis of this synthesis, (-)-1 was assigned the Rconfiguration. Reaction of 1 with vanadium(V) trifluoride oxide in TFA/CH(2)Cl(2) effected oxidative coupling to give a 68% yield of (-)-tylophorine (2).

  14. Asymmetric synthesis of a potent, aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV inhibitor.

    Science.gov (United States)

    Xu, Feng; Corley, Edward; Zacuto, Michael; Conlon, David A; Pipik, Brenda; Humphrey, Guy; Murry, Jerry; Tschaen, David

    2010-03-05

    A practical asymmetric synthesis of a novel aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV (DPP-4) inhibitor 1 has been developed. Application of a unique three-component cascade coupling with chiral nitro diester 7, which is easily accessed via a highly enantioselective Michael addition of dimethyl malonate to a nitrostyrene, allows for the assembly of the functionalized piperidinone skeleton in one pot. Through a base-catalyzed, dynamic crystallization-driven process, the cis-piperidionone 16a is epimerized to the desired trans isomer 16b, which is directly crystallized from the crude reaction stream in high yield and purity. Isomerization of the allylamide 16b in the presence of RhCl(3) is achieved without any epimerization of the acid/base labile stereogenic center adjacent to the nitro group on the piperidinone ring, while the undesired enamine intermediate is consumed to <0.5% by utilizing a trace amount of HCl generated from RhCl(3). The amino lactam 4, obtained through hydrogenation and hydrolysis, is isolated as its crystalline pTSA salt from the reaction solution directly, as such intramolecular transamidation has been dramatically suppressed via kinetic control. Finally, a Cu(I) catalyzed coupling-cyclization allows for the formation of the tricyclic structure of the potent DPP-4 inhibitor 1. The synthesis, which is suitable for large scale preparation, is accomplished in 23% overall yield.

  15. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeje; Kim, Jongrak; Shin, Dongsul [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); Kim, Hosung; Lee, Kyungjun [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jonghyun; Yoo, Dongwook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea)

    2010-08-15

    A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter. (author)

  16. ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2014-01-01

    and its child nodes must be executed sequentially, and (2) heaps, even d-heaps (d-ary heaps or d-way heaps), cannot supply enough wide data parallelism to these processors. Recent research proposed more versatile asymmetric multicore processors (AMPs) that consist of two types of cores (latency......-oriented cores with high single-thread performance and throughput-oriented cores with wide vector processing capability), unified memory address space and faster synchronization mechanism among cores with different ISAs. To leverage the AMPs for the heap data structure, in this paper we propose ad......-heap, an efficient heap data structure that introduces an implicit bridge structure and properly apportions workloads to the two types of cores. We implement a batch k-selection algorithm and conduct experiments on simulated AMP environments composed of real CPUs and GPUs. In our experiments on two representative...

  17. Concise methods for the synthesis of chiral polyoxazolines and their application in asymmetric hydrosilylation

    Directory of Open Access Journals (Sweden)

    Wei Jie Li

    2010-03-01

    Full Text Available Seven polyoxazoline ligands were synthesized in high yield in a one-pot reaction by heating polycarboxylic acids or their esters and chiral β-amino alcohols under reflux with concomitant removal of water or the alcohol produced in the reaction. The method is much simpler and more efficient in comparison to those methods reported in the literature.The compounds were used as chiral ligands in the rhodium-catalyzed asymmetric hydrosilylation of aromatic ketones, and the effects of the linkers and the substituents present on the oxazoline rings on the yield and enantioselectivity investigated. Compound 2 was identified as the best ligand of this family for the hydrosilylation of aromatic ketones.

  18. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  19. Enantioselective synthesis of chiral 3-aryl-1-indanones through rhodium-catalyzed asymmetric intramolecular 1,4-addition.

    Science.gov (United States)

    Yu, Yue-Na; Xu, Ming-Hua

    2013-03-15

    Enantioselective synthesis of potentially useful chiral 3-aryl-1-indanones was achieved through a rhodium-catalyzed asymmetric intramolecular 1,4-addition of pinacolborane chalcone derivatives using extraordinary simple MonoPhos as chiral ligand under relatively mild conditions. This novel protocol offers an easy access to a wide variety of enantioenriched 3-aryl-1-indanone derivatives in high yields (up to 95%) with excellent enantioselectivities (up to 95% ee).

  20. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.; Krout, Michael R.; Jensen, Thomas; Bennett, Nathan B.; Harned, Andrew M.; Stoltz, Brian M.

    2011-01-01

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  1. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  2. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  3. Biocatalytic Asymmetric Synthesis of (1R, 2S)-N-Boc-vinyl-ACCA Ethyl Ester with a Newly Isolated Sphingomonas aquatilis.

    Science.gov (United States)

    Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun

    2018-02-01

    1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.

  4. An Efficient, Green Chemical Synthesis of the Malaria Drug ...

    African Journals Online (AJOL)

    Purpose: To provide a robust, efficient synthesis of the malaria drug piperaquine for potential use in resource-poor settings. Methods: We used in-process analytical technologies (IPAT; HPLC) and a program of experiments to develop a synthesis of piperaquine that avoids the presence of a toxic impurity in the API and is ...

  5. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil

    2011-01-01

    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  6. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  7. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    Science.gov (United States)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  8. Asymmetric Synthesis of Potential Precursors of the HIV Drug MC1220 and Its Analogues by Hydrogenation of (1-Arylvinyl)pyrimidines

    DEFF Research Database (Denmark)

    Loksha, Yasser M.; Pedersen, Erik B.

    2018-01-01

    Because MC1220 is a promising microbicide with anti-HIV-1 activity, the possibility for asymmetric synthesis of its potential precursors is explored. Here, we investigate asymmetric reduction of the vinyl double bond of 6-(1-arylvinyl)pyrimidine derivatives to their corresponding ethylidene analo...... analogues. Catalysts with ligands bearing trivalent phosphorus ligating the soft metals rhodium(I), ruthenium(II), or iridium(I) are used for asymmetric reduction of the vinyl derivatives 5a-e. The enantioselective reduction reaches 92% ee and about 71% conversion for reduction of the 6...

  9. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.

    Science.gov (United States)

    Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong

    2013-08-28

    This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.

  10. Efficient synthesis of phosphonodepsipeptides derived from norleucine

    Czech Academy of Sciences Publication Activity Database

    Pícha, Jan; Buděšínský, Miloš; Hančlová, Ivona; Šanda, Miloslav; Fiedler, Pavel; Vaněk, Václav; Jiráček, Jiří

    2009-01-01

    Roč. 65, č. 31 (2009), s. 6090-6103 ISSN 0040-4020 R&D Projects: GA ČR GA203/06/1405; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z40550506 Keywords : phosphonate * pseudopeptide * inhibitor * synthesis * norleucine Subject RIV: CC - Organic Chemistry Impact factor: 3.219, year: 2009

  11. An Efficient Catalyst for the Synthesis of Schiff Bases

    International Nuclear Information System (INIS)

    Fareed, G.; Afza, N.; Kalhoro, M.A.

    2013-01-01

    An efficient high yielding synthesis of Schiff bases (1-17) is derived from condensation of 2-fluorenamine and 4-amino phenol with a variety of aldehydes catalyzed by dodecatungstosilicic acid P/sub 2/O/sub 5/ under solvent free conditions at room temperature. The catayst is found to be more efficient in terms of ease of reaction workup and high yields. This methodology contributes to an energy efficient, facile and environamental friendly synthesis for the preparation of Schiff bases. The structures of afforded Schiff bases were characterized by spectroscopic data and elemental analysis. (author)

  12. Mg2FeH6 Synthesis Efficiency Map

    Directory of Open Access Journals (Sweden)

    Katarzyna Witek

    2018-02-01

    Full Text Available The influences of the processing parameters on the Mg2FeH6 synthesis yield were studied. Mixtures of magnesium hydride (MgH2 and iron (Fe were mechanically milled in a planetary ball mill under argon for 0.5-, 1-, 2- and 3-h periods and subsequently sintered at temperatures from 300–500 ∘ C under hydrogen. The reaction yield, phase content and hydrogen storage properties of the received materials were investigated. The morphologies of the powders after synthesis were studied by SEM. The synthesis effectiveness map was presented. The obtained results prove that synthesis parameters, such as the milling time and synthesis temperature, greatly influence the reaction yield and material properties and show that extended mechanical milling may not be beneficial to the reaction efficiency.

  13. Synthesis of sheath voltage drops in asymmetric radio-frequency discharges

    International Nuclear Information System (INIS)

    Yonemura, Shigeru; Nanbu, Kenichi; Iwata, Naoaki

    2004-01-01

    A sheath voltage drop in asymmetric discharges is one of the most important parameters of radio-frequency capacitively coupled plasmas because it determines the kinetic energy of the ions incident on the target or substrate. In this study, we developed a numerical simulation code to estimate the sheath voltage drops and, consequently, the self-bias voltage. We roughly approximated general asymmetric rf discharges to one-dimensional spherical ones. The results obtained by using our simulation code are consistent with measurements and Lieberman's theory

  14. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    Science.gov (United States)

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids

    DEFF Research Database (Denmark)

    Vogt, Henning; Brase, S.

    2007-01-01

    The class of alpha,alpha-disubstituted alpha-amino acids has gained considerable attention in the past decades and continues doing so. The ongoing interest in biological and chemical properties of the substance class has inspired the development of many new methodologies for their asymmetric...

  16. Intensification of the Use of Ionic Liquids as Efficient Reaction Co-Solvents in Asymmetric Hydrogenations

    Czech Academy of Sciences Publication Activity Database

    Černá, I.; Klusoň, Petr; Bendová, Magdalena; Floriš, Tomáš; Pelantová, Helena; Pekárek, T.

    2011-01-01

    Roč. 50, č. 3 (2011), s. 264-272 ISSN 0255-2701 R&D Projects: GA AV ČR KAN400720701; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : Ionic liquids * asymmetric hydrogenations * BmimPF6 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.924, year: 2011

  17. Efficient computation of discounted asymmetric information zero-sum stochastic games

    KAUST Repository

    Li, Lichun; Shamma, Jeff S.

    2015-01-01

    In asymmetric information zero-sum games, one player has superior information about the game over the other. Asymmetric information games are particularly relevant for security problems, e.g., where an attacker knows its own skill set or alternatively a system administrator knows the state of its resources. In such settings, the informed player is faced with the tradeoff of exploiting its superior information at the cost of revealing its superior information. This tradeoff is typically addressed through randomization, in an effort to keep the uninformed player informationally off balance. A lingering issue is the explicit computation of such strategies. This paper, building on prior work for repeated games, presents an LP formulation to compute suboptimal strategies for the informed player in discounted asymmetric information stochastic games in which state transitions are not affected by the uninformed player. Furthermore, the paper presents bounds between the security level guaranteed by the sub-optimal strategy and the optimal value. The results are illustrated on a stochastic intrusion detection problem.

  18. Efficient computation of discounted asymmetric information zero-sum stochastic games

    KAUST Repository

    Li, Lichun

    2015-12-15

    In asymmetric information zero-sum games, one player has superior information about the game over the other. Asymmetric information games are particularly relevant for security problems, e.g., where an attacker knows its own skill set or alternatively a system administrator knows the state of its resources. In such settings, the informed player is faced with the tradeoff of exploiting its superior information at the cost of revealing its superior information. This tradeoff is typically addressed through randomization, in an effort to keep the uninformed player informationally off balance. A lingering issue is the explicit computation of such strategies. This paper, building on prior work for repeated games, presents an LP formulation to compute suboptimal strategies for the informed player in discounted asymmetric information stochastic games in which state transitions are not affected by the uninformed player. Furthermore, the paper presents bounds between the security level guaranteed by the sub-optimal strategy and the optimal value. The results are illustrated on a stochastic intrusion detection problem.

  19. Alum an Efficient Catalyst for Erlenmeyer Synthesis

    African Journals Online (AJOL)

    NICO

    this paper we describe the use of alum as a catalyst in the. Erlenmeyer reaction, under solvent-free condition using ultra- sonic irradiation. The application of solvent-free reaction conditions in organic chemistry has been explored extensively within the last decade. It was shown to be an efficient technique for various organic.

  20. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  1. Analysis and synthesis of Cohen-Grossberg networks with asymmetric connections

    Science.gov (United States)

    Zheng, Pengsheng; Zhang, Jianxiong; Tang, Wansheng

    2011-09-01

    In this paper, the dynamic behaviours of the asymmetric Cohen-Grossberg neural networks are studied, and some sufficient conditions for the local and global stability of the networks are proposed. Based on the stability results and recently developed system designing method, the networks are constructed for storing and retrieving binary and non-binary patterns, and the network performances are analysed by numerical simulations. It is shown that the designed networks can act as information retrieval systems.

  2. Synthesis of Main-Chain Chiral Quaternary Ammonium Polymers for Asymmetric Catalysis Using Quaternization Polymerization

    Directory of Open Access Journals (Sweden)

    Md. Masud Parvez

    2012-06-01

    Full Text Available Main-chain chiral quaternary ammonium polymers were successfully synthesized by the quaternization polymerization of cinchonidine dimer with dihalides. The polymerization occurred smoothly under optimized conditions to give novel type of main-chain chiral quaternary ammonium polymers. The catalytic activity of the polymeric chiral organocatalysts was investigated on the asymmetric benzylation of N-(diphenylmethylideneglycine tert-butyl ester.

  3. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure; Besnard, Cé line; Kü ndig, E. Peter

    2014-01-01

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  4. Palladium-catalyzed asymmetric alkylation in the synthesis of cyclopentanoid and cycloheptanoid core structures bearing all-carbon quaternary stereocenters

    KAUST Repository

    Hong, Allen Y.

    2011-12-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.

  5. Efficient synthesis of benzothiazine and acrylamide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ana Maria Alves; Walfrido, Simone Torres Padua; Leite, Lucia Fernanda Costa; Lima, Maria Carmo Alves; Galdino, Suely Lins; Pitta, Ivan Rocha [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos; Barbosa Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Simone, Carlos Alberto de; Ellena, Javier Alcides, E-mail: irpitta@gmail.co [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2010-07-01

    This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazine-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazine-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazine-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4] -thiazine-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl) -3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide. (author)

  6. Efficient synthesis of benzothiazine and acrylamide compounds

    International Nuclear Information System (INIS)

    Souza, Ana Maria Alves; Walfrido, Simone Torres Padua; Leite, Lucia Fernanda Costa; Lima, Maria Carmo Alves; Galdino, Suely Lins; Pitta, Ivan Rocha; Simone, Carlos Alberto de; Ellena, Javier Alcides

    2010-01-01

    This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazine-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazine-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazine-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4] -thiazine-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl) -3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide. (author)

  7. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  8. An Efficient Synthesis of Enantiopure (R-heteroarylpyrimidine Analogs

    Directory of Open Access Journals (Sweden)

    Guo-Ming Zhao

    2013-09-01

    Full Text Available An efficient synthesis of enantiopure (R-heteroarylpyrimidine analogs is described here, which involves introduction of a chiral group, formation and separation of diasteroisomers and final transformation of an amide to an ester. The absolute configuration of the enantiopure HAPs is confirmed by X-ray analysis of their intermediates.

  9. Efficient Synthesis of 1-Sulfonyl-1,2,3-triazoles

    Science.gov (United States)

    Raushel, Jessica; Fokin, Valery V.

    2010-01-01

    An efficient room temperature method for the synthesis of 1-sulfonyl-1,2,3-triazoles from in situ generated copper(I) acetylides and sulfonyl azides is described. Copper(I) thiophene-2-carboxylate (CuTC) catalyst produces the title compounds under both non-basic anhydrous and aqueous conditions in good yields. PMID:20931987

  10. Novel efficient process for methanol synthesis by CO2 hydrogenation

    NARCIS (Netherlands)

    Kiss, Anton Alexandru; Pragt, J.J.; Vos, H.J.; Bargeman, Gerrald; de Groot, M.T.

    2016-01-01

    Methanol is an alternative fuel that offers a convenient solution for efficient energy storage. Complementary to carbon capture activities, significant effort is devoted to the development of technologies for methanol synthesis by hydrogenation of carbon dioxide. While CO2 is available from plenty

  11. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2012-09-01

    Full Text Available Abstract Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R-4-(trimethylsilyl-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone. The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da η ∅ Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to

  12. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Ren, Xiaochuan; Guo, Chunli; Xu, Liqiang; Li, Taotao; Hou, Lifeng; Wei, Yinghui

    2015-09-16

    Three-dimensional (3D) hierarchical nanostructures have been demonstrated as one of the most ideal electrode materials in energy storage systems due to the synergistic combination of the advantages of both nanostructures and microstructures. In this study, the honeycomb-like mesoporous NiO microspheres as promising cathode materials for supercapacitors have been achieved using a hydrothermal reaction, followed by an annealing process. The electrochemical tests demonstrate the highest specific capacitance of 1250 F g(-1) at 1 A g(-1). Even at 5 A g(-1), a specific capacitance of 945 F g(-1) with 88.4% retention after 3500 cycles was obtained. In addition, the 3D porous graphene (reduced graphene oxide, rGO) has been prepared as an anode material for supercapacitors, which displays a good capacitance performance of 302 F g(-1) at 1 A g(-1). An asymmetric supercapacitor has been successfully fabricated based on the honeycomb-like NiO and rGO. The asymmetric supercapacitor achieves a remarkable performance with a specific capacitance of 74.4 F g(-1), an energy density of 23.25 Wh kg(-1), and a power density of 9.3 kW kg(-1), which is able to light up a light-emitting diode.

  13. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling.

    Science.gov (United States)

    Chen, Xiao-Hong; Wang, Xiao-Ting; Lou, Wen-Yong; Li, Ying; Wu, Hong; Zong, Min-Hua; Smith, Thomas J; Chen, Xin-De

    2012-09-04

    The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4'-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4'-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in

  14. Asymmetric underlap optimization of sub-10nm finfets for realizing energy-efficient logic and robust memories

    Science.gov (United States)

    Akkala, Arun Goud

    Leakage currents in CMOS transistors have risen dramatically with technology scaling leading to significant increase in standby power consumption. Among the various transistor candidates, the excellent short channel immunity of Silicon double gate FinFETs have made them the best contender for successful scaling to sub-10nm nodes. For sub-10nm FinFETs, new quantum mechanical leakage mechanisms such as direct source to drain tunneling (DSDT) of charge carriers through channel potential energy barrier arising due to proximity of source/drain regions coupled with the high transport direction electric field is expected to dominate overall leakage. To counter the effects of DSDT and worsening short channel effects and to maintain Ion/ Ioff, performance and power consumption at reasonable values, device optimization techniques are necessary for deeply scaled transistors. In this work, source/drain underlapping of FinFETs has been explored using quantum mechanical device simulations as a potentially promising method to lower DSDT while maintaining the Ion/ Ioff ratio at acceptable levels. By adopting a device/circuit/system level co-design approach, it is shown that asymmetric underlapping, where the drain side underlap is longer than the source side underlap, results in optimal energy efficiency for logic circuits in near-threshold as well as standard, super-threshold operating regimes. In addition, read/write conflict in 6T SRAMs and the degradation in cell noise margins due to the low supply voltage can be mitigated by using optimized asymmetric underlapped n-FinFETs for the access transistor, thereby leading to robust cache memories. When gate-workfunction tuning is possible, using asymmetric underlapped n-FinFETs for both access and pull-down devices in an SRAM bit cell can lead to high-speed and low-leakage caches. Further, it is shown that threshold voltage degradation in the presence of Hot Carrier Injection (HCI) is less severe in asymmetric underlap n-FinFETs. A

  15. A First Synthesis and Physical Properties of Asymmetric Anthracenes-Thiophenes Bridged with Ethylene

    International Nuclear Information System (INIS)

    Hwang, Min Ji; Park, Ji Hee; Jeong, Eun Bin

    2012-01-01

    Here we report our recent result of a new semiconductor material, which has an asymmetric structure. The synthesized molecules consist of anthracene and thiophene connected by bridged ethylene and substituted with hexyl or dodecyl groups as pendants. The semiconductors were synthesized using a McMurry coupling reaction between anthracene-2-carbaldehyde and corresponding 5-hexyl(or dodecyl)thiophene-2-carbaldehyde. A first investigation of synthesized asymmetry AVHT (9a) and AVDT (9b) for the physical properties showed that they have high oxidation potential and thermal stability. The devices prepared by using AVHT (9a) and AVDT (9b) showed the mobility of 2.6 Χ 10 -2 cm 2 /Vs and 4.4 Χ 10 -3 cm 2 /Vs, respectively, in solution processed OTFTs

  16. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  17. Asymmetric total synthesis of 6-Tuliposide B and its biological activities against tulip pathogenic fungi.

    Science.gov (United States)

    Shigetomi, Kengo; Omoto, Shoko; Kato, Yasuo; Ubukata, Makoto

    2011-01-01

    The structure-activity relationship was investigated to evaluate the antifungal activities of tuliposides and tulipalins against tulip pathogenic fungi. 6-Tuliposide B was effectively synthesized via the asymmetric Baylis-Hillman reaction. Tuliposides and tulipalins showed antifungal activities against most of the strains tested at high concentrations (2.5 mM), while Botrytis tulipae was resistant to tuliposides. Tulipalin formation was involved in the antifungal activity, tulipalin A showed higher inhibitory activity than 6-tuliposide B and tulipalin B. Both the tuliposides and tulipalins showed pigment-inducing activity against Gibberella zeae and inhibitory activity against Fusarium oxysporum f. sp tulipae. These activities were induced at a much lower concentration (0.05 mM) than the antifungal MIC values.

  18. Asymmetric total synthesis of a putative sex pheromone component from the parasitoid wasp Trichogramma turkestanica

    NARCIS (Netherlands)

    Geerdink, Danny; Buter, Jeffrey; van Beek, Teris A.; Minnaard, Adriaan J.

    2014-01-01

    Virgin females of the parasitoid wasp Trichogramma turkestanica produce minute amounts of a sex pheromone, the identity of which has not been fully established. The enantioselective synthesis of a putative component of this pheromone, (6S,8S,10S)-4,6,8,10-tetramethyltrideca-2E,4E-dien-1-ol (2), is

  19. Iridium-Catalyzed Asymmetric Intramolecular Allylic Amidation : Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Fañanás-Mastral, Martín; Feringa, Bernard

    2011-01-01

    For the first time iridium catalysis has been used for the synthesis of chiral tetrahydroisoquinolines with excellent yields and high enantioselectivities (see scheme; cod=1,5-cyclooctadiene, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene). These products are important chiral building blocks for the

  20. Chemoenzymatic synthesis of chiral 2,2'-bipyridine ligands and their N-oxide derivatives: applications in the asymmetric aminolysis of epoxides and asymmetric allylation of aldehydes.

    Science.gov (United States)

    Boyd, D R; Sharma, N D; Sbircea, L; Murphy, D; Malone, J F; James, S L; Allen, C C R; Hamilton, J T G

    2010-03-07

    A series of enantiopure 2,2'-bipyridines have been synthesised from the corresponding cis-dihydrodiol metabolites of 2-chloroquinolines. Several of the resulting hydroxylated 2,2'-bipyridines were found to be useful chiral ligands for the asymmetric aminolysis of meso-epoxides leading to the formation of enantioenriched amino alcohols (-->84% ee). N-oxide and N,N'-dioxide derivatives of these 2,2'-bipyridines, including separable atropisomers, have been synthesised and used as enantioselective organocatalysts in the asymmetric allylation of aldehydes to give allylic alcohols (-->86% ee).

  1. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    International Nuclear Information System (INIS)

    Bang, Do; Awano, Hiroyuki

    2015-01-01

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching

  2. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Do, E-mail: bang@spin.mp.es.osaka-u.ac.jp [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan); Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Awano, Hiroyuki [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan)

    2015-05-07

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching.

  3. Asymmetric Strecker Synthesis of α-Amino Acids via a Crystallization-Induced Asymmetric Transformation Using (R)-Phenylglycine Amide as Chiral Auxiliary

    NARCIS (Netherlands)

    Boesten, Wilhelmus H.J.; Seerden, Jean-Paul G.; Lange, Ben de; Dielemans, Hubertus J.A.; Elsenberg, Henk L.M.; Kaptein, Bernard; Moody, Harold M.; Kellogg, Richard M.; Broxterman, Quirinus B.

    2001-01-01

    Diastereoselective Strecker reactions based on (R)-phenylglycine amide as chiral auxiliary are reported. The Strecker reaction is accompanied by an in situ crystallization-induced asymmetric transformation, whereby one diastereomer selectively precipitates and can be isolated in 76-93% yield and dr

  4. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    Science.gov (United States)

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2017-04-06

    We report a versatile route for the preparation of metal phosphides using PH plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into NiP not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg at a power density of 1301 W kg, along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.

  6. Synthesis, characterization and theoretical study of a new asymmetrical tripodal amine containing morpholine moiety

    Directory of Open Access Journals (Sweden)

    Majid Rezaeivala

    2016-11-01

    Full Text Available A new asymmetrical tripodal amine, [H3L2]Br3 containing morpholine moiety was prepared from reacting of one equivalent of N-(3-aminopropylmorpholine and two equivalents of tosylaziridine, followed by detosylation with HBr/CH3COOH. The products were characterized by various spectroscopic methods such as FAB-MS, elemental analysis, 1H and 13C NMR spectroscopy. The crystal structure of the hydrobromide salt of the latter amine, [H3L2]Br3, was also determined. For triprotonated form of the ligand L2 we can consider several microspecies and/or conformers. A theoretical study at B3LYP/6-31G∗∗ level of theory showed that the characterized microspecies is the most stable microspecies for the triprotonated form of the ligand. It was shown that the experimental NMR data for [H3L2]Br3 in solution have good correlation with the corresponding calculated data for the most stable microspecies of [H3L2]3+ in the gas phase.

  7. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  8. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  9. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones

    2011-11-01

    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  10. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  11. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    Science.gov (United States)

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  12. Synthesis and physical properties of asymmetrical quaterthiophene derivatives as organic thin-film transistor materials

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Baji; Noh, Young Ri; Choi, Ho June; Yoon, Soon Byung; Lee, Sang Gyeong [Research Institute of Natura l Science, Gyeongsang National University, Jinju (Korea, Republic of); Yun, Myoung Hee; Kim, Jin Young [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-04-15

    We report here, synthesis, physical, thermal, and optoelectronic properties of compounds containing anthracene, anthraquinone, and 11,11,12,12-tetracyano-9,10-anthraquinodimethane units connected to quaterthiophene units. Three compounds, TQAO (6), TQAN (7), and TQAM (8) are synthesized by using Stille coupling, reduction, and Knoevenagel condensation reactions. These compounds were thermally stable and exhibited organic thin-film transistor (OTFT) properties. Among them, TQAM (8)-based OTFT has shown ambipolar mobility, both hole and electron mobility of 2.0 × 10{sup −6} and 2.43 × 10{sup −7} cm{sup 2}/Vs, respectively. TQAO (6) and TQAN (7) has shown low electron mobility of 5.58 × 10{sup −6} and 1.22 × 10{sup −5} cm{sup 2}/Vs, respectively.

  13. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  14. Asymmetric synthesis of L-[3-11C]phenylalanine using chiral hydrogenation catalysts

    International Nuclear Information System (INIS)

    Halldin, C.; Langstroem, B.

    1984-01-01

    The seven-step synthesis of L-[3- 11 C]phenylalanine using chiral diphosphines as ligands in rhodium catalysts is reported. [ 11 C]Benzaldehyde, prepared in a three-step reaction from [ 11 C]carbon dioxide, as reported elsewhere, was reacted with 2-phenyl-5-oxazolone or 2-(4-chloro)phenyl-5-oxazolone in the presence of the tertiary amine diazabicyclooctane (DABCO). The resultant [α- 11 C]-4-arylene-2-atyl-5-oxazolones were hydrogenated after ring opening, using the chiral rhodium complex of (R)-1,2-bis(diphenylphosphino)propane [(R)-PROPHOS] or (+)-2,3-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane [(+)-DIOP]. After removal of the amino protecting group, the labelled amino acid was obtained on purification by preparative LC in 10-15% radiochemical yield, and radiochemical purity higher than 95% from [ 11 C]carbon dioxide within 60 min. The optical purity of the products determined by the tRNA method and capillary GC, was 80 and 60% e.e., respectively (i.e. L/D=90/10 and 80/20). (author)

  15. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    International Nuclear Information System (INIS)

    Gavrilov, Konstantin N; Bondarev, Oleg G; Polosukhin, Aleksei I

    2004-01-01

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  16. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of energy-efficient FSMs implemented in PLD circuits

    Science.gov (United States)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  18. Catalogue of Energy Efficiency Measures for France - Synthesis report

    International Nuclear Information System (INIS)

    2013-10-01

    ADEME wished to learn about existing effective energy efficiency measures implemented outside of France, whether cross-sectoral or targeted at a specific sector (industry, transport, buildings or agriculture). The objective of this survey was to determine whether any of these measures could be applied in France, with the goal of holding down the growth of energy consumption. This survey has led to the writing of a catalog of 53 two-page fact sheets describing the measures identified as interesting for France. These measures were analysed via classic criteria of evaluation such as cost-efficiency or impact, allowing to highlight the most successful measures for the French territory. ADEME presents you a synthesis of this survey in this document

  19. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  20. Energy-Efficient Data Collection Method for Sensor Networks by Integrating Asymmetric Communication and Wake-Up Radio

    Directory of Open Access Journals (Sweden)

    Masanari Iwata

    2018-04-01

    Full Text Available In large-scale wireless sensor networks (WSNs, nodes close to sink nodes consume energy more quickly than other nodes due to packet forwarding. A mobile sink is a good solution to this issue, although it causes two new problems to nodes: (i overhead of updating routing information; and (ii increased operating time due to aperiodic query. To solve these problems, this paper proposes an energy-efficient data collection method, Sink-based Centralized transmission Scheduling (SC-Sched, by integrating asymmetric communication and wake-up radio. Specifically, each node is equipped with a low-power wake-up receiver. The sink node determines transmission scheduling, and transmits a wake-up message using a large transmission power, directly activating a pair of nodes simultaneously which will communicate with a normal transmission power. This paper further investigates how to deal with frame loss caused by fading and how to mitigate the impact of the wake-up latency of communication modules. Simulation evaluations confirm that using multiple channels effectively reduces data collection time and SC-Sched works well with a mobile sink. Compared with the conventional duty-cycling method, SC-Sched greatly reduces total energy consumption and improves the network lifetime by 7.47 times in a WSN with 4 data collection points and 300 sensor nodes.

  1. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.

    Science.gov (United States)

    Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua

    2012-07-01

    The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Efficient synthesis and physicochemical characterization of natural danshensu, its S isomer and intermediates thereof

    Science.gov (United States)

    Sidoryk, Katarzyna; Filip, Katarzyna; Cmoch, Piotr; Łaszcz, Marta; Cybulski, Marcin

    2018-02-01

    The synthesis and molecular structure details of R- 3,4-dihydroxyphenyl lactic acid (danshensu) and related compounds, i.e. S isomer and the key intermediates have been described. Danshensu is an important water soluble phenolic acid of Salvia miltiorrhiza herb (danshen or red sag) with numerous applications in traditional Chinese medicine (TCM). Our synthetic approach was based on the Knoevenagel condensation of the protected 3,4-dihydroxybenzaldehyd and Meldrum acid derivative, followed by asymmetric Sharples dihydroxylation, reductive mono dehydroxylation and final deprotection. All compounds were characterized by various spectroscopic techniques: 1H-, 13C- magnetic resonance (NMR); Fourier-transformed infrared (FTIR); Raman, HR mass spectroscopy. For the determination of compound optical purities original HPLC methods were developed which allowed for the efficient resolution of danshensu R and S enantiomers as well as its intermediate enantiomers, using commercially available chiral stationary phases. Furthermore, in order to better understand danshensu specificity as a potential API in drug formulation, the physicochemical properties of the compounds were studied by thermal analysis, including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

  3. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  4. Efficient synthesis of a fluorine-18 labeled biotin derivative

    International Nuclear Information System (INIS)

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-01-01

    Introduction: The natural occurring vitamin biotin, also known as vitamin H or vitamin B 7 , plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10 -15 M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [ 18 F]4 for a potential application in positron emission tomography (PET). Methods: Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [ 18 F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Results: Compound [ 18 F]4 was obtained from precursor compound 3 with an average specific activity of 16 GBq/μmol within 45 min and a radiochemical yield of 45 ± 5% (decay corrected). [ 18 F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [ 18 F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. Conclusion: An efficient synthesis for [ 18 F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [ 18 F]4.

  5. An efficient synthesis of D-galactose-based multivalent neoglycoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, S.F. de; Souza Filho, J.D. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Alves, Ricardo J., E-mail: ricardodylan@farmacia.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia; Figueiredo, Rute C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2012-11-15

    In this work, the synthesis of dimeric, trimeric and tetrameric D-galactose-based neoglycoconjugates is reported. The monosaccharide ligand was prepared in 5 straightforward steps from D-galactose using the Doebner modification of the Knoevenagel reaction for chain elongation. The ligand was coupled to 1,4-butanediamine, tris-(2-ethylamino)amine, pentaerythrityltetramine and PAMAM dendrimers (1,4-butanodiamine core G0 and 1,12-dodecanediamine core G0). The unprotected glycodendrimers were purified by size-exclusion chromatography (SEC). This was the only step in which a chromatographic method was employed throughout the synthetic route. This is a new and efficient strategy for the preparation of neoglycoconjugates. (author)

  6. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  7. A Novel Strategy Towards the Asymmetric Synthesis of Orthogonally Funtionalised 2-N-Benzyl-N-α-methylbenzylamino- 5-carboxymethyl-cyclopentane-1-carboxylic acid.

    Directory of Open Access Journals (Sweden)

    Julio G. Urones

    2004-04-01

    Full Text Available The asymmetric synthesis of the orthogonally funtionalised compounds tert-butyl 2-N-benzyl-N-α-methylbenzylamino-5-methoxycarbonylmethylcyclopentane- 1-carboxylate and methyl 2-N-benzyl-N-α-methylbenzylamino-5–carboxymethylcyclo- pentane-1-carboxylate by a domino reaction of tert-butyl methyl (E,E-octa-2,6- diendioate with lithium N-α-methylbenzyl-N-benzylamide initiated by a Michael addition, subsequent 5-exo-trig intramolecular cyclisation and posterior selective hydrolysis with trifluoroacetic acid is reported.

  8. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    Science.gov (United States)

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  9. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties

    OpenAIRE

    Petrov, P. (Petar); Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S. (Spiro); Irache, J.M. (Juan Manuel); Müller, A.H.E. (Axel H.E.)

    2013-01-01

    The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...

  10. Fourier synthesis of asymmetrical optical potentials for atoms; Fourier-Synthese von asymmetrischen optischen Potentialen fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Ritt, G.

    2007-07-13

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  11. Highly selective sulfur ylide mediated asymmetric epoxidations and aziridinations using an inexpensive chiral sulfide and applications to the synthesis of quinine and quinidine (abstract)

    International Nuclear Information System (INIS)

    Arshad, M.; Illa, O.; Mcgarrigle, E.M.

    2011-01-01

    Asymmetric sulfur ylide mediated epoxidation, which is considered a complimentary method to asymmetric epoxidation of alkene has been utilized as a key step in the asymmetric total synthesis of complex cinchona alkaloids quinine and quinidine. Isothiocineole 1, which was readily available in one step from very inexpensive starting materials, is employed as a chiral sulfide to prepare the desired sulfonium salt 2. The semi-stabilised ylide derived from this salt on epoxidation with meroquinene aldehyde 3, afforded the required epoxide 4 in 81% yield and 89:11 diastereoselectivity (trans/cis). The epoxide was converted to the target quinine 5 in 73% yield over four steps in one pot. Similarly, the opposite enantiomer of isothiocineole was used to synthesise the corresponding sulfonium salt, which on reaction with meroquinene aldehyde gave epoxide in 73% yield and 84:16 diastereoselectivity (trans/cis). This epoxide was transformed to the target quinidine in 78% yield over four steps in one pot. The epoxidation reactions proceeded under reagent control with high trans selectivity. The effect of sulfide and ylide substituents on the stereochemical outcome of the epoxidation reaction is also prescribed. (author)

  12. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    Science.gov (United States)

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Efficient synthesis of a fluorine-18 labeled biotin derivative.

    Science.gov (United States)

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-11-01

    The natural occurring vitamin biotin, also known as vitamin H or vitamin B(7), plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10(-15)M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [(18)F]4 for a potential application in positron emission tomography (PET). Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [(18)F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Compound [(18)F]4 was obtained from precursor compound 3 with an average specific activity of 16GBq/μmol within 45min and a radiochemical yield of 45±5% (decay corrected). [(18)F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [(18)F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. An efficient synthesis for [(18)F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [(18)F]4. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing

    DEFF Research Database (Denmark)

    Liu, Yilan; Chen, Jinjin; Thygesen, Anders

    2018-01-01

    Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric...... intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products...

  15. Total Synthesis of (R, R, R)-gamma-Tocopherol through Cu-Catalyzed Asymmetric 1,2-Addition

    NARCIS (Netherlands)

    Wu, Zhongtao; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2014-01-01

    Based on the asymmetric copper-catalyzed 1,2-addition of Grignard reagents to ketones, (R,R,R)--tocopherol has been synthesized in 36% yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73% ee by the 1,2-addition of a phytol-derived Grignard

  16. An efficient one-pot synthesis of carbazole fused benzoquinolines ...

    Indian Academy of Sciences (India)

    KRIPALAYA RATHEESH ARYA

    2018-03-28

    org/ 10.1007/ ..... 1(a-d). 2. 3(a-d). 120°C. 1,3 a: R1 = R2 = R3 = H b: R1 = CH3, R2 = R3 = H c: R1 = R2 = H ..... moted green Friedländer synthesis: a versatile new malic ... and Curini M 2011 An alternative quinoline synthesis by.

  17. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Compounds and Propargylated Amines.

    Science.gov (United States)

    Poh, Jian-Siang; Makai, Szabolcs; von Keutz, Timo; Tran, Duc N; Battilocchio, Claudio; Pasau, Patrick; Ley, Steven V

    2017-02-06

    We report herein the asymmetric coupling of flow-generated unstabilized diazo compounds and propargylated amine derivatives, using a new pyridinebis(imidazoline) ligand, a copper catalyst and base. The reaction proceeds rapidly, generating chiral allenes in 10-20 minutes with high enantioselectivity (89-98 % de/ee), moderate yields and a wide functional group tolerance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  19. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  20. Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes

    Directory of Open Access Journals (Sweden)

    Weiping He

    2016-09-01

    Full Text Available A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities.

  1. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-04-21

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.

  2. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  3. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    Science.gov (United States)

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  4. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    and KANIKA VIJ. Department of Chemistry, University of Delhi, Delhi 110 007, India ... Keywords. PVP-stabilized Ni nanoparticles; ethylene glycol; tetraketones; biscoumarins; ... ing interest in using nickel nanoparticles in organic synthesis ...

  5. Simple, Efficient and Green Synthesis of Oximes under Ultrasound ...

    African Journals Online (AJOL)

    NICO

    Faculty of Chemistry, Bu-Ali Sina University, Hamadan 65174, Iran. ... The condensation of aldehydes and ketones with hydroxylamine hydrochloride gives oximes in 81–95 ... Oximes are important in organic synthesis not only for protec-.

  6. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  7. An efficient domino one-pot synthesis of novel spirofuran ...

    Indian Academy of Sciences (India)

    AFSHIN YAZDANI-ELAH-ABADI

    Abstract. A simple and convenient multi-component domino reaction has been described for the synthesis of novel ... interest due to their pharmaceutical and biological activ- ..... We gratefully acknowledge financial support from the Research.

  8. On synthesis and optimization of steam system networks. 1. Sustained boiler efficiency

    CSIR Research Space (South Africa)

    Majozi, T

    2010-08-01

    Full Text Available situations. This paper presents a process integration technique for network synthesis using conceptual and mathematical analysis without compromising boiler efficiency. It was found that the steam flow rate to the HEN could be reduced while maintaining boiler...

  9. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo; Zhang, Wen; Lee, Richmond; Han, Zhiqiang; Yang, Wenguo; Tan, Davin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3

  10. One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-03-01

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs.Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the

  11. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations.

    Science.gov (United States)

    Amokrane, S; Ayadim, A; Malherbe, J G

    2005-11-01

    A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.

  12. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    Science.gov (United States)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  13. An Efficient, Green Chemical Synthesis of the Malaria Drug ...

    African Journals Online (AJOL)

    Results : A green-chemical synthesis of piperaquine is described that proceeds in 92 – 93 % overall yield. ... Keywords: ACTs, Dihydroartemisinin Piperaquine, Dihydroartemisinin, Green Chemistry, Malaria, ..... Mathers CD, Ezzati M, Lopez AD. ... Medicines Programme [Homepage on the Internet]. Geneva ... An Alternative.

  14. Highly Efficient Method for Solvent-Free Synthesis of Diarylmethane ...

    African Journals Online (AJOL)

    NICO

    2011-02-25

    Feb 25, 2011 ... aFaculty of Chemistry, Bu-Ali Sina University, P.O. Box 651783868, Hamedan, Iran. ... Arylmethanes are useful compounds in organic synthesis and industry1 ... ketones,9,10 catalytic condensation of the Grignard reagent with.

  15. Effective and efficient FPGA synthesis through general functional decomposition

    NARCIS (Netherlands)

    Jozwiak, L.; Slusarczyk, A.S.; Chojnacki, A.

    2003-01-01

    In this paper, a new information-driven circuit synthesis method is discussed that targets LUT-based FPGAs and FPGA-based reconfigurable system-on-a-chip platforms. The method is based on the bottom–up general functional decomposition and theory of information relationship measures that we

  16. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    Science.gov (United States)

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  17. Acylation, Diastereoselective Alkylation, and Cleavage of an Oxazolidinone Chiral Auxiliary: A Multistep Asymmetric Synthesis Experiment for Advanced Undergraduates

    Science.gov (United States)

    Smith, Thomas E.; Richardson, David P.; Truran, George A.; Belecki, Katherine; Onishi, Megumi

    2008-01-01

    An introduction to the concepts and experimental techniques of diastereoselective synthesis using a chiral auxiliary is described. The 4-benzyl-2-oxazolidinone chiral auxiliary developed by Evans is acylated with propionic anhydride under mild conditions using DMAP as an acyl transfer catalyst. Deprotonation with NaN(TMS)[subscript 2] at -78…

  18. Asymmetric noncovalent synthesis of self-assembled one-dimensional stacks by a chiral supramolecular auxiliary approach

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Averbeke, Van B.; Beljonne, D.; Lazzaroni, R.; Schenning, A.P.H.J.; Meijer, E.W.

    2012-01-01

    Stereoselective noncovalent synthesis of one-dimensional helical self-assembled stacks of achiral oligo(p-phenylenevinylene) ureidotriazine (AOPV3) monomers is obtained by a chiral supramolecular auxiliary approach. The racemic mixture of helical stacks of achiral AOPV3 molecules is converted into

  19. Efficient Extracellular Expression of Metalloprotease for Z-Aspartame Synthesis.

    Science.gov (United States)

    Zhu, Fucheng; Liu, Feng; Wu, Bin; He, Bingfang

    2016-12-28

    Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.

  20. Copper(I)-Catalyzed Asymmetric Desymmetrization through Inverse-Electron-Demand aza-Diels-Alder Reaction: Efficient Access to Tetrahydropyridazines Bearing a Unique α-Chiral Silane Moiety.

    Science.gov (United States)

    Wei, Liang; Zhou, Yu; Song, Zhi-Min; Tao, Hai-Yan; Lin, Zhenyang; Wang, Chun-Jiang

    2017-04-11

    An unprecedented copper(I)-catalyzed asymmetric desymmetrization of 5-silylcyclopentadienes with in situ formed azoalkene was realized through an inverse-electron-demand aza-Diels-Alder reaction (IEDDA) pathway, in which 5-silylcyclopentadienes served as efficient enophiles. This new protocol provides a facile access to the biologically important heterocyclic tetrahydropyridazines containing a unique α-chiral silane motif and three adjoining stereogenic centers in generally good yield (up to 92 %) with exclusive regioselectivity, high diastereoselectivity (>20:1 diastereomeric ratio), and excellent enantioselectivity (up to 98 % enantiomeric excess). DFT calculations and control experiments further confirmed the proposed reaction mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. When Al-Doped Cobalt Sulfide Nanosheets Meet Nickel Nanotube Arrays: A Highly Efficient and Stable Cathode for Asymmetric Supercapacitors.

    Science.gov (United States)

    Huang, Jun; Wei, Junchao; Xiao, Yingbo; Xu, Yazhou; Xiao, Yujuan; Wang, Ying; Tan, Licheng; Yuan, Kai; Chen, Yiwang

    2018-03-27

    Although cobalt sulfide is a promising electrode material for supercapacitors, its wide application is limited by relative poor electrochemical performance, low electrical conductivity, and inefficient nanostructure. Here, we demonstrated that the electrochemical activity of cobalt sulfide could be significantly improved by Al doping. We designed and fabricated hierarchical core-branch Al-doped cobalt sulfide nanosheets anchored on Ni nanotube arrays combined with carbon cloth (denoted as CC/H-Ni@Al-Co-S) as an excellent self-standing cathode for asymmetric supercapacitors (ASCs). The combination of structural and compositional advantages endows the CC/H-Ni@Al-Co-S electrode with superior electrochemical performance with high specific capacitance (1830 F g -1 /2434 F g -1 at 5 mV s -1 /1 A g -1 ) and excellent rate capability (57.2%/72.3% retention at 1000 mV s -1 /100 A g -1 ). The corresponding all-solid-state ASCs with CC/H-Ni@Al-Co-S and multilayer graphene/CNT film as cathode and anode, respectively, achieve a high energy density up to 65.7 W h kg -1 as well as superb cycling stability (90.6% retention after 10 000 cycles). Moreover, the ASCs also exhibit good flexibility and stability under different bending conditions. This work provides a general, effective route to prepare high-performance electrode materials for flexible all-solid-state energy storage devices.

  2. Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (-)-11β-Hydroxycurvularin.

    Science.gov (United States)

    Choe, Hyeonjeong; Pham, Thuy Trang; Lee, Joo Yun; Latif, Muhammad; Park, Haeil; Kang, Young Kee; Lee, Jongkook

    2016-03-18

    The first total synthesis and structure revision of (-)-11β-hydroxycurvularin (1b), a macrolide possessing a β-hydroxyketone moiety, were accomplished. The β-hydroxyketone moiety in this natural product was introduced by cleavage of the N-O bond in an isoxazoline ring that was formed diastereoselectively in a 1,5-remote stereocontrolled fashion by employing intramolecular nitrile oxide cycloaddition.

  3. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels-Alder reaction: Total synthesis of (-)-himbacine.

    Science.gov (United States)

    Sugiyama, Koji; Kawanishi, Shinji; Oki, Yasuhiro; Kamiya, Marin; Hanada, Ryosuke; Egi, Masahiro; Akai, Shuji

    2018-04-01

    One-pot sequential reactions using the acyl moieties installed by enzymatic dynamic kinetic resolution of alcohols have been little investigated. In this work, the acryloyl moiety installed via the lipase/oxovanadium combo-catalyzed dynamic kinetic resolution of a racemic dienol [4-(cyclohex-1-en-1-yl)but-3-en-2-ol or 1-(cyclohex-1-en-1-yl)but-2-en-1-ol] with a (Z)-3-(phenylsulfonyl)acrylate underwent an intramolecular Diels-Alder reaction in a one-pot procedure to produce an optically active naphtho[2,3-c]furan-1(3H)-one derivative (98% ee). This method was successfully applied to the asymmetric total synthesis of (-)-himbacine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Stereoselectivity in ene reactions with 1O2: matrix effects in polymer supports, photo-oxygenation of organic salts and asymmetric synthesis.

    Science.gov (United States)

    Griesbeck, Axel G; Bartoschek, Anna; Neudörfl, Jörg; Miara, Claus

    2006-01-01

    The ene reaction of chiral allylic alcohols is applied as a tool for the investigation of intrapolymer effects by means of the stereoselectivity of the singlet-oxygen addition. The diastereo selectivity strongly depends on the structure of the polymer, the substrate loading degree and also on the degree of conversion demonstrating additional supramolecular effects evolving during the reaction. The efficiency and the stability of polymer-bound sensitizers were evaluated by the ene reaction of singlet oxygen with citronellol. The ene reaction with chiral ammonium salts of tiglic acid was conducted under solution phase conditions or in polystyrene beads under chiral contact ion-pair conditions. The products thus obtained precipitate during the photoreaction as ammonium salts. Moderate asymmetric induction was observed for this procedure for the first time.

  6. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    ACHUT S. MUNDE

    2010-03-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II, Mn(II and Fe(III with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV–Vis, IR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a dibasic tetadentate ligand towards the central metal ion with an ONNO donor atoms sequence. From the microanalytical data, the stoichiometry of the complexes 1:1 (metal:ligand was found. The physico-chemical data suggested square planar geometry for the Cu(II and Ni(II complexes and octahedral geometry for the Co(II, Mn(II and Fe(III complexes. The thermal behaviour (TGA/DTA of the complexes was studied and kinetic parameters were determined by Horowitz–Metzger and Coats–Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II, Mn(II and Fe(III complexes. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

  7. Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors

    Science.gov (United States)

    Hsu, Chun-Tsung; Hu, Chi-Chang

    2013-11-01

    A simple and scalable process has been developed for synthesizing spinel NiCo2O4 nanocrystals through a thermal decomposition method. The introduction of hexadecyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br) into precursor solutions significantly enhances the homogeneity and porosity of spinel NiCo2O4. The porosity and high specific surface area of NiCo2O4 preserves the brilliant pseudo-capacitive performances due to providing smooth paths for electrolyte penetration and ion diffusion into inner active sites. Morphologies and microstructures of the active materials are examined by transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of precursor solutions. The electrochemical performances of NiCo2O4 are systematically characterized by cyclic voltammetry and charge-discharge tests. Asymmetric supercapacitors are assembled with these brilliant binary oxides as the positive electrode and activated carbon as the negative electrode. The highly porous NiCo2O4 exhibits superior capacitive performances, i.e., high specific capacitance (764 F g-1 at 2 mV s-1) and long cycle life.

  8. Asymmetric Synthesis and Antimicrobial Activity of Some New Mono and Bicyclic β-Lactams

    Directory of Open Access Journals (Sweden)

    A. Taslimi

    2004-11-01

    Full Text Available Reaction of the amino acid D-phenylalanine ethyl ester (4 with cinnamaldehyde gave chiral Schiff base 5, which underwent an asymmetric Staudinger [2+2] cycloaddition reaction with phthalimidoacetyl chloride to give the monocyclic β-lactam 6 as a single stereoisomer. Ozonolysis of 6 followed by reduction with lithium aluminum tri(tert-butoxy hydride afforded the hydroxymethyl β-lactam 8. Treatment of 8 with methansulfonyl chloride gave the mesylated monocyclic β-lactam 9, which was converted to the bicyclic β-lactam 10 upon treatment with 1,8-diazabicyclo[5,4.0] undec- 7-ene (DBU. Deprotection of the phthalimido group in β-lactams 6 and 10 by methylhydrazine and subsequent acylation of the free amino β-lactams with different acyl chlorides in the presence of pyridine afforded mono and bicyclic β-lactams 14a-d and 15a-d respectively. The compounds prepared were tested against Escherichia coli, Staphilococcus citrus, Klebsiella pneumanie and Bacillus subtillis. Some of these compounds showed potential antimicrobial activities.

  9. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui; Moreno Chaparro, Nicolas; Calo, Victor M.; Cheng, Hong; Hong, Pei-Ying; Sougrat, Rachid; Behzad, Ali Reza; Tayouo Djinsu, Russell; Nunes, Suzana Pereira

    2016-01-01

    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  10. 1: Mass asymmetric fission barriers for 98Mo; 2: Synthesis and characterization of actinide-specific chelating

    International Nuclear Information System (INIS)

    Veeck, A.C.; Lawrence Livermore National Lab., CA; Lawrence Berkeley National Lab., CA

    1996-08-01

    Excitation functions have been measured for complex fragment emission from the compound nucleus 98 Mo, produced by the reaction of 86 Kr with 12 C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are ∼ 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from 90 Mo and 94 Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs

  11. Facile synthesis of Co(OH)2/Al(OH)3 nanosheets with improved electrochemical properties for asymmetric supercapacitor

    Science.gov (United States)

    Zhao, Cuimei; Ren, Fang; Cao, Yang; Xue, Xiangxin; Duan, Xiaoyue; Wang, Hairui; Chang, Limin

    2018-01-01

    Sheet-like Co(OH)2/Al(OH)3 or Co(OH)2 nanomaterial has been synthesized on conducting carbon fiber paper (CFP) by a facile one-step electrochemical deposition. The binder-free Co(OH)2/Al(OH)3/CFP displays an improved electrical conductivity, electrochemical activity and material utilization than solitary Co(OH)2, therefore Co(OH)2/Al(OH)3 nanomaterial exhibits improved electrochemical properties (a maximum capacitance of 1006 Fg-1 at 2 Ag-1, with 77% retention even at a high current density of 32 Ag-1, and more than 87% of the capacitance retention after 10000 cycles at 32 Ag-1) in comparison to that of the Co(OH)2/CFP (709 Fg-1, 65%, 79%). In addition, an asymmetric supercapacitor (ASC) fabricated with Co(OH)2/Al(OH)3/CFP positive electrode and AC/CFP negative electrode demonstrates ultrahigh specific capacitance (75.8 Fg-1) and potential window (1.7 V). These encouraging results make these low-cost and eco-friendly materials promising for high-performance energy storage application.

  12. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui

    2016-03-24

    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  13. Asymmetric Synthesis and Evaluation of Danshensu-Cysteine Conjugates as Novel Potential Anti-Apoptotic Drug Candidates

    Science.gov (United States)

    Pan, Li-Long; Wang, Jie; Jia, Yao-Ling; Zheng, Hong-Ming; Wang, Yang; Zhu, Yi-Zhun

    2014-01-01

    We have previously reported that the danshensu-cysteine conjugate N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl) propanamide (DSC) is a potent anti-oxidative and anti-apoptotic agent. Herein, we further design and asymmetrically synthesize two diastereoisomers of DSC and explore their potential bioactivities. Our results show that DSC and its two diastereoisomers exert similar protective effects in hydrogen peroxide (H2O2)-induced cellular injury in SH-SY5Y cells, as evidenced by the increase of cell viability, superoxide dismutase (SOD), and reduced glutathione (GSH) activity, and glutathione peroxidase (GPx) expression, and the decrease of cellular morphological changes and nuclear condensation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) production. In H2O2-stimulated human umbilical vein endothelial cells (HUVEC), DSC concentration-dependently attenuates H2O2-induced cell death, LDH release, mitochondrial membrane potential collapse, and modulates the expression of apoptosis-related proteins (Bcl-2, Bax, caspase-3, and caspase-9). Our results provide strong evidence that DSC and its two diastereoisomers have similar anti-oxidative activity and that DSC exerts significant vascular-protective effects, at least in part, through inhibition of apoptosis and modulation of endogenous antioxidant enzymes. PMID:25551606

  14. 1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Veeck, A.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Livermore National Lab., CA (United States). Glenn T. Seaborg Inst. for Transactinium Science]|[Lawrence Berkeley National Lab., CA (United States). Nuclear Science Div.

    1996-08-01

    Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.

  15. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.

    Science.gov (United States)

    Kawashima, Aki; Shu, Shuangjie; Takeda, Ryosuke; Kawamura, Akie; Sato, Tatsunori; Moriwaki, Hiroki; Wang, Jiang; Izawa, Kunisuke; Aceña, José Luis; Soloshonok, Vadim A; Liu, Hong

    2016-04-01

    Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.

  16. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo

    2013-05-03

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3-hydroxy-2-oxindole derivatives (e.g., CPC-1). Computational studies indicated that the observed stereoselectivity is a result of favorable secondary π-π* and H-bonding interactions in the transition state. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ozone Synthesis Efficiency Upgrading in the Pulsed Point-to-Plane Gas Discharge

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Polyakov, A.V.; Pugach, S.G.

    2006-01-01

    Results are reported from the studies into electrodynamic characteristics of the barrierless point-to-plane gas discharge as a HV pulse of positive polarity is applied to the point electrode. The efficiency of ozone synthesis has been determined as a function of the length and repetition frequency of the HV pulse. It has been demonstrated that the electrodynamic characteristics of the discharge and the efficiency of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of HV power supply. The HV switch HTS-300 (BEHLKE Electronic GmbH) was used for HV pulse shaping

  18. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Li Fan, E-mail: lfan@ncu.edu.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Xiaofeng [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-08-15

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: > ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. > ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. > Thermal stability of these films is improved compared with those of physically blending ones.

  19. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  20. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    International Nuclear Information System (INIS)

    Zhang Lin; Li Fan; Chen Yiwang; Wang Xiaofeng

    2011-01-01

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: → ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. → ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. → Thermal stability of these films is improved compared with those of physically blending ones.

  1. Efficient Enzymatic Routes for the Synthesis of New Eight-membered Cyclic β-Amino Acid and β-Lactam Enantiomers

    Directory of Open Access Journals (Sweden)

    Enikő Forró

    2017-12-01

    Full Text Available Efficient enzymatic resolutions are reported for the preparation of new eight-membered ring-fused enantiomeric β-amino acids [(1R,2S-9 and (1S,2R-9] and β-lactams [(1S,8R-3, (1R,8S-3 (1S,8R-4 and (1R,8S-7], through asymmetric acylation of (±-4 (E > 100 or enantioselective hydrolysis (E > 200 of the corresponding inactivated (±-3 or activated (±-4 β-lactams, catalyzed by PSIM or CAL-B in an organic solvent. CAL-B-catalyzed ring cleavage of (±-6 (E > 200 resulted in the unreacted (1S,8R-6, potential intermediate for the synthesis of enantiomeric anatoxin-a. The best strategies, in view of E, reaction rate and product yields, which underline the importance of substrate engineering, are highlighted.

  2. Synthesis and characterization of hierarchical Bi2MoO6/Polyaniline nanocomposite for all-solid-state asymmetric supercapacitor

    International Nuclear Information System (INIS)

    Wu, Fangsheng; Wang, Xiaohong; Zheng, Wanru; Gao, Haiwen; Hao, Chen; Ge, Cunwang

    2017-01-01

    Bi 2 MoO 6 /Polyaniline (PANI) hybrid nanocomposite with enhanced specific capacity and rate performance was synthesized by compositing Bi 2 MoO 6 with the PANI layer using sodium lignosulphonate (SLS) as a dopant through a simple chemical polymerization. The Bi 2 MoO 6 /PANI (BMP) nanocomposite affords a large reaction surface area, an excellent structural stability, a large number of active sites, good strain accommodation, and fast electron and ion transportation compared with pure Bi 2 MoO 6 , which all are beneficial for improving the electrochemical performance. Hence, the Bi 2 MoO 6 /PANI electrode with 0.15 g Bi 2 MoO 6 (BMP-2) shows a high specific capacitance of 826 F g −1 at a current density of 1 A g −1 and capacitance retention of 75.5% after 3000 cycles at a current density of 5 A g −1 , which is higher than pristine Bi 2 MoO 6 and other electrodes. In addition, an all-solid-state asymmetric supercapacitor (ASC) fabricated by the BMP-2 electrode and activated carbon (AC) displays a high specific capacitance of 90.0 F g −1 and a high energy density of 31.9 Wh kg −1 . Moreover, the BMP-2//AC ASC device exhibits high cycle stability, and 86.5% of its initial capacitance is retained after continuous 6000 cycles. Therefore, these results will promote a promising potential application of the Bi 2 MoO 6 /PANI nanocomposite for use as an effective electrode material in supercapacitors.

  3. catalysed indolylation and pyrrolylation of isatins: Efficient synthesis ...

    Indian Academy of Sciences (India)

    Abstract. An efficient and cheap synthetic approach to 3,3-di(indolyl)oxindoles and 3,3-di(pyrrolyl) oxindoles has been developed via Zn(OTf)2 catalysed indolylation and pyrrolylation of isatins. A preliminary biochemical assay of the synthesized molecules in rodent models were performed to estimate the serum glutamate ...

  4. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  5. Novel and Efficient Synthesis of the Promising Drug Candidate Discodermolide

    Science.gov (United States)

    2010-02-01

    of its production may require its wide use as a livestock antibiotic , a market that seems to have disappeared. Therefore, as a purely practical...building block 9. Thus, chiral syn, anti stereotriad building blocks, useful for the preparation of polypropionate antibiotics , may be efficiently accessed... antibiotics that are used in human and veterinary medicine. In this paper, we illustrate the potential of a deconstruction-reconstruction strategy for the

  6. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Directory of Open Access Journals (Sweden)

    Longbao Zhu

    Full Text Available An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA. The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99% in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  7. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Science.gov (United States)

    Zhu, Longbao; Zhou, Li; Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin

    2014-01-01

    An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  8. Sulfated polyborate: A mild, efficient catalyst for synthesis of N-tert ...

    Indian Academy of Sciences (India)

    Rapid, efficient and inexpensive method for synthesis of N-tert-butyl/N-trityl protected amides via Ritter reaction of nitriles with tertiary alcohols in the presence of a sulfated polyborate catalyst under solvent-free conditions is described. The catalyst has the advantage of Lewis as well as Bronsted acidity and recyclability ...

  9. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1

    Indian Academy of Sciences (India)

    Abstract. An efficient green chemistry method has been developed for the synthesis of 1-amidoalkyl-2-naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst.

  10. Tannic acid Catalyzed an Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole

    Directory of Open Access Journals (Sweden)

    Shitole Nana Vikram

    2013-05-01

    Full Text Available Tannic acid (C76H52O46 has been found to be an efficient catalyst for one-pot synthesis of 2,4,5-triaryl substituted imidazoles by the reaction of an arylaldehyde, benzyl/benzoin and an ammonium acetate. The short reaction time and excellent yields making this protocol practical and economically attractive.

  11. Simple and efficient Knoevenagel synthesis of (E)-2-((1H-indol-3-yl ...

    Indian Academy of Sciences (India)

    Simple and efficient Knoevenagel synthesis of (E)-2-((1H-indol-3-yl) ... there has been a growing interest in Knoevenagel prod- ucts because many of them have ..... providing financial support and to the authorities of. Jawaharlal Nehru ...

  12. An Efficient Green Synthesis of 3-Amino-1 H -chromenes Catalyzed ...

    African Journals Online (AJOL)

    An Efficient Green Synthesis of 3-Amino-1 H -chromenes Catalyzed by ZnO Nanoparticles Thin-film. ... South African Journal of Chemistry ... The mild reaction conditions, reusability of the catalyst, easy work-up and high yields of products make the present protocol sustainable and advantageous compared to conventional ...

  13. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary.

    Science.gov (United States)

    Yao, Qi-Jun; Zhang, Shuo; Zhan, Bei-Bei; Shi, Bing-Feng

    2017-06-01

    Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C-H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Asymmetric learning by doing and dynamically efficient policy: implications for domestic and international emissions permit trading of allocating permits usefully

    International Nuclear Information System (INIS)

    Read, Peter

    2000-01-01

    Learning by doing leads to cost reductions as suppliers move down the 'experience curve'. This results in a beneficial supply side inter-temporal externality that, for dynamic efficiency, requires a higher incentive for abatement innovations than the penalty on emissions. This effect can be achieved by a dedicated emissions tax or by a proportionate abatement obligation or by allocating permits usefully. The latter arrangement is compatible with the effective cap on emissions that is secured by an emissions trading scheme. Each of the three possibilities results in a reduced loss of international competitivity in policy-committed regions, in less 'leakage, and in more technology transfer. Implications for trading in emissions permits and in project-related credits are discussed. (Author)

  15. Asymmetric Ugi 3CR on isatin-derived ketimine: synthesis of chiral 3,3-disubstituted 3-aminooxindole derivatives

    Directory of Open Access Journals (Sweden)

    Giordano Lesma

    2014-06-01

    Full Text Available An efficient Ugi three-component reaction of a preformed chiral ketimine derived from isatin with various isonitrile and acid components has been developed. The reactions proceeded smoothly and in a stereocontrolled manner with regard to the new center of the Ugi products due to the stereoinduction of the amine chiral residue. A wide variety of novel chiral 3,3-disubstituted 3-aminooxindoles were obtained, a selection of which were subjected to post-Ugi transformations, paving the way to application as peptidomimetics.

  16. Asymmetric information and economics

    Science.gov (United States)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  17. Simple and Efficient Procedure for Synthesis of N'-Arylamidines Using Trimethylaluminum

    International Nuclear Information System (INIS)

    Korbad, Balaji L.; Lee, Sanghyeup

    2013-01-01

    In conclusion, we have developed simple and efficient procedure for the synthesis of N'-arylamidines using tri-methylaluminum, nitriles and aryl amines under mild condition. Aliphatic, aromatic nitriles were reacted well with a variety of aromatic amine to afford corresponding amidines in good to high yields. Amidines are an important class of compounds that have wide range of application in the fields of catalyst design, material science, medicinal chemistry and also shown the promising anti-inflammatory and analgesic activity. They are valuable synthons for synthesis of various heterocyclic compounds. In addition, recent studies have demonstrated their capacity to fix carbon dioxide

  18. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Directory of Open Access Journals (Sweden)

    Xuezheng Liang

    2010-08-01

    Full Text Available The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols and β-keto esters make this novel carbon based acid one of the best choices for the reaction.

  19. An efficient synthesis and spectroscopic characterization of Schiff bases containing 9,10-anthracenedione moiety

    Directory of Open Access Journals (Sweden)

    Fareed Ghulam

    2013-01-01

    Full Text Available A new method has been developed for the synthesis of novel Schiff bases containg anthraquinone moiety using dodeca-Tungstosilicic acid/P2O5 under solvent free conditions at room temperature. The reaction was completed in 1-3 minutes with excellent yields. This method was found to be more efficient, easy and hazardous free for the synthesis of azomethines. The development of these type of methadologies in synthetic chemistry may contribute to green chemistry. The structures of synthesized novel Schiff bases was elucidated using 1H-NMR, 13C-NMR, LCMS, FTIR and CHN analysis.

  20. Stereoselective synthesis of hydroxy stilbenoids and styrenes by atom-efficient olefination with thiophthalides.

    Science.gov (United States)

    Mitra, Prithiba; Shome, Brateen; De, Saroj Ranjan; Sarkar, Anindya; Mal, Dipakranjan

    2012-04-14

    The synthesis of stilbenoids and styryl carboxylic acids is accomplished with high E-stereoselectivity by olefination of aldehydes with thiophthalides under basic conditions. The olefination is highly atom-efficient as it only loses elemental sulfur during the reaction. This olefination, in conjunction with retro Kolbe-Schmitt reaction, allows facile synthesis of E-hydroxystilbenoids with minimal employment of protecting groups. This study also discloses two important findings: formation of i) 4-methylsulfanyl isocoumarins and ii) an 2-arylindenone. This journal is © The Royal Society of Chemistry 2012

  1. Efficient Synthesis and Bioactivity of Novel Triazole Derivatives.

    Science.gov (United States)

    Hu, Boyang; Zhao, Hanqing; Chen, Zili; Xu, Chen; Zhao, Jianzhuang; Zhao, Wenting

    2018-03-21

    Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS) inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS), ¹H-NMR and 13 C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian , Sclerotinia sclerotiorum (Lib.) de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk.) Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS). These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR) were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.

  2. Efficient Synthesis and Bioactivity of Novel Triazole Derivatives

    Directory of Open Access Journals (Sweden)

    Boyang Hu

    2018-03-01

    Full Text Available Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS, 1H-NMR and 13C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian, Sclerotinia sclerotiorum (Lib. de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk. Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS. These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.

  3. One-pot synthesis of 2H-pyrans by indium(III) chloride-catalyzed reactions. efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones

    International Nuclear Information System (INIS)

    Lee, Yong Rok; Kim, Do Hoon; Shim, Jae Jin; Kim, Seog K.; Park, Jung Hag; Cha, Jin Soon; Lee, Chong Soon

    2002-01-01

    An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of α.β-unsaturated aldehydes in moderates yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenaleneones, and pyranoquinolinone alkaloids

  4. One-pot synthesis of 2H-pyrans by indium(III) chloride-catalyzed reactions. efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Rok; Kim, Do Hoon; Shim, Jae Jin; Kim, Seog K.; Park, Jung Hag; Cha, Jin Soon; Lee, Chong Soon [Yeungnam Univ., Kyongsan (Korea, Republic of)

    2002-08-01

    An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of {alpha}.{beta}-unsaturated aldehydes in moderates yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenaleneones, and pyranoquinolinone alkaloids.

  5. Flexible Asymmetric Solid-State Supercapacitors by Highly Efficient 3D Nanostructured α-MnO2 and h-CuS Electrodes.

    Science.gov (United States)

    Patil, Amar M; Lokhande, Abhishek C; Shinde, Pragati A; Lokhande, Chandrakant D

    2018-05-16

    A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO 2 ) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO 2 /flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO 4 /h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO 4 gel electrolyte. Highly active surface areas of α-MnO 2 (75 m 2 g -1 ) and h-CuS (83 m 2 g -1 ) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g -1 at 5 mV s -1 , energy density of 18.9 Wh kg -1 , and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.

  6. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  7. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    Science.gov (United States)

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthesis of Symmetrical and Asymmetrical Azines Encompassing Naphtho[2,1-b]furan by a Novel Approach

    Directory of Open Access Journals (Sweden)

    K. Veena

    2011-01-01

    Full Text Available The starting material 3-nitro-2-acetylnaphtho[2,1-b]furan (2 was obtained by nitration of 2-acetylnaphtho[2,1-b] furan (1, under mild condition. The compound 1 was synthesized by the reaction of 2-hydroxy-1-naphthaldehyde with chloroacetone, where in both condensation and cyclization took place in single step. The reaction of 3-nitro-2-acetylnaphtho[2,1-b]furan (2 with hydrazine hydrate produced corresponding hydrazone (3 in excellent yield, which on treatment with various aromatic aldehydes under different reaction conditions resulted in the formation of symmetrical azines (4a-e and unsymmetrical azines (5a-e. All the newly synthesized compounds have been characterized by analytical and spectral studies and were screened for antibacterial antibacterial activity against Bacillus subtilus and Alcaligenes fecalies and antifungal activity against Aspergillus nidulans, Aspergillus parasiticus and Aspergillus terrus. The Second Harmonic Generation (SHG efficiency of some of the synthesized compounds was measured by powder technique using Nd:YAG laser.

  9. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  10. Synthesis of (R-Dihydropyridones as Key Intermediates for an Efficient Access to Piperidine Alkaloids

    Directory of Open Access Journals (Sweden)

    Serkos A Haroutounian

    2007-04-01

    Full Text Available The efficient transformation of D-glucal to (2R-hydroxymethyldihydro-pyridinone 5 in seven steps and 35 % overall yield is reported. Dihydropyridone 5 constitutes a versatile chiral building block for the synthesis of various piperidine alkaloids. In this regard, 5 was converted to piperidinol 13 and piperidinone 15, that may be further elaborated for the syntheses of (+-desoxoprosophylline (1 and deoxymannojirimycin (3 or D-mannolactam (4, respectively.

  11. An Efficient Method for the N-Bromosuccinimide Catalyzed Synthesis of Indolyl-Nitroalkanes

    Directory of Open Access Journals (Sweden)

    Ching-Fa Yao

    2009-10-01

    Full Text Available An efficient and practical method for the synthesis of indolyl-nitroalkane derivatives catalyzed by N-bromosuccinimide is described. The generality of this method was demonstrated by synthesizing an array of diverse 3-substituted indole derivatives by the reaction of different β-nitrostyrenes with various substituted indoles. Simple reaction conditions accompanied by good yields of indolyl-nitroalkanes are the merits of this methodology.

  12. Applications of organocatalytic asymmetric synthesis to drug prototypes--dual action and selective inhibitors of n-nitric oxide synthase with activity against the 5-HT1D/1B subreceptors.

    Science.gov (United States)

    Hanessian, Stephen; Stoffman, Eli; Mi, Xueling; Renton, Paul

    2011-03-04

    The scope of MacMillan's organocatalytic asymmetric conjugate addition reaction of indoles and electron-rich aromatics to α,β-unsaturated aldehydes has been extended to the use of 3-amino crotonaldehydes as substrates. The aromatics used include indoles as well as an aniline and a furan. The scope and effect of the groups on nitrogen (R, R') has also been studied. The method has been applied to the concise synthesis of an advanced precursor to S-(+)-1, a drug prototype for the treatment of migraine headaches.

  13. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gómez-Suárez, Adrián

    2014-08-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  14. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gó mez-Suá rez, Adriá n; Gasperini, Danila; Vummaleti, Sai V. C.; Poater, Albert; Cavallo, Luigi; Nolan, Steven P.

    2014-01-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  15. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  16. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei; Tang, Yurong; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields

  17. Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer.

    Science.gov (United States)

    Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar

    2015-10-21

    Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.

  18. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  19. An Efficient Synthesis of 1-Alkyl-2-phenyl-4-quinolones from 2-Halobenzoic Acids

    International Nuclear Information System (INIS)

    Song, Yoon Ju; Choi, Jin Sun; Lee, Jae In

    2013-01-01

    The present method offers an efficient synthesis of 1-alkyl-2-phenyl-4-quinolones from 2-haloben-zoic acids. It has the advantages with respect to (i) synthesis of 2 equiv of alkynones 5 from 1 equiv of 4,6-pyrimidyl di(2-halobenzoates) 3, (ii) synthesis of versatile 1-alkyl-2-phenyl-4-quinolones in high overall yields, and (iii) use of readily available and cheap starting materials. Therefore, this method could be utilized as a practical synthesis of 1-alkyl-2-phenyl-4-quinolones. Several methods have been developed to synthesize 1-alkyl-2-phenyl-4-quinolones from 2'-substituted acetophenones, anilines, and 2-halobenzoyl chlorides as starting materials. The reaction of N-methylisatoic anhydride with the lithium enolate of an 4'-methoxyacetophenone afforded the 1-methyl-2-phenyl-4-quinolone in a short sequence, but the yield was low. N-(2-Acetylphenyl)benzamides, prepared by Friedel-Crafts acylation of N-phenyl benzamides with acetyl chloride or benzoylation of 2'-aminoacetophenones with benzoyl chlorides,8 were cyclized with potassium t-butoxide to yield 2-aryl-4-quinolones, which were further alkylated with alkyl iodides to give 1-alkyl-2-aryl-4-quinolones

  20. An Efficient Synthesis of 1-Alkyl-2-phenyl-4-quinolones from 2-Halobenzoic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yoon Ju; Choi, Jin Sun; Lee, Jae In [Duksung Women' s Univ., Seoul (Korea, Republic of)

    2013-10-15

    The present method offers an efficient synthesis of 1-alkyl-2-phenyl-4-quinolones from 2-haloben-zoic acids. It has the advantages with respect to (i) synthesis of 2 equiv of alkynones 5 from 1 equiv of 4,6-pyrimidyl di(2-halobenzoates) 3, (ii) synthesis of versatile 1-alkyl-2-phenyl-4-quinolones in high overall yields, and (iii) use of readily available and cheap starting materials. Therefore, this method could be utilized as a practical synthesis of 1-alkyl-2-phenyl-4-quinolones. Several methods have been developed to synthesize 1-alkyl-2-phenyl-4-quinolones from 2'-substituted acetophenones, anilines, and 2-halobenzoyl chlorides as starting materials. The reaction of N-methylisatoic anhydride with the lithium enolate of an 4'-methoxyacetophenone afforded the 1-methyl-2-phenyl-4-quinolone in a short sequence, but the yield was low. N-(2-Acetylphenyl)benzamides, prepared by Friedel-Crafts acylation of N-phenyl benzamides with acetyl chloride or benzoylation of 2'-aminoacetophenones with benzoyl chlorides,8 were cyclized with potassium t-butoxide to yield 2-aryl-4-quinolones, which were further alkylated with alkyl iodides to give 1-alkyl-2-aryl-4-quinolones.

  1. Highly Efficient Catalytic Synthesis of α-Amino Acids under Phase-Transfer Conditions with a Novel Catalyst/Substrate Pair

    NARCIS (Netherlands)

    Belokon, Yuri N.; Kochetkov, Konstantin A.; Churkina, Tatiana D.; Ikonnikov, Nikolai S.; Larionov, Oleg V.; Harutyunyan, Syuzanna R.; Vyskočil, Štepán; North, Michael; Kagan, Henri B.

    2001-01-01

    A facile and fast enantioselective synthesis of α-amino acids with high ee values was achieved by the asymmetric alkylation of the glycine derivative under phase-transfer conditions with (R)- or (S)-2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN). The ee value of the catalyst can be as little as 40 %

  2. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Bisht Surendra S

    2006-12-01

    Full Text Available Abstract Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  3. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    Science.gov (United States)

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  4. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    Science.gov (United States)

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Guided synthesis of accumulative solutions for the conceptual design of an efficient stove working with biomass

    International Nuclear Information System (INIS)

    Álvarez Cabrales, Alexis; Gaskins Espinosa, Benjamín Gabriel; Pérez Rodríguez, Roberto; Simeón Monet, Rolando Esteban

    2014-01-01

    The conceptual design is closely related to a product functional structure and the search of solution principles for its definition. This work exposes an accumulative method for the traceability of the functional structure that implements the guided conceptual synthesis of solutions in the preliminary analysis of this designing process stage. The method constitutes a contribution to Pahls and Beitzs classic design model. In it, the functional information system is manipulated, providing the designer with a help so that he can examine the different solutions that are obtained, giving him the possibility of selecting the most convenient one. The guided analysis of the accumulative solutions synthesis is illustrated by means of the conceptual design of an efficient stove working with biomass. (author)

  6. Efficiency and fidelity of cell-free protein synthesis by transfer RNA from aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Foote, R.S.; Stulberg, M.P.

    1980-01-01

    Transfer RNAs (tRNAs) from heart, kidney, liver, and spleen of mature (10 to 12 months old) and aged (29 months old) C57BL/6 mice were tested for their ability to translate encephalomyocarditis viral RNA in a tRNA-dependent cell-free system derived from mouse ascites tumor cells. The rates of in vitro protein synthesis were compared as a function of tRNA concentration, and the fidelity of translation was examined by sodium dodecyl sulfate gel electrophoresis and isoelectric focusing of the viral polypeptides synthesized in vitro. No significant age-related differences in either the efficiency or fidelity of synthesis were discovered, indicating that alternations in tRNAs are probably not involved in the cellular aging of these tissues.

  7. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  8. Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong-Boo; Song, Hajun; Kim, Sung-Soo [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-06-15

    Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

  9. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes.

    Science.gov (United States)

    Kovvuri, Jeshma; Nagaraju, Burri; Kamal, Ahmed; Srivastava, Ajay K

    2016-10-10

    A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.

  10. Asymmetric Alkyl Side-Chain Engineering of Naphthalene Diimide-Based n-Type Polymers for Efficient All-Polymer Solar Cells.

    Science.gov (United States)

    Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong

    2018-02-13

    The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  12. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Science.gov (United States)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  13. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Mader, Steffen; Sako, Makoto; Sasai, Hiroaki; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  14. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak

    2016-03-08

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  15. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-01-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO 2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO 2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO 2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO 2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO 2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  16. Transition metal oxide nanopowder and ionic liquid: an efficient system for the synthesis of diorganyl selenides, selenocysteine and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Gul, Kashif; Kawasoko, Cristiane Y.; Singh, Devender; Dornelles, Luciano; Rodrigues, Oscar E.D. [Universidade Federal de Santa Maria (UFSC), RS (Brazil). Dept. de Quimica. LabSelen-NanoBio; Braga, Antonio L. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica. LabSelen

    2010-07-01

    We have developed an efficient method for the synthesis of diorganyl selenides and {beta}-seleno amines using Zn, catalytic amounts of ZnO nanopowder, as a catalyst and ionic liquid as a recyclable solvent. This ZnO/ionic liquid system shows high efficiency in catalyzing these transformations with the formation of the desired products in high yields. (author)

  17. Highly Efficient Synthesis of 2-Aryl-3-methoxyacrylates via Suzuki-Miyaura Coupling Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Ho; Lee, Chun Ho; Song, Young Seob; Park, No Kyun; Kim, Bum Tae; Heo, Jung Nyoung [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2006-02-15

    We have developed a highly efficient and convergent synthesis of 2-aryl-3-methoxyacrylates via the Suzuki-Miyaura coupling reaction of α-iodo-β-methoxy-acrylate with arylboronic acids. The biological activities of 2-aryl-3-methoxyacrylate derivatives will be reported in due course. The Suzuki-Miyaura coupling reaction provides a convenient access to the carbon-carbon bond formation with high efficiency. Recently, a number of 2-aryl-3-methoxy-acrylates served as a key scaffold for the development of biologically active pharmaceuticals and agrochemicals. Especially, the discovery of the naturally-occurring fungicides, such as strobilurin A and oudemansin A, possessing a β-methoxyacrylate moiety was immediately seized great attention by industrial research groups to open a new era of the strobilurin family including azoxy-strobin and picoxystrobin.

  18. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  19. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Novel Synthesis of (-)-10-epi-α-Cyperone

    Institute of Scientific and Technical Information of China (English)

    Li Jing FANG; Jin Chun CHEN; Guo Jun ZHENG; Yu Kun GUAN; Yu Lin LI

    2004-01-01

    An alternative route for the synthesis of (-)-10-epi-α-cyperone 1 starting from (+)- dihydrocarvone 2 is described by using an asymmetric Michael addition as a key step. The route features more efficiently and can be performed in large scale.

  1. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  2. Synthesis and Evaluation of Tetramethylguanidinium-Polyethylenimine Polymers as Efficient Gene Delivery Vectors

    Directory of Open Access Journals (Sweden)

    Manohar Mahato

    2014-01-01

    Full Text Available Previously, we demonstrated that 6-(N,N,N′,N′-tetramethylguanidinium chloride-hexanoyl-polyethylenimine (THP polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N′,N′-tetramethylguanidinium-polyethylenimine (TP1-TP5 polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU. These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240–450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4–2.3-fold outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.

  3. Synthesis and evaluation of tetramethylguanidinium-polyethylenimine polymers as efficient gene delivery vectors.

    Science.gov (United States)

    Mahato, Manohar; Yadav, Santosh; Kumar, Pradeep; Sharma, Ashwani Kumar

    2014-01-01

    Previously, we demonstrated that 6-(N,N,N',N'-tetramethylguanidinium chloride)-hexanoyl-polyethylenimine (THP) polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N',N'-tetramethylguanidinium-polyethylenimine (TP1-TP5) polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240-450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4-2.3-fold) outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.

  4. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    Science.gov (United States)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  5. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  6. A new convenient asymmetric approach to herbarumin Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li

    2007-01-01

    The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.

  7. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  8. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation.

    Science.gov (United States)

    Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti

    2016-02-21

    A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.

  9. Highly efficient isocyanate-free microwave-assisted synthesis of [6]-oligourea

    KAUST Repository

    Qaroush, Abdussalam K.

    2013-01-01

    A new eco-friendly, isocyanate-free, energy-saving method for the production of [6]-oligourea, utilizing a green carbonylating agent, viz. propylene carbonate, is reported. It comprises an organocatalyzed, microwave-assisted, solvent-free synthesis. Two modes of microwave-assisted synthesis, viz. dynamic and fixed energy modes, were applied. Upon optimization, the dynamic mode gave 79% yields of [6]-oligourea. On the other hand, almost quantitative yields were obtained using the fixed mode, within 20 min, at 10 W and with the same catalyst loading. Combination of both organocatalysis and microwave energy input appears to be a key issue for the efficiency of the reaction, with the fixed energy mode being best suited. It should be noted that all data reported are reproducible (due to the homogeneous microwave technology used by CEM Discover S-Class of microwave reactors). To the best of our knowledge, this is the best eco-friendly synthetic approach for the preparation of the title oligomers. It paves the way for using more of the biorenewable and sustainable chemicals as a feedstock for the production of polyureas. The oligomer produced was analyzed by EA, ATR-FTIR, XRD, 1H and 13CNMR. Furthermore, thermal properties of the resulting [6]-oligourea were analyzed using TGA and DSC. © The Royal Society of Chemistry 2013.

  10. An efficient synthesis of 1α,25-dihydroxyvitamin D3 LC-biotin.

    Science.gov (United States)

    Kattner, Lars; Bernardi, Dan

    2017-10-01

    In recent years the apparent impact of vitamin D deficiency on human health has gained increased awareness. Consequently, the development of appropriate assays to measure the status of medicinally most relevant vitamin D metabolites in human blood, serum or relevant tissue is continuously being improved. Particularly, assaying of 1α,25-dihydroxyvitamin D 3 , in turn considered as the most active metabolite, is mainly indicated in disorders leading to calcaemia or those resulting from an impaired 1α-hydroxylation of 25-hydroxyvitamin D 3 . Thus, in some competitive protein binding and ELISA assays, biotin-linked 1α,25-dihydroxyvitamin D 3 (1α,25-dihydroxyvitamin D 3 LC-biotin) is employed for measurement of actual calicitriol concentration. A new efficient synthesis of 1α,25-dihydroxyvitamin D 3 LC-biotin is described, starting with readily available vitamin D 2 , and combining a classical approach to access 1α,25-dihydroxyvitamin D 3 , appropriate OH-protective group transformations, and a C-3-O-alkylation, suitable to connect the biotin-linker in a reliable, selective and high yielding strategy. The developed methodology is applicable to the synthesis of a wide variety of C-3-OH-linked vitamin D 3 and D 2 derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    Science.gov (United States)

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu

    2016-04-04

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  13. Rearrangement of 5-trimethylsilylthebaine on treatment with L-selectride: an efficient synthesis of (+)-bractazonine.

    Science.gov (United States)

    Chen, Weibin; Wu, Huifang; Bernard, Denzil; Metcalf, Matthew D; Deschamps, Jeffrey R; Flippen-Anderson, Judith L; MacKerell, Alexander D; Coop, Andrew

    2003-03-07

    Treatment of 5-trimethylsilylthebaine with L-Selectride gave rise to a rearrangement to 10-trimethylsilylbractazonine through migration of the phenyl group, whereas treatment of thebaine with strong Lewis acids is known to lead to a similar rearrangement through migration of the alkyl bridge to give, after reduction, (+)-neodihydrothebaine. It is suggested that the rearrangement of the alkyl group of thebaine is favored due to the formation of a tertiary benzylic cation. However, for 5-trimethylsilylthebaine, the lithium ion of L-Selectride acts as the Lewis acid and the beta-silyl effect dominates in the stabilization of any positive charge. This rearrangement provides a clear example of the greater relative migratory aptitude of phenyl groups over alkyl groups, and provides an efficient synthesis of (+)-bractazonine from thebaine.

  14. Efficient Synthesis of Single-Chain Polymer Nanoparticles via Amide Formation

    Directory of Open Access Journals (Sweden)

    Ana Sanchez-Sanchez

    2015-01-01

    Full Text Available Single-chain technology (SCT allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful “click” chemistry driving force for SCNP construction. By employing poly(methyl methacrylate- (PMMA- based copolymers bearing β-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, dynamic light scattering (DLS, and elemental analysis (EA.

  15. Efficient Information and Data Management in Synthesis and Design of Processing Netorks

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sin, Gürkan; Gani, Rafiqul

    industrial use of EWO, therefore, methods and tools for efficient information and data management need to be developed. In this contribution, we present a systematic data architecture, which is integrated in our framework for synthesis and design of processing networks (Quaglia et al., submitted). The data...... studies. The case studies are selected from different industrial segments, such as food processing (soybean processing network), water and wastewater management (refinery wastewater treatment and reuse; municipal water treatment) and biorefinery....... a large number (typically 1000-100,000) of data (Quaglia et. al, submitted). As a result, EWO problem formulation is a time and resource intensive task. Moreover, compilation errors results in faulty problem specifications, and may compromise the quality of the obtained solution. In order to enable...

  16. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu; Bryant, Daniel; Troughton, Joel; Kirkus, Mindaugas; Neophytou, Marios; Miao, Xiaohe; Durrant, James R.; McCulloch, Iain

    2016-01-01

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  17. Asymmetric Synthesis of P-Chiral Diphosphines. Steric Effects on the Palladium-Complex-Promoted Asymmetric Diels-Alder Reaction between a Dimethylphenylphosphole and (E/Z)-Methyl-Substituted Diphenylvinylphosphines.

    Science.gov (United States)

    Aw, Beng-Hwee; Hor, T. S. Andy; Selvaratnam, S.; Mok, K. F.; White, Andrew J. P.; Williams, David J.; Rees, Nicholas H.; McFarlane, William; Leung, Pak-Hing

    1997-05-07

    The organopalladium complex containing ortho-metalated (S)-(1-(dimethylamino)ethyl)naphthalene as the chiral auxiliary has been used successfully to promote the asymmetric [4+2] Diels-Alder reactions between 1-phenyl-3,4-dimethylphosphole and the following coordinated dienophiles: (a) diphenylvinylphosphine; (b) (E)-diphenyl-1-propenylphosphine; (c) (Z)-diphenyl-1-propenylphosphine. Reaction a generates three carbon and one phosphorus stereogenic centers while reactions b and c each produce four carbon and one phosphorus chiral centers. In dichloromethane, all three reactions proceeded smoothly at room temperature giving the corresponding rigid diphosphines in high yields. Under similar reaction conditions, the reaction times observed for reactions a-c are 2, 3, and 50 h, respectively. Two-dimensional ROESY NMR studies confirmed that the prolonged reaction time required for reaction c is due to several major repulsive interactions between the chiral naphthylamine auxiliary and the (Z)-methyl-substituted vinylphosphine in the transition state. Nevertheless, all three reactions gave the corresponding rigid diphosphine in high yields. The absolute stereochemistries of the three bidentate phosphine ligands that were produced from the cycloaddition reactions have been assigned by 2D ROESY NMR spectroscopy. These diphosphines are powerful sequesterers of group 8 metals although they are highly air-sensitive in the free ligand form. The coordination chemistry and the absolute stereochemistry of the optically active complex [1alpha,4alpha,5alpha(S),6alpha(S),7R]-dichloro[5-(diphenylphosphino)-2,3,6-trimethy-7-phenyl-7-phosphabicyclo[2.2.1]-hept-2-ene-P(5)(),P(7)()]palladium(II) has been studied by single-crystal X-ray analysis. Crystal structure data: C(27)H(28)Cl(2)P(2)Pd, M(r) = 591.7; triclinic; space group P1; a = 8.643(3), b = 9.044(6), c = 9.058(4) Å; alpha = 102.75(4) degrees, beta = 108.59(2) degrees, gamma = 97.82(3) degrees; V = 638.0(5) Å(3); Z = 1; R(1) = 0.036.

  18. Polymer-Supported Cinchona Alkaloid-Derived Ammonium Salts as Recoverable Phase-Transfer Catalysts for the Asymmetric Synthesis of α-Amino Acids

    Directory of Open Access Journals (Sweden)

    Carmen Nájera

    2004-04-01

    Full Text Available Alkaloids such as cinchonidine, quinine and N-methylephedrine have been N-alkylated using polymeric benzyl halides or co-polymerized and then N-alkylated, thus affording a series of polymer-supported chiral ammonium salts which have been employed as phase-transfer catalysts in the asymmetric benzylation of an N-(diphenylmethyleneglycine ester. These new polymeric catalysts can be easily recovered by simple filtration after the reaction and reused. The best ee’s were achieved when Merrifield resin-anchored cinchonidinium ammonium salts were employed.

  19. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    Science.gov (United States)

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

  20. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    Science.gov (United States)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  1. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    Science.gov (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-04-19

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  2. Efficient synthesis and evaluation of bis-pyridinium/bis-quinolinium metallosalophens as antibiotic and antitumor candidates

    Science.gov (United States)

    Elshaarawy, Reda F. M.; Eldeen, Ibrahim M.; Hassan, Eman M.

    2017-01-01

    Inspired with the pharmacological diversity of salophens and in our endeavor to explore a new strategy which may conflict the invasion of drug resistance, we report herein efficient synthetic routes for the synthesis of new RO-salophen(Cl), pyridinium/quinolinium-based salophens (3a-e) and metallosalophens (4a-j). These new architectures have been structurally characterized by elemental and spectral analysis as well pharmacologically evaluated for their in vitro antimicrobial, against a common panel of pathogenic bacterial and fungal strains, and anticancer activities against human colon carcinoma (HCT-116) cell lines. Antimicrobial assay results revealed that all tested compounds exhibited moderate to superb broad-spectrum efficacy in comparison to the standard antibiotic with a preferential ability to perform as a fungicides than to act as bactericides. Noteworthy, VO(II)-salophens are more effective in reduction HCT-116 cell viability than Cu(II)-salophens. For example, VO(II)-salophen3 (4f) (IC50 = 2.13 μg/mL) was ca. 10-fold more efficient than Cu(II)-salophen3 (4e) (IC50 = 20.30 μg/mL).

  3. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    Science.gov (United States)

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  4. PEG-400 as an efficient and recyclable reaction medium for the synthesis of polyhydroquinolines via Hantzsch reaction

    Directory of Open Access Journals (Sweden)

    Shitole Nana Vikram

    2013-01-01

    Full Text Available Polyhydroquinoline derivatives have been prepared efficiently in a one-pot synthesis via Hantzsch condensation using PEG-400 as reaction medium. The present method does not involve any hazardous organic solvents or toxic catalysts. The present methodology offers several advantages such as simple procedure, excellent yields with shorter reaction times and purification of products by non-chromatographic methods.

  5. Fast and efficient green synthesis of thiosulfonate S-esters by microwave-supported permanganate oxidation of symmetrical disulfides

    DEFF Research Database (Denmark)

    Thi, Luu Thi Xuan; Thi Nguyen, Thao-Tran; Le, Thach Ngoc

    2015-01-01

    Potassium permanganate absorbed on copper(II) sulfate pentahydrate has been found to be an efficient, inexpensive, and green oxidation agent for the synthesis of “symmetrical” thiosulfonate S-esters by oxidation of the corresponding symmetrical disulfides. The oxidation reactions were carried out...

  6. Efficient Nazarov cyclization/Wagner-Meerwein rearrangement terminated by a Cu(II)-promoted oxidation: synthesis of 4-alkylidene cyclopentenones.

    Science.gov (United States)

    Lebœuf, David; Theiste, Eric; Gandon, Vincent; Daifuku, Stephanie L; Neidig, Michael L; Frontier, Alison J

    2013-04-08

    The discovery and elucidation of a new Nazarov cyclization/Wagner-Meerwein rearrangement/oxidation sequence is described that constitutes an efficient strategy for the synthesis of 4-alkylidene cyclopentenones. DFT computations and EPR experiments were conducted to gain further mechanistic insight into the reaction pathways. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Zirconyl (IV Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Pratapsinha B. Gorepatil

    2013-01-01

    Full Text Available The present paper introduces a simple and efficient method for the synthesis of substituted benzimidazoles by heterocyclization of different o-phenylenediamines and substituted aromatic carboxylic acid/aldehyde in the presence of zirconyl nitrate as catalyst in ethanol under reflux, which produced excellent yield of corresponding benzimidazoles in a short reaction time with reusability of catalyst.

  8. I2/K2CO3: An efficient catalyst for the synthesis of 5-aryl-2,6-dicyano ...

    Indian Academy of Sciences (India)

    Abstract. Molecular iodine in the presence of potassium carbonate has been found to be an efficient and eco- friendly catalyst for the synthesis of polysubstituted dicyanoanilines from aldehydes, acetone and malononitrile under solvent-free thermal condition. The experimental procedure is simple, includes shorter reaction ...

  9. Evaluation of an automated double-synthesis module: efficiency and reliability of subsequent radiosyntheses of FHBG and FLT

    International Nuclear Information System (INIS)

    Niedermoser, Sabrina; Pape, Manuela; Gildehaus, Franz Josef; Wängler, Carmen; Hartenbach, Markus; Schirrmacher, Ralf; Bartenstein, Peter; Wängler, Björn

    2012-01-01

    We optimized the synthesis methods for 3′-deoxy-3′-[ 18 F]fluorothymidine ([ 18 F]FLT) and 9-(4-[ 18 F]fluoro-3-[hydroxymethyl]butyl)guanine) ([ 18 F]FHBG) and automated them on an Explora General Nucleophilic double-synthesis module. Furthermore, the synthesis efficiency and reliability and the formation of cross-contaminations of the products when preparing two consecutive batches were evaluated. Whereas the preinstalled FLT synthesis conditions required substantial modification in reaction and neutralization conditions to achieve radiochemical yields of up to 60% within 70±10 min including high-performance liquid chromatography purification, the synthesis of FHBG had to be implemented to the module to obtain competitive radiochemical yields of up to 40% in an overall synthesis time of 60±10 min. The radiochemical purities obtained were ≥99% and ≥96% for the synthesis of [ 18 F]FLT and [ 18 F]FHBG, respectively. No significant changes in yield or purity could be observed between both batch productions. We found that the yields and purities also did not change when performing FLT after FHBG syntheses and vice versa. Hence, we developed a synthesis setup that offers the opportunity to perform two subsequent syntheses of either [ 18 F]FLT, [ 18 F]FHBG or [ 18 F]FLT after [ 18 F]FHBG without decrease in radiochemical yields and purities. Also, no cross-contaminations were observed, which can be attributed to the use of separate product delivery tubes, purification columns and an automated intermediate cleaning program. These results open up the possibility of producing consecutively either two equal 18 F-fluorinated tracers or two different ones in high yields on the same synthesis module.

  10. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  11. Employing a hydrazine linked asymmetric double naphthalene hybrid for efficient naked eye detection of F-: Crystal structure with real application for F-

    Science.gov (United States)

    Bhattacharyya, Arghyadeep; Makhal, Subhash Chandra; Ghosh, Soumen; Guchhait, Nikhil

    2018-06-01

    An asymmetric hydrazide, (12E, 13E)-2-((naphthalen-1-yl) methylene)-1-(1-(2-hydroxynaphthalen-6-yl) ethylidene) hydrazine (abbreviated as AH) is synthesized and characterized by standard techniques and crystal structure of AH has been obtained. The naked eye detection of F- in aqueous acetonitrile (acetonitrile: water = 7:3/v:v) by AH has been investigated by UV-Visible titration and in presence of other anions, the limit of detection being 1.31 × 10-6(M). The mechanism of F- sensing has been explored by 1H NMR titration. AH undergoes hydrogen bonding with F- followed by deprotonation. The practical utility of AH has been explored by successful test kit response and color change in toothpaste solution.

  12. A new method for the synthesis of α-aminoalkylidenebisphosphonates and their asymmetric phosphonyl-phosphinyl and phosphonyl-phosphinoyl analogues

    Directory of Open Access Journals (Sweden)

    Anna Kuźnik

    2015-08-01

    Full Text Available A convenient approach has been developed to α-aminoalkylidenebisphosphonates and their asymmetric phosphonyl-phosphinyl and phosphonyl-phosphinoyl analogues by α-phosphonylation, α-phosphinylation or α-phosphinoylation of 1-(N-acylaminoalkylphosphonates, that, in turn, are easily accessible from N-acyl-α-amino acids. Effective electrophilic activation of the α-position of 1-(N-acetylaminoalkylphosphonates was achieved by electrochemical α-methoxylation of these compounds in methanol, mediated with NaCl, followed by displacement of the methoxy group with triphenylphosphonium tetrafluoroborate to give hitherto unknown 1-(N-acetylamino-1-triphenylphosphoniumalkylphosphonate tetrafluoroborates. The latter compounds react smoothly with trialkyl phosphites, dialkyl phosphonites or alkyl phosphinites in the presence of Hünig’s base and methyltriphenylphosphonium iodide in a Michaelis–Arbuzov-like reaction to give the expected alkylidenebisphosphonates, 1-phosphinylalkylphosphonates or 1-phosphinoylalkylphosphonates, respectively, in good yields.

  13. Bicyclic Guanidine Catalyzed Asymmetric Tandem Isomerization Intramolecular-Diels-Alder Reaction: The First Catalytic Enantioselective Total Synthesis of (+)-alpha-Yohimbine.

    Science.gov (United States)

    Feng, Wei; Jiang, Danfeng; Kee, Choon-Wee; Liu, Hongjun; Tan, Choon-Hong

    2016-02-04

    Hydroisoquinoline derivatives were prepared in moderate to good enantioselectivities via a bicyclic guanidine-catalyzed tandem isomerization intramolecular-Diels-Alder (IMDA) reaction of alkynes. With this synthetic method, the first enantioselective synthesis of (+)-alpha-yohimbine was completed in 9 steps from the IMDA products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Jing; Feng, Huijie; Yang, Jiaqin; Qin, Qing; Fan, Hongmin; Wei, Caiying; Zheng, Wenjun

    2015-10-07

    It is meaningful to exploit copper sulfide materials with desired structure as well as potential application due to their cheapness and low toxicity. A low-temperature and facile solvothermal method for preparing three-dimensional (3D) hierarchical covellite (CuS) microspheres from an ionic liquid precursor [Bmim]2Cu2Cl6 (Bmim = 1-butyl-3-methylimidazolium) is reported. The formation of CuS nanostructures was achieved by decomposition of intermediate complex Cu(Tu)3Cl (thiourea = Tu), which produced CuS microspheres with diameters of 2.5-4 μm assembled by nanosheets with thicknesses of 10-15 nm. The ionic liquid, as an "all-in-one" medium, played a key role for the fabrication and self-assembly of CuS nanosheets. The alkylimidazolium rings ([Bmim](+)) were found to adsorb onto the (001) facets of CuS crystals, which inhibited the crystal growth along the [001] direction, while the alkyl chain had influence on the assembly of CuS nanosheets. The CuS microspheres showed enhanced electrochemical performance and high stability for the application in supercapacitors due to intriguing structural design and large specific surface area. When this well-defined CuS electrode was assembled into an asymmetric supercapacitor (ASC) with an activated carbon (AC) electrode, the CuS//AC-ASC demonstrated good cycle performance (∼88% capacitance after 4000 cycles) and high energy density (15.06 W h kg(-1) at a power density of 392.9 W kg(-1)). This work provides new insights into the use of copper sulfide electrode materials for asymmetric supercapacitors and other electrochemical devices.

  15. Efficient synthesis of tension modulation in strings and membranes based on energy estimation.

    Science.gov (United States)

    Avanzini, Federico; Marogna, Riccardo; Bank, Balázs

    2012-01-01

    String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity. © 2012 Acoustical Society of America.

  16. Seedless synthesis and efficient recyclable catalytic activity of Ag@Fe nanocomposites towards methyl orange

    Science.gov (United States)

    Alzahrani, Salma Ahmed; Malik, Maqsood Ahmad; Al-Thabaiti, Shaeel Ahmed; Khan, Zaheer

    2018-03-01

    This work demonstrates a competitive reduction method of synthesis of nanomaterials. In this method along cetyltrimethylammonium bromide (CTAB), the reduction of Ag+ and Fe3+ ions is achieved by ascorbic acid-to-bimetallic Ag@Fe yellow-colored nanomaterials. The shape of UV-visible spectra and wavelengths absorbed of Ag@Fe can be tuned from ca. 290-600 nm by controlling [CTAB] and [Ag+]. The apparent first-order rate constants were calculated within the approximation of 6.1 × 10-3 s-1. The as-prepared Ag@Fe NPs have been found to be very important catalyst in terms of depredate methyl orange in vicinity of sodium borohydride (NaBH4), which exhibits excellent efficiency and re-usability in the prototypical reaction. The cmc of cationic surfactant CTAB has been determined by conductivity method under different experimental conditions. In the presence of CTAB, Ag+ and Fe3+ ions reduce to Ag@Fe core/shell nanoparticles, comprehend a change in wavelength and intensity of SRP band. The apparent first-order rate constant, activation energy, and turnover frequency for the methyl orange reduction catalyzed by Ag@Fe NPs were found to be 1.6 × 10-3 s-1, 58.2 kJ mol-1, and 1.1 × 10-3 s-1, respectively.

  17. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane K.; Souza, Viviane P. de; Luz, Leonis L. da [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Menezes Vicenti, Juliano R. de [Escola de Química e Alimento, FURG, 96203-900 Rio Grande, RS (Brazil); Burrow, Robert A. [Departamento de Química, UFSM, 97105-900 Santa Maria, RS (Brazil); Severino Alves; Longo, Ricardo L. [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Malvestiti, Ivani, E-mail: ivani@ufpe.br [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil)

    2016-02-15

    The extended structures [Ln{sub 2}(L){sub 6}(OH{sub 2}){sub 4}] with L=2-(methylthio)benzoato (2-CH{sub 3}S–C{sub 6}H{sub 4}COO{sup −}) and Ln=Tb (1), Eu (2) and Gd (3) were successfully synthesized and characterized. The single crystal structure of compound 1 was determined and showed an extended structure made up of asymmetrical dinuclear units with the formula catena-poly[{Tb(H_2O)_4}-(μ-L-1κO:2κO'){sub 2}-{Tb(L-κO,O')_2}-(μ-L-1κO:2κO'){sub 2}]. In the molecule of 1, there are two distinct metal sites. The Tb atom in site 1 is bound to four coordinated water molecules and four oxygen atoms from four different benzoate ligands, two of which bridge to site 2 Tb atoms on one side and two to site 2 Tb atoms on the other side. The site 2 Tb atom is bound to four oxygen atoms from two chelating benzoate ligands and four oxygen atoms from four different benzoate ligands, two of which bridge to site 1 Tb atoms on one side and two to site 1 Tb atoms on the other side. The bridging benzoate ligands extend the framework in one-dimension with alternating site 1/site 2 Tb atoms. The luminescent properties of these asymmetric dinuclear extended structures are quite peculiar and showed a single emitting lanthanide center. The quantum yields of 1 (ca. 50–55%) is practically independent of the excitation energy, whereas those of 2 are vanishing small (<1%) when excited at the ligand states and become sizable (ca. 10–20%) upon excitation at the intra-4f manifold. To reconcile these experimental observations in conjunction with the spectral data for compounds 1 and 3, a strong interaction between the lanthanide emitting states at sites 1 and 2 was proposed. For compound 1, the numerical solutions of the rate equations provided evidences that when the transition rates between the emitting states at both sites are larger than the highest decaying rate of these states, the system becomes an effective single emitter. This establishes, for the first time

  18. An Efficient Synthesis of Nitriles from Aldoximes Using Diethyl Phosphorocyanidate under Mild Conditions

    International Nuclear Information System (INIS)

    Lee, Kieseung; An, Hyeonseong; Hwang, Chanyeon

    2012-01-01

    Nitriles are valuable intermediates in organic synthesis not only because they serve as the appropriate precursors to various functional groups, but also because they are widely used as the key intermediates for pharmaceuticals, agrochemicals and various N-heterocyclic compounds. The cyano group itself is also frequently found in many biologically important molecules. Therefore, a variety of synthetic routes to nitriles from diverse chemical precursors have been developed. Among these routes, nitrile synthesis from aldoximes using an appropriate dehydrating agent has been a general and clean method. For this purpose, numerous reagents such as chlorosulfonyl isocyanate, di-2-pyridyl sulfite, Burgess reagent, [RuCl 2 (p-cymene)] 2 /MS, 4A, BOP, Pd(OAc) 2 /PPh 3 , Cu(OAc) 2 /ultrasound have been developed. These reagents, however, may have limitations in some respects such as harsh reaction conditions, use of expensive or less readily available reagents, low yields, and lack of generality. Therefore, there is still a need to develop mild and general method for this conversion. Diethyl phosphorocyanidate (DEPC) was initially introduced as an efficient peptide coupling reagent, and has been utilized for useful organic reactions. Previously, we reported that 2-chloro-1-methylpyridinium iodide is an efficient and mild reagent for the dehydration of aldoximes to nitriles under mild conditions. In continuation of our interest in developing mild method for the conversion of aldoximes to nitriles, we herein wish to report the first application of DEPC to the efficient synthesis of nitriles from aldoximes under mild conditions (Scheme 1). In order to obtain the information regarding the optimum reaction conditions, 4-pyridine aldoxime (1a) was reacted with DEPC without base, and in presence of various base in CH 2 Cl 2 at rt for a prolonged reaction time (20 h) (Table 1). CH 2 CI 2 was chosen as reaction medium in this reaction due to the good solubility for both 1 and 3 in CH

  19. An Efficient Synthesis of Nitriles from Aldoximes Using Diethyl Phosphorocyanidate under Mild Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kieseung; An, Hyeonseong; Hwang, Chanyeon [Woosuk Univ.,Wanju (Korea, Republic of)

    2012-10-15

    Nitriles are valuable intermediates in organic synthesis not only because they serve as the appropriate precursors to various functional groups, but also because they are widely used as the key intermediates for pharmaceuticals, agrochemicals and various N-heterocyclic compounds. The cyano group itself is also frequently found in many biologically important molecules. Therefore, a variety of synthetic routes to nitriles from diverse chemical precursors have been developed. Among these routes, nitrile synthesis from aldoximes using an appropriate dehydrating agent has been a general and clean method. For this purpose, numerous reagents such as chlorosulfonyl isocyanate, di-2-pyridyl sulfite, Burgess reagent, [RuCl{sub 2}(p-cymene)]{sub 2}/MS, 4A, BOP, Pd(OAc){sub 2}/PPh{sub 3}, Cu(OAc){sub 2}/ultrasound have been developed. These reagents, however, may have limitations in some respects such as harsh reaction conditions, use of expensive or less readily available reagents, low yields, and lack of generality. Therefore, there is still a need to develop mild and general method for this conversion. Diethyl phosphorocyanidate (DEPC) was initially introduced as an efficient peptide coupling reagent, and has been utilized for useful organic reactions. Previously, we reported that 2-chloro-1-methylpyridinium iodide is an efficient and mild reagent for the dehydration of aldoximes to nitriles under mild conditions. In continuation of our interest in developing mild method for the conversion of aldoximes to nitriles, we herein wish to report the first application of DEPC to the efficient synthesis of nitriles from aldoximes under mild conditions (Scheme 1). In order to obtain the information regarding the optimum reaction conditions, 4-pyridine aldoxime (1a) was reacted with DEPC without base, and in presence of various base in CH{sub 2}Cl{sub 2} at rt for a prolonged reaction time (20 h) (Table 1). CH{sub 2}CI{sub 2} was chosen as reaction medium in this reaction due to the

  20. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  1. Facile Synthesis of A 3D Flower-Like Mesoporous Ni@C Composite Material for High-Energy Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing

    2018-04-16

    A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2  g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stereoselective synthesis of 5-alkoxycarbonyl-4 alkyl-2-anino-3-cyano-6-methyl-4H-pyranes 3 via asymmetric Michael addition to aceptors-gamma-stereogenics; Sintesis esteroselective de 5-alcoxicarbonil-4-alquil-2-amino-3-ciano-6-metil-4H-piranos via adicion Michael sobre aceptores-gama-esterogenicos

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Grau, A.; Jimenez, B.; Martin, N.; Seoane, C.; Marco, J.L. [Departamento de Quimica Organica, Facultad de Quimica, Universidad Complutense, Madrid (Spain)

    1994-12-31

    The stereoselective synthesis of 5-alkoxycarbonyl-4-alkyl-2-amino-3-cyano-6-methyl-4H-pyrans 3 via asymmetric Michael addition of malononitrile to gamma-stereogenic alpha-acetylacrylates 2 obtained by Knoevenagel reaction of acetylacetates to quiral alpha-hydroxyaldehydes 1 is described. The resulting 2-amino-4H-pyrans 3 have been obtained in moderate yield and good diastereoselectivity. 15 refs.

  3. Multiple Hydrogen-Bond Activation in Asymmetric Brønsted Acid Catalysis

    KAUST Repository

    Liao, Hsuan-Hung

    2018-05-03

    An efficient protocol for the asymmetric synthesis of chiral tetrahydroquinolines bearing multiple stereogenic centers by means of asymmetric Brønsted acid catalysis was developed. A chiral 1,1′‐spirobiindane‐7,7′‐diol (SPINOL)‐based N‐triflylphosphoramide (NTPA) proved to be an effective Brønsted acid catalyst for the in situ generation of aza‐ortho‐quinone methides (aza‐o‐QMs) and their subsequent cycloaddition reaction with unactivated alkenes to provide the products with excellent diastereo‐ and enantioselectivities. In addition, DFT calculations provided insight into the activation mode and nature of the interactions between the N‐triflylphosphoramide catalyst and the generated aza‐o‐QMs.

  4. Multiple Hydrogen-Bond Activation in Asymmetric Brønsted Acid Catalysis

    KAUST Repository

    Liao, Hsuan-Hung; Hsiao, Chien-Chi; Atodiresei, Iuliana; Rueping, Magnus

    2018-01-01

    An efficient protocol for the asymmetric synthesis of chiral tetrahydroquinolines bearing multiple stereogenic centers by means of asymmetric Brønsted acid catalysis was developed. A chiral 1,1′‐spirobiindane‐7,7′‐diol (SPINOL)‐based N‐triflylphosphoramide (NTPA) proved to be an effective Brønsted acid catalyst for the in situ generation of aza‐ortho‐quinone methides (aza‐o‐QMs) and their subsequent cycloaddition reaction with unactivated alkenes to provide the products with excellent diastereo‐ and enantioselectivities. In addition, DFT calculations provided insight into the activation mode and nature of the interactions between the N‐triflylphosphoramide catalyst and the generated aza‐o‐QMs.

  5. Rational Construction of Hollow Core-Branch CoSe2 Nanoarrays for High-Performance Asymmetric Supercapacitor and Efficient Oxygen Evolution.

    Science.gov (United States)

    Chen, Tian; Li, Songzhan; Wen, Jian; Gui, Pengbin; Guo, Yaxiong; Guan, Cao; Liu, Jinping; Fang, Guojia

    2018-02-01

    Metal selenides have great potential for electrochemical energy storage, but are relatively scarce investigated. Herein, a novel hollow core-branch CoSe 2 nanoarray on carbon cloth is designed by a facile selenization reaction of predesigned CoO nanocones. And the electrochemical reaction mechanism of CoSe 2 in supercapacitor is studied in detail for the first time. Compared with CoO, the hollow core-branch CoSe 2 has both larger specific surface area and higher electrical conductivity. When tested as a supercapacitor positive electrode, the CoSe 2 delivers a high specific capacitance of 759.5 F g -1 at 1 mA cm -2 , which is much larger than that of CoO nanocones (319.5 F g -1 ). In addition, the CoSe 2 electrode exhibits excellent cycling stability in that a capacitance retention of 94.5% can be maintained after 5000 charge-discharge cycles at 5 mA cm -2 . An asymmetric supercapacitor using the CoSe 2 as cathode and an N-doped carbon nanowall as anode is further assembled, which show a high energy density of 32.2 Wh kg -1 at a power density of 1914.7 W kg -1 , and maintains 24.9 Wh kg -1 when power density increased to 7354.8 W kg -1 . Moreover, the CoSe 2 electrode also exhibits better oxygen evolution reaction activity than that of CoO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  7. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  8. Synthesis of substituted 1,4-diazepines and 1,5-benzodiazepines using an efficient heteropolyacid-catalyzed procedure.

    Science.gov (United States)

    Kaoua, Rachedine; Bennamane, Norah; Bakhta, Saliha; Benadji, Sihame; Rabia, Cherifa; Nedjar-Kolli, Bellara

    2010-12-28

    An efficient and improved procedure for the synthesis of 1,4-diazepine and 1,5-benzodiazepine derivatives via the reaction of ketimine intermediates with aldehydes in the presence of Keggin-type heteropolyacids (HPAs) was developed. High yields and short reaction times were obtained for both electron-releasing and electron-withdrawing substituted 1,4-diazepine  and 1,5-benzodiazepines derivatives.

  9. Efficient sonochemical synthesis of alkyl 4-aryl-6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate derivatives.

    Science.gov (United States)

    Ruiz, Enrique; Rodríguez, Hortensia; Coro, Julieta; Niebla, Vladimir; Rodríguez, Alfredo; Martínez-Alvarez, Roberto; de Armas, Hector Novoa; Suárez, Margarita; Martín, Nazario

    2012-03-01

    A facile, efficient and environment-friendly protocol for the synthesis of 6-chloro-5-formyl-1,4-dihydropyridine derivatives has been developed by the convenient ultrasound-mediated reaction of 2(1H)pyridone derivatives with the Vilsmeier-Haack reagent. This method provides several advantages over current reaction methodologies including a simpler work-up procedure, shorter reaction times and higher yields. Copyright © 2011. Published by Elsevier B.V.

  10. Synthesis of Substituted 1,4-Diazepines and 1,5-Benzodiazepines Using an Efficient Heteropolyacid-Catalyzed Procedure

    Directory of Open Access Journals (Sweden)

    Sihame Benadji

    2010-12-01

    Full Text Available An efficient and improved procedure for the synthesis of 1,4-diazepine and 1,5-benzodiazepine derivatives via the reaction of ketimine intermediates with aldehydes in the presence of Keggin-type heteropolyacids (HPAs was developed. High yields and short reaction times were obtained for both electron-releasing and electron-withdrawing substituted 1,4-diazepine  and 1,5-benzodiazepines derivatives.

  11. Amberlyst-15: An Efficient and reusable heterogeneous catalyst for the synthesis of β-amino carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Pathakota Venkata Ramana

    2015-12-01

    Full Text Available A simple and efficient method has been developed for the synthesis of β-amino carbonyl compounds from aromatic ketones, aldehydes and amines by Mannich reaction in the presence of amberlyst-15 as a reusable heterogeneous catalyst at room temperature under solvent-free conditions. The noteworthy advantages of the present method are short reaction times, good product yields, simple procedures and use of non-toxic catalyst.

  12. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Tang, Lin; Guo, Xuefeng; Yang, Yu; Zha, Zhenggen; Wang, Zhiyong

    2014-06-11

    A highly efficient and selective reaction for the synthesis of 2-substituted benzoxazoles and benzimidazoles catalyzed by Au/TiO2 has been developed via two hydrogen-transfer processes. This reaction has a good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical C-N and C-O bond formation. More importantly, no additional additives, oxidants and reductants are required for the reaction and the catalyst can be recovered and reused readily.

  13. Design, synthesis and evaluation of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors

    Science.gov (United States)

    Zhang, Wei-Bin; Kong, Ling-Bin; Ma, Xue-Jing; Luo, Yong-Chun; Kang, Long

    2014-12-01

    A novel self-supported electrode of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on the conductive substrate of nickel foam have been designed and synthesized by the combination of hydrothermal synthesis and subsequent annealing treatment. Based on the morphology, a possible mechanism is proposed. The unique nanostructure has been served as an "ion reservoir" to infiltrate between the electrode surface area and the electrolyte, which can ensure the ion/electron transfer. And the powerful distribution of electric field on nanorods makes the surface in response the electrode reaction as completely as possible. The electrode manifests satisfying capacitance of 847.2 F g-1, outstanding rate capability and excellent cycling stability. Also, an asymmetric supercapacitor has been assembled, where Co3O4/Co3(VO4)2 and activated carbon acted as the positive and negative electrodes respectively, and the maximum specific capacitance of 105 F g-1 and the specific energy of 38 Wh kg-1 are demonstrated at a cell voltage between 0 and 1.6 V, exhibiting a high energy density and stable power characteristic.

  14. Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission

    Science.gov (United States)

    Lu, Yifei

    Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD

  15. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  16. Thermodynamic efficiency of synthesis, storage and breakdown of the high-energy metabolites by photosynthetic microalgae

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2013-01-01

    Lipids and carbohydrates are employed in the nature to store internal energy due to the large number of the high energy atomic bonds in their structure. Internal energy stored in the bonds is used to fuel work producing engines or metabolic activity of living organisms. This paper investigates the thermodynamic efficiency of the glucose and lipid synthesis and breakdown by photosynthetic microalgae. Photosynthetic microalgae are able to convert 3.8% of the solar exergy into the chemical exergy of algal lipid. As the microalgae convert the first product of the photosynthesis, i.e. glucose, into lipid, 47–49% of the chemical exergy is lost. If the microalgal cell consumes the photosynthetically produced glucose for its own energy demand, then about 30% of the glucose exergy can be converted into work potential in case of immediate and short-term energy demands. Organism can convert about 22% of the glucose exergy into work potential after a long-term storage. If the algal lipid is harvested for biodiesel production and the produced biodiesel is combusted in a Diesel engine, then about 17% of the exergy of the photosynthetically produced glucose can be converted into useful work. Biodiesel is among the most popular renewable fuels. The lipids are harvested from their storage in the cells to produce biodiesel before following the lipid breakdown path of the cellular metabolism. Our analysis indicates that, extracting the first product of photosynthesis, i.e. glucose or glucose polymers instead of lipids may be more efficient thermodynamically, if new motors capable to extract their bond energy is developed. - Highlights: • Photosynthetic microalgae convert 3.8% of the solar exergy into the chemical exergy of algal lipid. • Converting the first product of the photosynthesis (glucose) into lipid causes 47–49% of exergy loss. • Organism can convert 30% of the glucose exergy into work potential for its own immediate or short-term energy demand. • Organism can

  17. Novel poly(triphenylamine-alt-fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation

    KAUST Repository

    Wang, Po-I.

    2016-01-13

    © The Royal Society of Chemistry 2016. In this study, a new triphenylamine-alt-fluorene conjugated copolymer, HPBPYFL6, with hexaphenylbenzene (HPB) and pyrene as asymmetrical pendant groups was synthesized via Suzuki coupling polymerization. The conjugated polymer had a weight-average molecular weight of 5.8 × 104 g mol-1 with a polydispersity index of 2.5 characterized by gel permeation chromatography (GPC). HPBPYFL6 showed good solubility in common organic solvents such as NMP, THF, toluene and dichloromethane at 25°C. In addition, HPBPYFL6 possessed a high glass transition temperature of 260°C and a 10% weight-loss temperature of 503°C in nitrogen. HPBPYFL6 bearing a pyrene moiety had a solvatochromic fluorescence shift from a green to an orange emission as the polarity of the solvent increased. Cyclic voltammetry of HPBPYFL6 films cast onto indium-tin oxide-coated glass (ITO-glass) exhibited two oxidation redox couples at an E1/2 value of 0.82 and 1.17 V versus Ag/Ag+ in an acetonitrile solution. The HPBPYFL6 film on graphene-coated PET had an E1/2 value of 0.24 and 1.12 V. Conjugated polymer films exhibited reversible electrochromic behaviour with a colour change from pale yellow to deep blue upon electrochemical oxidation and high absorbance in the near-infrared (NIR) region. The switching and bleaching times were 5.16 s and 3.12 s for 1231 nm and were 3.30 s and 3.74 s for 1030 nm of HPBPYFL6 on ITO-glass. The strong NIR electrochromic absorbance of HPBPYFL6 was attributed to intervalence charge transfer by the incorporation of the HPB moiety. This phenomenon was confirmed by chemical oxidation as the oxidant contents increased in the solution state. Furthermore, the electrochromic mechanism was interpreted by DFT calculation and the simulated NIR electrochromic spectra of model compound HPBPYFL are in good agreement with the experimental data.

  18. An efficient and facile synthesis of divergent C-3/C-5 bis ...

    Indian Academy of Sciences (India)

    extensive attention in organic synthesis and also serve as potential synthons for the ... plays an important role in synthetic chemistry, because they also serve as ...... scope, rate acceleration and selective formation of bis-. MBH adduct with ...

  19. An efficient modification of ellipticine synthesis and preparation of 13-hydroxyellipticine

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Sejbal, J.; Rygerová, B.; Stiborová, M.

    2007-01-01

    Roč. 48, č. 39 (2007), s. 6893-6895 ISSN 0040-4039 Institutional research plan: CEZ:AV0Z40550506 Keywords : 13-hydroxyellipticine * synthesis Subject RIV: CC - Organic Chemistry Impact factor: 2.615, year: 2007

  20. Fast and Efficient Synthesis of 4-Arylidene-3-phenylisoxazol-5-ones

    Directory of Open Access Journals (Sweden)

    Maryam Mirzazadeh

    2012-01-01

    Full Text Available A convenient and easy synthesis of 4-arylidene-3-phenylisoxazol-5-ones by the three-component reaction of hydroxylamine, ethyl benzoylacetate and aromatic aldehydes in the presence of DABCO in refluxing ethanol is reported.

  1. A Facile and Efficient Synthesis of (15R)-Latanoprost from Chiral ...

    Indian Academy of Sciences (India)

    aDepartment of Chemistry, JNTUH College of Engineering Jagtial, ... is not effective with these topically applied drugs, ... approaches for the synthesis of latanoprost.7 Recently, ... lected organic layer was washed with brine solution and.

  2. Asymmetric monometallic nanorod nanoparticle dimer and related compositions and methods

    KAUST Repository

    Han, Yu

    2016-03-31

    The fabrication of asymmetric monometallic nanocrystals with novel properties for plasmonics, nanophotonics and nanoelectronics. Asymmetric monometallic plasmonic nanocrystals are of both fundamental synthetic challenge and practical significance. In an example, a thiol-ligand mediated growth strategy that enables the synthesis of unprecedented Au Nanorod-Au Nanoparticle (AuNR-AuNP) dimers from pre-synthesized AuNR seeds. Using high-resolution electron microscopy and tomography, crystal structure and three-dimensional morphology of the dimer, as well as the growth pathway of the AuNP on the AuNR seed, was investigated for this example. The dimer exhibits an extraordinary broadband optical extinction spectrum spanning the UV, visible, and near infrared regions (300 - 1300 nm). This unexpected property makes the AuNR-AuNP dimer example useful for many nanophotonic applications. In two experiments, the dimer example was tested as a surface- enhanced Raman scattering (SERS) substrate and a solar light harvester for photothermal conversion, in comparison with the mixture of AuNR and AuNP. In the SERS experiment, the dimer example showed an enhancement factor about 10 times higher than that of the mixture, when the excitation wavelength (660 nm) was off the two surface plasmon resonance (SPR) bands of the mixture. In the photothermal conversion experiment under simulated sunlight illumination, the dimer example exhibited an energy conversion efficiency about 1.4 times as high as that of the mixture.

  3. Prediction of Multi-Target Networks of Neuroprotective Compounds with Entropy Indices and Synthesis, Assay, and Theoretical Study of New Asymmetric 1,2-Rasagiline Carbamates

    Directory of Open Access Journals (Sweden)

    Francisco J. Romero Durán

    2014-09-01

    Full Text Available In a multi-target complex network, the links (Lij represent the interactions between the drug (di and the target (tj, characterized by different experimental measures (Ki, Km, IC50, etc. obtained in pharmacological assays under diverse boundary conditions (cj. In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%–90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human. Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1 assay in absence of neurotoxic agents; (2 in the presence of glutamate; and (3 in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally.

  4. Appropriate quantization of asymmetric games with continuous strategies

    International Nuclear Information System (INIS)

    Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng

    2005-01-01

    We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs

  5. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature.

    Science.gov (United States)

    Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun

    2017-06-28

    Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.

  6. Microwave promoted simple, efficient and regioselective synthesis of trisubstituted imidazo[1,2-a]benzimidazoles on soluble support.

    Science.gov (United States)

    Chen, Li-Hsun; Hsiao, Ya-Shan; Yellol, Gorakh S; Sun, Chung-Ming

    2011-03-14

    An efficient microwave-assisted and soluble polymer-supported synthesis of medicinally important imidazole-fused benzimidazoles has been developed. The protocol involves the rapid condensation of polymer-bound amino benzimidazoles with various α-bromoketones and subsequent in situ intramolecular cyclization under microwave irradiation resulting in a one pot synthesis of imidazole interlacing benzimidazole polymer conjugates. The condensed product was obtained with excellent regioselectivity. The biologically interesting imidazo[1,2-a]benzimidazoles was released from polymer support at ambient temperature. Diversity in the triheterocyclic nucleus was achieved by the different substitutions at its 2, 3, and 9 positions. The new protocol has the advantages of short reaction time, easy workup process, excellent yields, reduced environmental impact, wide substrate scope and convenient procedure.

  7. Highly efficient water-mediated approach to access benzazoles: metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles.

    Science.gov (United States)

    Bala, Manju; Verma, Praveen Kumar; Sharma, Deepika; Kumar, Neeraj; Singh, Bikram

    2015-05-01

    An efficient water-catalyzed method has been developed for the synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles in one step. The present method excludes the usage of toxic metal catalysts and bases to produce benzazoles in good to excellent yields. An efficient and versatile water-mediated method has been established for the synthesis of various 2-arylbenzazoles. The present protocol excludes the usage of any catalyst and additive provided excellent selectivities and yields with high functional group tolerance for the synthesis of 2-arylated benzimidazoles, benzoxazoles, and benzothiazoles. Benzazolones were also synthesized using similar reaction protocol.

  8. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    OpenAIRE

    Vesa Välimäki; Henri Penttinen; Mikael Laurson; Jonte Knif; Cumhur Erkut

    2004-01-01

    A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a s...

  9. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows.

    Science.gov (United States)

    Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi

    2017-09-01

    Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  11. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    International Nuclear Information System (INIS)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo

    2011-01-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  12. An Efficient Solvent-Free Protocol for the Synthesis of 1-Amidoalkyl-2-naphthols using Silica-Supported Molybdatophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Abdolkarim Zare

    2010-01-01

    Full Text Available A highly efficient, green and simple solvent-free method for the synthesis of 1-amidoalkyl-2-naphthols via one-pot multi-components condensation of 2-naphthol, aromatic aldehydes and amides in the presence of catalytic amount of silica-supported molybdatophosphoric acid (H3PMo12O40.xH2O/SiO2, 3.17 mol% is described. The reactions proceed rapidly and the title compounds are produced in high to excellent yields.

  13. A green and efficient method for the synthesis of homodimeric (β ...

    African Journals Online (AJOL)

    ... derivatives by intramolecular cyclization in various yields. Of particular interest is the use of the water as solvent of reaction and in absence of catalyst. Also these operating conditions protect the environment and economic points of view. Keywords: aqueous synthesis; bioactivity; dihydropyridine; dimedone; green method; ...

  14. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy ... the synthesis of relatively large and complex molecules .... of ethylene diamine in hydrothermal ZnO nanorod syn- thesis. Di- and ...

  15. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  16. A Simple and Efficient Synthesis of 12-Aryl-8,9,10,12 ...

    African Journals Online (AJOL)

    Highly effective zinc oxide nanoparticles catalyzed solvent-free synthesis of some tetrahydrobenzo[a]xanthen-11-one derivatives via one-pot multi-component reaction of aldehydes, 2-naphthol and dimedone. The present approach creates a variety of biologically active heterocyclic compounds in excellent yields and short ...

  17. LaCl 3. 7H 2 O: An efficient catalyst for the synthesis of phosphinates ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Abstract. An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3a-l) through Michaelis-Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1a-l) with dimethyl ...

  18. Efficient one-pot four-component synthesis of fused thiazolopyridin-2 ...

    Indian Academy of Sciences (India)

    . 30. 70. 8. [Net3][Ac]. 1:1:1:1. 3. 30. 80. 9. [bmim][Cl]. 1:1:1:1. 3. 30. 78. 10 .... Catalyst-free one-pot synthesis of thiazolopyridin-2-ones. 1479. Table 3. Optimization of the activity of ionic liquid after reuse. Sl. No. No. of cycle. Yield (%). 1. I. 94. 3.

  19. Efficient synthesis of large-scale thinned arrays using a density-taper initialised genetic algorithm

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-09-01

    Full Text Available The use of the density-taper approach to initialise a genetic algorithm is shown to give excellent results in the synthesis of thinned arrays. This approach is shown to give better SLL values more consistently than using random values and difference...

  20. Efficient and 'green' microwave-assisted synthesis of haloalkylphosphonates via the Michaelis-Arbuzov reaction

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Holý, Antonín; Dračínský, Martin; Baszczyňski, Ondřej; Česnek, Michal; Janeba, Zlatko

    2011-01-01

    Roč. 13, č. 4 (2011), s. 882-888 ISSN 1463-9262 R&D Projects: GA AV ČR KJB400550903; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : microwave-assisted synthesis * haloalkylphosphonates * Michaelis-Arbuzov reaction Subject RIV: CC - Organic Chemistry Impact factor: 6.320, year: 2011

  1. One-pot efficient green synthesis of 1,4-dihydro-quinoxaline-2,3 ...

    Indian Academy of Sciences (India)

    Unknown

    Thermal and powder X-ray diffraction analysis was carried out for some hydrated crystals. Keywords. Green chemistry ... Elemental analyses were done using Carlo–Erba 1108 and Perkin–Elmer series II 2400 instruments. 2.3 General synthesis of quinoxaline derivatives ... with a pestle in a mortar at room temperature in an.

  2. Polyethylene glycol (PEG-400: An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Mekala

    2015-12-01

    Full Text Available Polyethylene glycol (PEG-400 was found to be an inexpensive, non-toxic, and effective medium for the one-pot synthesis of 1,2-disubstituted benzimidazoles in excellent yields. Eco-friendliness, low cost, high yields, and recyclability of the PEG-400 are the important features of this protocol.

  3. Selective synthesis of vitamin K3 over mesoporous NbSBA-15 catalysts synthesized by an efficient hydrothermal method.

    Science.gov (United States)

    Selvaraj, M; Park, D-W; Kim, I; Kawi, S; Ha, C S

    2012-08-28

    Well hexagonally ordered NbSBA-15 catalysts synthesized by an efficient hydrothermal method were used, for the first time, for the selective synthesis of vitamin K(3) by liquid-phase oxidation of 2-methyl-1-naphthol (2MN1-OH) under various reaction conditions. The recyclable NbSBA-15 catalysts were also reused to find their catalytic activities. To investigate the leaching of non-framework niobium species on the surface of silica networks, the results of original and recyclable NbSBA-15 catalysts were correlated and compared. To find an optimum condition for the selective synthesis of vitamin K(3), the washed NbSBA-15(2.2pH) was extensively used in this reaction with various reaction parameters such as temperature, time and ratios of reactant (2M1N-OH to H(2)O(2)), and the obtained results were also demonstrated. Additionally, the liquid-phase oxidation of 2M1N-OH was carried out with different solvents to find the best solvent with a good catalytic activity. Based on the all catalytic studies, the vitamin K(3) selectivity (97.3%) is higher in NbSBA-15(2.2pH) than that of other NbSBA-15 catalysts, and the NbSBA-15(2.2pH) is found to be a highly active and eco-friendly heterogeneous catalyst for the selective synthesis of vitamin K(3).

  4. Efficient Synthesis of Functionalized 1-oxo-1-phenyl-2-acetic Acids through Ru(II)-catalyzed Transfer Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaowei; Gong, Binwei; Meng, Yanqiu [Shenyang Univ. of Chemical Technology, Shenyang (Korea, Republic of); Yan, Yunnan [Gannan Medical Univ., Ganzhou (Korea, Republic of); Tang, Xiaobo; Eric Xu, H.; Yi, Wei [Chinese Academy of Sciences, Shanghai (China); Li, Qiu [Univ. of Science and Technology of China, Suzhou (China)

    2013-10-15

    A new and alternative method for the efficient synthesis of indanylacetic acid 2 has been developed. The methodology used RuCl(p-cymene)[(R,R)-TsDPEN] as the catalyst and formic acid-triethylamine as the hydrogen source at room temperature under solvent-free conditions, and the reactions have excellent chemoselectivity and good compatibility of substrates. Used our developed method as the starting step, gram scale synthesis of GR24 was achieved smoothly with an overall yield of 72%. All the results suggested that further development of such methodology may be of interest. Further work to establish the mechanistic reasons for selectivity and to further explore the synthetic scope of this mode of transfer hydrogenation is in progress. The synthetic SL analog, GR24 is a very potent germination stimulant, which is widely used in parasitic weed research to stimulate germination and as a standard for comparison of new germinating agents. Owing to the prevalence of GR24, its total synthesis constitutes a hot area of research. So far all known synthetic routes of GR24 used indanylacetic acid 2 as a key intermediate, for which very few methods of building compound 2 have been reported.

  5. Quantifying social asymmetric structures.

    Science.gov (United States)

    Solanas, Antonio; Salafranca, Lluís; Riba, Carles; Sierra, Vicenta; Leiva, David

    2006-08-01

    Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations, nor do they deal with dependency. This article describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method consists mainly of decomposing asymmetric data into their symmetric and skew-symmetric parts. A quantification of skew symmetry for a social system can be obtained by dividing the norm of the skew-symmetric matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. With regard to agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.

  6. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  7. Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent

    International Nuclear Information System (INIS)

    Wang Xialie; Wen Xiaohong; Liu Zhanpeng; Tan Yi; Yuan Ye; Zhang Ping

    2012-01-01

    Mass production of soluble graphene still remains a challenge, although several methodologies have been proposed. Here we report a rapid and efficient method for the synthesis of soluble graphene nanosheets (GNSs) with long-term dispersion stability in both aqueous and common organic solvents. Within only 12 min at 95 °C, exfoliated graphite oxide in ammonia solution (pH 10) was reduced to soluble GNSs using N-methyl-p-aminophenol sulfate (metol) as a reducing agent without external stabilizers. The prepared GNSs were characterized by different techniques and a comparison of metol and hydrazine hydrate as reducing agents was made. The results indicated that, with the advantages of being rapid, efficient, inexpensive and relatively environmentally friendly, the reduction of graphite oxide into soluble GNSs by metol is a promising substitute for hydrazine hydrate in the mass production of soluble GNSs. (paper)

  8. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  9. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-05-15

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides.

  10. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    International Nuclear Information System (INIS)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun

    2013-01-01

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides

  11. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  12. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  13. Efficient and reproducible synthesis of [1-{sup 11}C]acetyl chloride using the loop method

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Takuya [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Zhang, Ming-Rong [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)], E-mail: zhang@nirs.go.jp; Ogawa, Masanao [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-8686 (Japan); Fukumura, Toshimitsu; Kato, Koichi; Suzuki, Kazutoshi [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2009-02-15

    [1-{sup 11}C]Acetyl chloride ([{sup 11}C]AcCl), an important [{sup 11}C]acylating agent, was synthesized by reacting [{sup 11}C]CO{sub 2} with methylmagnesium bromide coated on the inner surface of a polyethylene loop (loop method). By optimizing the reaction conditions and synthesis parameters, [1-{sup 11}C]phenylacetate and [1-{sup 11}C]benzylacetate were produced from [{sup 11}C]AcCl in high radiochemical yield and specific activity.

  14. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    OpenAIRE

    Eren,Bilge; Bekdemir,Yunus

    2014-01-01

    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, ¹H- and 13C-NMR spectroscopy. Short reaction times, good yields, easy purification...

  15. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Nicholas Cole [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni$\\subset$ SiO2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni$\\subset$SiO2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle

  16. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp(3) Central Chirality for Catalytic Asymmetric Transformations.

    Science.gov (United States)

    Xu, Zheng; Xu, Li-Wen

    2015-10-01

    Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells

    DEFF Research Database (Denmark)

    Huang, Jianhua; Zhang, Shanlin; jiang, Bo

    2016-01-01

    With respect to the successes from symmetric small molecules, asymmetric ones have recently emerged as an alternative choice. In this paper, we present the synthesis and photovoltaic properties of four asymmetric small molecule donors. The benzo[1,2-b:4,5-b']dithiophene (BDT) end in the asymmetri...

  18. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema

    2016-04-20

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  19. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema; Hadjichristidis, Nikolaos

    2016-01-01

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  20. Asymmetric biosynthesis of (1S, 2S)-ephedrine by Morganella ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    >99% ee) and 84.4% molar yield. ... field of synthetic chemistry, which overlaps both organic chemistry ... that possess asymmetric synthesis abilities have been ..... erythropolis, and its application to double chiral compound.

  1. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  2. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-06-01

    Full Text Available Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

  3. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Eren, Bilge, E-mail: bilge.eren@bilecik.edu.tr [Faculty of Science and Arts, Department of Chemistry, Bilecik Seyh Edebali University, (Turkey); Bekdemir, Yunus [Faculty of Science and Arts, Canik Basari University, Samsun (Turkey)

    2014-07-01

    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, {sup 1}H- and {sup 13}C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method. (author)

  4. Facile and efficient synthesis of [{sup 18}F]fluoromisonidazole using novel 2-nitroimidazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Do; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Hee-Kwon, E-mail: hkkim717@jbnu.ac.kr [Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Jung, Yongju [Department of Chemical Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-07-01

    [{sup 18}F]Fluoromisonidazole ([{sup 18}F]FMISO) is a hypoxia imaging marker utilized in positron emission tomography. Novel FMISO precursors were prepared from a commercially available material, and several reaction factors that affect synthesis of [{sup 18}F]FMISO were examined to achieve a higher fluorination yield. [{sup 18}F]FMISO was obtained from radiosynthesis, followed by the hydrolysis of protecting groups with HCl. New 2-nitroimidazole precursor showed a higher [{sup 18}F]fluorination and a higher synthetic yield. This result provided alternative guidelines for the preparation of hypoxia imaging marker. (author)

  5. 1,5-Anhydro-D-Fructose – Efficient Synthesis and Chemical Uses

    DEFF Research Database (Denmark)

    Lundt, Inge; Dekany, Gyula; Stütz, Arnold E.

    as well as for derivatives and analogues thereof. The potential of AF will be highlighted as will be the use of AF as a chiral building block for the preparation of other interesting compounds with biological activities such as, for example, Deoxymannojirimycin (DMJ). [1] S.M. Andersen, I. Lundt, J......1,5-Anhydro-D-fructose (AF) is a valuable chiral building block for organic synthesis.[1] However, the antioxidant and antimicrobial properties of AF are equally important.[1] Due to these interesting properties AF is heavily patented for the use in pharmaceuticals, foods and cosmetics. However...

  6. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    International Nuclear Information System (INIS)

    Eren, Bilge; Bekdemir, Yunus

    2014-01-01

    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, 1 H- and 13 C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method. (author)

  8. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    Directory of Open Access Journals (Sweden)

    Bilge Eren

    2014-01-01

    Full Text Available A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, ¹H- and 13C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method.

  9. Financing of energy-efficient productive industrial projects. Situation and first ideas for the future. Synthesis

    International Nuclear Information System (INIS)

    Billard, Yannael; Julien, Emmanuel; Blaisonneau, Laurent; Streiff, Frederic; Padilla, Sylvie; Benazzi, Eric; Domergue, Bruno; Fraysse, Sebastien; Gaussens, Jean-Pierre; Packeu, Paris; Bodino, Didier; Randimbivololona, Prisca; Verbbrughe, Gregory; Bissonnier, Alain; Dantec, Caroline

    2016-11-01

    Based on in-depth interviews with decision makers and experts belonging to energy consuming industrial groups, or involved in technological offer or in financing, this study addressed the issue of energy efficiency in the industrial sector, and of its financing. Interviewed persons represented 11 large companies, 5 medium-sized companies, and 14 industrial sectors, and 3 main professional profiles (from technical to financial). The authors thus explored current financing models implemented to finance energy efficiency, by analysing existing decision-making processes, brakes on energy efficiency in industry, levers favourable to energy efficiency in industry, operational and functional organisations addressing issues related to energy efficiency, the risk management policy implemented for the assessment and follow-up of investments in energy efficiency, and existing and envisaged financial packages to make these investments possible. As far as financing is concerned, the authors analyse present practices, difficulties faced, good and repeatable practices, and discuss some lines of thought to mobilise actors in order to structure and promote energy efficiency in industrial projects, to reduce the risk for an easier financing of such projects, to structure financing tools, to promote incentive taxes and aids

  10. Efficient seed-mediated method for the large-scale synthesis of Au nanorods

    International Nuclear Information System (INIS)

    Ahmed, Waqqar; Bhatti, Arshad Saleem; Ruitenbeek, Jan M. van

    2017-01-01

    Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl_4) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl_4, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl_4 in the growth solution can be increased up to 5 mM, and 10–20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl_4 molar ratio of 50 is sufficient for obtaining high yield of NRs.

  11. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    Directory of Open Access Journals (Sweden)

    Knif Jonte

    2004-01-01

    Full Text Available A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.

  12. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    Science.gov (United States)

    Välimäki, Vesa; Penttinen, Henri; Knif, Jonte; Laurson, Mikael; Erkut, Cumhur

    2004-12-01

    A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.

  13. Efficient seed-mediated method for the large-scale synthesis of Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Waqqar; Bhatti, Arshad Saleem [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Ruitenbeek, Jan M. van, E-mail: Ruitenbeek@physics.leidenuniv.nl [Leiden University, Huygens-Kamerlingh Onnes Laboratory (Netherlands)

    2017-03-15

    Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl{sub 4}) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl{sub 4}, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl{sub 4} in the growth solution can be increased up to 5 mM, and 10–20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl{sub 4} molar ratio of 50 is sufficient for obtaining high yield of NRs.

  14. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  15. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C-S coupling

    KAUST Repository

    Shen, Chao; Xia, Haijun; Yan, Hua; Chen, Xinzhi; Ranjit, Sadananda; Xie, Xiaoji; Tan, Davin; Lee, Richmond; Yang, Yanmei; Xing, Bengang; Huang, Kuo-Wei; Zhang, Pengfei; Liu, Xiaogang

    2012-01-01

    in the efficiency and chemoselectivity of reaction. These fluorescent glycoconjugates can be observed to readily enter mammalian tumor cells and exhibit potential in vitro antitumor activity. This journal is © The Royal Society of Chemistry 2012.

  16. Selective Homogeneous Catalysis in Asymmetric Synthesis

    DEFF Research Database (Denmark)

    Fristrup, Peter

    of twelve “substrate-probes”, which were designed and synthesized specifically for this purpose. Both the stoichiometric reaction with OsO4 in toluene and the more environmentally benign catalytic reaction in a two-phase system were studied. The obtained experimental results were in good agreement...

  17. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Chen, Shang

    2016-01-01

    Highlights: • Two dimensionless uniformity factors are presented to heat exchange network. • The grouping of process streams reduces the computational complexity of large-scale HENS problems. • The optimal sub-network can be obtained by Powell particle swarm optimization algorithm. • The method is illustrated by a case study involving 39 process streams, with a better solution. - Abstract: The optimal design of large-scale heat exchanger networks is a difficult task due to the inherent non-linear characteristics and the combinatorial nature of heat exchangers. To solve large-scale heat exchanger network synthesis (HENS) problems, two dimensionless uniformity factors to describe the heat exchanger network (HEN) uniformity in terms of the temperature difference and the accuracy of process stream grouping are deduced. Additionally, a novel algorithm that combines deterministic and stochastic optimizations to obtain an optimal sub-network with a suitable heat load for a given group of streams is proposed, and is named the Powell particle swarm optimization (PPSO). As a result, the synthesis of large-scale heat exchanger networks is divided into two corresponding sub-parts, namely, the grouping of process streams and the optimization of sub-networks. This approach reduces the computational complexity and increases the efficiency of the proposed method. The robustness and effectiveness of the proposed method are demonstrated by solving a large-scale HENS problem involving 39 process streams, and the results obtained are better than those previously published in the literature.

  18. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    International Nuclear Information System (INIS)

    Flores, Alex F.C.; Malavolta, Juliana L.; Souto, Alynne A.; Goularte, Rayane B.; Flores, Darlene C.

    2013-01-01

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH 2 CONH 2 , NH 2 CR(NH) (R = H, Me, Ph, NH 2 , SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl-1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is also described. The synthetic potential of this straightforward protocol was established by the synthesis of fourteen new 3-(pyrimidinyl) propanoates in regular to good yields (38-92%). The structural assignments were based on the analysis of their 1 H and 13 C nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) data. (author)

  19. Synthesis of taurine–fluorescein conjugate and evaluation of its retina-targeted efficiency in vitro

    Directory of Open Access Journals (Sweden)

    Meihong Huang

    2014-12-01

    Full Text Available In this work, retinal penetration of fluorescein was achieved in vitro by covalent attachment of taurine to fluorescein, yielding the F–Tau conjugate. Nuclear magnetic resonance (NMR and high resolution mass spectrometry (HRMS were used to confirm the successful synthesis of F–Tau. The cellular uptake of F–Tau in adult retinal pigment epithelial cells (ARPE-19 and human retinal microvascular endothelial cells (hRMECs was visualized via confocal scanning microscopy. The results indicated an improvement of solubility and a reduction of logP of F–Tau compared with fluorescein. As compared with fluorescein, F–Tau showed little toxicity, and was retained longer by cells in uptake experiments. F–Tau also displayed higher transepithelial permeabilities than fluorescein in ARPE-19 and hRMECs monolayer cells (P<0.05. These results showed that taurine may be a useful ligand for targeting small-molecule hydrophobic pharmaceuticals into the retina.

  20. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Alex F.C.; Malavolta, Juliana L.; Souto, Alynne A.; Goularte, Rayane B.; Flores, Darlene C., E-mail: alex.fcf@ufsm.br [Universidade Federal de Santa Maria (UFSM/NUQUIMHE), RS (Brazil). Departamento de Quimica. Nucleo de Quimica de Heterociclos

    2013-04-15

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH{sub 2}CONH{sub 2}, NH{sub 2}CR(NH) (R = H, Me, Ph, NH{sub 2}, SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl-1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is also described. The synthetic potential of this straightforward protocol was established by the synthesis of fourteen new 3-(pyrimidinyl) propanoates in regular to good yields (38-92%). The structural assignments were based on the analysis of their {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) data. (author)

  1. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective and efficient synthesis of ethanol from dimethyl ether and syngas

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn

    well-established processes. Syngas can be produced from biomass, making the entire process sustainable and environmentally friendly. The main benefit of this method is its unprecedented selectivity towards EtOH, while MeOH, the primary by-product, and the unreacted syngas are easily recycled...... but it is not sufficiently active or stable to be applied industrially. In this PhD project, the formation of MA over Mordenite has been studied experimentally and by density functional theory (DFT) calculations. The DFT study of the reaction path has shown that ketene is a reaction intermediate, a result with has been...... in the feed, the deactivation rate decreases with increasing MA concentration. However, the precise connection is still unknown. The results of this PhD project contribute significantly to the understanding of the reactions taking place on Mordenite during MA synthesis and form a firm foundation...

  3. Efficient method of enzymatic synthesis of nucleosides labelled with 14C and 3H

    International Nuclear Information System (INIS)

    Nejedly, Z.; Filip, J.

    1988-01-01

    The method is presented of enzymatic synthesis of nucleosides labelled with 14 C or 3 H either uniformly or specifically in the base or the deoxyribosyl or ribosyl moiety. The method is based on the ribosylation or deoxyribosylation of the nucleic acid bases (non-labelled or labelled with 14 C or 3 H) by the catalytic effect of enzymes occurring in the supernatant fractions of non-purified homogenates of Escherichia coli B. bacteria. The non-labelled and labelled nucleosides are used as donors of ribosyl or deoxyribosyl groups. The HPLC method is used for separating labelled nucleosides. The radiochemical purity of the labelled nucleosides is higher than 98%, molar activity ranges from 9.2 to 18.5 GBq.mmol -1 ( 14 C-labelled compounds) and from 0.6 to 1.9 TBq.mmol -1 (3H-labelled compounds). (author). 4 figs., 8 refs

  4. Synthesis of NiO:V2O5 nanocomposite and its photocatalytic efficiency for methyl orange degradation

    Directory of Open Access Journals (Sweden)

    Salam A. Mohammed

    2018-03-01

    Full Text Available Vanadium oxide has been largely exploited as a catalyst in many industrial applications. In this article, we show the synthesis of vanadium oxide (V2O5: Nickel Oxide (NiO composite using sol-gel method at optimum conditions. The composite nanomaterials were used to remove methyl orange from waste water via harnessing the photocatalytic activity of it which showed an excellent efficiency of removal at 88%, and 93% after the exposure to the light, and light with heating respectively. This will pave the way into further implementation of these nanomaterials in the removal of some other dyes and contaminants from wastewater. Keywords: Materials chemistry, Physical chemistry, Chemical engineering, Inorganic chemistry

  5. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    Directory of Open Access Journals (Sweden)

    Szura Dominika

    2017-01-01

    Full Text Available Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  6. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  7. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    Science.gov (United States)

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  8. Climate and energy efficiency policies: synthesis of France commitments and results

    International Nuclear Information System (INIS)

    2011-01-01

    After a brief recall of the definitions of energy efficiency, of direct and indirect emissions, of total emissions, and of the main French commitments (first climate plan, energy policy orientations in the POPE law, Grenelle de l'Environnement, national action plan for energy efficiency, Grenelle laws), this document briefly presents the current situation and predictions in terms of energy consumption and greenhouse gas emissions. For different sectors, it presents key measures and evokes actual or expected results. These sectors are: energy production, housing and office building, transports, industry, State and local communities, agriculture and forest, information and education, wastes

  9. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  10. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Science.gov (United States)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  11. A Simple, Rapid and Efficient One-pot Protocol for the Synthesis of 2 ...

    African Journals Online (AJOL)

    NJD

    A rapid and efficient condensation reaction of 2-aminothiophenol with various fatty acids in solvent-free conditions with or without microwave irradiation was ... heterocyclic compounds that have widespread applications in pharmaceutical and ... catalyzed reaction of aryl halides with o-aminothiophenol in presence of carbon ...

  12. Dynamics of asymmetric kinetic Ising systems revisited

    International Nuclear Information System (INIS)

    Huang, Haiping; Kabashima, Yoshiyuki

    2014-01-01

    The dynamics of an asymmetric kinetic Ising model is studied. Two schemes for improving the existing mean-field description are proposed. In the first scheme, we derive the formulas for instantaneous magnetization, equal-time correlation, and time-delayed correlation, considering the correlation between different local fields. To derive the time-delayed correlation, we emphasize that the small-correlation assumption adopted in previous work (Mézard and Sakellariou, 2011 J. Stat. Mech. L07001) is in fact not required. To confirm the prediction efficiency of our method, we perform extensive simulations on single instances with either temporally constant external driving fields or sinusoidal external fields. In the second scheme, we develop an improved mean-field theory for instantaneous magnetization prediction utilizing the notion of the cavity system in conjunction with a perturbative expansion approach. Its efficiency is numerically confirmed by comparison with the existing mean-field theory when partially asymmetric couplings are present. (paper)

  13. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    Braga, Antonio Luiz; Luedtke, Diogo Seibert; Schneider, Paulo Henrique; Andrade, Leandro Helgueira; Paixao, Marcio Weber

    2013-01-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  14. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    Although generally considered competitive, the alkenylation and carbonyl olefination routes to alkenes are also complementary. In this Account, we focus on these approaches for the synthesis of regio- and stereodefined di- and trisubstituted alkenes and a few examples of tetrasubstituted alkenes. We also discuss the subset of regio- and stereodefined dienes and oligoenes that are conjugated. Pd-catalyzed cross-coupling using alkenyl metals containing Zn, Al, Zr, and B (Negishi coupling and Suzuki coupling) or alkenyl halides and related alkenyl electrophiles provides a method of alkenylation with the widest applicability and predictability, with high stereo- and regioselectivity. The requisite alkenyl metals or alkenyl electrophiles are most commonly prepared through highly selective alkyne addition reactions including (i) conventional polar additions, (ii) hydrometalation, (iii) carbometalation, (iv) halometalation, and (v) other heteroatom-metal additions. Although much more limited in applicability, the Heck alkenylation offers an operationally simpler, viable alternative when it is highly selective and satisfactory. A wide variety of carbonyl olefination reactions, especially the Wittig olefination and its modifications represented by the E-selective HWE olefination and the Z-selective Still-Gennari olefination, collectively offer the major alternative to the Pd-catalyzed alkenylation. However, the carbonyl olefination method fundamentally suffers from more limited stereochemical options and generally lower stereoselectivity levels than the Pd-catalyzed alkenylation. In a number of cases, however, very high (>98%) stereoselectivity levels have been attained in the syntheses of both E and Z isomers. The complementarity of the alkenylation and carbonyl olefination routes provide synthetic chemists with valuable options. While the alkenylation involves formation of a C-C single bond to a CC bond, the carbonyl olefination converts a CO bond to a CC bond. When a

  15. Asymmetric conditional volatility in international stock markets

    Science.gov (United States)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  16. Surfactant-free synthesis of hierarchical niobic acid microflowers assembled from ultrathin nanosheets with efficient photoactivities

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenhao [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Pan, Feng, E-mail: phypf2012@163.com [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Wang, Yanyan [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Xiao, Shuning [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); International Joint Lab on Resource Chemistry SHNU-NUS-PU, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Kai [Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); BNLMS, SKLSCUSS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China); Xu, Guo Qin [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu Prov., 215123 (China); and others

    2017-01-15

    Highlights: • 3D hierarchical niobic acid microflower was synthesized by a surfactant-free method. • The microflower was composed of ultrathin nanosheets with ∼5 nm thickness. • The microflower showed high photoactivity owing to the 3D structural features. • This microflower was converted to Nb{sub 2}O{sub 5} without significant structural alteration. • Nb{sub 2}O{sub 5} nanoneedles can also be obtained by adjusting the pH value during synthesis. - Abstract: Hierarchical niobic acid (Nb{sub 2}O{sub 5}·nH{sub 2}O) microflowers are synthesized by a surfactant-free hydrothermal approach. The three-dimensional microflowers are assembled from two-dimensional ultrathin nanosheets with thickness of ∼5 nm. Using rhodamine B as a probe, the Nb{sub 2}O{sub 5}·nH{sub 2}O microflowers exhibit high photocatalytic activity under UV light irradiation. Furthermore, the Nb{sub 2}O{sub 5}·nH{sub 2}O microflowers are easily converted to niobium pentoxide without significant structural alteration.

  17. An Efficient and Versatile Synthesis of Isoflavones from 2-Methoxybenzoic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae In [Duksung Women' s University, Seoul (Korea, Republic of)

    2016-07-15

    Isoflavones (3-aryl-4H-1-benzopyran-4-ones) are found naturally in soybeans and many plants of the Leguminosae family. They have attracted much attention due to their biological activities, such as their anti-cancer, anti-inflammatory, and antifungal properties. Isoflavones intake through foods is important to human health, because they potentially regulate fatty acid metabolism and methoxy-substituted isoflavones in particular increase cell permeability. Isoflavones have also been synthesized by the coupling of 3-iodochromones with arylboronic acids. The condensation of 2'-hydroxyacetophenones with DMF dimethyl acetal formed 3-(dimethylamino)-2'-hydroxyphenylpropenones, which were cyclized using iodine to form 3-iodochromones. This process was followed by Suzuki coupling with arylboronic acids or aryl boronates to obtain isoflavones. The synthesis of isoflavones (6) from 5 was based on the formylation of the methylene group of 5 using DMF-POCl{sub 3}. Previously, the reaction of the DMF-POCl{sub 3} complex on benzyl 2-hydroxyphenyl ketones led to isoflavones, for which DMF was used as the reagent and solvent for 18 h at gentle reflux.

  18. Synthesis of ZnO/CdSe hierarchical heterostructure with improved visible photocatalytic efficiency

    International Nuclear Information System (INIS)

    Wu, Yao; Xu, Fang; Guo, Defu; Gao, Zhiyong; Wu, Dapeng; Jiang, Kai

    2013-01-01

    ZnO/CdSe hierarchical heterostructure was prepared using pompon-like ZnO as substrate materials, and hexagonal CdSe nanoparticles were dispersed on the ZnO plates. The hybrid ZnO/CdSe samples were intensively investigated by XRD, SEM, TEM, HRTEM, PL and UV–vis absorption spectrum. The photocatalytic experiments confirm that ZnO/CdSe heterostructure exhibits improved photocatalytic efficiency compared to pure ZnO under visible light irradiation. CdSe nanoparticles are believed to serve as photosensitizers to extend the absorption spectrum to visible light region. In addition, the incorporation of CdSe can suppress the recombination of photogenerated electron-hole pairs, which contributes to the enhancement of photocatalytic efficiency.

  19. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  20. Nano-Ticl 4 .SiO 2 : a Versatile and Efficient Catalyst for Synthesis of ...

    African Journals Online (AJOL)

    Nano-TiCl4.SiO2 has been found to be an extremely efficient catalyst for the preparation of 3,4-dihydropyrimidinones/thiones via three-component reactions of an aldehyde, β-ketoester or β-diketone and urea or thiourea under mild conditions. Nano-TiCl4.SiO2 as a solid Lewis acid has been synthesized by reaction of ...

  1. Effects of chemical structure on the thermodynamic efficiency of radical chain carriers for organic synthesis.

    Science.gov (United States)

    Lin, Ching Yeh; Peh, Jessie; Coote, Michelle L

    2011-03-18

    The chain carrier index (CCI), defined as the ratio of the bond dissociation free energies (BDFE) of corresponding chain carrier halides and hydrides, is proposed as a measure of the thermodynamic efficiency of chain carriers for radical dehalogenation. The larger this value is relative to the corresponding value of the organic substrate, the more thermodynamically efficient the process. The chloride and bromide CCIs were evaluated at the G3(MP2)-RAD(+) level of theory for 120 different R-groups, covering a broad range of carbon-centered and noncarbon-centered species; the effects of solvent and temperature have also been studied. The broad finding from this work is that successful chain carriers generally maximize the strength of their halide (versus hydride bonds) through charge-shift bonding. As a result, the thermodynamic efficiency of a chain carrier tends to increase down the periodic table, and also with the inclusion of stronger electron donating substituents. The CCIs of carbon-centered species fall into a relatively narrow range so that, even when the CCI is maximized through inclusion of lone pair donor OMe or NMe(2) groups, the thermodynamic driving force for dehalogenation of other organic substrates is modest at best, and the process is likely to be kinetically hampered. Among the noncarbon-centered species studied, bismuth- and borane-centered compounds have some of the highest CCI values and, although their kinetics requires further optimization, these classes of compounds would be worth further investigation as tin-free radical reducing agents.

  2. An efficient method for synthesis of bis(indolylmethane and di-bis(indolylmethane derivatives in environmentally benign conditions using TBAHS

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Siyadatifard

    2016-05-01

    Full Text Available An efficient procedure for the synthesis of bisindolylmethanes (BIMs from condensation of indole and aromatic aldehydes or ketones is described. The aromatic electrophilic substitution reactions of indole with aromatic aldehydes and ketones are achieved in the presence of tetrabutylammonium hydrogen sulfate (TBAHS as a mild and efficient solid acid catalyst. This methodology offers several advantages such as good yields, simple procedure, mild and environmentally benign conditions.

  3. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    Science.gov (United States)

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient Lewis Acid Ionic Liquid-Catalyzed Synthesis of the Key Intermediate of Coenzyme Q10 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2010-12-01

    Full Text Available An efficient synthesis of a valuable intermediate of coenzyme Q10 by microwave-assisted Lewis acidic ionic liquid (IL-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF4-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF4-AlCl3. The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF4-ZnCl2 showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds. This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ10 on an industrial scale.

  5. Graphite oxide-mediated synthesis of porous CeO2 quadrangular prisms and their high-efficiency adsorptive performance

    International Nuclear Information System (INIS)

    Chang, Ling; Wang, Fengxian; Xie, Dong; Zhang, Jun; Du, Gaohui

    2013-01-01

    Graphical abstract: - Highlights: • Porous CeO 2 quadrangular prisms have been prepared via graphite oxide-mediated synthesis. • Dual-pore hierarchical systems are formed with the pore distributions around 4 nm and 30 nm. • Porous CeO 2 exhibits a rapid adsorption to Rhodamine B with a removal efficiency of ∼99%. • Porous CeO 2 retains the same performances in different pH solutions. - Abstract: We report a graphite oxide-mediated approach for synthesizing porous CeO 2 through a facile hydrothermal process followed by thermal annealing in air. The phase structure, morphology, microstructure and porosity of the products have been revealed by a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N 2 adsorption. The as-prepared CeO 2 products show well-defined quadrangular prism morphology, and they are composed of interconnected nanoparticles with diameters around 30–100 nm. In particular, the dual-pore hierarchical systems are created in the CeO 2 quadrangular prisms with the pore distributions around 4 nm and 30 nm. The dye sorption capacity of the porous CeO 2 is investigated, which exhibits a rapid adsorption to rhodamine B with a high removal efficiency of ∼99%. Moreover, the CeO 2 absorbent retains the same performances in different pH solutions

  6. Zr(HSO44: An Efficient Catalyst for the Synthesis of 3-(2'- Benzothiazolyl-2,3-dihydroquinazolin- 4(1H-ones

    Directory of Open Access Journals (Sweden)

    Liqiang Wu

    2012-01-01

    Full Text Available A simple and efficient synthesis of 3-(2'-benzothiazolyl-2,3-dihydro quinazolin-4(1H- ones has been accomplished by the one-pot condensation of isatoic anhydride, aldehyde and 2-aminobenzothiazole under solvent-free conditions in the presence of Zr(HSO44.

  7. An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones

    International Nuclear Information System (INIS)

    Fu, Weijun; Guo, Wenbo; Zhu, Mei; Xu, Chen; Xu, Fengjuan

    2013-01-01

    An efficient synthesis of 3-halofurans by the intramolecular cyclization of 2-(1-alkynyl)-2-alken-1-ones with cupric halide has been developed. A broad range of 3-chloro- and 3-bromofuran derivatives could be obtained in the present method in moderate to good yields. The 3-halofuran derivatives are potential synthetic intermediates for amplification of molecular complexity

  8. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.; Rodionov, Valentin; Kü hn, Fritz; Reiser, Oliver

    2012-01-01

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient

  9. An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions.

    Science.gov (United States)

    Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz

    2018-04-11

    Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

  10. An Efficient and Short Route for the Synthesis of Reverse Pyrrole Ribonucleosides

    Directory of Open Access Journals (Sweden)

    Pereira Letícia O. R.

    2002-01-01

    Full Text Available The synthesis of reverse pyrrole ribonucleosides methyl 5-C-(4-acetyl-5-methyl-pyrrol-1-yl-2,3-O-isopropylidene-5-deoxy- beta-D-ribofuranoside (10, methyl 5-C-(4-ethoxycarbonyl-5-methyl-pyrrol-1-yl-2,3-O-isopropylidene-5-deoxy- beta-D-ribofuranoside (11, methyl 5-C-(4-acetyl-5-methyl-pyrrol-1-yl-5-deoxy-beta-D-ribofuranoside (12, methyl 5-C-(4-ethoxycarbonyl-5-methyl-pyrrol-1-yl-5-deoxy- beta-D-ribofuranoside (13, methyl 5-deoxy-5-C-(3'-formyl-4'-hydroxypropyl-pyrrol-1'-yl-2,3-O-isopropylidene- beta-D-ribofuranoside (16 and methyl 5-deoxy-5-C-(3'-formyl-pyrrol-1'-yl-2,3-O-isopropylidene- beta-D-ribofuranoside (18 are described starting from readily available methyl 5-amino-5-deoxy-2,3-O-isopropylidene-beta-D-ribofuranoside (9. The synthetic strategy for the construction of the heterocyclic ring was based on the nucleophilic attack of (9 to 4-acetyl-2-n-butoxy-5-methyl-4,5-dihydrofuran (4, 4-carbetoxy-2-n-butoxy-5-methyl-4,5-dihydrofuran (5, 4-formyl-2-n-butoxy-4,5-dihydrofuran (6 and 4-formyl-1-methyl dioxabyciclo[3.3.0]oct-3-en (8, in situ. The later compounds were obtained from reaction between 3-diazo-2,4-pentadione (1, ethyl 2-diazoacetoacetate (2 or diazomalonaldehyde (3 and enol ethers using dirhodium tetraacetate as a catalyst.

  11. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  12. Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation

    Science.gov (United States)

    Yuan, Rui; Yuan, Jing; Wu, Yanping; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-09-01

    An efficient method for the preparation of graphene oxide (GO) was descried through inducing the ultrasonic in the rate-determining step of oxidation processes. Both the transformation procedures and the detailed molecular behavior of parent graphene (PG), partially oxidized graphene (PGO) and GO in H2SO4 and aqueous solution were investigated by molecular dynamic simulation (MD) combining with experiments. The results obtained from MD simulation show that the addition of KMnO4 truly marked the beginning of the reaction which carried out from the border of PG flakes to the centre. This oxidation procedure was the rate-determining step and mainly contained three steps: the boundary carbon atoms oxidized, the distance of the corresponding interlayer enlarged and the oxidizing agent diffused into the unoxidized region, the processes was repeated until oxidized completely. So, the introducing ultrasonic in this section can accelerate not only the exfoliation of layers but also the diffusion of oxidizer and finally raises the oxidation efficiency dramatically. To further clarify these simulation results, the GO was prepared by the method mentioned above. The analyses results for the X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) of the resulting GO show that the ultrasonic method could perfectly shortens the oxidation time from 12 h to 3 h and forms the higher degree of oxidation products with more carboxylic acid groups on its edges. Thus, this study provides a better understanding of the transformation procedures of graphite and proposes an efficient way to produce GOs suitable for various chemical modifications.

  13. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting

    KAUST Repository

    Liang, Hanfeng

    2016-11-09

    Efficient water splitting requires highly active, earth-abundant, and robust catalysts. Monometallic phosphides such as NiP have been shown to be active toward water splitting. Our theoretical analysis has suggested that their performance can be further enhanced by substitution with extrinsic metals, though very little work has been conducted in this area. Here we present for the first time a novel PH plasma-assisted approach to convert NiCo hydroxides into ternary NiCoP. The obtained NiCoP nanostructure supported on Ni foam shows superior catalytic activity toward the hydrogen evolution reaction (HER) with a low overpotential of 32 mV at 10 mA cm in alkaline media. Moreover, it is also capable of catalyzing the oxygen evolution reaction (OER) with high efficiency though the real active sites are surface oxides in situ formed during the catalysis. Specifically, a current density of 10 mA cm is achieved at overpotential of 280 mV. These overpotentials are among the best reported values for non-noble metal catalysts. Most importantly, when used as both the cathode and anode for overall water splitting, a current density of 10 mA cm is achieved at a cell voltage as low as 1.58 V, making NiCoP among the most efficient earth-abundant catalysts for water splitting. Moreover, our new synthetic approach can serve as a versatile route to synthesize various bimetallic or even more complex phosphides for various applications.

  14. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  15. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C-S coupling

    KAUST Repository

    Shen, Chao

    2012-01-01

    Sugar-based benzothiazoles are a new class of molecules promising for many biological applications. Here, we have synthesized a wide range of sugar-based benzothiazoles from readily accessible glycosyl thioureas by chemoselective, palladium-catalyzed C-S coupling reactions. Corroborated by theoretical calculations, a mechanistic investigation indicates that the coordination to the palladium by a pivaloyl carbonyl group and the presence of intramolecular hydrogen bonding play important roles in the efficiency and chemoselectivity of reaction. These fluorescent glycoconjugates can be observed to readily enter mammalian tumor cells and exhibit potential in vitro antitumor activity. This journal is © The Royal Society of Chemistry 2012.

  16. Synthesis and photoactivity of the highly efficient Ag species/TiO2 nanoflakes photocatalysts

    International Nuclear Information System (INIS)

    Liu Yong; Hu Juncheng; Li Jinlin

    2011-01-01

    Research highlights: → Highly efficient Ag species-TiO 2 nanoflakes catalyst was prepared. → The variety and relative amount of Ag species in TiO 2 can be well tuned. → The enhanced photocatalytic activity can be attributed to the Ag species. - Abstract: Ag species/TiO 2 nanoflakes photocatalysts with different relative contents (Ag + , Ag 2+ , Ag 0 ) have been successfully synthesized by a simple template-free synthetic strategy. X-ray photoelectron spectroscopy, X-ray diffraction, and UV-vis diffuse reflectance spectra indicated that the dopant ions (Ag + or Ag 2+ ) were partly incorporated into the titanium dioxide nanoflakes. Meanwhile, part of the silver ions migrated to the surface after the subsequent calcination and aggregated into ultra-small metallic Ag nanoclusters (NCs) (1-2 nm), which are well dispersed on the surface of TiO 2 nanoflakes. The photocatalytic activities of the Ag species/TiO 2 materials obtained were evaluated by testing the photodegradation of the azo dye reactive brilliant X-3B (X-3B) under near UV irradiation. Interestingly, it was found that the maximum photocatalytic efficiency was observed when Ag species coexisted in three valence states (Ag + , Ag 2+ , Ag 0 NCs), which was higher than that of Degussa P25. The high photocatalytic activity of the Ag species/TiO 2 can be attributed to the synergy effect of the three Ag species.

  17. Synthesis, characterization and corrosion inhibition efficiency of N-(4-(Morpholinomethyl Carbamoyl Phenyl Furan-2-Carboxamide

    Directory of Open Access Journals (Sweden)

    N. Zulfareen

    2016-01-01

    Full Text Available A mannich base namely N-(4-(Morpholinomethyl Carbamoyl Phenyl Furan-2-Carboxamide (MFC was synthesized and characterized by FT-IR, 1H NMR, and 13C NMR. The molecular weight of MFC was confirmed by LC-MS. The inhibition effect of MFC on brass in 1 M HCl medium has been investigated by weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and cyclic voltametry (CV. Thermodynamic parameters such as free energy, entropy and enthalpy were calculated to describe the mechanism of corrosion inhibitor. The inhibition efficiency of MFC increases with increase in concentration and temperature ranges from 30 °C to 60 °C. Polarization measurements indicated that MFC acts as a mixed type corrosion inhibitor. AC impedance indicates that Rct value increases with increase in the concentration of inhibitor. CV reveals that the oxidation of the copper is controlled by the addition of inhibitor on the brass metal. Surface analysis using scanning electron microscope (SEM shows a significant morphological improvement on the brass surface with the addition of the inhibitor. The adsorption of MFC on brass obeys Langmuir adsorption isotherm. The molecular structure of MFC was distorted to quantum chemical indices using density functional theory (DFT which indicates that the inhibition efficiency of MFC is closely related to quantum parameters.

  18. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  19. Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor.

    Science.gov (United States)

    Losantos, Raúl; Funes-Ardoiz, Ignacio; Aguilera, José; Herrera-Ceballos, Enrique; García-Iriepa, Cristina; Campos, Pedro J; Sampedro, Diego

    2017-03-01

    Skin cancer incidence has been increasing in the last decades, but most of the commercial formulations used as sunscreens are designed to protect only against solar erythema. Many of the active components present in sunscreens show critical weaknesses, such as low stability and toxicity. Thus, the development of more efficient components is an urgent health necessity and an attractive industrial target. We have rationally designed core moieties with increased photoprotective capacities and a new energy dissipation mechanism. Using these scaffolds, we have synthesized a series of compounds with tunable properties suitable for their use in sunscreens, and enhanced properties in terms of stability, light energy dissipation, and toxicity. Moreover, some representative compounds were included in final sunscreen formulations and a relevant solar protection factor boost was measured. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  1. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  2. Efficient Synthesis of β-Aryl-γ-lactams and Their Resolution with (S-Naproxen: Preparation of (R- and (S-Baclofen

    Directory of Open Access Journals (Sweden)

    Iris J. Montoya-Balbás

    2015-12-01

    Full Text Available An efficient synthesis of enantiomerically-pure β-aryl-γ-lactams is described. The principal feature of this synthesis is the practical resolution of β-aryl-γ-lactams with (S-Naproxen. The procedure is based on the Michael addition of nitromethane to benzylidenemalonates, which was easily obtained, followed by the reduction of the γ-nitroester in the presence of Raney nickel and the subsequent saponification/decarboxylation reaction. The utility of this methodology was highlighted by the preparation of enantiomerically-pure (R- and (S-Baclofen hydrochloride.

  3. Influence of a pulse duration of high-voltage supply on the efficiency of ozone synthesis in the 'needle-plane' electrode system

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Karas, V.I.; Kotjukov, O.V.; Poliakov, O.V.; Pugach, S.G.

    2007-01-01

    We present the results of studies of the electrodynamic characteristics of a barrier less discharge with electrodes of the 'needle-plane' type and a high-voltage pulse of positive polarity, being applied to the edge electrode. The efficiency of ozone synthesis is determined as a function of the pulse duration and repetition rate. It is shown that the electrodynamic characteristics of the discharge and the effectiveness of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of the pulse supply

  4. An efficient one-pot three-component synthesis of α-amino nitriles via Strecker reaction catalysed by bismuth(III nitrate

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2016-09-01

    Full Text Available A convenient and efficient one-pot method for the synthesis of a variety of α-amino nitriles from aldehydes, amines and trimethylsilyl cyanide (TMSCN in the presence of a catalytic amount of Bi(NO33 at room temperature in acetonitrile (MeCN is described. The significant features of this method are simple work-up procedure, inexpensive and non-toxic catalyst, shorter reaction times and excellent product yields. The catalyst Bi(NO33 can be reused. The reusability of the catalyst has been studied for the synthesis of various amino nitriles.

  5. Nickel(0)-catalyzed enantioselective annulations of alkynes and arylenoates enabled by a chiral NHC ligand: efficient access to cyclopentenones.

    Science.gov (United States)

    Ahlin, Joachim S E; Donets, Pavel A; Cramer, Nicolai

    2014-11-24

    Cyclopentenones are versatile structural motifs of natural products as well as reactive synthetic intermediates. The nickel-catalyzed reductive [3+2] cycloaddition of α,β-unsaturated aromatic esters and alkynes constitutes an efficient method for their synthesis. Here, nickel(0) catalysts comprising a chiral bulky C1-symmetric N-heterocyclic carbene ligand were shown to enable an efficient asymmetric synthesis of cyclopentenones from mesityl enoates and internal alkynes under mild conditions. The bulky NHC ligand provided the cyclopentenone products in very high enantioselectivity and led to a regioselective incorporation of unsymmetrically substituted alkynes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2013-01-01

    Full Text Available The electrical discharge machining (EDM system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To examine the relationship between the stability of silver nanofluid and the process parameters, this study quantified the relationship of process parameters to the material removal rate (MRR of silver electrode and silver ion output rate (IOR in the fluid, in order to achieve the most effective process parameter condition. Furthermore, the stability of silver nano-fluid was analyzed by various devices, including UV-Vis spectroscopy, size-distribution, and Zeta-potential analyzer. The effects of MRR, IOR, particle size, Zeta-potential, and optical properties of silver nanofluid under different process parameters are also discussed.

  7. Synthesis of Zirconium-Containing Polyhedral Oligometallasilsesquioxane as an Efficient Thermal Stabilizer for Silicone Rubber

    Directory of Open Access Journals (Sweden)

    Jiedong Qiu

    2018-05-01

    Full Text Available Free radicals play a negative role during the thermal degradation of silicone rubber (SR. Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T5 (temperature at 5% weight loss of SR/Zr-POSS significantly increased by 31.7 °C when compared to the unmodified SR. Notably, after aging 12 h at 280 °C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains.

  8. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  9. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  10. Efficient One-Pot Synthesis of 5-Chloromethylfurfural (CMF from Carbohydrates in Mild Biphasic Systems

    Directory of Open Access Journals (Sweden)

    Dimitris S. Argyropoulos

    2013-07-01

    Full Text Available 5-Halomethylfurfurals can be considered as platform chemicals of high reactivity making them useful for the preparation of a variety of important compounds. In this study, a one-pot route for the conversion of carbohydrates into 5-chloromethylfurfural (CMF in a simple and efficient (HCl-H3PO4/CHCl3 biphasic system has been investigated. Monosaccharides such as D-fructose, D-glucose and sorbose, disaccharides such as sucrose and cellobiose and polysaccharides such as cellulose were successfully converted into CMF in satisfactory yields under mild conditions. Our data shows that when using D-fructose the optimum yield of CMF was about 47%. This understanding allowed us to extent our work to biomaterials, such as wood powder and wood pulps with yields of CMF obtained being comparable to those seen with some of the enumerated mono and disaccharides. Overall, the proposed (HCl-H3PO4/CHCl3 optimized biphasic system provides a simple, mild, and cost-effective means to prepare CMF from renewable resources.

  11. SYNTHESIS OF MAGNETITE NANOPARTICLES AND EVALUATION OF ITS EFFICIENCY FOR ARSENIC REMOVAL FROM SIMULATED INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    A. Khodabakhshi

    2011-09-01

    Full Text Available In this study the efficiency of magnetic nanoparticles for removal of trivalent arsenic from synthetic industrial wastewater was evaluated. The nanoparticles was prepared by sol-gel method and characterized by X-ray methods including XRD, XRF, and SEM, and vibrating sample magnetometer (VSM. The results showed that synthesized nanoparticles were in the size range of 40-300 nm, purity of about 90%, and magnetization of nanoparticles was 36.5emu/g. In initial conditions including: pH=7, As(III concentration of 10 mg/L, nanomagnetite concentration of 1g/L, shaking speed of 250 rpm and 20 minute retention time, 82% of As (III was removed. Competition from common coexisting ions such as Na+, Ni2+, Cu2+, SO42-, and Cl- was ignorable but for NO3- was significant. The adsorption data of magnetite nanoparticles fit well with Freundlich isotherm equations. The adsorption capacity of the Fe3O4 for As (III at pH=7 was obtained as 23.8 mg/g. It was concluded that magnetite nanoparticles have considerable potential in removal of As(III from synthetic industrial wastewaters.

  12. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  13. Direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  14. An asymmetric synthesis of (R)-5-(methylamino)-5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H) -one (1) and its [2-14C]-and [6,7-3H2]-labeled forms

    International Nuclear Information System (INIS)

    Heier, R.F.; Moon, M.W.; Stolle, W.T.; Easter, J.A.; Hsi, R.S.P.

    1996-01-01

    (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo [4,5,1-ij)quinolin-2(1H)-one (1) is a dopamine agonist which shows selectivity for the D2 receptor subtype, and is of interest as a potential drug for the treatment of Parkinson's disease. An asymmetric epoxidation approach has been used to prepare 1 in eleven steps (15% overall yield) from 8-nitroquinoline. An advanced intermediate in this synthesis, tert-butyl (R)-methyl(8-amino-1,2,3,4-tetrahydro-3-quinolinyl)carbamate, has been reacted with [ 14 C]phosgene to provide a two-step synthesis of 1 labeled with carbon-14 at the C-2 position (236 μCi/mg). Bromination of 1 gave the dibromo analogue which was reduced in the presence of tritium gas to give 1 labeled with tritium at the C-6 and C-7 positions (28.5 Ci/mmol). In addition to providing syntheses for labeled forms of the drug which are useful in drug disposition and receptor binding studies, this approach also provides a convenient synthesis for the unlabeled form of drug. (author)

  15. Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis.

    Science.gov (United States)

    Rokitta, Sebastian D; Von Dassow, Peter; Rost, Björn; John, Uwe

    2014-12-02

    Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate

  16. Synthesis of 32P labelled phosphate sources with different solubility and their efficient s as fertilizers

    International Nuclear Information System (INIS)

    De Luca, Edgar Fernando; Boaretto, Antonio Enedi; Muraoka, Takashi

    1999-01-01

    The study was carried out at the Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo (CENA/USP), Brazil. With the objective to determine, by the isotopic tracer, the P recovery by rice (Oriza sativa) plants and eucalypt (Eucalyptus grandis) seedlings from the P sources with different solubilities, an experiment was carried out in greenhouse, using Quartzpsamment soil samples, which is very poor in P content. Monocalcium, bicalcium, and tricalcium phosphate, Ca(H2 32 PO4).H2O, CaH 32 PO4.2H2O and Ca3(32 PO4)2, respectively were obtained in laboratory. Their solubilities and the X-ray difratometry and differential thermal analysis comproved that the laboratory procedures were adequate for obtaining the desired compounds. These products were applied in the soil as fertilizers. Plants were harvested 60 days after growth period, digested and analysed for total P and 32 P counting through Cerenkov effect. The P recovery from the sources varied from 14.1% [Ca(H2 32 PO4).H2O] to 17.0% [CaH 32 PO4.2H2O] for eucalypt, and from 15.0% [Ca3(32 PO4)2] to 22.2% [CaH 32 PO4.2H2O] for rice. The rice plants showed better ability to absorb P from the laboratory prepared sources, but the eucalypt presented higher P nutritional efficiency index. The difference method, used for determining the P recovery, underestimated the eucalypt and rice plant ability to absorb this nutrient compared to the isotopic method

  17. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Altintas Yildirim, Ozlem, E-mail: ozlemaltintas@gmail.com [Department of Metallurgical and Materials Engineering, Selcuk University, Konya (Turkey); Arslan, Hanife; Sönmezoğlu, Savaş [Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman (Turkey); Nanotechnology R& D Laboratory, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2016-12-30

    Highlights: • Photocatalytically active Co-ZnO thin film was obtained by sol-gel method. • Co{sup 2+} doping narrowed the band gap of pure ZnO to an extent of 3.18 eV. • Co-ZnO was effective in MB degradation under visible light. • Optimum dopant content to show high performance was 3 at.%. - Abstract: Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol–gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co{sup 2+} ions were observed to be substitutionally incorporated into Zn{sup 2+} sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  18. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.

    Science.gov (United States)

    Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2017-11-01

    Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester.

    Science.gov (United States)

    Chen, Ke-Cai; Zheng, Ming-Min; Pan, Jiang; Li, Chun-Xiu; Xu, Jian-He

    2017-10-01

    The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipA L315S and LipA S271F , were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipA L315S , LipA S271F , and their combination LipA L315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipA S271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipA S271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m . Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.

  20. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis.

    Science.gov (United States)

    Lu, Yanhong; Yang, Yang; Zhang, Tengfei; Ge, Zhen; Chang, Huicong; Xiao, Peishuang; Xie, Yuanyuan; Hua, Lei; Li, Qingyun; Li, Haiyang; Ma, Bo; Guan, Naijia; Ma, Yanfeng; Chen, Yongsheng

    2016-11-22

    Ammonia synthesis is the single most important chemical process in industry and has used the successful heterogeneous Haber-Bosch catalyst for over 100 years and requires processing under both high temperature (300-500 °C) and pressure (200-300 atm); thus, it has huge energy costs accounting for about 1-3% of human's energy consumption. Therefore, there has been a long and vigorous exploration to find a milder alternative process. Here, we demonstrate that by using an iron- and graphene-based catalyst, Fe@3DGraphene, hot (ejected) electrons from this composite catalyst induced by visible light in a wide range of wavelength up to red could efficiently facilitate the activation of N 2 and generate ammonia with H 2 directly at ambient pressure using light (including simulated sun light) illumination directly. No external voltage or electrochemical or any other agent is needed. The production rate increases with increasing light frequency under the same power and with increasing power under the same frequency. The mechanism is confirmed by the detection of the intermediate N 2 H 4 and also with a measured apparent activation energy only ∼1/4 of the iron based Haber-Bosch catalyst. Combined with the morphology control using alumina as the structural promoter, the catalyst retains its activity in a 50 h test.

  1. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Kim, Younghoon; Walters, Grant; Castañ eda, Juan Andres; Kanjanaboos, Pongsakorn; Yuan, Mingjian; Gong, Xiwen; Fan, Fengjia; Pan, Jun; Hoogland, Sjoerd; Comin, Riccardo; Bakr, Osman; Padilha, Lazaro A.; Nogueira, Ana F.; Sargent, Edward H.

    2016-01-01

    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    Science.gov (United States)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  3. Multifunctional Fe3O4/Au core/satellite nanocubes: an efficient chemical synthesis, characterization and functionalization of streptavidin protein.

    Science.gov (United States)

    Abbas, Mohamed; RamuluTorati, Sri; Kim, CheolGi

    2017-02-14

    A novel and efficient chemical approach for the synthesis of Fe 3 O 4 /Au core/satellite nanocubes is reported. In a one-pot reaction, metallic Au nanodots were successfully deposited on the polyvinylpyrrolidone (PVP) functionalized Fe 3 O 4 nanocube surface for the fabrication of a core/satellite structure (Fe 3 O 4 /Au) by the reduction of HAuCl 4 using ammonia. Transmission electron microscopy and energy dispersive spectroscopy mapping revealed that small Au nanodots of about 2 nm average size decorated the surface of Fe 3 O 4 nanocubes. X-ray diffraction data was used to confirm the formation of both the phases of a cubic inverse spinel structure for Fe 3 O 4 and a bcc structure for Au in the core/satellite structure of Fe 3 O 4 /Au nanocubes. The magnetic properties of the seed Fe 3 O 4 nanocubes and Fe 3 O 4 /Au core/satellite nanocubes were measured by using a superconducting quantum interference device at 300 K. For biological application purposes, the as-synthesized Fe 3 O 4 /Au core/satellite nanocubes were functionalized by cysteamine followed by successful immobilization of streptavidin protein as confirmed through the fluorescence confocal microscopy images.

  4. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre

    2016-10-31

    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  6. Cinchona alkaloids in asymmetric organocatalysis

    NARCIS (Netherlands)

    Marcelli, T.; Hiemstra, H.

    2010-01-01

    This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable

  7. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  8. Recent efforts directed to the development of more sustainable asymmetric organocatalysis.

    Science.gov (United States)

    Hernández, José G; Juaristi, Eusebio

    2012-06-04

    In line with the principles of "green" chemistry, organocatalysis seeks to reduce energy consumption and to optimize the use of the available resources, aiming to become a sustainable strategy in chemical transformations. Nevertheless, during the last decade diverse experimental protocols have made organocatalysis an even "greener" alternative by the use of friendlier reaction conditions, or via the application of solvent-free methodologies, or through the design and synthesis of more selective catalysts, or via the development of multicomponent one-pot organocatalytic reactions, or by the recycling and reuse of organocatalysts, or by means of the application of more energy-efficient activation techniques, among other approaches. In this feature article we review some of the remarkable advancements that have made it possible to develop even more sustainable asymmetric organocatalyzed methodologies.

  9. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    Science.gov (United States)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  10. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  11. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  12. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  13. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  14. Asymmetric Organocatalytic Cycloadditions

    DEFF Research Database (Denmark)

    Mose, Rasmus

    2016-01-01

    has gained broad recognition as it has found several applications in academia and industry. The [4+2] cycloaddition has also been performed in an enantioselective aminocatalytic fashion which allows the generation of optically active products. In this thesis it is demonstrated how trienamines can......Since the onset of the new millennium the field of organocatalysis has undergone a great expansion led by investigations in the field of aminocatalysis. This thesis will address some recent developments in aminocatalyzed cycloadditions and provide a theoretical background hereto. Cycloadditions...... undergo cascade reactions with different electron deficient dienophiles in Diels Alder – nucleophilic ring closing reactions. This methodology opens up for the direct asymmetric formation of hydroisochromenes and hydroisoquinolines which may possess interesting biological activities. It is also...

  15. Chiral four-membered cyclic nitrones; asymmetric induction in the (4+2)-cycloaddition reaction of chiral ynamines and nitroalkenes

    NARCIS (Netherlands)

    van Elburg, P.A.; Honig, G.W.N.; Reinhoudt, David

    1987-01-01

    Chiral four-membered cyclic nitrones were synthesized by the asymmetric (4+2)-cycloaddition of nitroalkenes 1 and chiral ynamines 2. The subsequent stereoselective addition of nucleophiles to these nitrones enabled the synthesis of chiral N-hydroxyazetidines.

  16. Readily Available Chiral Benzimidazoles-Derived Guanidines as Organocatalysts in the Asymmetric α-Amination of 1,3-Dicarbonyl Compounds.

    Science.gov (United States)

    Benavent, Llorenç; Puccetti, Francesco; Baeza, Alejandro; Gómez-Martínez, Melania

    2017-08-11

    The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di- t -butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from ( R )-1-phenylethan-1-amine ( 1 ) and ( S )-1-(2-naphthyl)ethan-1-amine ( 3 ) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products.

  17. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation

    International Nuclear Information System (INIS)

    Ke Jianhao; Wang Jinwen; Deng Riqiang; Wang Xunzhang

    2008-01-01

    Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis

  18. Efficient assessment of modified nucleoside stability under conditions of automated oligonucleotide synthesis: characterization of the oxidation and oxidative desulfurization of 2-thiouridine.

    Science.gov (United States)

    Sochacka, E

    2001-01-01

    In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine.

  19. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    Science.gov (United States)

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  20. Climate agreements under limited participation, asymmetric information and market imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Hagem, Cathrine

    1996-12-31

    This thesis relates to climate agreements and cost efficiency by analysing the formation of a system of quota leading to distributed discharge of emissions between countries. Main fields concerned are the greenhouse effect, the political process, efficient and cost-effective climate agreements, and climate agreements under limited participation, asymmetric information and market imperfections covering fields like limited participation in climate agreements, limited participation and indirect impact on non-participating countries` emissions, limited participation and direct impact on non-participating countries` emissions under asymmetric information, and non-competitive market for tradeable quotas. 166 refs., 7 tabs.

  1. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  2. Zinc (II) [tetra(4-methylphenyl)] Porphyrin: a Novel and Reusable Catalyst for Efficient Synthesis of 2,4,5-trisubstituted Imidazoles Under Ultrasound Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad; Khalili, Shiva Dehghan; Banitaba, Sayed Hossein; Dehghani, Hossein [Univ. of Kashan, Kashan (Iran, Islamic Republic of)

    2011-10-15

    An efficient three-component one-step synthesis of 2,4,5-trisubstituted imidazoles by condensation reaction of 1,2-diketones or α-hydroxyketones with aromatic aldehydes and ammonium acetate using Zinc (II) [tetra (4-methylphenyl)] porphyrin as a novel and reusable catalyst under ultrasound irradiation at ambient temperature is described. In this method, α-hydroxyketones as well as 1,2-diketones were converted to their corresponding 2,4,5-trisubstituted imidazoles in excellent yields.

  3. Polyethylene Glycol (PEG-400: An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrazolo[3,4-b]pyridin-6(7H-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deming Wang

    2013-10-01

    Full Text Available A mild and efficient synthesis of pyrazolo[3,4-b]pyridine-6(7H-one derivatives via a three-component reaction of an aldehyde, Meldrum’s acid and 3-methyl-1H-pyrazol-5-amine using recyclable polyethylene glycol (PEG-400 as a reaction medium is described. This method has the advantages of accessible starting materials, good yields, mild reaction conditions and begin environmentally friendly.

  4. Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu

    2018-05-01

    In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

  5. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-01-01

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  6. Tannic Acid an Efficient Catalyst for the Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deepak S. Kawade

    2015-06-01

    Full Text Available Tannic acid explore a highly efficient catalytic activity for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives in excellent yields via cyclocondensation of aromatic aldehyde, β-naphthol and dimedone. Catalyst having advantages such as it is cheap and biodegradable and the protocol avoids the use of expensive catalyst and toxic solvent. We believe that this methodology is an efficient, simple, highly yielding, time saving and environmentally friendly. DOI: http://dx.doi.org/10.17807/orbital.v7i2.683

  7. Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H-ones in aqueous medium

    Directory of Open Access Journals (Sweden)

    Hamzeh Kiyani

    2017-01-01

    Full Text Available Potassium phthalimide (PPI is employed as an efficient and effective basic organocatalyst for the one-pot three-component reaction of β-oxoesters with hydroxylamine hydrochloride and various aromatic aldehydes. This cyclocondensation reaction was performed in water as an environmentally benign solvent at room temperature giving 3,4-disubstituted isoxazol-5(4H-ones in good to excellent yields. PPI was found to be an effective organocatalyst for the synthesis of isoxazol-5(4H-one system. The advantages of this method are efficiency, clean, easy work-up, high yields, shorter reaction times, inexpensive, and readily available catalyst.

  8. Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery.

    Science.gov (United States)

    Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing

    2018-03-30

    Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. New chiral ligands in asymmetric catalysis. Application in stabilization of metal nanoparticles

    OpenAIRE

    Axet Martí, M. Rosa

    2006-01-01

    Thesis M. Rosa AxetThis thesis deals with the development and application of diphosphite ligands derived from carbohydrates to rhodium-catalysed asymmetric hydroformylation and hydrogenation reactions. The use of various carbohydrate derivative ligands as stabilisers of metal nanoparticles is also studied. The synthesis and the characterisation of the series of diphosphite ligands are described in Chapter 2. The results of the asymmetric hydroformylation of styrene and related vinyl arenes ar...

  10. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2013-06-15

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge.

  11. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    International Nuclear Information System (INIS)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young

    2013-01-01

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge

  12. A Novel and Efficient Five-Component Synthesis of Pyrazole Based Pyrido[2,3-d]pyrimidine-diones in Water: A Triply Green Synthesis

    Directory of Open Access Journals (Sweden)

    Majid M. Heravi

    2016-04-01

    Full Text Available A novel one pot synthesis of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-diones, via a five-component reaction, involving, hydrazine hydrate, ethyl acetoacetate, and 1,3-dimethyl barbituric acid, an appropriate aryl aldehydes and ammonium acetate catalyzed via both of heterogeneous and homogeneous catalysis in water, is reported.

  13. Synthesis of modified proanthocyanidins: easy and general introduction of a hydroxy group at C-6 of catechin; efficient synthesis of elephantorrhizol.

    Science.gov (United States)

    Boyer, François-Didier; Es-Safi, Nour-Eddine; Beauhaire, Josiane; Guernevé, Christine Le; Ducrot, Paul-Henri

    2005-02-01

    A general procedure for the oxidation of catechin derivatives is described, leading to the introduction of a new hydroxy group at C-6. This procedure has been applied for the synthesis of elephantorrhizol, a natural flavan-3-ol exhibiting a fully substituted cycle A.

  14. Force on an Asymmetric Capacitor

    National Research Council Canada - National Science Library

    Bahder, Thomas

    2003-01-01

    .... At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes...

  15. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces

    Science.gov (United States)

    Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.

    2014-04-01

    A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.

  16. Success Factors of Asymmetric Connections - Example of Large Slovenian Enterprises

    Directory of Open Access Journals (Sweden)

    Viktor Vračar

    2014-11-01

    Full Text Available More and more companies realize the fact that networking or partner collaborations, which are based on partner relations between companies, are essential for their long-term existence. In today’s global competitive environment each company is included at least in some different connections. Very common connections occur between large and smaller enterprises, where the so called asymmetric connections occur, which may be understood as the ability of one organisation to establish power, influence and control over the other organisation and its resources. According to numerous statements, the connections between enterprises are very frequently uneffectivenessful, with opinions on the optimal nature of asymmetric connections being quite common as well, whereby it is, as a rule, a synergic complementing of missing content for both partners. To verify the thesis, that companies achieve more competitiveness and effectiveness through connections, whereby the so called asymmetric connections are common, a structural model of the evolution of asymmetric connection has been developed, which connects the theoretically identified factors and all dependent concepts of competitiveness, efficiency and effectiveness. The empirical research also attempts to further expose the factors of asymmetric connections, which affect efficiency and effectiveness of the connected enterprises.

  17. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  18. Asymmetric Gepner models (revisited)

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)] [IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-12-11

    We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution. Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16{sup *},16{sup *},16{sup *}) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3)xSU(2){sub L}xSU(2){sub R}xU(1){sup 5}, the theoretical minimum, and many others are trinification models.

  19. Robotized synthesis of [3-11C]-L-alanine using reaction of asymmetric alkylation of 11CH3I nickel complex of glycine Schiff base with S-2-N-(N'-benzylpropyl)aminobenzophenone

    International Nuclear Information System (INIS)

    Mosevich, I.K.; Kuznetsova, O.F.; Vasil'ev, D.A.; Anichkov, A.A.; Korsakov, M.V.

    1999-01-01

    Synthesis of [3- 11 C]-L-alanine based on 11 CH 3 I nickel complex (1) alkylation using different solvents (tetrahydrofuran, dimethylformamide, acetonitrile, acetone) and catalysts (potassium butylate, sodium hydride) was investigated. It was shown that synthesis of amino acids labelled with 11 C based on complex (1) use permits to obtain preparations with high degree of enantiomeric enrichment. The best results (enantiomeric excess of L-alanine up to 99 %) were obtained in reaction with acetonitrile as a solvent and potassium tret-butylate as a catalyst

  20. Asymmetric bipolar membrane: A tool to improve product purity

    NARCIS (Netherlands)

    Balster, J.H.; Sumbharaju, R.; Srikantharajah, S.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Jordan, V.; Wessling, Matthias

    2007-01-01

    Bipolar membranes (BPMs) are catalytic membranes for electro-membrane processes splitting water into protons and hydroxyl ions. To improve selectivity and current efficiency of BPMs, we prepare new asymmetric BPMs with reduced salt leakages. The flux of salt ions across a BPM is determined by the

  1. Electron Raman scattering in asymmetrical multiple quantum wells

    International Nuclear Information System (INIS)

    Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L

    2005-01-01

    Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers

  2. Finite stage asymmetric repeated games: Both players' viewpoints

    KAUST Repository

    Li, Lichun

    2017-01-05

    In asymmetric zero-sum games, one player has superior information about the game over the other. It is known that the informed players (maximizer) face the tradeoff of exploiting its superior information at the cost of revealing its superior information, but the basic point of the uninformed player (minimizer)\\'s decision making remains unknown. This paper studies the finite stage asymmetric repeated games from both players\\' viewpoints, and derives that not only security strategies but also the opponents\\' corresponding best responses depends only on the informed player\\'s history action sequences. Moreover, efficient LP formulations to compute both player\\'s security strategies are provided.

  3. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  4. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  5. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    Science.gov (United States)

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new Ni(II complex as a novel and efficient recyclable catalyst for the synthesis of pyrano[2,3-d]pyrimidines

    Directory of Open Access Journals (Sweden)

    M. Habibi Kheirabadi

    2016-12-01

    Full Text Available A simple and highly efficient one-pot three-component synthesis of a series of pyrido[2,3-d]pyrimidines from the condensation of barbituric acid, malononitrile and aromatic aldehydes using catalytic amount of a new Ni(II complex based on 5-nitro-N1-((pyridin-2-ylmethylene benzene-1,2-diamine (NiL is reported. This new heterogeneous catalyst has the advantages of being environmentally friendly, simple work-up and high yields character.

  8. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  9. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    Science.gov (United States)

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  10. The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related beta-D-galactofuranosyl-pyranoside disaccharides

    Czech Academy of Sciences Publication Activity Database

    Chlubnová, I.; Králová, B.; Dvořáková, H.; Hošek, P.; Spiwok, V.; Filipp, Dominik; Nugier-Chauvin, C.; Daniellou, R.; Ferrieres, V.

    2014-01-01

    Roč. 12, č. 19 (2014), s. 3080-3089 ISSN 1477-0520 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68378050 Keywords : Galactofuranosyl-pyranoside dipeptides * Araf51 enzymatic synthesis * computer modelling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2014

  11. An efficient synthesis of linear β-(1→6)-galactan oligosaccharides related to plant cell wall glycans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch; Arentoft, Camilla Anna Søholt; Boos, Irene

    2017-01-01

    Galactans are linear structures mainly found in arabinogalactan glycans and RG-I side chains. As a follow-up to our work on both β-(1→3)-linked and β-(1→4)-linked galactans, we herein report a convergent synthesis of β-(1→6)-galactan using our previously synthesized 4,6-benzylidene protected disa...

  12. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  13. Arx: a toolset for the efficient simulation and direct synthesis of high-performance signal processing algorithms

    NARCIS (Netherlands)

    Hofstra, K.L.; Gerez, Sabih H.

    2007-01-01

    This paper addresses the efficient implementation of highperformance signal-processing algorithms. In early stages of such designs many computation-intensive simulations may be necessary. This calls for hardware description formalisms targeted for efficient simulation (such as the programming

  14. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  15. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  16. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high-efficiency

  17. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    Directory of Open Access Journals (Sweden)

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  18. Synthesis of Won-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes

    KAUST Repository

    Han, Shikui

    2017-07-04

    Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn -WX2 (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a proof-of-concept application, the WOn -WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO2.9 NP-WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.

  19. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    Science.gov (United States)

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2018-01-01

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe 3 O 4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe 3 O 4 /L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe 3 O 4 /L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe 3 O 4 /L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe 3 O 4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe 3 O 4 /L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  20. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative