WorldWideScience

Sample records for efficient anaerobic alcoholic

  1. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose

    NARCIS (Netherlands)

    Wisselink, H.W.; Toirkens, M.J.; Del Rosario Franco Berriel, M.; Winkler, A.A.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the

  2. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    Science.gov (United States)

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  3. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  4. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    Directory of Open Access Journals (Sweden)

    Nurdan BÜYÜKKAMACI

    2016-06-01

    Full Text Available The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB and an ultrafiltration (UF membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days and organic loading rates (5-15 kg COD/m3.day. As a result of the experimental studies, maximum treatment efficiency with respect to COD reduction (95% was achieved at 7.5 kg COD/m3.day OLR (CODinfluent=15.000 mg/L, HRT=2 days applications. When OLR was increased to 15 kg COD/m3.day, system performance decreased sharply. Similarly, methane gas production decreased by increasing OLR. After then, feed was changed to real wastewater, which was alcoholic beverage industry effluent. At this study, maximum COD removal efficiency of the system and maximum methane gas production was 88% and 74%, respectively.

  5. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    Science.gov (United States)

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  6. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer`s spent grains (BSG)

    Energy Technology Data Exchange (ETDEWEB)

    Ezeonu, F.C.; Okaka, A.N.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Applied Biochemistry

    1996-12-31

    The process kinetics of optimized anaerobic batch digestion of brewer`s spent grains (BSG) reveal that biomethanation is essentially a first order reaction interrupted intermittently by mixed order reactions. An apparent cellulose degradation efficiency of approximately 60% and a lignin degradation efficiency of about 40% was observed in the optimized process. Using the Ken and Hashimoto model, the operational efficiency of the digester was determined to be 26%. (author)

  8. Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.

    Science.gov (United States)

    Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan

    2014-10-01

    The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule.

    Science.gov (United States)

    Magdalena, Jose Antonio; Ballesteros, Mercedes; González-Fernandez, Cristina

    2018-05-06

    Biogas generation is the least complex technology to transform microalgae biomass into bioenergy. Since hydrolysis has been pointed out as the rate limiting stage of anaerobic digestion, the main challenge for an efficient biogas production is the optimization of cell wall disruption/hydrolysis. Among all tested pretreatments, enzymatic treatments were demonstrated not only very effective in disruption/hydrolysis but they also revealed the impact of microalgae macromolecular composition in the anaerobic process. Although carbohydrates have been traditionally recognized as the polymers responsible for the low microalgae digestibility, protease addition resulted in the highest organic matter solubilization and the highest methane production. However, protein solubilization during the pretreatment can result in anaerobic digestion inhibition due to the release of large amounts of ammonium nitrogen. The possible solutions to overcome these negative effects include the reduction of protein biomass levels by culturing the microalgae in low nitrogen media and the use of ammonia tolerant anaerobic inocula. Overall, this review is intended to evidence the relevance of microalgae proteins in different stages of anaerobic digestion, namely hydrolysis and methanogenesis.

  10. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2005-02-18

    Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.

  11. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge

    Directory of Open Access Journals (Sweden)

    Tatiana Prado

    2013-02-01

    Full Text Available The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV, rotavirus species A (RVA, norovirus genogroup II (NoV GII and the hepatitis A virus (HAV from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%, RVA, NoV GII (45% and HAV (18%, indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management.

  12. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea.

    Science.gov (United States)

    Sutherland, Alastair D; Varela, Joao C

    2014-01-23

    The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems.

  13. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  14. The efficiency of two anaerobic reactor components; Eficiencias de dos componentes de un reactor anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A. [Facultad de Ingenieria. Universidad de Yucatan (Mexico); Martinez Pereda, P.; Fernandez Villagomez, G. [Universidad Nacional Autonoma de Mexico. Division de Estudios de posgrado de la Facultad de Ingenieria. Mexico (Mexico)

    1997-09-01

    This study examined the behaviour of an anaerobic digester in treating pig farm sewage. The experimental model consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total capacity of 534 litres. The digester was installed on a pig farm and its performance under different operating conditions was determined, with hydraulic retention time (HRT) as the critical parameter for evaluating the anaerobic system`s efficiency. The results obtained during the experiment to establish the critical operating parameters are reported. The organic loads applied for a HRT of 1 day were 7.3 kg/m``3/day of total DQO and 3 kg/m``3/day of soluble DQO, following organic matter removal rates (as total DQO) of 36% and 49% respectively and removal rates (as soluble DQO) of 74% in the UASB and 8% in the sedimentator. The efficiency of the reactor as a whole at this HRT time was a removal rate of 74% of total DQO and 75% of soluble DQO. (Author) 25 refs.

  15. The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Haandel, A. van; Cavalcanti, P.F.F. [Univ. of Campina Grande, Campina Grande, PB (Brazil)

    2007-07-01

    Since the seventies Brazil maintains a large production program of alcohol from sugar cane. However, the conventional production process is not very efficient: only 40% of the chemical energy of the cane plant are converted into alcohol. On the other hand large amounts of residues are generated, which in many cases have an adverse impact on the environment. In this paper it is shown that what is perceived as a residue, is in fact a subproduct that can be transformed into useful products that can be used in the industrial or agricultural activities of distilleries and sugar mills or be commercialized, thus increasing the profitability of the companies and reducing the environmental impact of these industries. The most important subproducts are bagasse (the solid phase of the cane plant) and stillage (the waste water resulting from the distillation operation). One possibility for application of bagasse is combustion for electric energy generation, which has a potential of 1 MWh per m{sup 3} produced alcohol. By applying anaerobic digestion to stillage, it is possible to generate methane which can be used for electric power generation in explosion motors with a potential of 0,5 MWh per m{sup 3} produced alcohol. Thus there is a production potential of 1,5 MWh per m{sup 3} produced alcohol from the subproducts generated at alcohol distilleries. These operations are already installed at full scale at some industries in Brazil and hold the promise not only to increase substantially the output of useful products, but also have the potential to reduce the environmental impact and can increase the profitability of the entreprises. At lab scale it was demonstrated that there are perspectives of an even larger increase of electric power production if anaerobic digestion of bagasse is applied. The application of Microbial Fuel Cells (MFCs) is a promising development for the near future to increase the useful energy output even further. The production potential of electric

  16. Radiotracer study on the efficiency of a cylindrical 2-stage anaerobic sludge digester

    International Nuclear Information System (INIS)

    Sung-Hee Jung; Joon-Ha Jin; Jong-Bum Kim

    2004-01-01

    Radiotracer experiments were carried out on a cylindrical 2-stage anaerobic sludge digester in order to investigate the improvement of their efficiency by means of RTD (residence time distribution) measurements before and after cleaning up the inside of the digester. The tracer was scandium in an EDTA solution which forms such a stable complex compound to keep the isotope form being adsorbed onto the surface of the pipelines or the wall. It was injected into the digester by pressurized nitrogen gas and its movement was monitored by NaI(Tl) scintillation detectors installed around the digester and recorded for a month by a 24-channel data acquisition system specially developed for radiotracer experiments by the Korea Tracer Group of KAERI. The experimental data was analysed for the MRT (mean residence time) and other parameters characterizing the flow behaviour. (author)

  17. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  18. Exergy Analysis of the Musculoskeletal System Efficiency during Aerobic and Anaerobic Activities

    Directory of Open Access Journals (Sweden)

    Gabriel Marques Spanghero

    2018-02-01

    Full Text Available The first and second laws of thermodynamics were applied to the human body in order to evaluate the quality of the energy conversion during muscle activity. Such an implementation represents an important issue in the exergy analysis of the body, because there is a difficulty in the literature in evaluating the performed power in some activities. Hence, to have the performed work as an input in the exergy model, two types of exercises were evaluated: weight lifting and aerobic exercise on a stationary bicycle. To this aim, we performed a study of the aerobic and anaerobic reactions in the muscle cells, aiming at predicting the metabolic efficiency and muscle efficiency during exercises. Physiological data such as oxygen consumption, carbon dioxide production, skin and internal temperatures and performed power were measured. Results indicated that the exergy efficiency was around 4% in the weight lifting, whereas it could reach values as high as 30% for aerobic exercises. It has been shown that the stationary bicycle is a more adequate test for first correlations between exergy and performance indices.

  19. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols.

    Science.gov (United States)

    Alsafadi, Diya; Alsalman, Safaa; Paradisi, Francesca

    2017-11-07

    Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.

  20. Anaerobic Nitroxide-Catalyzed Oxidation of Alcohols Using the NO+/NO center dot Redox Pair

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Jahn, Ullrich

    2014-01-01

    Roč. 16, č. 1 (2014), s. 58-61 ISSN 1523-7060 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : oxidation * nitroxides * aldehydes * alcohols * ketones * alkyl nitrites Subject RIV: CC - Organic Chemistry Impact factor: 6.364, year: 2014

  1. Efficient loading of primary alcohols onto a solid phase using a trityl bromide linker

    DEFF Research Database (Denmark)

    Crestey, François; Ottesen, Lars Korsgaard; Jaroszewski, Jerzy Witold

    2008-01-01

    The Letter describes an improved, rapid and mild strategy for the loading of primary alcohols onto a polystyrene trityl resin via a highly reactive trityl bromide linker. This protocol facilitates an efficient resin loading even of acid-sensitive or heat-labile alcohols, which otherwise require...... expensive or non-commercial resin types. Secondary alcohols were only attached in moderate to low yields, while attempts to load a tertiary alcohol expectedly failed. Importantly, selective attachment of diols via a primary alcohol group in the presence of more hindered alcohol groups proved possible....... The effects of activation time and reagent excess as well as alcohol structure were investigated. This improved method provides a convenient access to O-linked resin-bound N-Fmoc-protected amino alcohols that may be employed in SPS of peptides with C-terminal alcohol functionalities. In the case...

  2. PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER

    OpenAIRE

    Lopes da Silva, Wilson Tadeu; de Novaes, Antonio Pereira; Kuroki, Vivian; de Almeida Martelli, Lilian Fernanda; Magnoni Junior, Lourenco

    2012-01-01

    PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER. The use of biodigester for basic and environmental sanitation has large demand in Brazil. A biodigester was built to treat conjunctly the human and pig feces and urine, regarding to its future application in rural small towns. The results show that the biodigester can reduce 90% of COD and BOD and, up to 99.99% of thermotolerant coliforms. The treated effluent ha...

  3. Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise

    DEFF Research Database (Denmark)

    Gorostiaga, Esteban M.; Navarro-Amézqueta, Ion; Cusso, Roser

    2010-01-01

    utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r =¿-0.76; Pparallel decreases (P

  4. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time.

    Science.gov (United States)

    Kim, Dong-Jin; Lee, Jonghak

    2012-01-01

    Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.

  5. Application of Methanobrevibacter acididurans in anaerobic digestion.

    Science.gov (United States)

    Savant, D V; Ranade, D R

    2004-01-01

    To operate anaerobic digesters successfully under acidic conditions, hydrogen utilizing methanogens which can grow efficiently at low pH and tolerate high volatile fatty acids (VFA) are desirable. An acid tolerant hydrogenotrophic methanogen viz. Methanobrevibacter acididurans isolated from slurry of an anaerobic digester running on alcohol distillery wastewater has been described earlier by this lab. This organism could grow optimally at pH 6.0. In the experiments reported herein, M. acididurans showed better methanogenesis under acidic conditions with high VFA, particularly acetate, than Methanobacterium bryantii, a common hydrogenotrophic inhabitant of anaerobic digesters. Addition of M. acididurans culture to digesting slurry of acidogenic as well as methanogenic digesters running on distillery wastewater showed increase in methane production and decrease in accumulation of volatile fatty acids. The results proved the feasibility of application of M. acididurans in anaerobic digesters.

  6. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  7. Highly Efficient Formylation of Alcohols, Thiols and Aniline ...

    African Journals Online (AJOL)

    NJD

    2008-11-05

    formyl compounds in quantitative yields. In a similar manner, various substituted aromatic and aliphatic hydroxyl groups were smoothly formylated under mild reaction conditions and gave the desired O-formylated alcohols in high.

  8. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  9. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system

    KAUST Repository

    Oosterkamp, Margreet J.; Mé ndez-Garcí a, Celia; Kim, Chang-H.; Bauer, Stefan; Ibá ñ ez, Ana B.; Zimmerman, Sabrina; Hong, Pei-Ying; Cann, Isaac K.; Mackie, Roderick I.

    2016-01-01

    Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions. Furthermore, we found that optimal conditions for biological treatment of thin stillage were similar for both mesophilic and thermophilic reactors. Bar-coded pyrosequencing of the 16S rRNA gene identified different microbial communities in mesophilic and thermophilic reactors and these differences in the microbial communities could be linked to the composition of the thin stillage.

  10. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    Science.gov (United States)

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Møller, H.B.; Ahring, Birgitte Kiær

    2004-01-01

    of the principles of the anaerobic digestion process and to an optimization of its large-scale implementation. In order to get an overview of the current situation concerning the treatment of the organic fraction of municipal solid waste (OFMSW) in Denmark, interviews were carried out with operators of the biogas...... in paper bags is preferable to collection in plastic bags and successive separation of plastics in a waste processing treatment plant...... plants where OFMSW is treated and the municipality staff responsible for waste management. With the aim of fulfilling the governmental goal to treat 150 000 tons of OFMSW by the year 2004 mainly by anaerobic digestion, the different municipalities are investigating different concepts of waste collection...

  12. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain pine species

    International Nuclear Information System (INIS)

    Topa, M.A.

    1984-01-01

    Seedlings of pond (Pinus serotina (Michx.)), sand (P. clausa (Engelm.) Sarg.), and loblolly pines (P. taeda L., drought-hardy and wet site seed sources) were grown in a non-circulating, continuously-flowing solution culture under anaerobic or aerobic conditions to determine the effects of anaerobics on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond pines was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with specific morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root in anaerobically-grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation experiments. Tissue elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term 32 p uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass, since H 2 PO 4 - influx in the anaerobically-grown seedlings was more than twice that of their aerobic counterparts. Sand pine possessed the physiological but not morphological capacity to increase P uptake under anaerobic growth conditions. Pond and wet-site loblolly pine seedlings maintained root growth, perhaps through enhanced internal root aeration - an advantage in field conditions where the phosphorus supply may be limited or highly localized

  13. Efficient and simple approaches towards direct oxidative esterification of alcohols.

    Science.gov (United States)

    Ray, Ritwika; Jana, Rahul Dev; Bhadra, Mayukh; Maiti, Debabrata; Lahiri, Goutam Kumar

    2014-11-17

    The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-01-01

    in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant potential to improve the sustainability

  15. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system.

    Science.gov (United States)

    Oosterkamp, Margreet J; Méndez-García, Celia; Kim, Chang-H; Bauer, Stefan; Ibáñez, Ana B; Zimmerman, Sabrina; Hong, Pei-Ying; Cann, Isaac K; Mackie, Roderick I

    2016-01-01

    This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40 °C) and thermophilic (55 °C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. Energy and sugar cane stillage have a high chemical oxygen demand (COD of 43 and 30 g/L, respectively) and low pH (pH 4.3). Furthermore, the acetate concentration in sugar cane stillage was high (45 mM) but was not detected in energy cane stillage. There was also a high amount of lactate in both types of stillage (35-37 mM). The amount of sugars was 200 times higher in energy cane stillage compared to sugar cane stillage. Although there was a high concentration of sulfate (18 and 23 mM in sugar and energy cane stillage, respectively), both thin stillages were efficiently digested anaerobically with high COD removal under mesophilic and thermophilic temperature conditions and with an organic loading rate of 15-21 g COD/L/d. The methane production rate was 0.2 L/g COD, with a methane percentage of 60 and 64, and 92 and 94 % soluble COD removed, respectively, by the mesophilic and thermophilic reactors. Although both treatment processes were equally efficient, there were different microbial communities involved possibly arising from the differences in the composition of energy cane and sugar cane stillage. There was more acetic acid in sugar cane stillage which may have promoted the occurrence of aceticlastic methanogens to perform a direct conversion of acetate to methane in reactors treating sugar cane stillage. Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions. Furthermore, we found

  16. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system

    KAUST Repository

    Oosterkamp, Margreet J.

    2016-06-06

    Background This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40 °C) and thermophilic (55 °C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. Results Energy and sugar cane stillage have a high chemical oxygen demand (COD of 43 and 30 g/L, respectively) and low pH (pH 4.3). Furthermore, the acetate concentration in sugar cane stillage was high (45 mM) but was not detected in energy cane stillage. There was also a high amount of lactate in both types of stillage (35–37 mM). The amount of sugars was 200 times higher in energy cane stillage compared to sugar cane stillage. Although there was a high concentration of sulfate (18 and 23 mM in sugar and energy cane stillage, respectively), both thin stillages were efficiently digested anaerobically with high COD removal under mesophilic and thermophilic temperature conditions and with an organic loading rate of 15–21 g COD/L/d. The methane production rate was 0.2 L/g COD, with a methane percentage of 60 and 64, and 92 and 94 % soluble COD removed, respectively, by the mesophilic and thermophilic reactors. Although both treatment processes were equally efficient, there were different microbial communities involved possibly arising from the differences in the composition of energy cane and sugar cane stillage. There was more acetic acid in sugar cane stillage which may have promoted the occurrence of aceticlastic methanogens to perform a direct conversion of acetate to methane in reactors treating sugar cane stillage. Conclusions Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions

  17. Mild and Highly Efficient Copper(I Inspired Acylation of Alcohols and Polyols

    Directory of Open Access Journals (Sweden)

    Enoch A. Mensah

    2017-01-01

    Full Text Available A new and highly efficient method mediated by tetrakis(acetonitrilecopper(I triflate for activating both simple and highly hindered anhydrides in the acylation of alcohols and polyols is described. This new acylation method is mild and mostly proceeds at room temperature with low catalyst loading. The method is versatile and has been extended to a wide variety of different alcohol substrates to afford the corresponding ester products in good to excellent yields.

  18. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion.

    Science.gov (United States)

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J; Frear, Craig

    2013-12-01

    The impacts of four common animal husbandry antibiotics (ampicillin, florfenicol, sulfamethazine, and tylosin) on anaerobic digestion (AD) treatment efficiency and the potential for antibiotic degradation during digestion were evaluated. Sulfamethazine and ampicillin exhibited no impact on total biogas production up to 280 and 350 mg/L, respectively, although ampicillin inhibited biogas production rates during early stages of AD. Tylosin reduced biogas production by 10-38% between 130 and 913 mg/L. Florfenicol reduced biogas by ≈ 5%, 40% and 75% at 6.4, 36 and 210 mg/L, respectively. These antibiotic concentrations are higher than commonly seen for mixed feedlot manure, so impacts on full scale AD should be minimal. Antibiotic degradation products were found, confirming AD effectively degraded ampicillin, florfenicol, and tylosin, although some products were persistent throughout the process. Contamination of AD solid and liquid effluents with sulfamethazine and antibiotic transformation products from florfenicol and tylosin could present an environmental concern. Published by Elsevier Ltd.

  19. Alcohol

    Science.gov (United States)

    ... because that's how many accidents occur. What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  20. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  1. Alcohol

    International Nuclear Information System (INIS)

    Navarro Junior, L.

    1988-01-01

    The alcohol production as a secondary energy source, the participation of the alcohol in Brazilian national economic and social aspects are presented. Statistical data of alcohol demand compared with petroleum by-products and electricity are also included. (author)

  2. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure.

    Science.gov (United States)

    Yin, Fubin; Dong, Hongmin; Ji, Chao; Tao, Xiuping; Chen, Yongxing

    2016-10-01

    Manure containing antibiotics is considered a hazardous substance that poses a serious health risk to the environment and to human health. Anaerobic digestion (AD) could not only treatment animal waste but also generate valuable biogas. However, the interaction between antibiotics in manure and the AD process has not been clearly understood. In this study, experiments on biochemical methane potential (BMP) were conducted to determine the inhibition of the AD process from antibiotics and the threshold of complete antibiotic removal. The thresholds of the complete antibiotic removal were 60 and 40mg/kg·TS for CTC and OTC, respectively. CTC and OTC with concentrations below thresholds could increase the BMP of manure. When the CTC and OTC concentrations exceeded the thresholds, they inhibited manure fermentation, and the CTC removal rate declined exponentially with concentration (60-500mg/kg·TS). The relationship between OTC antibiotic concentration and its removal rate in AD treatment was described with exponential (40-100mg/kg·TS) and linear equations (100-500mg/kg·TS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  4. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content.

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zhou, Qi

    2009-06-01

    Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m(3) d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.

  5. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  6. Ob/ob mouse livers show decreased oxidative phosphorylation efficiencies and anaerobic capacities after cold ischemia.

    Directory of Open Access Journals (Sweden)

    Michael J J Chu

    Full Text Available BACKGROUND: Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. METHODS: Livers from 10-week old leptin-deficient obese (ob/ob, n = 9 and lean C57 mice (n = 9 were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. RESULTS: Ob/ob and lean mice livers showed severe (>60% macrovesicular and mild (<30% microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. CONCLUSIONS: Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in

  7. Impact of co-pretreatment of calcium hydroxide and steam explosion on anaerobic digestion efficiency with corn stover.

    Science.gov (United States)

    Ji, Jinli; Zhang, Jiyu; Yang, Liutianyi; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2017-06-01

    Anaerobic digestion (AD) is an effective way to utilize the abundant resource of corn stover (CS). In this light, Ca(OH) 2 pretreatment alone, steam explosion (SE) pretreatment alone, and co-pretreatment of Ca(OH) 2 and SE were applied to improve the digestion efficiency of CS. Results showed that AD of co-pretreated CS with 1.0% Ca(OH) 2 and SE at 1.5 MPa achieved the highest cumulative methane yield of [Formula: see text], which was 61.54% significantly higher (p < .01) than untreated CS. The biodegradability value of CS after co-pretreatment enhanced from 43.03% to 69.52%. Methane yield could be well fitted by the first-order model and the modified Gompertz model. In addition, composition and structural changes of CS after pretreatment were analyzed by a fiber analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The validated results indicated that co-pretreatment of Ca(OH) 2 and SE was efficient to improve the digestion performance of CS and might be a suitable method for agricultural waste pretreatment in the future AD industry.

  8. Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow

    International Nuclear Information System (INIS)

    Ericsson, Niclas; Nordberg, Åke; Sundberg, Cecilia; Ahlgren, Serina; Hansson, Per-Anders

    2014-01-01

    Highlights: • Using LCA, CHP from willow use in biogas was compared with direct combustion. • Direct combustion was ninefold more energy-efficient. • Biogas had a much greater cooling effect on global mean surface temperature. • The effects of soil carbon changes on temperature over time differed. • Biogas had long-term temperature effects, direct combustion short-term effects. - Abstract: Short rotation coppice willow is an energy crop used in Sweden to produce electricity and heat in combined heat and power plants. Recent laboratory-scale experiments have shown that SRC willow can also be used for biogas production in anaerobic digestion processes. Here, life cycle assessment is used to compare the climate impact and energy efficiency of electricity and heat generated by these measures. All energy inputs and greenhouse gas emissions, including soil organic carbon fluxes were included in the life cycle assessment. The climate impact was determined using time-dependent life cycle assessment methodology. Both systems showed a positive net energy balance, but the direct combustion system delivered ninefold more energy than the biogas system. Both systems had a cooling effect on the global mean surface temperature change. The cooling impact per hectare from the biogas system was ninefold higher due to the carbon returned to soil with the digestate. Compensating the lower energy production of the biogas system with external energy sources had a large impact on the result, effectively determining whether the biogas scenario had a net warming or cooling contribution to the global mean temperature change per kWh of electricity. In all cases, the contribution to global warming was lowered by the inclusion of willow in the energy system. The use of time-dependent climate impact methodology shows that extended use of short rotation coppice willow can contribute to counteract global warming

  9. [Alcohol].

    Science.gov (United States)

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal.

  10. Course of the anaerobic alcohol fermentation by Saccharomyces cerevisiae simulated through a mathematical model of the glycolysis

    Energy Technology Data Exchange (ETDEWEB)

    Martiny, S C

    1972-01-01

    The model presented here attempts to simulate the course of the conversion of glucose to alcohol through a simulation of the glycolytic flux rate. The model is based on dynamic stationarity through the glycolytic reactions, equilibrium in the action of ATPase. The model does not simulate experimental data, mainly because ATPase cannot keep pace with ATP formation. The simulations stress the need for better understanding of the mechanism of ATP removal within the cell.

  11. Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Nadiya Shahandeh

    2018-02-01

    Full Text Available Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, located at Ahwaz West Wastewater Treatment Plant, Ahwaz, southern Iran in phosphorus and organic material removal was evaluated to determine the effect of the aerobic-anaerobic step time on the efficiency of nitrogen and phosphorus removal, the effect of changing the sequence of steps and the effect of time ratio on phosphorus removal efficiency. A reactor of 8 L was used. Influent contained 397 and 10.7 mg/l COD and phosphorus, respectively. The pilot plant started with a 24 h cycle including four cycles of 6 h, as follows: 1- Loading (15 min, 2-Anaerobic (2 h-Aerobic (2 h, 3- Settling (1 h, Idleness (30 min and 5- decant (15 min. Results: After reaching steady conditions (6 months, Removal percentages of phosphorus, BOD5, COD, and TSS in The SBR over a period of 6 months was 79%, 86%, 89% and 83%, respectively. Conclusion: Result of this study can be used for designing and optimum operation of sequencing batch reactors.

  12. Etherification of Ferrocenyl Alcohol by Highly-efficient Ytterbium Triflate%Etherification of Ferrocenyl Alcohol by Highly-efficient Ytterbium Triflate

    Institute of Scientific and Technical Information of China (English)

    Jiang, Ran; Shen, Yechen; Zhang, Ying; Xu, Xiaoping; Shao, Jinjun; Ji, Shunjun

    2011-01-01

    Nucleophilic substitution of ferrocenyl alcohols with various aliphatic alcohols in the presence of a catalytic amount of ytterbium triflate [Yb(OTf)3] was studied. It was found the unsymmetrical ferrocenyl ethers could be easily obtained in excellent yields when the reactions were performed in primary and secondary alcohols. However, in other organic non-alcoholic solvents such as acetonitrile, the formation of symmetrical ferrocenyl ethers rather than unsymmetrical ones was observed.

  13. Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society.

    Science.gov (United States)

    Sun, Zhao-Yong; Liu, Kai; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    In order to develop a resource recycling-oriented society, an efficient anaerobic co-digestion process for garbage, excreta and septic tank sludge was studied based on the quantity of each biomass waste type discharged in Ooki machi, Japan. The anaerobic digestion characteristics of garbage, excreta and 5-fold condensed septic tank sludge (hereafter called condensed sludge) were determined separately. In single-stage mesophilic digestion, the excreta with lower C/N ratios yielded lower biogas volumes and accumulated higher volumes of volatile fatty acid (VFA). On the other hand, garbage allowed for a significantly larger volatile total solid (VTS) digestion efficiency as well as biogas yield by thermophilic digestion. Thus, a two-stage anaerobic co-digestion process consisting of thermophilic liquefaction and mesophilic digestion phases was proposed. In the thermophilic liquefaction of mixed condensed sludge and household garbage (wet mass ratio of 2.2:1), a maximum VTS loading rate of 24g/L/d was achieved. In the mesophilic digestion of mixed liquefied material and excreta (wet mass ratio of 1:1), biogas yield reached approximately 570ml/g-VTS fed with a methane content of 55% at a VTS loading rate of 1.0g/L/d. The performance of the two-stage process was evaluated by comparing it with a single-stage process in which biomass wastes were treated separately. Biogas production by the two-stage process was found to increase by approximately 22.9%. These results demonstrate the effectiveness of a two-stage anaerobic co-digestion process in enhancement of biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  15. Alcohol

    Science.gov (United States)

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria to change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  16. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  17. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    Science.gov (United States)

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Utilization of vinasse effluents from an anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F J.C.B.; Rocha, B B.M.; Viana, C E; Toledo, A C

    1986-01-01

    An anaerobic reactor was developed to biodigest alcohol distillery wastes. A further post-treatment of the effluent reduced the level of pollution to the point of eventually discharging into streams and rivers. The present work also analyses the use of biodigested vinasse as a source of food for fish. Very high efficiencies were obtained during primary and secondary treatment of vinasse effluent, as demonstrated by the greatly reduced organic load. The utilization of the treated effluent as a source of fish food presents an excellent alternative for the Brazilian alcohol industry. (Refs. 6).

  19. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  20. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order

  1. Alcohol

    Science.gov (United States)

    ... to do. Wondering if adding a glass of wine or beer might help lower your blood glucose if it is high? The effects of alcohol can be unpredictable and it is not recommended as a treatment for high blood glucose. The risks likely outweigh any benefit that may be seen in blood glucose alone. ...

  2. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system

    OpenAIRE

    Oosterkamp, Margreet J.; M?ndez-Garc?a, Celia; Kim, Chang-H.; Bauer, Stefan; Ib??ez, Ana B.; Zimmerman, Sabrina; Hong, Pei-Ying; Cann, Isaac K.; Mackie, Roderick I.

    2016-01-01

    Background This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40??C) and thermophilic (55??C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. Results Energy and sugar cane stillage have a high chemical oxygen demand (COD o...

  3. Ag@polypyrrole: A highly efficient nanocatalyst for the N-alkylation of amines using alcohols.

    Science.gov (United States)

    Mandi, Usha; Kundu, Sudipta K; Salam, Noor; Bhaumik, Asim; Islam, Sk Manirul

    2016-04-01

    We have synthesized Ag@polypyrrole nanomaterial by dispersing ultrafine silver nanoparticles (Ag NPs) over the organic polymer polypyrrole. The Ag@polypyrrole material has been characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), Fourier transform infrared (FT-IR), ultraviolet-visible absorption (UV-vis) and atomic adsorption spectroscopy (AAS), and thermogravimetric analysis (TGA). The XRD pattern suggested the cubic crystalline phase of Ag NPs in Ag@polypyrrole. TEM image analysis revealed that silver nanoparticles are highly dispersed in the polymer matrix. The Ag@polypyrrole acts as an efficient and versatile heterogeneous nanocatalyst in the N-alkylation of amines using alcohols. The catalyst can be easily prepared, highly robust and reused several times without decrease in its catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    Science.gov (United States)

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  5. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  6. The phenomenon of granulation of anaerobic sludge

    NARCIS (Netherlands)

    Hulshoff Pol, L.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials

  7. Supplementary Material for: Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system

    KAUST Repository

    Oosterkamp, Margreet

    2016-01-01

    Abstract Background This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40 °C) and thermophilic (55 °C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. Results Energy and sugar cane stillage have a high chemical oxygen demand (COD of 43 and 30 g/L, respectively) and low pH (pH 4.3). Furthermore, the acetate concentration in sugar cane stillage was high (45 mM) but was not detected in energy cane stillage. There was also a high amount of lactate in both types of stillage (35–37 mM). The amount of sugars was 200 times higher in energy cane stillage compared to sugar cane stillage. Although there was a high concentration of sulfate (18 and 23 mM in sugar and energy cane stillage, respectively), both thin stillages were efficiently digested anaerobically with high COD removal under mesophilic and thermophilic temperature conditions and with an organic loading rate of 15–21 g COD/L/d. The methane production rate was 0.2 L/g COD, with a methane percentage of 60 and 64, and 92 and 94 % soluble COD removed, respectively, by the mesophilic and thermophilic reactors. Although both treatment processes were equally efficient, there were different microbial communities involved possibly arising from the differences in the composition of energy cane and sugar cane stillage. There was more acetic acid in sugar cane stillage which may have promoted the occurrence of aceticlastic methanogens to perform a direct conversion of acetate to methane in reactors treating sugar cane stillage. Conclusions Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and

  8. N,N-dichloro-4-methylbenzenesulphonimide as a novel and efficient catalyst for acetylation of alcohols under mild conditions

    Directory of Open Access Journals (Sweden)

    Khazaei Ardeshir

    2006-01-01

    Full Text Available Structurally diverse alcohols were acetylated in a clean and efficient reaction with acetic anhydride based on the use of a catalytic amount of N,N-dichloro-4-methylbenzenesulphonimide in dichloromethane. All reactions were performed at room temperature in good to excellent yields.

  9. Mild and Efficient Oxidation of Aromatic Alcohols and Other Substrates Using NiO2/CH3COOH System

    Directory of Open Access Journals (Sweden)

    Mohammad Kooti

    2008-01-01

    Full Text Available A variety of aromatic alcohols were efficiently oxidized to their corresponding aldehydes and ketones in good to excellent yields using nickel peroxide activated by acetic acid. Some thiols and amines were also readily oxidized by this oxidant under mild conditions.

  10. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    Science.gov (United States)

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  11. Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency

    International Nuclear Information System (INIS)

    Jo, Heuntae; Prajitno, Hermawan; Zeb, Hassan; Kim, Jaehoon

    2017-01-01

    Highlights: • Non-catalytic and non-hydrogen based bio-oil upgrading was conducted using scMeOH. • 16–40 wt% alcohols were consumed during the upgrading. • High bio-oil yield of 78.4 wt% and low TAN of 4.0 mg KOH/g were achieved. • Effect of supercritical alcohols, reaction times, temperature and bio-oil concentration was conducted. • scMeOH upgrading has good energy recovery (ER) and energy efficiency (EE) compared with scEtOH and scIPA. - Abstract: Herein, a supercritical methanol (scMeOH) route for efficient upgrading of the low-boiling fraction of fast pyrolysis bio-oil containing a large amount of low-molecular-weight acids and water was investigated. The effects of various reaction parameters, including the temperature, concentration, and time, were explored. The yield of bio-oil and the energy efficiency of the scMeOH upgrading process were determined based on the amount of methanol that participated in the reaction during upgrading and fractionation of the upgraded heavy-fraction bio-oils (UHBOs) and upgraded light-fraction bio-oils (ULBOs). Upgrading at 400 °C with 9.1 wt% bio-oil for 30 min generated a high bio-oil yield of 78.4 wt% with a low total acid number (TAN) of 4.0 mg-KOH/g-oil and a higher heating value of 29.9 MJ kg −1 . The energy recovery (ER) was 94–131% and the energy efficiency (EE) was in the range of 79–109% depending on the calorific values of the ULBOs. Compared with upgrading in supercritical ethanol and supercritical isopropanol, less alcohol participation, a lower TAN, and higher ER and EE were achieved with scMeOH upgrading. Plausible pathways for bio-oil upgrading in supercritical alcohols based on detailed compositional analysis of the UHBO, ULBO, and gaseous products were discussed.

  12. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.

    Science.gov (United States)

    Zhao, Chunhua; Zhao, Qiuwei; Li, Yin; Zhang, Yanping

    2017-06-24

    The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.

  13. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  14. Anaerobic treatment with biogas recovery of beverage industry waste water

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, E; Zanoni, G [Passavant Impianti, Novate Milanese (Italy)

    1992-03-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD.

  15. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences

    International Nuclear Information System (INIS)

    Oster, J.; Parker, Jeffrey; Brassard, Lothar

    2001-01-01

    The versatile application of polyvinyl-alcohol-based magnetic M-PVA beads is demonstrated in the separation of genomic DNA, sequence specific nucleic acid purification, and binding of bacteria for subsequent DNA extraction and detection. It is shown that nucleic acids can be obtained in high yield and purity using M-PVA beads, making sample preparation efficient, fast and highly adaptable for automation processes

  16. Assessment of microbial viability in municipal sludge following ultrasound and microwave pretreatments and resulting impacts on the efficiency of anaerobic sludge digestion.

    Science.gov (United States)

    Cella, Monica Angela; Akgul, Deniz; Eskicioglu, Cigdem

    2016-03-01

    A range of ultrasonication (US) and microwave irradiation (MW) sludge pretreatments were compared to determine the extent of cellular destruction in micro-organisms within secondary sludge and how this cellular destruction translated to anaerobic digestion (AD). Cellular lysis/inactivation was measured using two microbial viability assays, (1) Syto 16® Green and Sytox® Orange counter-assay to discern the integrity of cellular membranes and (2) a fluorescein diacetate assay to understand relative enzymatic activity. A range of MW intensities (2.17-6.48 kJ/g total solids or TS, coinciding temperatures of 60-160 °C) were selected for comparison via viability assays; a range of corresponding US intensities (2.37-27.71 kJ/g TS, coinciding sonication times of 10-60 min at different amplitudes) were also compared to this MW range. The MW pretreatment of thickened waste activated sludge (tWAS) caused fourfold to fivefold greater cell death than non-pretreated and US-pretreated tWAS. The greatest microbial destruction occurred at MW intensities greater than 2.62 kJ/g TS of sludge, after which increased energy input via MW did not appear to cause greater microbial death. In addition, the optimal MW pretreatment (80 °C, 2.62 kJ/g TS) and corresponding US pretreatment (10 min, 60 % amplitude, 2.37 kJ/g TS) were administered to the tWAS of a mixed sludge and fed to anaerobic digesters over sludge retention times (SRTs) of 20, 14, and 7 days to compare effects of feed pretreatment on AD efficiency. The digester utilizing MW-pretreated tWAS (80 °C, 2.62 kJ/g TS) had the greatest fecal coliform removal (73.4 and 69.8 % reduction, respectively), greatest solids removal (44.2 % TS reduction), and highest overall methane production (248.2 L CH4/kg volatile solids) at 14- and 7-day SRTs. However, despite the fourfold to fivefold increases in cell death upon pretreatment, improvements from the digester fed MW-pretreated sludge were marginal (i.e., increases in efficiency of less

  17. Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems

    DEFF Research Database (Denmark)

    Carlsson, My; Naroznova, Irina; Møller, Jacob

    2015-01-01

    treatment of the refuse. The objective of this study was to investigate how FW pre-treatment efficiency impacts the environmental performance of waste management, with respect to global warming potential (GWP). The modeling tool EASETECH was used to perform consequential LCA focusing on the impact...

  18. Anaerobic Biochemical Reactor (BCR) Treatment Of Mining-Influenced Water (MIW) - Investigation Of Metal Removal Efficiency and Ecotoxicity

    Science.gov (United States)

    BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...

  19. Short and Efficient Synthesis of Optically Active N-Tosyl Aziridines from 2-Amino Alcohols

    Directory of Open Access Journals (Sweden)

    Maria C. F. de Araújo

    2002-12-01

    Full Text Available Two alternative and complementary one-pot procedures for the direct transformation of 2-amino alcohols to N-tosyl aziridines are presented. The unsubstituted parent compound and its less hindered homologues can be obtained in high yields by tosylation and in situ cyclisation effected by potassium hydroxide in water/dichloromethane. Higher substituted amino alcohols give better yields using potassium carbonate in acetonitrile. Both procedures use simple inorganic bases and produce only inorganic salts as byproducts.

  20. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    Science.gov (United States)

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  1. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    International Nuclear Information System (INIS)

    Kleist-Retzow, Juergen-Christoph von; Hue-Tran Hornig-Do; Schauen, Matthias; Eckertz, Sabrina; Tuan Anh Duong Dinh; Stassen, Frank; Lottmann, Nadine; Bust, Maria; Galunska, Bistra; Wielckens, Klaus; Hein, Wolfgang; Beuth, Joseph; Braun, Jan-Matthias; Fischer, Juergen H.; Ganitkevich, Vladimir Y.; Maniura-Weber, Katharina; Wiesner, Rudolf J.

    2007-01-01

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca 2+ homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNA Leu(UUR) , as well as Rho 0 cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases

  2. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    Science.gov (United States)

    Cervantes, Francisco J; Gómez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on γ-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7 mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5 mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12 h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400 mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others.

  3. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  4. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    Science.gov (United States)

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  5. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  7. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes

    Science.gov (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias

    2016-01-01

    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C–N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions. PMID:27708259

  8. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  9. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Splitter, Derek A [ORNL; Szybist, James P [ORNL

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  10. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    Science.gov (United States)

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Paniagua, Marta; Melero, Juan A

    2013-01-01

    glucose isomerization to fructose and subsequent reaction with methanol to form methyl fructoside (step 1), followed by hydrolysis to re-form fructose after water addition (step 2). NMR analysis with (13)C-labeled sugars confirmed this reaction pathway. Conversion of glucose for 1 h at 120 °C with H......-USY (Si/Al = 6) gave a remarkable 55% yield of fructose after the second reaction step. A main advantage of applying alcohol media and a catalyst that combines Brønsted and Lewis acid sites is that glucose is isomerized to fructose at low temperatures, while direct conversion to industrially important...

  13. The effect of different beverage consumption (dough, non-alcoholic beer, carbohydrated replacement drink) on performance, lipids profile, inflammatory biomarkers after running-based anaerobic sprint test in taekwondo players.

    Science.gov (United States)

    Shiranian, Afshin; Darvishi, Leila; Askari, Gholamreza; Ghiasvand, Reza; Feyzi, Awat; Hariri, Mitra; Mashhadi, Nafiseh Shokri; Mehrabani, Sanaz

    2013-04-01

    After exercise, recovery is very essential in professional sport. Athletes use sport beverages to enhance endurance and physical performance. The purpose of this study was to examine the effects of Dough versus non-alcoholic beer and carbohydrate (CHO) fluid on performance, lipids profile, inflammatory biomarkers after Running-based Anaerobic Sprint Test (R.A.S.T) in Taekwondo players. This study was conducted as repeated measures crossover design with 22 men Taekwondo player. Subjects completed standard protocol R.A.S.T so that immediately and 1 h posterior R.A.S.T protocol received number 1 beverage. Subjects spend 2 h recovery periods. Second and third sessions trial were similar to prior trial, separated by at least 4 days, instead of number 1 beverage, participants received number 2 and number 3 beverage. Data showed that average pre- and post-recovery in C-reactive protein (CRP) or Dough significantly decreased (P 0.05). About mean pre- and post-recovery in low density lipoprotein (LDL) and high density lipoprotein (HDL) there were no significant differences in all three beverages. Besides, amount of CRP was significant between three beverages (P 0.05) in dietary intake were observed between three treatment periods. Dough was effective in reducing LDL and reducing inflammatory biomarkers including CRP with little effect on performance in subjects.

  14. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  15. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    Science.gov (United States)

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    International Nuclear Information System (INIS)

    Marta, Bogdan; Leordean, Cosmin; Istvan, Todor; Botiz, Ioan; Astilean, Simion

    2016-01-01

    Graphical abstract: - Highlights: • One-step dry transfer method of CVD grown graphene onto PVA films. • Investigation of graphene quality and number of layers of the synthesized and transferred graphene. • Promising scalability and good quality of transferred graphene onto flexible transparent polymers. - Abstract: Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  17. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    Energy Technology Data Exchange (ETDEWEB)

    Marta, Bogdan; Leordean, Cosmin [Babes-Bolyai University, Interdisciplinary Research Institute in Bio-Nano-Sciences, Nanobiophotonics and Laser Microspectroscopy Center, Treboniu Laurian Str. 42, Cluj-Napoca 400271 (Romania); Istvan, Todor [Babes-Bolyai University, Faculty of Physics, Biomolecular Physics Department, M Kogalniceanu Str. 1, Cluj-Napoca 400084 (Romania); Botiz, Ioan [Babes-Bolyai University, Interdisciplinary Research Institute in Bio-Nano-Sciences, Nanobiophotonics and Laser Microspectroscopy Center, Treboniu Laurian Str. 42, Cluj-Napoca 400271 (Romania); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Interdisciplinary Research Institute in Bio-Nano-Sciences, Nanobiophotonics and Laser Microspectroscopy Center, Treboniu Laurian Str. 42, Cluj-Napoca 400271 (Romania); Babes-Bolyai University, Faculty of Physics, Biomolecular Physics Department, M Kogalniceanu Str. 1, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Graphical abstract: - Highlights: • One-step dry transfer method of CVD grown graphene onto PVA films. • Investigation of graphene quality and number of layers of the synthesized and transferred graphene. • Promising scalability and good quality of transferred graphene onto flexible transparent polymers. - Abstract: Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  18. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  19. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the ...

  20. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    OpenAIRE

    Żubrowska-Sudoł Monika; Podedworna Jolanta; Bisak Agnieszka; Sytek-Szmeichel Katarzyna; Krawczyk Piotr; Garlicka Agnieszka

    2017-01-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by...

  1. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  2. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  3. Efficient Polymer Solar Cells with Alcohol-Soluble Zirconium(IV Isopropoxide Cathode Buffer Layer

    Directory of Open Access Journals (Sweden)

    Zhen Luo

    2018-02-01

    Full Text Available Interfacial materials are essential to the performance and stability of polymer solar cells (PSCs. Herein, solution-processed zirconium(IV isopropoxide (Zr[OCH(CH32]4, ZrIPO has been employed as an efficient cathode buffer layer between the Al cathode and photoactive layer. The ZrIPO buffer layer is prepared simply via spin-coating its isopropanol solution on the photoactive layer at room temperature without any post-treatment. When using ZrIPO/Al instead of the traditionally used Ca/Al cathode in PSCs, the short-circuit current density (Jsc is significantly improved and the series resistance of the device is decreased. The power conversion efficiency (PCE of the P3HT:PCBM-based device with ZrIPO buffer layer reaches 4.47% under the illumination of AM1.5G, 100 mW/cm2. A better performance with PCE of 8.07% is achieved when a low bandgap polymer PBDTBDD is selected as donor material. The results indicate that ZrIPO is a promising electron collection material as a substitute of the traditional low-work-function cathode for high performance PSCs.

  4. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    Science.gov (United States)

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  5. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses.

    Science.gov (United States)

    Wan, Jingjing; Jing, Yuhang; Rao, Yue; Zhang, Shicheng; Luo, Gang

    2018-03-15

    Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion (TM) for hydrogen and methane production from waste-activated sludge (WAS) was investigated. The TM process was also compared to a process with mesophilic alkaline fermentation followed by a mesophilic anaerobic digestion (MM) and one-stage mesophilic anaerobic digestion (M) process. The results showed that both hydrogen yield (74.5 ml H 2 /g volatile solids [VS]) and methane yield (150.7 ml CH 4 /g VS) in the TM process were higher than those (6.7 ml H 2 /g VS and 127.8 ml CH 4 /g VS, respectively) in the MM process. The lowest methane yield (101.2 ml CH 4 /g VS) was obtained with the M process. Taxonomic results obtained from metagenomic analysis showed that different microbial community compositions were established in the hydrogen reactors of the TM and MM processes, which also significantly changed the microbial community compositions in the following methane reactors compared to that with the M process. The dynamics of bacterial pathogens were also evaluated. For the TM process, the reduced diversity and total abundance of bacterial pathogens in WAS were observed in the hydrogen reactor and were further reduced in the methane reactor, as revealed by metagenomic analysis. The results also showed not all bacterial pathogens were reduced in the reactors. For example, Collinsella aerofaciens was enriched in the hydrogen reactor, which was also confirmed by quantitative PCR (qPCR) analysis. The study further showed that qPCR was more sensitive for detecting bacterial pathogens than metagenomic analysis. Although there were some differences in the relative abundances of bacterial pathogens calculated by metagenomic and qPCR approaches, both approaches demonstrated that the TM process was more efficient for the removal of bacterial pathogens than the MM and M processes. IMPORTANCE This study developed an efficient process for bioenergy (H 2 and CH 4 ) production from WAS and elucidates the

  6. Livestock Anaerobic Digester Database

    Science.gov (United States)

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  7. Anaerobes in pleuropulmonary infections

    Directory of Open Access Journals (Sweden)

    De A

    2002-01-01

    Full Text Available A total of 76 anaerobes and 122 aerobes were isolated from 100 patients with pleuropulmonary infections, e.g. empyema (64, pleural effusion (19 and lung abscess (13. In 14% of the patients, only anaerobes were recovered, while a mixture of aerobes and anaerobes was encountered in 58%. From all cases of lung abscess, anaerobic bacteria were isolated, alone (04 or along with aerobic bacteria (13. From empyema and pleural effusion cases, 65.6% and 68.4% anaerobes were recovered respectively. Amongst anaerobes, gram negative anaerobic bacilli predominated (Prevotella melaninogenicus 16, Fusobacterium spp. 10, Bacteroides spp. 9, followed by gram positive anaerobic cocci (Peptostreptococcus spp. 31. Coliform bacteria (45 and Pseudomonas aeruginosa (42 were the predominant aerobic isolates.

  8. Alcohol consumption decreases the protection efficiency of the antioxidant network and increases the risk of sunburn in human skin.

    Science.gov (United States)

    Darvin, M E; Sterry, W; Lademann, J; Patzelt, A

    2013-01-01

    In recent years, epidemiological data has demonstrated that alcohol consumption is a risk factor for sunburn, melanoma and nonmelanoma skin cancer. We hypothesized that if the concentration of the antioxidants in the skin has already decreased due to alcohol consumption, then an adequate neutralization of the free radicals induced by ultraviolet light cannot be performed. Based on this hypothesis, we determined the carotenoid concentration in the skin and the minimal erythema dose (MED) of 6 male human volunteers before and after consumption of alcohol or alcohol and orange juice combined. The results showed a significant decrease in the carotenoid concentration in the skin and the MED after alcohol consumption, but no significant decrease after a combined intake of alcohol and orange juice. Copyright © 2012 S. Karger AG, Basel.

  9. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Żubrowska-Sudoł Monika

    2017-01-01

    Full Text Available The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9% and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%. Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  10. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    Science.gov (United States)

    Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka

    2017-11-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  11. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  12. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  13. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  14. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    Science.gov (United States)

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  16. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    Science.gov (United States)

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  17. Alcohol Alert

    Science.gov (United States)

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... 466 KB] No. 81: Exploring Treatment Options for Alcohol Use Disorders [ PDF - 539K] No. 80: Alcohol and HIV/AIDS: ...

  18. Facile and Efficient Acetylation of Primary Alcohols and Phenols with Acetic Anhydride Catalyzed by Dried Sodium Bicarbonate

    Directory of Open Access Journals (Sweden)

    Fulgentius Nelson Lugemwa

    2013-12-01

    Full Text Available A variety of primary alcohols and phenols were reacted with acetic anhydride at room temperature in the presence of sodium bicarbonate to produce corresponding esters in good to excellent yields. The acetylation of 4-nitrobenzyl alcohol was also carried out using other bicarbonates and carbonates. The reaction in the presence of cesium bicarbonate and lithium carbonate gave 4-nitrobenzyl acetate in excellent yield, while in the presence of Na2CO3, K2CO3, Cs2CO3, or KHCO3 the yield was in the range of 80%–95%. Calcium carbonate and cobaltous carbonate did not promote the acetylation of 4-ntirobenzyl alcohol using acetic anhydride. The acetylation of 4-nitrobenzyl alcohol was carried out using ethyl acetate, THF, toluene, diethyl ether, dichloromethane and acetonitrile, and gave good yields ranging from 75%–99%. Toluene was the best solvent for the reaction, while diethyl ether was the poorest.

  19. Anaerobic treatment techniques

    International Nuclear Information System (INIS)

    Boehnke, B.; Bischofsberger, W.; Seyfried, C.F.

    1993-01-01

    This practical and theoretical guide presents the current state of knowledge in anaerobic treatment of industrial effluents with a high organic pollutant load and sewage sludges resulting from the treatment of municipal and industrial waste water. Starting from the microbiological bases of anaerobic degradation processes including a description and critical evaluation of executed plants, the book evolves the process-technical bases of anaerobic treatment techniques, derives relative applications, and discusses these with reference to excuted examples. (orig./UWA). 232 figs [de

  20. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    Science.gov (United States)

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  2. Identification and regulation of genes involved in anaerobic growth of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Snoek, Isidora Sophia Ishtar

    2007-01-01

    Saccharomyces cerevisiae is one of the few yeast species that can grow equally well without molecular oxygen (anaerobic) as with this compound present (aerobic). This property has made it one of the most abundantly used yeasts in industry, since anaerobic incubation plays a major part in alcohol and

  3. Microbial diversity in a full-scale anaerobic reactor treating high ...

    African Journals Online (AJOL)

    Microbial characteristics in the up-flow anaerobic sludge blanket reactor (UASB) of a full-scale high concentration cassava alcohol wastewater plant capable of anaerobic hydrocarbon removal were analyzed using cultivation-independent molecular methods. Forty-five bacterial operational taxonomic units (OTUs) and 24 ...

  4. Ultraviolet radiation is feasible alternative for desinfeting of aerobic and anaerobic treatment systems sewage in Brazil

    International Nuclear Information System (INIS)

    Daniel, Luis Antonio; Campos, Jose Roberto

    1993-01-01

    This works shows desinfecting results employing ultraviolet radiation to wastes of sewage treatment station on true scales. Wastes of anaerobic, facultative and maturation pools, septic tank and anaerobic reactor were disinfected. It was found a inactive efficiency to coliforms higher than 99.9%. Safe ultraviolet desinfecting is technically applicable to wastes of sewage treatment station applying aerobic or anaerobic process

  5. An easy and efficient method to produce {gamma}-amino alcohols by reduction of {beta}-enamino ketones

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Maria Ines N.C.; Braga, Antonio C.H. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: herrera@iqm.unicamp.br

    2004-12-01

    Reduction of {beta}-enamino ketones 2 with NaBH{sub 4} in glacial acetic acid gave {gamma}-amino alcohols 1 in 70% to 98% yield with diastereomeric excesses, preferentially the syn product, from 44% to 90%. The stereochemistry of these compounds was confirmed by analysis of their tetrahydro-1,3-oxazine derivatives 3. (author)

  6. Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography

    International Nuclear Information System (INIS)

    Diamantis, V.; Melidis, P.; Aivasidis, A.

    2006-01-01

    Bio-ethanol and biogas produced during the anaerobic conversion of organic compounds has been a subject of great interest since the oil crisis of the 1970s. In ethanol fermentation and anaerobic treatment of wastewaters, end-product (ethanol) and intermediate-products (short-chain fatty acids, SCFA) cause inhibition that results in reduced process efficiency. Control of these constituents is of utmost importance for bioreactor optimization and process stability. Ethanol and SCFA can be detected with precision by capillary gas chromatography usually conducted in off-line measurements. In this work, an on-line monitoring and controlling system was developed and connected to the fermenter via an auto-sampling equipment, which could perform the feeding, filtration and dilution of the sample and final injection into the gas chromatograph through an automation-based programmed procedure. The sample was continuously pumped from the recycle stream of the bioreactor and treated using a microfiltration unit. The concentrate was returned to the reactor while the permeate was quantitatively mixed with an internal standard solution. The system comprised of a gas chromatograph with the flow cell and one-shot sampler and a PC with the appropriate software. The on-line measurement of ethanol and SCFA, directly from the liquid phase of an ethanol fermenter and a high-rate continuous mode anaerobic digester, was accomplished by gas chromatography. Also, this monitoring and controlling system was proved to be effective in the continuous fermentation of alcohol-free beer

  7. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  8. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  9. Electrochemical monitoring of ammonia during anaerobic digestion

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    Ammonia is known as key inhibitor to methanogens in anaerobic digestion (AD) process. It’s of importance to develop efficient tool for ammonia monitoring. In this study, an electrolysis cell (EC) coupled with a complete nitrification reactor was developed as sensor for real time and online monito...

  10. Collisional stabilization efficiencies that control condensation flux rates in supersaturated vapors of n-alcohols and water

    International Nuclear Information System (INIS)

    Bauer, S.H.; Wilcox, C.F. Jr.

    1994-01-01

    Using J(S;T) values, magnitudes for a temperature-dependent stabilization factor, the size-dependent activation energy for evaporation from stabilized clusters, and the size-dependent heats of evaporation are derived. This kinetic derivation is carried out using data from supersaturated water and six n-alcohols obtained with the double-piston expansion technique. 30 refs., 5 figs., 1 tab

  11. Renewable methane from anaerobic digestion of biomass

    International Nuclear Information System (INIS)

    Chynoweth, D.P.; Owens, J.M.

    2001-01-01

    Production of methane via anaerobic digestion of energy crops and organic wastes would benefit society by providing a clean fuel from renewable feedstocks. This would replace fossil fuel-derived energy and reduce environmental impacts including global warming and acid rain. Although biomass energy is more costly than fossil fuel-derived energy, trends to limit carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies of biomass energy would make it cost competitive. Methane derived from anaerobic digestion is competitive in efficiencies and costs to other biomass energy forms including heat, synthesis gases, and ethanol. (author)

  12. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    Science.gov (United States)

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Melamine-Schiff base/manganese complex with denritic structure: An efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles.

    Science.gov (United States)

    Kazemnejadi, Milad; Nikookar, Mahsa; Mohammadi, Mohammad; Shakeri, Alireza; Esmaeilpour, Mohsen

    2018-05-18

    Efficient and selective oxidation of alcohol to the corresponding carbonyl and/or nitrile was carried out by a new water-soluble melamine-based dendritic Mn(III) complex (Melamine-Mn (III)-Schiff base complex) in the presence of 2,4,6-trichloro-1,3,5-triazine (TCT) and O 2 at room temperature. Also, the oxidation of amine to the corresponding nitrile with high selectivity and conversion was performed at room temperature using the current method and high amounts of turnover frequencies (TOFs) were obtained for reactions. This system was also applicable for direct preparation of oxime through oxidation of alcohol. The catalyst was characterized by Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), CHN and inductively coupled plasma (ICP) analyses. Also, oxidation/reduction behavior of the catalyst was studied by cyclic voltammetry (CV). Moreover, chemoselectivity of the catalyst was discussed with various combinations. The water-soluble catalyst could be recycled from the reaction mixture and reused for several times with a very low losing in efficiency. The recovered catalyst was also investigated with various analyses. Finally, gram scale preparation of nitrile was evaluated by present method. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  15. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids.

    Science.gov (United States)

    Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun

    2017-09-11

    Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.

  16. Anaerobic prosthetic joint infection.

    Science.gov (United States)

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  17. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang; Zhang, Fang; Logan, Bruce E.; Hickner, Michael A.

    2013-01-01

    enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17

  18. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...

  19. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  20. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    The modern society generates large amounts of waste that represent a tremendous threat to the environment and human and animal health. To prevent and control this, a range of different waste treatment and disposal methods are used. The choice of method must always be based on maximum safety...... to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  1. Trends in the development of equipment for anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Holcak, B; Lutcha, J

    1982-01-01

    The successful application of anaerobic fermentation to the utilization of diluted wastes for the production of energy stimulated in recent years the development of new types of anaerobic reactors. Although the point of view of a chemical engineer does not encompass the complexity of this microbial process, he still disposes of means that enable him to estimate to what extent is it possible to affect the efficiency of the process by the concept of reactor arrangement. Simulation of behaviour by means of mathematical models enables us to compare quantitatively, for the types of anaerobic reactor under consideration, the apparatuses, and to predict the expected trends in their development.

  2. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  3. Efficient in situ synthetic routes of polyaniline/poly(vinyl alcohol)/TiO2 nanocomposites using gamma irradiation

    Science.gov (United States)

    Afify, T. A.; Ghazy, O. A.; Saleh, H. H.; Ali, Z. I.

    2018-02-01

    Gamma radiation was used to prepare nanocomposites based on polyaniline/titanium dioxide (PANI/TiO2) or polyaniline/poly (vinyl alcohol)/titanium dioxide (PANI/PVA/TiO2). It was found that PANI/TiO2 in the form of nanocomposite as shown by the UV/vis spectroscopy. This was through the appearance and shift of two absorption peaks at 340 and 598 nm. The SEM micrographs of the PANI/TiO2 nanocomposites showed a fibrous morphology before the treatment with HCl. The TiO2 nanoparticles are clearly seen to be precipitated on the PANI fibers and the morphology changed towards the sheets shape with highly distribution on PANI surface. The transmission electron microscopy (TEM) image confirms the fibrous shape of the PANI and spherical shape of TiO2 nanoparticles. The XRD study showed a several diffraction patterns of TiO2 nanoparticles confirming the PANI/TiO2 and PANI/PVA/TiO2 nanocomposites. The FT-IR analysis indicated that there is an interfacial interaction existed between the PANI and its inorganic counterpart of TiO2 nanoparticles. The dielectric constant of the PANI/PVA showed the lowest values and was increased by either doping with TiO2 or increasing irradiation dose.

  4. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    OpenAIRE

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste...

  5. Anaerobic depuration of waste waters; Depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mejias Sanchez, G.; Vazquez Berger, E.; Magana Pietra, A.H. [Facultad de Ingenieria, Universidad Autonoma de yucatan, Merida (Mexico)

    1996-08-01

    Trials were carried out at a 500 l semi-experimental plant using there reactor models-anaerobic filter, fixed film and UASB type-for the anaerobic treatment of waste from different sources. The results after 24 and 48 hours were compared. The greatest efficiency was obtained after 48 hours the aerobic filter reactor (66% displacement), followed by the fixed film reactor (50%) and the UASB model (41%). (Author) 16 refs.

  6. Bio digester : anaerobic methanogenesis

    NARCIS (Netherlands)

    Bullema, Marten; Hulzen, Hans; Keizer, Melvin; Pruisscher, Gerlof; Smint, Martin; Vincent, Helene

    2014-01-01

    As part of the theme 13 and 14, our group have to realize a project in the field of the renewable energy. This project consist of the design of a bio-digester for the canteen of Zernikeplein. Gert Hofstede is our client. To produce energy, a bio-digester uses the anaerobic digestion, which is made

  7. Anaerobic biotransformation of estrogens

    International Nuclear Information System (INIS)

    Czajka, Cynthia P.; Londry, Kathleen L.

    2006-01-01

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-α-ethynylestradiol (EE2) and 17-β-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 μg L -1 day -1 ), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-α-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-α-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments

  8. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  9. Anaerobic treatment in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, M; Solisio, C; Ferrailo, G

    1984-02-01

    In Italy, environmental protection and energy conservation have become very important since the increase in oil prices. The law requires that all waste waters have a B.O.D. of 40 mg/l by 1986 so there has been an expansion of purification plants since 1976, using anaerobic digestion. The report deals with the current state of anaerobic treatment in Italy with particular reference to (1) animal wastes. In intensive holdings, anaerobic digestion leads to a decrease in pollution and an increase in biogas generation which can be used to cover the energy demand of the process. The factors which influence the builders of digestors for farms are considered. (2) Non toxic industrial wastes. These are the waste waters emanating from the meat packing, brewing, pharmaceutical and chemical industries. Particular reference is made to the distillery plants using anaerobic treatment prior to aerobic digestion. (3) Urban wastes. The advantages and the disadvantages are considered and further research and development is recommended. 20 references.

  10. Anaerobic digestion for sustainable development: a natural approach.

    Science.gov (United States)

    Gljzen, H J

    2002-01-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These 'natural reactors' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic posttreatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.

  11. Anaerobic digestion for sustainable development: a natural approach

    Energy Technology Data Exchange (ETDEWEB)

    Gijzen, H.J.

    2002-07-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These ''natural reactors'' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery. (author)

  12. Catalytic efficiency of natural and synthetic compounds used as laccase-mediators in oxidising veratryl alcohol and a kraft lignin, estimated by electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Arzola, K. [Department of Microbiology and Cell Biology, Faculty of Pharmacy, University of La Laguna, 38206 La Laguna, Tenerife (Spain); Arevalo, M.C. [Department of Physical Chemistry, Faculty of Chemistry, University of La Laguna, 38206 La Laguna, Tenerife (Spain)], E-mail: carevalo@ull.es; Falcon, M.A. [Department of Microbiology and Cell Biology, Faculty of Pharmacy, University of La Laguna, 38206 La Laguna, Tenerife (Spain)], E-mail: mafalcon@ull.es

    2009-03-30

    The electrochemical properties of eighteen natural and synthetic compounds commonly used to expand the oxidative capacity of laccases were evaluated in an aqueous buffered medium using cyclic voltammetry. This clarifies which compounds fulfil the requisites to be considered as redox mediators or enhancers. Cyclic voltammetry was also applied as a rapid way to assess the catalytic efficiency (CE) of those compounds which oxidise a non-phenolic lignin model (veratryl alcohol, VA) and a kraft lignin (KL). With the exception of gallic acid and catechol, all assayed compounds were capable of oxidising VA with varying CE. However, only some of them were able to oxidise KL. Although the oxidised forms of HBT and acetovanillone were not electrochemically stable, their reduced forms were quickly regenerated in the presence of VA. They thus act as chemical catalysts. Importantly, HBT and HPI did not attack the KL via the same mechanism as in VA oxidation. Electrochemical evidence suggests that violuric acid oxidises both substrates by an electron transfer mechanism, unlike the other N-OH compounds HBT and HPI. Acetovanillone was found to be efficient in oxidising VA and KL, even better than the synthetic mediators TEMPO, violuric acid or ABTS. Most of the compounds produced a generalised increase in the oxidative charge of KL, probably attributed to chain reactions arising between the phenolic and non-phenolic components of this complex molecule.

  13. Catalytic efficiency of natural and synthetic compounds used as laccase-mediators in oxidising veratryl alcohol and a kraft lignin, estimated by electrochemical analysis

    International Nuclear Information System (INIS)

    Gonzalez Arzola, K.; Arevalo, M.C.; Falcon, M.A.

    2009-01-01

    The electrochemical properties of eighteen natural and synthetic compounds commonly used to expand the oxidative capacity of laccases were evaluated in an aqueous buffered medium using cyclic voltammetry. This clarifies which compounds fulfil the requisites to be considered as redox mediators or enhancers. Cyclic voltammetry was also applied as a rapid way to assess the catalytic efficiency (CE) of those compounds which oxidise a non-phenolic lignin model (veratryl alcohol, VA) and a kraft lignin (KL). With the exception of gallic acid and catechol, all assayed compounds were capable of oxidising VA with varying CE. However, only some of them were able to oxidise KL. Although the oxidised forms of HBT and acetovanillone were not electrochemically stable, their reduced forms were quickly regenerated in the presence of VA. They thus act as chemical catalysts. Importantly, HBT and HPI did not attack the KL via the same mechanism as in VA oxidation. Electrochemical evidence suggests that violuric acid oxidises both substrates by an electron transfer mechanism, unlike the other N-OH compounds HBT and HPI. Acetovanillone was found to be efficient in oxidising VA and KL, even better than the synthetic mediators TEMPO, violuric acid or ABTS. Most of the compounds produced a generalised increase in the oxidative charge of KL, probably attributed to chain reactions arising between the phenolic and non-phenolic components of this complex molecule

  14. Anaerobic Digestion Modeling: from One to Several Bacterial Populations

    Directory of Open Access Journals (Sweden)

    Iván D. Ramírez-Rivas

    2013-11-01

    Full Text Available Anaerobic digestion systems are complex processes that unfortunately often suffer from instability causing digester failure. In order to be able to design, optimizing and operate efficiently anaerobic digestion systems, appropriate control strategies need to be designed. Such strategies require, in general, the development of mathematical models. The anaerobic digestion process comprises a complex network of sequential and parallel reactions of biochemical and physicochemical nature. Usually, such reactions contain a particular step, the so called rate-limiting step which, being the slowest, limits the reaction rate of the overall process. The first attempts for modeling anaerobic digestion led to models describing only the limiting step. However, over a wide range of operating conditions, the limiting step is not always the same. It may depend on wastewater characteristics, hydraulic loading, temperature, etc. It is apparent that the "limiting step hypothesis" leads to simple and readily usable models. Such models, however, do not describe very well the digester behavior, especially under transient operating conditions. This work reviews the current state-of-the-art in anaerobic digestion modeling. We give a brief description of the key anaerobic digestion models that have been developed so far for describing biomass growth systems, including the International Water Association’s Anaerobic Digestion Model 1 (ADM1 and we identify the areas that require further research endeavors.

  15. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  16. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  17. Early anaerobic metabolisms

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity......Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were...... of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent...

  18. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  19. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    International Nuclear Information System (INIS)

    Lopez Torres, M.; Espinosa Llorens, Ma. del C.

    2008-01-01

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH) 2 ), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH) 2 /L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m 3 CH 4 /kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW

  20. Green and brown propolis: efficient natural biocides for the control of bacterial contamination of alcoholic fermentation of distilled beverage

    Directory of Open Access Journals (Sweden)

    Márcia Justino Rossini Mutton

    2014-12-01

    Full Text Available This study aimed to evaluate the efficiency of natural biocides, brown and green propolis, for the control of bacterial contamination in the production of sugarcane spirit. The treatments consisted of brown and green propolis extracts, ampicillin, and a control and were assessed at the beginning and end of harvest season in ten fermentation cycles. In the microbiological analyses, the lactic acid bacteria were quantified in the inoculum before and after the treatment with biocides, and the viability of yeast cells during fermentation was evaluated. The levels of acids, glycerol, total residual reducing sugars, and ethanol were analyzed for the wine resulting from each fermentation cycle. A reduction in the number of bacterial contaminants in the inoculum in the treatments with the natural biocides was observed, but it did not affect the viability of yeast cells. The control of the contaminants led to the production of higher levels of ethanol and reduced acidity in the wine produced. The results of the use of brown and green propolis to control the growth microorganisms in the fermentation of sugarcane spirit can be of great importance for using alternative strategies to synthetic antibacterials in fermentation processes including other distilled beverage or spirits.

  1. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  2. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  3. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  5. ALCOHOL I

    African Journals Online (AJOL)

    Despite the increase in alcohol marketing activities by the transnational alcohol corporations in Nigeria .... were recorded with a digital device with ..... era (i.e., before alcohol industry was es- tablished in ..... university student drinking: A na-.

  6. Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol.

    Science.gov (United States)

    Su, Yanping; Chen, Chun; Zhu, Xiaoguang; Zhang, Yong; Gong, Wanbing; Zhang, Haimin; Zhao, Huijun; Wang, Guozhong

    2017-05-16

    We report a fast and simple method for the synthesis of Ni-based metal-organic-frameworks (Ni-MOFs). Due to the existence of nickel ions and an organic ligand, the MOFs are employed as a sacrificial template for the facile preparation of carbon-embedded Ni (Ni/C) catalysts by a direct thermal decomposition method. The obtained Ni/C catalysts exhibit excellent catalytic activity for selectively transforming furfural (FAL) to tetrahydrofurfuryl alcohol (THFOL) due to the Ni nanoparticles (NPs) embedded uniformly in the ligand-derived carbon. The exemplified results illustrate that the catalytic performance of the Ni/C catalyst is greatly affected by the calcination conditions (temperature and time), composition of the Ni-MOF precursor and the catalysis conditions. The conversion of FAL and selectivity of THFOL both reached 100% under the conditions of 120 °C, 1 MPa H 2 pressure and 120 min of hydrogenation over the Ni/C-500 catalyst, derived from the pyrolysis of Ni-MOFs (Ni : BTC mole ratio of 1.0) at 500 °C for 120 min, which exhibits an average nanoparticle size of ∼14 nm and uniform dispersion, and the highest BET surface area (∼92 m 2 g -1 ) among all investigated Ni/C catalysts. This facilely prepared heterogeneous catalyst would be very promising for the replacement of noble metal catalysts for the efficient catalytic conversion of biomass-derived feedstocks into value-added chemicals.

  7. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  8. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    Science.gov (United States)

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  9. Instrumentation and Control in Anaerobic Digestion

    DEFF Research Database (Denmark)

    Anaerobic digestion is a multistep process, and is most applied to solids destruction and wastewater treatment for energy production. Despite wide application, and long-term industrial proof of application, some industries are still reluctant to apply this technology. One of the classical reasons...... benchmark. There has therefore been, overall, a quantum advance in application and sophistication of instrumentation and control in anaerobic digestion, and it is an effective option for improved process loading rate and conversion efficiency....... are still a limitation, but this is being partly addressed by the increased complexity of digestion processes. Methods for control benchmarking have also been improved, as there is now an industry standard model (the IWA ADM1), and this is being applied in an improved whole wastewater treatment plant...

  10. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions.

    Science.gov (United States)

    Barz, W P; Francia, F; Venturoli, G; Melandri, B A; Verméglio, A; Oesterhelt, D

    1995-11-21

    The pufX gene is essential for photoheterotrophic growth of the purple bacterium Rhodobacter sphaeroides. In order to analyze the molecular function of the PufX membrane protein, we constructed a chromosomal pufX deletion mutant and phenotypically compared it to a pufX+ control strain and to two suppressor mutants which are able to grow photosynthetically in the absence of pufX. Using this genetic background, we confirmed that PufX is required for photoheterotrophic growth under anaerobic conditions, although all components of the photosynthetic apparatus were present in similar amounts in all strains investigated. We show that the deletion of PufX is not lethal for illuminated pufX- cells, suggesting that PufX is required for photosynthetic cell division. Since chromatophores isolated from the pufX- mutant were found to be unsealed vesicles, the role of PufX in photosynthetic energy transduction was studied in vivo. We show that PufX is essential for light-induced ATP synthesis (photophosphorylation) in anaerobically incubated cells. Measurements of absorption changes induced by a single turnover flash demonstrated that PufX is not required for electron flow through the reaction center and the cytochrome bc1 complex under anaerobic conditions. During prolonged illumination, however, PufX is essential for the generation of a sufficiently large membrane potential to allow photosynthetic growth. These in vivo results demonstrate that under anaerobic conditions PufX plays an essential role in facilitating effective interaction of the components of the photosynthetic apparatus.

  11. Polyvinyl alcohol biodegradation under denitrifying conditions

    Czech Academy of Sciences Publication Activity Database

    Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, Václav; Buňková, L.; Koutný, M.

    2013-01-01

    Roč. 84, October (2013), s. 21-28 ISSN 0964-8305 Grant - others:GA ČR(CZ) GAP108/10/0200 Institutional support: RVO:61388963 Keywords : polyvinyl alcohol * biodegradation * denitrification * waste-water treatment * anaerobic * Steroidobacter Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.235, year: 2013

  12. Anaerobic treatment of municipal wastewater in a UASB-Digester system

    NARCIS (Netherlands)

    Zhang, Lei

    2016-01-01

    A novel treatment chain for low strength domestic sewage includes low temperature anaerobic treatment as the main process. It can improve the energy efficiency of sewage treatment compared with conventional aerobic sewage treatment. A combination of an Upflow Anaerobic Sludge Blanket reactor and

  13. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    Science.gov (United States)

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

  14. New perspectives in anaerobic digestion.

    NARCIS (Netherlands)

    Lier, van J.B.; Tilche, A.; Ahring, B.K.; Macarie, H.; Moletta, R.; Dohanyos, M.; Hulshoff Pol, L.W.; Lens, P.N.L.; Verstraete, W.

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern

  15. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  16. Anaerobic digestion of piggery waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes

  17. The Experiment Study of Anaerobic Ammonia Oxidation Start-up by Using the Upflow Double Layer Anaerobic Filter

    Directory of Open Access Journals (Sweden)

    YAO Li

    2018-02-01

    Full Text Available Anammox is an efficient nitrogen removal process, but it is difficult to start-up and operate, and ananammox reactor is the efficient way to resolve this problem. The start-up of anammox reactor by upflow anaerobic filter was studied. Denitrifying sludge, anaerobic sludge, and mixed sludge was inoculated on the packing materials, respectively and an autotrophic denitrification condition was provided by the simulated wastewater influent. Along with the gradual increase of matrix concentration and hydraulic load, the microflora was converted to the anaerobic ammonium oxidation(anammoxreaction. The results showed that the anammox reaction could be started by all the three sludge, and the time of start-up of denitrifying sludge, anaerobic sludge, mixed sludge was 42, 54 days and 45 days, respectively. The best result was that inoculated with denitrifying sludge with 82.2% of the total nitrogen removal rate, which started-up quickly and nitrogen was removed efficiently. Double packing effectively improved the stability of anammox process in the reactor, in which the suitable influent concentration loading for the anammox bacteria was 270 mg·L-1 and 360 mg·L-1 for ammonia nitrogen and nitrite nitrogen, respectively, and the COD concentration could not be more than 150 mg· L-1. Furthermore, there was a coexist-effect for anaerobic ammonia oxidation and methanation in this reactor system.

  18. Black Alcoholism.

    Science.gov (United States)

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  19. Development and evaluation of the quick anaero-system-a new disposable anaerobic culture system.

    Science.gov (United States)

    Yang, Nam Woong; Kim, Jin Man; Choi, Gwang Ju; Jang, Sook Jin

    2010-04-01

    We developed a new disposable anaerobic culture system, namely, the Quick anaero-system, for easy culturing of obligate anaerobes. Our system consists of 3 components: 1) new disposable anaerobic gas pack, 2) disposable culture-envelope and sealer, and 3) reusable stainless plate rack with mesh containing 10 g of palladium catalyst pellets. To evaluate the efficiency of our system, we used 12 anaerobic bacteria. We prepared 2 sets of ten-fold serial dilutions of the 12 anaerobes, and inoculated these samples on Luria-Bertani (LB) broth and LB blood agar plate (LB-BAP) (BD Diagnostic Systems, USA). Each set was incubated in the Quick anaero-system (DAS Tech, Korea) and BBL GasPak jar with BD GasPak EZ Anaerobe Container System (BD Diagnostic Systems) at 35-37 degrees C for 48 hr. The minimal inoculum size showing visible growth of 12 anaerobes when incubated in both the systems was compared. The minimal inoculum size showing visible growth for 2 out of the 12 anaerobes in the LB broth and 9 out of the 12 anaerobes on LB-BAP was lower for the Quick anaero-system than in the BD GasPak EZ Anaerobe Container System. The mean time (+/-SD) required to achieve absolute anaerobic conditions of the Quick anaero-system was 17 min and 56 sec (+/-3 min and 25 sec). The Quick anaero-system is a simple and effective method of culturing obligate anaerobes, and its performance is superior to that of the BD GasPak EZ Anaerobe Container System.

  20. Selected Topics in Anaerobic Bacteriology.

    Science.gov (United States)

    Church, Deirdre L

    2016-08-01

    Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.

  1. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    Science.gov (United States)

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  2. Anaerobic treatment of textile dyeing wastewater.

    Science.gov (United States)

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  3. Bifunctional RuII -Complex-Catalysed Tandem C-C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents.

    Science.gov (United States)

    Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan; Paul, Subhadeep; Kundu, Sabuj

    2016-12-12

    Catalytic activities of a series of functional bipyridine-based Ru II complexes in β-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional Ru II complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of β-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative Ru II system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  5. Arsenic, Anaerobes, and Autotrophy.

    Science.gov (United States)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  6. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  7. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    International Nuclear Information System (INIS)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-01-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  8. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  9. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  10. Experimental biogas research by anaerobic digestion of waste of ...

    African Journals Online (AJOL)

    Currently, one of the most efficient and prospective methods of biodegradable waste management is anaerobic digestion in a bio-reactor. The use of this method for managing biodegradable waste generating in agriculture and elsewhere would result in the recovery of biogas that could be used as an alternative to natural ...

  11. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  12. Degradation of plant wastes by anaerobic process using rumen bacteria.

    Science.gov (United States)

    Seon, J; Creuly, C; Duchez, D; Pons, A; Dussap, C G

    2003-01-01

    An operational reactor has been designed for the fermentation of a pure culture of Fibrobacter succinogenes with the constraints of strict anaerobic condition. The process is controlled by measurements of pH, redox, temperature and CO2 pressure; it allows an efficient degradation (67%) of lignocellulosic wastes such as a mixture of wheat straw, soya bean cake and green cabbage.

  13. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  14. Characterization of biofoulants illustrates different membrane fouling mechanisms for aerobic and anaerobic membrane bioreactors

    KAUST Repository

    Xiong, Yanghui; Harb, Moustapha; Hong, Pei-Ying

    2015-01-01

    efficiency, the fouling mechanisms were different. Molecular weight (MW) fingerprint profiles showed that a majority of fragments in anaerobic soluble microbial products (SMP) were retained by the membrane and some fragments were present in both SMP

  15. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  16. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  17. The pressure effects on two-phase anaerobic digestion

    International Nuclear Information System (INIS)

    Chen, Yuling; Rößler, Benjamin; Zielonka, Simon; Lemmer, Andreas; Wonneberger, Anna-Maria; Jungbluth, Thomas

    2014-01-01

    Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m −3 d −1 . Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 l N g −1 COD to 0.31 l N g −1 COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation

  18. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    International Nuclear Information System (INIS)

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  19. Enhancement of carbon dioxide reduction and methane production by an obligate anaerobe and gas dissolution device.

    Science.gov (United States)

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2016-01-25

    The use of gas dissolution devices to improve the efficiency of H2 dissolution has enhanced CO2 reduction and CH4 production. In addition, the nutrients that initially existed in anaerobic sludge were exhausted over time, and the activities of anaerobic microorganisms declined. When nutrients were artificially injected, CO2 reduction and CH4 production rates climbed. Thus, assuming that the activity of the obligatory anaerobic microorganisms is maintained, a gas dissolution device will further enhance the efficiency of CO2 reduction and CH4 production. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Lessons learnt from 15 years of ICA in anaerobic digesters

    DEFF Research Database (Denmark)

    Steyer, J.P.; Bernard, O.; Batstone, Damien J.

    2006-01-01

    for application of instrumentation, control and automation (ICA) in the field of anaerobic digestion. This paper will discuss the requirements (in terms of on-line sensors needed, modelling efforts and mathematical complexity) but also the advantages and drawbacks of different control strategies that have been......Anaerobic digestion plants are highly efficient wastewater treatment processes with inherent energy production. Despite these advantages, many industries are still reluctant to use them because of their instability confronted with changes in operating conditions. There is therefore great potential...... applied to AD high rate processes over the last 15 years....

  1. Implementing Livestock Anaerobic Digestion Projects

    Science.gov (United States)

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  2. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  3. Anaerobic bacteria colonizing the lower airways in lung cancer patients.

    Science.gov (United States)

    Rybojad, Pawel; Los, Renata; Sawicki, Marek; Tabarkiewicz, Jacek; Malm, Anna

    2011-01-01

    Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins-Chalgren agar in anaerobic conditions at 37°C for 72-96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3%) specimens. More than one species of anaerobe was found in 16 (53.3%) samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively). The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively). The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy.

  4. Anaerobic bacteria colonizing the lower airways in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Anna Malm

    2011-07-01

    Full Text Available Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins- -Chalgren agar in anaerobic conditions at 37°C for 72–96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3% specimens. More than one species of anaerobe was found in 16 (53.3% samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively. The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively. The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 263–266

  5. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  6. Alcohol Advertising

    OpenAIRE

    Trkovská, Jana

    2017-01-01

    The thesis concerns itself with alcohol advertising. Alcohol is the most widespread habit-forming substance, yet its consumption is permitted in most countries all around the world, possibly restricted by the age of consumers only. Drinking alcohol cannot be either regulated or prohibited today. It has become commonplace for the majority of our lives. Being aware of its apparent risks, however, there is an effort to regulate at least alcohol advertising. The main objective of this work was to...

  7. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    OpenAIRE

    Farida Crisnaningtyas; Hanny Vistanty

    2016-01-01

    Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr) pada kisaran OLR (Organic Loading Rate) 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih ...

  8. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  9. Anaerobic digestion of solid slaughterhouse waste chemically pretreated

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; Montoya, L.; Rodirguez, A.

    2009-07-01

    One of the mayor problems facing the industrialized world today is to solve environmental contamination and identify efficient treatment to give solution to the current problems like the generation of enormous quantities of liquid and solid wastes. The solid slaughterhouse waste, due to its elevated concentration of biodegradable organics, can be efficiently treated by anaerobic digestion although the high content of lignocellulose materials, makes it a slowly process. (Author)

  10. Anaerobic digestion of solid slaughterhouse waste chemically pretreated

    International Nuclear Information System (INIS)

    Flores, C.; Montoya, L.; Rodirguez, A.

    2009-01-01

    One of the mayor problems facing the industrialized world today is to solve environmental contamination and identify efficient treatment to give solution to the current problems like the generation of enormous quantities of liquid and solid wastes. The solid slaughterhouse waste, due to its elevated concentration of biodegradable organics, can be efficiently treated by anaerobic digestion although the high content of lignocellulose materials, makes it a slowly process. (Author)

  11. Fluidized bed anaerobic biodegration of food industry wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Toldra, F.; Flors, A.; Lequerica, J.L.; Valles, S.

    1987-01-01

    Anaerobic fluidized bed reactors were used to reduce the COD of low-strength food industry wastewaters. Soluble organic removal efficiencies of 75%, 80% and 50% were obtained for hog slaughterhouse, dairy and brewery wastewaters, respectively, at 35 degrees C and 8 hours hydraulic retention time. Removal efficiencies decreased with decreasing temperature (35 degrees C to 20 degrees C); no detrimental effect of temperature was observed when treating the slaughterhouse wastewater. Methane production rate was only relevant on brewery wastewater treatment. (Refs. 17).

  12. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  13. BIOESTABILIZATION ANAEROBIC SOLID WASTE ORGANIC:QUANTITATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2015-01-01

    Full Text Available It is estimated that in Brazil, the municipal solid waste produced are constituted on average 55% of fermentable organic solid waste and that this quantity can be applied in aerobic or anaerobic stabilization process. Anaerobic digestion is an important alternative for the treatment of different types of potentially fermentable waste, considering providing an alternative source of energy that can be used to replace fossil fuels. To perform the experimental part of this work was constructed and monitored an experimental system consisting of an anaerobic batch reactor, shredding unit of fermentable organic wastes and additional devices. Fermentable organic wastes consisted of leftover fruits and vegetables and were listed in EMPASA (Paraibana Company of Food and Agricultural Services, located in the city of Campina Grande- PB. The residues were collected and transported to the Experimental Station Biological Sewage Treatment (EXTRABES where they were processed and used for substrate preparation. The substrate consisted of a mixture of fermentable organic waste, more anaerobic sewage sludge in the proportion of 80 and 20 % respectively. In the specific case of this study, it was found that 1m3 of substrate concentration of total COD equal to 169 g L-1, considering the reactor efficiency equal to 80 %, the production of CH4 would be approximately 47.25 Nm3 CH4. Therefore, fermentable organic waste, when subjected to anaerobic treatment process produces a quantity of methane gas in addition to the partially biostabilized compound may be applied as a soil conditioning agent.

  14. Alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Colin, P

    1961-01-04

    The addition of C/sub 6-10/ alcohols to the fermenting sugar solutions, increased the yield of alcohol by 1.5 to 5%. The best additives were (additive, % additive in sugar solution, % increased in yield of alcohol): hexanol, 0.03, 2.5; heptanol, 0.05, 3; nonanol, 0.01, 3; 2-ethylbutanol, 0.05, 4; 2-ethylhexanol, 0.05, 5; a mixture of C/sub 7-9/ alcohols from the Oxo synthesis, 0.05, 4.5, and a mixture of C/sub 10/ alcohols 0.05, 3.

  15. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.

    Science.gov (United States)

    Bouxin, Florent; Baumberger, Stéphanie; Renault, Jean-Hugues; Dole, Patrice

    2011-05-01

    Six coniferyl alcohol-coniferaldehyde dehydrogenation copolymers (DHcoPs) were synthesized in order to determine the influence of an increased number of aldehyde functions on hydrolysis. After heterogeneous hydrolysis using acidic Montmorillonite K10 clay, the DHcoPs were thioacidolyzed and analyzed by gel permeation chromatography (GPC). Comparison of the thioacidolyzed products, with and without the hydrolysis step, showed that there was a greater proportion of condensation reaction in the absence of aldehyde. When the coniferaldehyde content in the initial synthetic mixture was more than 30% (w/w), only a low fraction of condensed products was generated during the K10 clay hydrolysis step. This suggests that condensation pathways are mainly due to the alcohol present in the γ-position in the DHcoPs. Investigation of the reactivity and the potential condensation of aldehyde and alcohol monomers under hydrolysis conditions showed the important conversion of coniferyl alcohol and conversely the stability of coniferaldehyde. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Efficiency comparison of different biofilm carriers concerning the P- and N-elimination in a fluidized bed system under alternating anaerobic/anoxic conditions; Leistungsvergleich verschiedener Traegermaterialien - hinsichtlich ihrer Eignung zur N- und P-Elimination in einem alternierend anaerob/anoxisch betriebenen Wirbelbettverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, D.; Hegemann, W. [Techn. Univ. Berlin, Fachgebiet Siedlungswasserwirtschaft, Berlin (Germany)

    2001-09-01

    Objective of the depicted research was the selection of a carrier material that is suitable for the the use in the Sorption-Denitrification-P-Removal-process (S-DN-P-process) realized in a Fluidized-Bed-Biofilm-Reactor. The S-DN-P-process is a biofilmprocess which combines denitrification and biological P-removal in a new way. The biomass is exposed to a sequential change of anaerobic, substrate-rich wastewater and anoxic, substrate-poor wastewater. Under these conditions phosphate-accumulating organisms (PAO) are enriched which are able to use nitrate as electron acceptor. Consequently, the readily biodegradable wastewater components are used simultaneously for denitrification and biological P-removal. In the described investigations special carriers were compared which were especially developed for fluidized-bed-processes and moving-bed-processes. With one exception, it was established that all materials had similar performances although they had different specific surfaces. Therefore the material costs will be crucially for a particular application case. At the moment the costs per m{sup 3} carrier material range between 450 and 1000 DM. (orig.)

  17. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng

    2018-04-17

    Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.

  18. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    Science.gov (United States)

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  19. Optimization of the purification process of wine lees through anaerobic filter reactors. Optimizacion del proceso de depuracion de vinazas de vino mediante reactores tipo filtro anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Nebot Sanz, E.; Romero Garcia, L.I.; Quiroga Alonso, J.M.; Sales Marquez, D. (Departamento de Ingenieria Quimica, Universidad de Cadiz, Cadiz (Spain))

    1994-01-01

    In this work, the optimization of thermophilic anaerobic process, using Anaerobic Filter technology was studied. Feed of the Anaerobic Filter was wine-distillery wastewaters. The experiments developed were carried out at lab-scale downflow anaerobic filter reactors. Reactors were filled with a high porous plastic media (Flocor-R). The media support entities have a high surface/volume ratio. Test were run to determine the maximum organic load attainable in the system for wich both, the depurative efficiency and the methane production were optimum. Likewise, the effect of organic load on the anaerobic filter performance were studied. (Author) 15 refs. (Author)

  20. Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin

    Science.gov (United States)

    Spirito, Catherine M.; Daly, Sarah E.; Werner, Jeffrey J.

    2018-01-01

    ABSTRACT The antibiotic monensin is fed to dairy cows to increase milk production efficiency. A fraction of this monensin is excreted into the cow manure. Previous studies have found that cow manure containing monensin can negatively impact the performance of anaerobic digesters, especially upon first introduction. Few studies have examined whether the anaerobic digester microbiome can adapt to monensin during the operating time. Here, we conducted a long-term time series study of four lab-scale anaerobic digesters fed with cow manure. We examined changes in both the microbiome composition and function of the anaerobic digesters when subjected to the dairy antibiotic monensin. In our digesters, monensin was not rapidly degraded under anaerobic conditions. The two anaerobic digesters that were subjected to manure from monensin feed-dosed cows exhibited relatively small changes in microbiome composition and function due to relatively low monensin concentrations. At higher concentrations of monensin, which we dosed directly to control manure (from dairy cows without monensin), we observed major changes in the microbiome composition and function of two anaerobic digesters. A rapid introduction of monensin to one of these anaerobic digesters led to the impairment of methane production. Conversely, more gradual additions of the same concentrations of monensin to the other anaerobic digester led to the adaptation of the anaerobic digester microbiomes to the relatively high monensin concentrations. A member of the candidate OP11 (Microgenomates) phylum arose in this anaerobic digester and appeared to be redundant with certain Bacteroidetes phylum members, which previously were dominating. IMPORTANCE Monensin is a common antibiotic given to dairy cows in the United States and is partly excreted with dairy manure. An improved understanding of how monensin affects the anaerobic digester microbiome composition and function is important to prevent process failure for farm

  1. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter

    International Nuclear Information System (INIS)

    Gannoun, H.; Bouallagui, H.; Okbi, A.; Sayadi, S.; Hamdi, M.

    2009-01-01

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 deg. C) and thermophilic (55 deg. C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6 g COD/L d in mesophilic conditions and at OLRs from 0.9 to 9 g COD/L d in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/L d in mesophilic conditions, while the highest OLRs i.e. 9 g COD/L d led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/L d. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  2. Biomass and biogas : potentials, efficiencies and flexibility

    NARCIS (Netherlands)

    Hofstede, Gert; Wouterse, Brian; Faber, Folkert; Nap, Jan Peter

    2012-01-01

    In the field of ‘renewable energy resources’ formation of biogas Biomass and biogas: potentials, efficiencies and flexibility is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic

  3. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  4. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors.

    Science.gov (United States)

    Rico, Carlos; Montes, Jesús A; Rico, José Luis

    2017-08-01

    Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  6. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  7. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  8. Hydroponic system for the treatment of anaerobic liquid.

    Science.gov (United States)

    Krishnasamy, K; Nair, J; Bäuml, B

    2012-01-01

    The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.

  9. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  10. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  12. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  13. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Kusum Lata; Kishore, V.V.N. [Tata Energy Research Institute, New Delhi (India). Darbari Seth Block

    2000-06-01

    Anaerobic digestion is the most suitable option for the treatment of high strength organic effluents. The presence of biodegradable components in the effluents coupled with the advantages of anaerobic process over other treatment methods makes it an attractive option. This paper reviews the suitability and the status of development of anaerobic reactors for the digestion of selected organic effluents from sugar and distillery, pulp and paper, slaughterhouse and dairy units. In addition, modifications in the existing reactor designs for improving the efficiency of digestion has also been suggested. (author)

  14. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Science.gov (United States)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  15. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  16. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  17. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  18. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    International Nuclear Information System (INIS)

    Shih, Yang-hsin; Chou, Hsi-Ling; Peng, Yu-Huei

    2012-01-01

    Highlights: ► BDE-3 was degraded with two anaerobes in different rates. ► Glucose addition augment the debromination efficiencies. ► Hydrogen gas was detected and relative microbes were identified. ► Extra-carbon source enhanced degradation partial due to H 2 -generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H 2 gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  19. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  20. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  1. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  2. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  3. High-temperature crystallization of the secondary alcohol dehydrogenase from the extreme thermophilic bacteria Thermoanaerobacter ethanolicus, a bifunctional alcohol dehydrogenase-acetyl-CoA thio esterase

    International Nuclear Information System (INIS)

    Watanabe, L.; Arni, R.K.

    1996-01-01

    Full text. Ethanol fermentations from Saccharomyces sp. are used in industrial ethanol production and are performed at mesophilic temperatures where final ethanol concentrations must exceed 4% (v/v) to make the process industrially economic. In addition, distillation is required to recover ethanol. Thermophilic fermentations are very attractive since they enable separation of ethanol from continuous cultures at process temperature and reduced pressure. Two different ethanol-production pathways have been identified for thermophilic bacteria; type I from Clostridium thermocellum, which contains only NADH-linked primary-alcohol dehydrogeneases, and type II from Thermoanaerobacter brockii which in addition include NADPH-linked secondary-alcohol dehydrogenases. The thermophilic anaerobic bacterium T ethanolicus 39E produces ethanol as the major end product from starch, pentose and herose substrates. The 2 Adh has a lower catalytic efficiency for the oxidation of 1 alcohols, including ethanol, than for the oxidation of secondary (2) alcohols or the reduction of ketones or aldehydes and possesses a significant acetyl-CoA reductive thioesterase activity. Large single crystals (0.7 x 0.3 x 0.3 mn) of this enzyme have been obtained at 40 0 C and diffraction data to 2.7 A resolution has been collected (R merge = 10.44%). Attempts are currently underway to obtain higher resolution data and a search for heavy atom derivatives is currently underway. The crystals belong to the space group P2 1 2 1 2 with cell constants of a a= 170.0 A, b=125.7 A and c=80.5 A. The asymmetric unit contains a tetramer as in the case of the crystals of the secondary alcohol dehydrogenase from Thermoanaerobacter brockii with a V M of 2.85 A 3 /Da. (author)

  4. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  5. [Current clinical significance of anaerobic bacteremia].

    Science.gov (United States)

    Jirsa, Roman; Marešová, Veronika; Brož, Zdeněk

    2010-10-01

    to estimate tje current clinical significance of anaerobic bacteremia in a group of Czech hospitals. this retrospective analysis comprised 8 444 anaerobic blood cultures in patients admitted to four Czech hospitals between 2004 and 2007. in 16 patients, blood cultures yielded significant anaerobic bacteria. Thus, anaerobic bacteremia accounted for less than 2 % of clinically significant bacteremia. Four patients (18 %) died but none of the deaths could be clearly attributable to anaerobic bacteria in the bloodstream. The most common comorbidities predisposing to anaerobic bacteremia and the most frequent sources of infection were similar to those reported by other authors. The majority of anaerobic bacteremia cases were due to gram-negative bacteria, followed by Clostridium perfringens and, surprisingly, Eubacterium spp. (particularly Eubacterium lentum). anaerobic bacteremia remains rare. The comparison of our data with those by other authors suggests that (despite the reported high mortality) the actual clinical significance of anaerobic bacteremia is rather controversial and that the anaerobic bacteremia might not correspond to more serious pathogenic role of the anaerobic bacteria as the source of infection.

  6. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  8. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    Pereira, N.S.; Zaiat, M.

    2009-01-01

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m 3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  9. Anaerobic biological treatment of in-situ retort water

    Energy Technology Data Exchange (ETDEWEB)

    Ossio, E.; Fox, P.

    1980-03-01

    Anaerobic fermentation was successfully used in a laboratory-scale batch digester to remove soluble organics from retort water. Required pretreatment includes reduction of ammonia levels to 360 mg-N/l, pH adjustment to 7.0, sulfide control, and the addition of the nutrients, calcium, magnesium, and phoshorus. If the prescribed pretreatment is used, BOD/sub 5/ and COD removal efficiencies of 89 to 90% and 65 to 70% are achieved, respectively.

  10. Isopropanol alcohol poisoning

    Science.gov (United States)

    Rubbing alcohol poisoning; Isopropyl alcohol poisoning ... Isopropyl alcohol can be harmful if it is swallowed or gets in the eyes. ... These products contain isopropanol: Alcohol swabs Cleaning supplies ... Rubbing alcohol Other products may also contain isopropanol.

  11. Alcohol Energy Drinks

    Science.gov (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 33960 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  12. Alcohol and pregnancy

    Science.gov (United States)

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... lead to lifelong damage. DANGERS OF ALCOHOL DURING PREGNANCY Drinking a lot of alcohol during pregnancy can ...

  13. NIAAA Alcohol Treatment Navigator

    Science.gov (United States)

    ... What to Know About Alcohol Treatment What Is Alcohol Use Disorder (AUD)? What Types of Alcohol Treatment Are Available? ... What to Know About Alcohol Treatment What is alcohol use disorder (AUD)? A health condition that can improve with ...

  14. The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children.

    Science.gov (United States)

    Shoji, Kensuke; Komuro, Hisako; Watanabe, Yasushi; Miyairi, Isao

    2013-08-01

    Routine anaerobic blood culture is not recommended in children because obligate anaerobic bacteremia is rare in the pediatric population. However, a number of facultative anaerobic bacteria can cause community and hospital acquired infections in children and the utility of anaerobic blood culture for detection of these organisms is still unclear. We conducted a retrospective analysis of all blood culture samples (n = 24,356) at a children's hospital in Japan from October 2009 to June 2012. Among the samples that had paired aerobic and anaerobic blood cultures, 717 samples were considered clinically significant with 418 (58%) organisms detected from both aerobic and anaerobic cultures, 167 (23%) detected only from aerobic culture and 132 (18%) detected only from anaerobic culture. While most facultative anaerobes were detectable by aerobic culture, over 25% of Enterobacteriaceae and 15% of Staphylococcus sp. were detected from anaerobic cultures bottles only, suggesting its potential role in selected settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    Science.gov (United States)

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of type of tapering on anaerobic capacity in young basketball players

    Directory of Open Access Journals (Sweden)

    Hugo Augusto Alvares da Silva Lira

    2017-11-01

    Full Text Available The aim of this study was to analyze the effect of the type of tapering on anaerobic capacity in male young basketball players. This was an experimental research with 12 weeks, developed with 47 basketball players, randomly divided into three groups: linear tapering (LG, tapering by step (SG and control group (CG. All groups participated of the same planning training until the last three weeks of periodization (the tapering phase. Only the CG did not perform tapering. Anaerobic Running Speed Test was carried in the last week of each mesocycle to assess the anaerobic capacity. The findings revealed that anaerobic capacity attenuated from the competitive to tapering phase in LG (p= .01 and SG (p= .01, which was not verified for the CG (p= .29. Significant difference of anaerobic capacity was found between LG and CG (p= .01, SG and CG (p= .01 and between LG and SG (p= .04 in the tapering phase. It was concluded that the tapering strategies were efficient to maximize anaerobic capacity in young basketball players, although linear tapering strategy has been revealed the best strategy for improvement the anaerobic capacity.

  17. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  18. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    Ben Dhia Thabet, Olfa; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-01-01

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO 4 2- ) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO 4 2- ) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO 4 2- ) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  19. Alcohol Intolerance

    Science.gov (United States)

    ... ingredients commonly found in alcoholic beverages, especially in beer or wine, can cause intolerance reactions. These include: Sulfites or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some cases, reactions can be ...

  20. Alcohol Poisoning

    Science.gov (United States)

    ... than eight breaths a minute) Irregular breathing (a gap of more than 10 seconds between breaths) Blue- ... about alcohol by their parents and who report close relationships with their parents are less likely to ...

  1. Alcoholic neuropathy

    Science.gov (United States)

    ... Frequently inspecting the feet and shoes to reduce injury caused by pressure or objects in the shoes Guarding the extremities to prevent injury from pressure Alcohol must be stopped to prevent ...

  2. Translational Research on Habit and Alcohol.

    Science.gov (United States)

    McKim, Theresa H; Shnitko, Tatiana A; Robinson, Donita L; Boettiger, Charlotte A

    2016-03-01

    Habitual actions enable efficient daily living, but they can also contribute to pathological behaviors that resistant change, such as alcoholism. Habitual behaviors are learned actions that appear goal-directed but are in fact no longer under the control of the action's outcome. Instead, these actions are triggered by stimuli, which may be exogenous or interoceptive, discrete or contextual. A major hallmark characteristic of alcoholism is continued alcohol use despite serious negative consequences. In essence, although the outcome of alcohol seeking and drinking is dramatically devalued, these actions persist, often triggered by environmental cues associated with alcohol use. Thus, alcoholism meets the definition of an initially goal-directed behavior that converts to a habit-based process. Habit and alcohol have been well investigated in rodent models, with comparatively less research in non-human primates and people. This review focuses on translational research on habit and alcohol with an emphasis on cross-species methodology and neural circuitry.

  3. Clinical features of anaerobic orthopaedic infections.

    Science.gov (United States)

    Lebowitz, Dan; Kressmann, Benjamin; Gjoni, Shpresa; Zenelaj, Besa; Grosgurin, Olivier; Marti, Christophe; Zingg, Matthieu; Uçkay, Ilker

    2017-02-01

    Some patient populations and types of orthopaedic surgery could be at particular risk for anaerobic infections. In this retrospective cohort study of operated adult patients with infections from 2004 to 2014, we assessed obligate anaerobes and considered first clinical infection episodes. Anaerobes, isolated from intra-operative samples, were identified in 2.4% of 2740 surgical procedures, of which half (33/65; 51%) were anaerobic monomicrobial infections. Propionibacterium acnes, a penicillin and vancomycin susceptible pathogen, was the predominantly isolated anaerobe. By multivariate analysis, the presence of fracture fixation plates was the variable most strongly associated with anaerobic infection (odds ratio: 2.1, 95% CI: 1.3-3.5). Anaerobes were also associated with spondylodesis and polymicrobial infections. In contrast, it revealed less likely in native bone or prosthetic joint infections and was not related to prior antibiotic use. In conclusion, obligate anaerobes in our case series of orthopaedic infections were rare, and mostly encountered in infections related to trauma with open-fracture fixation devices rather than clean surgical site infection. Anaerobes were often co-pathogens, and cultures most frequently recovered P. acnes. These observations thus do not support changes in current practices such as broader anaerobe coverage for perioperative prophylaxis.

  4. Alcohol abuse and related disorders treatment of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Yu. P. Sivolap

    2014-01-01

    Full Text Available Alcohol abuse and alcoholism are the leading causes of worse health and increased mortality rates. Excessive alcohol consumption is the third leading cause of the global burden of diseases and a leading factor for lower lifespan and higher mortality. Alcohol abuse decreases working capacity and efficiency and requires the increased cost of the treatment of alcohol-induced disorders, which entails serious economic losses. The unfavorable medical and social consequences of excessive alcohol use determine the importance of effective treatment for alcoholism. The goals of rational pharmacotherapy of alcohol dependence are to enhance GABA neurotransmission, to suppress glutamate neurotransmission, to act on serotonin neurotransmission, to correct water-electrolyte balance, and to compensate for thiamine deficiency. Alcoholism treatment consists of two steps: 1 the prevention and treatment of alcohol withdrawal syndrome and its complications (withdrawal convulsions and delirium alcoholicum; 2 antirecurrent (maintenance therapy. Benzodiazepines are the drugs of choice in alleviating alcohol withdrawal and preventing its convulsive attacks and delirium alcoholicum. Diazepam and chlordiazepoxide are most commonly used for this purpose; the safer drugs oxazepam and lorazepam are given to the elderly and patients with severe liver lesions. Anticonvulsants having normothymic properties, such as carbamazepine, valproic acid, topiramate, and lamotrigine, are a definite alternative to benzodiazepines. The traditional Russian clinical practice (clearance detoxification has not a scientific base or significant impact on alcohol withdrawal-related states in addicts. Relapse prevention and maintenance therapy for alcohol dependence are performed using disulfiram, acamprosate, and naltrexone; since 2013 the European Union member countries have been using, besides these agents, nalmefene that is being registered in Russia. Memantine and a number of other

  5. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    OpenAIRE

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bact...

  6. Anaerobic thermophilic culture-system

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, L G; Wiegel, J K.W.

    1981-04-14

    A mixed culture system of Thermoanaerobacter ethanolicus and Clostridium thermocellum is employed for anaerobic, thermophilic ethanol fermentation of cellulose. By cellulase action, monosaccharides are formed which inhibit the growth of C. thermocellum, but are fermented by T. ethanolicus. Thus, at a regulated pH-value of 7.5, this mixed culture system of micro organisms results in a cellulose fermentation with a considerably higher ethanol yield.

  7. Endocarditis caused by anaerobic bacteria.

    Science.gov (United States)

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H V; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  9. Characterization and BMP Tests of Liquid Substrates for High-rate Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    M. Mainardis

    2018-01-01

    Full Text Available This work was focused on the physicochemical characterization and biochemical methane potential (BMP tests of some liquid organic substrates, to verify if they were suitable for undergoing a process of high-velocity anaerobic digestion. The selected substrates were: first and second cheese whey, organic fraction of municipal solid waste (OFMSW leachate, condensate water and slaughterhouse liquid waste. Firstly, a physicochemical characterization was performed, using traditional and macromolecular parameters; then, batch anaerobic tests were carried out, and some continuous tests were planned. The results revealed that all the analyzed substrates have a potential to be anaerobically treated. Valuable information about treatment rate for a high-velocity anaerobic digestion process was obtained. Start-up of a lab-scale UASB reactor, treating diluted cheese whey, was successfully achieved with good COD removal efficiency. These preliminary results are expected to be further investigated in a successive phase, where continuous tests will be conducted on condensate water and OFMSW leachate.

  10. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.

    1989-01-01

    The integrated anaerobic-aerobic biological treatment system consisted of an anaerobic rotating biological reactor and an aerobic sequencing batch reactor. Three sequencing batch reactors were used in the aerobic process. A mixture of cheese whey and dairy manure was successfully digested in an anaerobic rotating biological contactor which served as a first step in the waste treatment process. The methane production rate, which is dependent on the organic loading rate, ranged between 1.43 and 3.74 litres methane per litre reactor per day. As the organic loading rate increased, total methane production also increased. In the anaerobic digestion step, over 46% of chemical oxygen demand was removed. The potential pollutants were further destroyed by the aerobic treatment. More than 93% of the remaining chemical oxygen demand was removed in the sequencing batch reactors operated at 22/sup 0/C. The treatment efficiency was lower for the aerobic reactor operated at a lower temperature (10/sup 0/C). (author).

  11. ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    fibers. In the present study, mesophilic anaerobic digestion of AAS pretreated manure fibers was tested in CSTR-type digesters fed with swine manure and/or a mixture of swine manure and AAS pretreated manure fibers. The Anaerobic Digestion Model No.1 (ADM1) was used for the prediction of the effect......Anaerobic digestion of manure fibers present challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) and subsequent ammonia removal has been tested as a simple and cheap method to disrupt the lignocellulose and increase the methane potential and the biogas productivity of manure...... that the AAS had on the efficiency of the anaerobic digestion of manure. Kinetic parameters were estimated by fitting of the model to data from manure fed digesters. The model was able to satisfactorily simulate the behaviour of digesters fed with manure. However, the model predictions were poorer...

  12. Arsenic volatilization in model anaerobic biogas digesters

    International Nuclear Information System (INIS)

    Mestrot, Adrien; Xie, Wan-Ying; Xue, Ximei; Zhu, Yong-Guan

    2013-01-01

    Highlights: • Arsenic is volatilized form all model anaerobic digesters, including the non-treated ones. • Volatile As species can be identified and quantified in all digesters. • Non-arsenic treated digesters volatilization rates are higher than Roxarsone treated ones. - Abstract: Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the

  13. An anaerobic bioreactor system for biobutanol production

    Energy Technology Data Exchange (ETDEWEB)

    Paekkilae, J.; Hillukkala, T.; Myllykoski, L.; Keiski, R.L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: johanna.pakkila@oulu.fi

    2009-07-01

    evaporation, perstraction, pervaporation and reverse osmosis with high selectivity are the most promising product recovery techniques despite of the tendency for clogging and fouling. Process development to achieve an economical and efficient production process have been done also by genetic strain manipulation, regulation of substrate utilization and butanol production, by using cell immobilization or cell recycling, and by using different kinds of product recovery techniques. The aim of this research was to design and build a system for the anaerobic bacteria cultivation. The purpose was to discover suitable cultivation conditions for strict anaerobic clostridia bacteria

  14. Alcohol Alert: Genetics of Alcoholism

    Science.gov (United States)

    ... daily rhythm for various functions (e.g., body temperature or blood pressure) that is controlled by certain “ ... A special section delves more deeply into specific classes of genes and their relationship to alcoholism. The ...

  15. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  16. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  17. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    Science.gov (United States)

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  18. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  19. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    Science.gov (United States)

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  20. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  1. Ultrasound pre-treatment for anaerobic digestion improvement.

    Science.gov (United States)

    Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F

    2009-01-01

    Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.

  2. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.

  3. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  4. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...

  5. A six-well plate method: less laborious and effective method for cultivation of obligate anaerobic microorganisms.

    Science.gov (United States)

    Nakamura, Kohei; Tamaki, Hideyuki; Kang, Myung Suk; Mochimaru, Hanako; Lee, Sung-Taik; Nakamura, Kazunori; Kamagata, Yoichi

    2011-01-01

    We developed a simple, less laborious method to cultivate and isolate obligate anaerobic microorganisms using a six-well plate together with the AnaeroPack System, designated as the six-well plate method. The cultivation efficiency of this method, based on colony-forming units, colony formation time, and colony size, was evaluated with four authentic obligate anaerobes (two methanogenic archaea and two sulfate-reducing bacteria). The method was found to be comparable to or even better than the roll tube method, a technique that is commonly used at present for the cultivation of obligate anaerobes. Further experiments using 21 representative obligate anaerobes demonstrated that all examined anaerobes (11 methanogens, 5 sulfate- or thiosulfate-reducing bacteria, and 5 syntrophs) could form visible colonies on the six-well plate and that these colonies could be successfully subcultured in fresh liquid media. Using this method, an unidentified sulfate-reducing bacterium was successfully isolated from an environmental sample.

  6. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  7. Bacterial study of the anaerobic bioreactor for distillery effluent

    International Nuclear Information System (INIS)

    Shah, F. A.; Pathan, M. I.

    2006-01-01

    This study relates with anaerobic bioreactors of Habib Sugar Mills, Nawabshah. Bacterial growth was studied through microscope along with its effect on the production of methane gas (Biogas) at all HRTs (Hydraulic Retention Times) between 15 and 28 days. The bacterium has the efficiency to convert 12% glucose within 24 hours to final product and cell mass. The acetogenic organisms also show their maximum growth on glucose in BGP-1 and BPG-2 at both the corks, where as Methanogenic organisms have shown their zero shown their zero growth on glucose. The efforts have been taken to determine the methanogenic, acetogenic and syntrophomonas sp. data of anaerobic bioreactors of BGP (Biogas Plant) I and II, when these samples were cultured on acetate, methanol, formate, butyrate, propionate and glucose. (author)

  8. Anaerobic treatment of sulfate-containing wastewater from distilleries

    International Nuclear Information System (INIS)

    Stadlbauer, E.A.; Oey, L.N.; Weber, B.

    1994-01-01

    Bioprocess evaluation of a staged arrangement of a Pulse Driven Loop Reaktor (PDLR) and a Pulsed Anaerobic Filter (PAF) using highly polluted cherry slops as industrial wastewater shows a COD removal efficiency of 80-90% at loading rates of 8-4 kg COD/(M 3 .d). Contamination of cherry slops by sulfate (2 g/l) and copper (150-200 mg/l) reduces COD degradation to 40-50 percent. A pulsed anaerobic baffled reactor was envisaged as a corrective tool to improve mineralisation in the presence of sulfate-rich substrates by confining sulfate reducing bacteria to the first 4 chambers of the reactor. Phasing slightly improves COD degradation yield, but is not sufficient for stable process performance. Consequently, the use of lactic acid in stead of sulfuric acid in cherry-fermentation was suggested as a preventive method to avoid sulphide-induced digester failure. (orig.) [de

  9. Изменение состава послеспиртовой барды при анаэробной и ферментативной обработке the changing in composition of alcohol stillage after anaerobic and enzymatic treatment

    OpenAIRE

    Кузнецов, Илья; Ручай, Николай; Лембович, Артур; Сазановец, Мария

    2011-01-01

    Статья описывает влияние ферментативной и анаэробной микробиологической обработки на исзменение состава послеспиртовой барды.The article describes influence of enzymatic and anaerobic microbiological treatment on changes in composition of alcohol stillage

  10. Major Anaerobic Bacteria Responsible for the Production of Carcinogenic Acetaldehyde from Ethanol in the Colon and Rectum.

    Science.gov (United States)

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tenma, Natsuki; Inai, Makoto; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-07-01

    The importance of ethanol oxidation by intestinal aerobes and facultative anaerobes under aerobic conditions in the pathogenesis of ethanol-related colorectal cancer has been proposed. However, the role of obligate anaerobes therein remains to be established, and it is still unclear which bacterial species, if any, are most important in the production and/or elimination of carcinogenic acetaldehyde under such conditions. This study was undertaken to address these issues. More than 500 bacterial strains were isolated from the faeces of Japanese alcoholics and phylogenetically characterized, and their aerobic ethanol metabolism was studied in vitro to examine their ability to accumulate acetaldehyde beyond the minimum mutagenic concentration (MMC, 50 µM). Bacterial strains that were considered to potentially accumulate acetaldehyde beyond the MMC under aerobic conditions in the colon and rectum were identified and referred to as 'potential acetaldehyde accumulators' (PAAs). Ruminococcus, an obligate anaerobe, was identified as a genus that includes a large number of PAAs. Other obligate anaerobes were also found to include PAAs. The accumulation of acetaldehyde by PAAs colonizing the colorectal mucosal surface could be described, at least in part, as the response of PAAs to oxidative stress. Ethanol oxidation by intestinal obligate anaerobes under aerobic conditions in the colon and rectum could also play an important role in the pathogenesis of ethanol-related colorectal cancer. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  11. Alcohol fuels program technical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  12. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  13. Do premorbid predictors of alcohol dependence also predict the failure to recover from alcoholism?

    DEFF Research Database (Denmark)

    Penick, Elizabeth C; Knop, Joachim; Nickel, Elizabeth J

    2010-01-01

    OBJECTIVE: In a search for viable endophenotypes of alcoholism, this longitudinal study attempted to identify premorbid predictors of alcohol dependence that also predicted the course of alcoholism. METHOD: The 202 male subjects who completed a 40-year follow-up were originally selected from...... diagnoses of alcohol abuse or alcohol dependence that were characterized as currently active or currently in remission according to Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised, course specifiers. RESULTS: The majority of subjects with a diagnosis of alcohol abuse were......: cognitive efficiency and early behavioral dyscontrol in childhood. Both factors predicted the failure to remit (low cognitive efficiency and high behavioral dyscontrol) even when lifetime alcoholism severity was controlled. CONCLUSIONS: This 4-decade study found a striking disconnect between measures...

  14. Evaluation of Gene Modification Strategies for the Development of Low-Alcohol-Wine Yeasts

    Science.gov (United States)

    Kutyna, D. R.; Solomon, M. R.; Black, C. A.; Borneman, A.; Henschke, P. A.; Pretorius, I. S.; Chambers, P. J.

    2012-01-01

    Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO2. Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites. PMID:22729542

  15. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion.

    Science.gov (United States)

    Resende, J A; Diniz, C G; Silva, V L; Otenio, M H; Bonnafous, A; Arcuri, P B; Godon, J-J

    2014-12-01

    This study was focused on evaluating the persistency of antimicrobial resistance (AR) genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter. Abundance and dynamic of AR genes encoding resistance to macrolides (ermB), aminoglycosides (aphA2) and beta-lactams (blaTEM -1 ) and persistency of potentially pathogenic bacteria in pilot-scale anaerobic digesters were investigated. AR genes were determined in the influent and effluent in both conditions. Overall, after 60 days, reduction was observed for all evaluated genes. However, during the summer, anaerobic digestion was more related to the gene reduction as compared to winter. Persistency of potentially pathogenic bacteria was also evaluated by metagenomic analyses compared to an in-house created database. Clostridium, Acinetobacter and Stenotrophomonas were the most identified. Overall, considering the mesophilic ambient temperature during anaerobic digestion (summer and winter), a decrease in pathogenic bacteria detection through metagenomic analysis and AR genes is reported. Although the mesophilic anaerobic digestion has been efficient, the results may suggest medically important bacteria and AR genes persistency during the process. This is the first report to show AR gene dynamics and persistency of potentially pathogenic bacteria through metagenomic approach in cattle manure ambient temperature anaerobic digestion. © 2014 The Society for Applied Microbiology.

  16. Comparison of the Anaerobic Power of Brazilian Professional Football Players Grouped by Tactical Position

    Directory of Open Access Journals (Sweden)

    Renan Renato Cruz dos Santos

    2014-09-01

    Full Text Available Football is characterized as a predominately aerobic modality, however, during a match; the most important actions performed by the players are in short duration and high intensity. In addition, this sport presents to have some particularities, such as, highlights differences of each tactical position. Thus, this study aimed to compare the anaerobic power of professional football players grouped by different tactical positions. Thirty professional football players separated in three groups, goal¬keep¬ers+fullbacks, sideways+DMF (defensive middlefields and OMF (offensive middlefields+forwards, performed two anaerobic po¬wer tests, Running anaerobic sprint test and Sargent jump test Goalkeepers+fullbacks showed higher values of body mass index and absolute anaerobic power (w, using Sargent jump test than the others, but when analyzed the RAST results, this same group presented lower values (p<0.05 of relative AP (w∙kg-1. OMF+forwards showed to have the best Pmed and Pmax values (p<0.05, when compared with defensive players. These results suggest the use of running anaerobic sprint test and sargent jump test toge¬ther when is proposed to measure the anaerobic power of football players, and also a anthropometric evaluation, so the training can be more specific e efficient to each tactical position and athlete.

  17. Overview of Alcohol Consumption

    Science.gov (United States)

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... experience alcohol’s longer-term effects, which can include: Alcohol use disorder Health problems Increased risk for certain cancers In ...

  18. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  19. Integrated anaerobic and aerobic treatment of sewage

    NARCIS (Netherlands)

    Wang, K.

    1994-01-01

    This thesis describes results of investigations dealing with sequential concept of anaerobic-aerobic treatment of municipal wastewater. The main purposes of the study were 1) to develop a proper anaerobic hydrolytic pretreatment unit, consisting of a Hydrolysis Upflow Sludge Bed (HUSB-)

  20. Anaerobic exercise - Induced changes in serum mineral ...

    African Journals Online (AJOL)

    Anaerobic exercise, a non 02 – dependent energy metabolism leads to transient metabolic changes, which are corrected gradually by homestatic mechanism. We investigated in eight male subjects, the effects of anaerobic exercise after a day sedentary activity on serum mineral concentration. There was significant ...

  1. Anaerobic Degradation of Bicyclic Monoterpenes in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Edinson Puentes-Cala

    2018-02-01

    Full Text Available The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon–carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.

  2. Fuel gas production by anaerobic digestion of kelp

    Energy Technology Data Exchange (ETDEWEB)

    Troiano, R.A. (Dynatech R/D Co., Cambridge, MA); Wise, D.L.; Augenstein, D.C.; Kispert, R.G.; Cooney, C.L.

    1976-12-01

    The purpose of the experimental program was to explore the feasibility of the anaerobic digestion of kelp to produce methane. Experiments were carried out with freshly harvested U.S. East Coast kelp, Laminaria saccharina. The use for fuel conversion of the rapidly growing U.S. West Coast kelp, the so-called ''giant kelp,'' Macrocystis pyrifera, has been elsewhere. L. saccharina is similar to M. pyrifera in physical structure as well as chemical composition. Both are brown algae (phaeophyta) of the order Laminariales (kelp). Their principal products of photosynthesis are the sugar alcohol, mannitol, and the polysaccharide, laminarin. The cell walls are composed mostly of algin with some cellulose and fucoidin (a phycocolloid-like algin) and the brown color is due to fucoxanthin pigment. It was anticipated that all these constituents of kelp would be subject to anaerobic digestion. The digester operation, alkali pretreatment of kelp, and a comparison of kelp digestion with other substrates are discussed.

  3. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan

    2005-01-01

    . The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter...... and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...... matter removal and methane recovery could be obtained at lower HRTs....

  4. Specific characteristics of physical fitness at work anaerobic endurance type of rowers in canoe

    Directory of Open Access Journals (Sweden)

    Penchen Guo

    2014-12-01

    Full Text Available Purpose: to determine the effect of the reactive properties cardiorespiratory system to a special performance by canoe paddlers who specialize in the 200 m. Material : The study involved 22 paddler aged 18 - 29 years. Results : there were significant indicators of the reaction due to pulmonary performance and efficiency of anaerobic metabolism. The range of correlation coefficients (r was -0.54 - 0.77 (T 50 V E and 0,55-0,71 (V E. Conclusions : It was found that the optimization of the reactive properties of the cardiorespiratory system to realize the potential impact endurance rowers when using anaerobic nature. The greatest number of significant connections were indicators of efficiency and response of pulmonary ventilation. This allowed the evaluation of the functional improve information security work and increase specialized training sessions focus in the development of anaerobic endurance while working character in canoeing.

  5. Microbial examination of anaerobic sludge adaptation to animal slurry.

    Science.gov (United States)

    Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M

    2014-01-01

    The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.

  6. Factors controlling pathogen destruction during anaerobic digestion of biowastes

    International Nuclear Information System (INIS)

    Smith, S.R.; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K.

    2005-01-01

    Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log 10 reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms

  7. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    Science.gov (United States)

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simulation of anaerobic digestion processes using stochastic algorithm.

    Science.gov (United States)

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  10. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  11. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content.

    Science.gov (United States)

    Contreras, A; Hidalgo, C; Schmidt, S; Henschke, P A; Curtin, C; Varela, C

    2015-07-16

    High alcohol concentrations reduce the complexity of wine sensory properties. In addition, health and economic drivers have the wine industry actively seeking technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol, however commercially available wine yeasts produce very similar ethanol yields. Non-conventional yeast, in particular non-Saccharomyces species, have shown potential for producing wines with lower alcohol content. These yeasts are naturally present in the early stages of fermentation but in general are not capable of completing alcoholic fermentation. We have evaluated 48 non-Saccharomyces isolates to identify strains that, with limited aeration and in sequential inoculation regimes with S. cerevisiae, could be used for the production of wine with lower ethanol concentration. Two of these, Torulaspora delbrueckii AWRI1152 and Zygosaccharomyces bailii AWRI1578, enabled the production of wine with reduced ethanol concentration under limited aerobic conditions. Depending on the aeration regime T. delbrueckii AWRI1152 and Z. bailii AWRI1578 showed a reduction in ethanol concentration of 1.5% (v/v) and 2.0% (v/v) respectively, compared to the S. cerevisiae anaerobic control. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. New Ag(I)-iminophosphorane coordination polymers as efficient catalysts precursors for the MW-assisted Meyer-Schuster rearrangement of propargylic alcohols in water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Díez, Josefina; Vidal, Cristian; Vicent, Cristian

    2013-06-03

    Treatment of the N-thiophosphorylated iminophosphorane ligands (PTA)═NP(═S)(OR)2 [PTA = 1,3,5-triaza-7-phosphaadamantane, 3a and 3b] and (DAPTA)═NP(═S)(OR)2 [DAPTA = 3,7-diacetyl-1,3,7-triaza-5-bicyclo[3.3.1]nonane, 4a and 4b] with an equimolecular amount of AgSbF6 leads to high-yield formation of the new one-dimensional coordination polymers [Ag{μ(2)-N,S-(PTA)═NP(═S)(OR)2}]x[SbF6]x (5a and 5b) and [Ag{μ(2)-O,S-(DAPTA)═NP(═S)(OR)2}]x[SbF6]x (6a and 6b), respectively. These new (iminophosphorane)silver(I) coordination polymers are efficient catalyst precursors for the Meyer-Schuster isomerization of both terminal and internal alkynols. Reactions proceeded in water, under aerobic conditions and using microwave irradiation as heating source, to afford the corresponding α,β-unsaturated carbonyl compounds in excellent yields, without the addition of any cocatalyst. Remarkably, it should be noted that this catalytic system can be recycled up to 10 consecutive runs (1st cycle 45 min, 99%; 10th cycle 6 h, 97%). ESI-MS analysis of 5a in water has been carried out providing valuable insight into the monomeric active species responsible for catalytic activity in water.

  13. Anaerobic removal of the brl direct blue dye in Upflow Anaerobic Sludge Blanket (UASB with activated carbon

    Directory of Open Access Journals (Sweden)

    Christian Zavala-Rivera

    2015-07-01

    Full Text Available In this research the brl direct blue dye was used for anaerobic removal with a bacterial consortium of industrial effluents from Industrial Park Río Seco (IPRS, Arequipa, Peru; in an anaerobic reactor of UASB Upflow with activated carbon. The reactor had a capacity of 14.4 L with sludge and activated carbon of 40% of volume, with an organic load of 6 Kg COD/m3•dia and a hydraulic retention time of 1 day with an upward flow. The objective was to measure the efficiency of the anaerobic removal of coloring in a time of 28 days. The results showed an increase of 41% of the solids suspended volatile (SSV 12894 mg•L-1 up to 21546 mg•L-1 under the conditions of the experiment, with a removal of 57% of the chemical demand of oxygen (COD from 484 mg•L-1 to 122 mg•L-1 and a removal of 87% of the dye Blue direct the 69.61 brl mg•L-1 to 9 mg•L-1. Results with activated charcoal granular only, they showed a removal of 61% of the dye Blue direct 70.67 brl mg•L-1 to 27.83 mg•L-1 at 28 days.

  14. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil.

    Science.gov (United States)

    von Sperling, M; Oliveira, S C

    2009-01-01

    This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.

  15. Anaerobic biodigestion of sugarcane vinasse under mesophilic conditions using manure as inoculum

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2016-11-01

    Full Text Available Sugarcane vinasse is one of the most polluting residues produced by Brazilian ethanol industries, mainly because of its harmful effects on the environmental, such as high organic matter load and acidity. Anaerobic digestion is a highly efficient wastewater treatment method that could potentially be used to treat sugarcane vinasse. This study examined the anaerobic biodigestion of sugarcane vinasse in mesophilic conditions (30 - 45°C by varying the inoculum concentration (0.5 to 5.5% and pH (6 - 8. Changes of Chemical Oxygen Demand (COD, total solids content, and yield and composition of biogas after the biodigestion of the vinasse were assessed. The vinasse was efficiently digested under mesophilic anaerobic conditions over a 23-day Hydraulic Retention Time (HRT and a 5-day acidogenic phase with a consequent reduction of COD (54 - 83% and total solids (52 - 87%. Statistical analyses at a confidence level of 95% suggested that temperature, pH and inoculum concentration did not influence on the anaerobic biodigestion of the vinasse. The optimal operating parameters were found to be temperatures of 30 - 35°C, inoculum concentration of 0.5% and pH of 6 - 7. The results emphasize the promising use of the treated sugarcane vinasse as a biofertilizer for agriculture, indicating that the anaerobic digestion process is an excellent alternative for Brazilian ethanol industries.

  16. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    Directory of Open Access Journals (Sweden)

    Maria Cruz García-González

    Full Text Available ABSTRACT Nitrogen (N can be recovered from different types of wastewaters. Among these wastewaters, anaerobically digested swine manure (digestate has the highest N content in ammonia form (NH3. It is desirable to reduce N in digestate effluents to safely incorporate them in arable soil in N vulnerable zones (NVZ and to mitigate NH3 emissions during N land application. Additional benefit is to minimize inhibition of the anaerobic process by removing NH3 during the anaerobic digestion process. This work aimed to apply the gas-permeable membrane technology to evaluate ammonia (NH3 recovery from high-ammonia digested swine manure. Anaerobically digested swine manure with NH4+ content of 4,293 mg N L−1 was reduced by 91 % (to 381 mg N L−1 during the 32-day experiment. Although the results showed a total N recovery efficiency of 71 %, it is possible to increase this recovery efficiency to > 90 % by adjusting the area of the membrane system to match the high free ammonia concentration (FA in digested swine manure. Moreover, final digestate pH and alkalinity were kept around 8.1 and 8,923 mgCaCO3 L−1, which are convenient for the anaerobic process or incorporation in arable soil when the process is finished.

  17. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Tülin Atan

    2013-01-01

    Full Text Available For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p>0.05. On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise.

  18. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    Among several anaerobic treatment processes, high rate anaerobic digesters receive great attention due to its high loading capacity and chemical oxygen demand removal rate. Up-flow anaerobic sludge blanket reactor (UASB) is getting wide acceptance among several anaerobic processes. However, its application is still ...

  19. Isolation of anaerobes from bubo associated with chancroid.

    Science.gov (United States)

    Kumar, B; Sharma, V K; Bakaya, V; Ayyagiri, A

    1991-01-01

    Ten men with bubo associated with chancroid were studied for bacterial flora especially anaerobes. Anaerobes were isolated from all 10 buboes and eight out of 10 ulcers of chancroid. Anaerobic cocci, B melaninogenicus and B fragilis were the most common isolates. anaerobes probably play a role in the pathogenesis of bubo in chancroid. PMID:1680792

  20. Anaerobic digestion of hog wastes

    Energy Technology Data Exchange (ETDEWEB)

    Taiganides, E P; Baumann, E R; Johnson, H P; Hazen, T E

    1963-01-01

    A short history, a list of advantages and limitations, and a short introduction to the principles of the process of anaerobic digestion are given. Six five gallon bottle digesters were daily fed hog manure, maintained at 35/sup 0/C, and constantly agitated. Satisfactory operation was assured at 3.2 g VS/l/day with a detention time of 10 days, yielding 490-643 ml gas/g VS/day with a CH/sub 4/ content of 59% (2.1 x 10/sup 7/ joules/m/sup 3/). A figure and discussion portray the interrelationships of loading rate, solids concentration and detention time. They estimate that a marginal profit might be obtained by the operation of a heated digester handling the wastes of 10,000 hogs.

  1. Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping1

    Science.gov (United States)

    Lapierre, Catherine; Pollet, Brigitte; Petit-Conil, Michel; Toval, Gabriel; Romero, Javier; Pilate, Gilles; Leplé, Jean-Charles; Boerjan, Wout; Ferret, Valérie; De Nadai, Véronique; Jouanin, Lise

    1999-01-01

    We evaluated lignin profiles and pulping performances of 2-year-old transgenic poplar (Populus tremula × Populus alba) lines severely altered in the expression of caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) or cinnamyl alcohol dehydrogenase (CAD). Transgenic poplars with CAD or COMT antisense constructs showed growth similar to control trees. CAD down-regulated poplars displayed a red coloration mainly in the outer xylem. A 90% lower COMT activity did not change lignin content but dramatically increased the frequency of guaiacyl units and resistant biphenyl linkages in lignin. This alteration severely lowered the efficiency of kraft pulping. The Klason lignin level of CAD-transformed poplars was slightly lower than that of the control. Whereas CAD down-regulation did not change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the proportion of syringaldehyde and diarylpropane structures and, more importantly with regard to kraft pulping, of free phenolic groups in lignin. In the most depressed line, ASCAD21, a substantially higher content in free phenolic units facilitated lignin solubilization and fragmentation during kraft pulping. These results point the way to genetic modification of lignin structure to improve wood quality for the pulp industry. PMID:9880356

  2. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    Science.gov (United States)

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  3. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  4. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.

    2015-01-01

    to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...... respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg(-1). Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer...

  5. Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters.

    Science.gov (United States)

    Zhang, Zhijun; Zhao, Andong; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2016-04-25

    A motor plasmonic photocatalyst (MPP) is developed to promote photocatalysis in an anaerobic stagnant environment. The MPP is fabricated through the newly developed nano/micromotor fabrication method: template-assisted aqueous phase synthesis. With the help of H2O2 (fuel), the solar photocatalytic efficiency of the MPP can be enhanced more than 110 times.

  6. The role of natural wood constituents on the anaerobic treatability of forest industry wastewaters

    NARCIS (Netherlands)

    Sierra - Alvarez, R.

    1990-01-01

    Anaerobic treatment has been shown to be an efficient and energy conserving method for treating various types of readily biodegradable non-inhibitory forest industry wastewaters. However, the high toxicity of paper mill effluents derived from chemical wood processing operations has hampered

  7. Free radicals in alcoholic myopathy: indices of damage and preventive studies.

    Science.gov (United States)

    Preedy, Victor R; Adachi, Junko; Asano, Migiwa; Koll, Michael; Mantle, David; Niemela, Onni; Parkkila, Seppo; Paice, Alistair G; Peters, Timothy; Rajendram, Rajkumar; Seitz, Helmut; Ueno, Yasuhiro; Worrall, Simon

    2002-04-15

    Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type II (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of alpha-tocopherol may be reduced in myopathic patients. However, alpha-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted.

  8. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  9. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  10. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  11. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing...... an aerotolerant Clostridium perfringens strain. A zone diameter above 27 mm was indicative of acceptable anaerobic conditions....

  12. Alcoholism and Suicide.

    Science.gov (United States)

    Roy, Alec; Linnoila, Markku

    1986-01-01

    Reviews knowledge about suicide in alcoholism: how commonly suicide among alcoholics occurs; which alcoholics commit suicide and why; suicide among alcoholic women and alcoholic physicians; possible predisposing biological factors; possible linkages with depression, adverse life events, and personality disorder; and future research and directions.…

  13. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  14. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    Directory of Open Access Journals (Sweden)

    Farida Crisnaningtyas

    2016-05-01

    Full Text Available Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr pada kisaran OLR (Organic Loading Rate 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih lanjut dengan menggunakan dua opsi proses: (1 fisika-kimia, dan (2 aerob. Koagulan alumunium sulfat dan flokulan kationik memberikan efisiensi penurunan COD tertinggi (73% pada kecepatan putaran masing-masing 100 rpm dan 40 rpm. Uji coba aerob dilakukan pada kisaran MLSS antara 4000-5000 mg/L dan mampu memberikan efisiensi penurunan COD hingga 97%. Hasil uji coba menunjukkan bahwa efisiensi penurunan COD total yang dapat dicapai dengan menggunakan teknologi anaerob-aerob adalah 97%, sedangkan kombinasi anaerob-koagulasi-flokulasi hanya mampu menurunkan COD total sebesar 72,53%. Berdasarkan hasil tersebut, kombinasi proses anaerob-aerob merupakan teknologi yang potensial untuk diaplikasikan dalam sistem pengolahan limbah cair industri farmasi. 

  15. The anaerobic linalool metabolism in Thauera linaloolentis 47 Lol.

    Science.gov (United States)

    Marmulla, Robert; Cala, Edinson Puentes; Markert, Stephanie; Schweder, Thomas; Harder, Jens

    2016-04-27

    The betaproteobacterium Thauera linaloolentis 47Lol(T) was isolated on the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. Growth experiments indicated the formation of geraniol and geranial. Thus, a 3,1-hydroxyl-Δ(1)-Δ(2)-mutase (linalool isomerase) activity may initiate the degradation, followed by enzymes of the acyclic terpene utilization (Atu) and leucine/isovalerate utilization (Liu) pathways that were extensively studied in Pseudomonas spp. growing on citronellol or geraniol. A transposon mutagenesis yielded 39 transconjugants that could not grow anaerobically on linalool and nitrate in liquid medium. The deficiencies were apparently based on gene functions required to overcome the toxicity of linalool, but not due to inactivation of genes in the degradation pathway. Growing cultures formed geraniol and geranial transiently, but also geranic acid. Analysis of expressed proteins detected several enzymes of the Atu and Liu pathways. The draft genome of T. linaloolentis 47Lol(T) had atu and liu genes with homology to those of Pseudomonas spp.. The in comparison to monoterpenes larger toxicity of monoterpene alcohols is defeated by several modifications of the cellular structure and metabolism in Thauera linaloolentis 47Lol(T). The acyclic terpene utilization pathway is used in T. linaloolentis 47Lol(T) during growth on (R,S)-linalool and nitrate under anoxic conditions. This is the first experimental verification of an active Atu pathway outside of the genus Pseudomonas.

  16. Anaerobic Transformation of Furfural by Methanococcus deltae (Delta)LH

    Science.gov (United States)

    Belay, N.; Boopathy, R.; Voskuilen, G.

    1997-01-01

    Methanococcus deltae (Delta)LH was grown on H(inf2)-CO(inf2) in the presence of various concentrations of furfural. Furfural at higher concentrations, namely, 20 and 25 mM, inhibited growth of this organism. At concentration of 5 and 10 mM, no inhibition of growth was observed. The other methanogens in this study were not inhibited by 10 mM furfural. Among the methanogens tested, M. deltae was capable of transforming furfural, whereas Methanobacterium thermoautotrophicum Marburg, Methanosarcina barkeri 227, Methanococcus thermolithotrophicus, and Methanobrevibacter ruminantium lacked this capability. One hundred percent removal of furfural was observed within 48 h of incubation in M. deltae cultures. The end product observed during furfural metabolism was furfuryl alcohol. An almost stoichiometric amount of furfuryl alcohol was produced by M. deltae. This transformation is likely to be of value in the detoxification of furfural and in its ultimate conversion to methane and CO(inf2) by anaerobic digestion. PMID:16535618

  17. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis

    DEFF Research Database (Denmark)

    Cai, Weiwei; Han, Tingting; Guo, Zechong

    2016-01-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic...... fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study...

  18. Anaerobic treatment abattoir wastewater; Depuracion anaerobia de aguas residuales de mataderos

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Segovia Castillo, E.

    1998-12-01

    The different operations in the abattoirs generated complex effluents which can be treated by anaerobic digestion. The experiment described here used a 20-litre UASB anaerobic digester fitted with a solids separator. Three hydraulic retention times (HRTs) were tested: 4 days, 2.5 days and 16 days. These HRTs gave average efficiency rates for the removal of chemical oxygen demand of 59%, 45% and 37% respectively. The resulting organic loads under these conditions were 1.5 kg COD/m``3/day, 2.8 kgCOD/m``3/day and 4.3 kgCOD/m``3/day. (Author) 12 refs.

  19. Production of a ruminant protein supplement by anaerobic fermentation of feedlot waste filtrate

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.A.; Erdman, M.D.

    1977-01-01

    In studies initiated to develop simple and efficient procedures for the production of feed supplements, it was shown that the filtrate from feedlot wastes diluted with water and filtered could be fermented under anaerobic conditions by mixed rumen bacteria, Lactobacilli, or natural microflora from the feedlot wastes to produce a protein-rich feed supplement. The filtrate is low in carbohydrate and therefore supplemental carbohydrate in the form of whey, molasses, starch from potato processing wastes, or corn starch is necessary. Rigid anaerobic conditions need not be maintained nor must aseptic conditions be observed. (JSR)

  20. Simulation of the anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Maia, C A.M.

    1981-01-01

    The dynamic model of anaerobic fermentation includes an inhibition function to relate volatile acid concentration to a specific growth rate for the methane bacteria and also includes the interactions between the liquid, gaseous, and biology phases of the digester.

  1. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  2. Solar pond for heating anaerobic digesters

    International Nuclear Information System (INIS)

    Song Kehui; Li Shensheng

    1991-10-01

    A theoretical analysis and numerical results calculated for solar pond heating anaerobic digesters in Beijing area in China are presented. The effect of temperature rise is evident and rather steady. 3 refs, 1 fig., 1 tab

  3. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  4. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and

  5. Anaerobes in Industrial- and Environmental Biotechnology.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  6. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    DEFF Research Database (Denmark)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we...... developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter...... TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions...

  7. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  8. Effect of Bile Alcohols on the Microbial 7α-dehydroxylation of Chenodeoxycholic acid

    OpenAIRE

    Lindqvist, A.; Midtvedt, T.; Skrede, S.; Sjövall, J.

    2011-01-01

    The effect of bile alcohols on the microbial 7α-dehydroxylation of chenodeoxycholic acid was investigated. Bile alcohols isolated from urine of patients with cerebrotendinous xanthomatosis were added to anaerobic incubations of rat faecal microflora or isolated 'Strain II' with [14C]chenodeoxycholic acid, and the formation of labelled metabolites was measured by high-performance liquid chromatography after 7 d of incubation. The 7α-dehydroxylation by rat faecal microflora was inhi...

  9. Technical development of fuel alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    Research and development of a technology for biologically manufacturing alcohol from agricultural and forestry wastes has been conducted according to an eight year-program beginning in 1983. This paper presents the findings in FY 1987 and the future schedule. Exploration and breeding of superior bacteria are the basic subject through the eight years. In FY 1987, preparation and evaluation of hybrid plasmids into which Zymomonas, BETA-glucosidase gene and CM case gene are inserted, improvement of variation to enhance the salt resistance of Zymomonas and screening of Cm-and Sm-resistant bacteria to develop thermophilic, anaerobic cellulose were made. In addition, the total process combining the cell adhesion method as the immobilization technique with the flash technique is continuously studied. Improvement of the salt-resistance of Zymomonas by increasing the density with photosetting resin, the upper concentration of alcohol and effect of pulverzing treatment in a small apparatus were investigated. A test plant was designed and constructed. (3 photos.)

  10. Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.

    Science.gov (United States)

    Inanc, B; Calli, B; Saatci, A

    2000-01-01

    In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.

  11. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  12. Anaerobic bacteraemia revisited: species and susceptibilities.

    Science.gov (United States)

    Ng, Lily S Y; Kwang, Lee Ling; Rao, Suma; Tan, Thean Yen

    2015-01-01

    This retrospective study was performed to evaluate the frequency of anaerobic bacteraemia over a 10-year period, and to provide updated antibiotic susceptibilities for the more clinically relevant anaerobes causing blood stream infection. Data were retrieved from the laboratory information system for the period 2003 to 2012. During this time, blood cultures were inoculated in Bactec™ Plus vials (BD, USA) and continuously monitored in the Bactec™ 9000 blood culture system (BD, USA). Anaerobic organisms were identified using commercial identification kits, predominantly API 20 A (bioMérieux, France) supplemented with Vitek ANC cards (bioMérieux, France) and AN-Ident discs (Oxoid, United Kingdom). A representative subset of isolates were retrieved from 2009 to 2011 and antimicrobial susceptibilities to penicillin, amoxicillin-clavulanate, clindamycin, imipenem, moxifloxacin, piperacillin-tazobactam and metronidazole were determined using the Etest method. Anaerobes comprised 4.1% of all positive blood culture with 727 obligate anaerobes recovered over the 10-year period, representing a positivity rate of 0.35%. The only significant change in anaerobe positivity rates occurred between 2003 and 2004, with an increase of 0.2%. The Bacteroides fragilis group (45%) were the predominant anaerobic pathogens, followed by Clostridium species (12%), Propioniobacterium species (11%) and Fusobacterium species (6%). The most active in vitro antibiotics were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with susceptibilities of 95.0%, 93.3%, 90.8% and 90.8% respectively. Resistance was high to penicillin, clindamycin and moxifl oxacin. However, there were apparent differences for antibiotic susceptibilities between species. This study indicates that the anaerobes comprise a small but constant proportion of bloodstream isolates. Antibiotic resistance was high to some antibiotics, but metronidazole, the beta-lactam/beta-lactamase inhibitors and

  13. Covering Materials for Anaerobic Digesters Producing Biogas

    International Nuclear Information System (INIS)

    Itodo, I. N.; Philips, T. K.

    2002-01-01

    The suitability of foam, concrete and clay soil as covering material on anaerobic digesters producing biogas was investigated using four batch-type digesters of 20 litres volume. The methane yield from the digesters was of the order: foam >control> concrete > clay soil. The digester covered with foam had the highest methane yield, best temperature control and most favourable pH conditions. It is most suitable as cover material on anaerobic digesters

  14. Anaerobic Digestion Assessment for Contingency Base Waste

    Science.gov (United States)

    2014-05-01

    heating. The use of anaerobic digestion for high solids organic waste (15 to 50 percent solids; i.e., mixed organic solids, such as food waste, manure ...but the team was not able to identify any for anaerobic digestion . One potentially widespread source is manure from ruminant organisms, such as...plug-flow digesters treating swine manure and used cooking grease. Bioresource Technology 101:4362-4370. ERDC TR-14-3 63 Lansing, S., and A.R

  15. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2011-06-01

    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  16. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    Science.gov (United States)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant

  17. Alcoholic Liver Disease

    Science.gov (United States)

    ... may be increased in women because their digestive system may be less able to process alcohol, thus increasing the amount of alcohol reaching the liver. Genetic makeup Genetic makeup is thought to be involved because alcoholic liver disease often ...

  18. Alcohol Use Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  19. Alcohol Use Disorders

    Science.gov (United States)

    ... alcohol use disorder” or AUD. AUD is a chronic relapsing brain disease characterized by compulsive alcohol use, loss of control over alcohol intake, and a negative emotional state when not using. ...

  20. Mechanism of quinolone resistance in anaerobic bacteria.

    Science.gov (United States)

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  1. Ultraviolet radiation is feasible alternative for desinfeting of aerobic and anaerobic treatment systems sewage in Brazil; Radiacao ultravioleta e alternativa viavel para desinfeccao de efluentes de sistemas de tratamento aerobio e anaerobio no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Luis Antonio; Campos, Jose Roberto [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1993-09-01

    This works shows desinfecting results employing ultraviolet radiation to wastes of sewage treatment station on true scales. Wastes of anaerobic, facultative and maturation pools, septic tank and anaerobic reactor were disinfected. It was found a inactive efficiency to coliforms higher than 99.9%. Safe ultraviolet desinfecting is technically applicable to wastes of sewage treatment station applying aerobic or anaerobic process. The document is enclosed in a supplement of this volume. 17 refs., 3 figs., 5 tabs.

  2. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass.

    Science.gov (United States)

    Bozan, Mahir; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2017-09-01

    The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.

  3. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    Science.gov (United States)

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  4. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  5. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  6. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  7. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  8. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Alejandra eAlvarado

    2014-11-01

    Full Text Available Anaerobic digestion (AD is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of anaerobic digestion technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for anaerobic digestion, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  9. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  10. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    Science.gov (United States)

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  11. Fetal Alcohol Spectrum Disorders (FASDs): Alcohol Use Quiz

    Science.gov (United States)

    ... Links to Other Websites About Us More CDC Alcohol Topics CDC Alcohol Portal Excessive Alcohol Use Binge ... of alcohol screening and counseling for all women Alcohol Use Quiz Recommend on Facebook Tweet Share Compartir ...

  12. Translating Alcohol Research

    Science.gov (United States)

    Batman, Angela M.; Miles, Michael F.

    2015-01-01

    Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of streamlining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD. PMID:26259085

  13. Evaluation of the anaerobic ability of alpine skiing skiers through the slalom simulator

    Directory of Open Access Journals (Sweden)

    Vasilios Giovanis

    2017-10-01

    Full Text Available Purpose: The purpose of the research was the evaluation of efficiency of anaerobic ability (power, anaerobic endurance, anaerobic fatigue and the restitution of the pulse rate of alpine skiing students through the slalom simulator. In addition, the aim of the research was the correlation of the special tests of alpine skiing on dry ground (octagon test and in snow (triangle test and slalom test with the target of determining ability levels. Methods: The 20 people sample was composed by two teams of male and female who took the course for advanced (n = 7 aged 23±1.40 years and for beginners course (n = 13 aged 20±1.49 years. For the evaluation process two special tests were used, on the ground and in snow. The ground test was completed in the slalom simulator for 40 seconds. The second ground test was the octagon bouncing (40cm each side x 3. The snow test was the Haczkiewicz test (triangle test and the slalom (7 gates, where the time of a try was measured. Results: The best efficiency in anaerobic power was made by the advanced males and females, while in the anaerobic endurance by the beginners males and females. The best performance in the dexterity tests in snow on the triangle and slalom test was made by the advanced males and beginners females respectively. Conclusions: The significant correlation between the results of anaerobic performance in the slalom simulator and the triangle test in snow confirms the means of diagnosing skill and fitness on dry ground and snow respectively. There is a significant correlation between snow test results and there is no correlation with the octagon test. The aforementioned results can be used in the talent selection process of alpine skiing.

  14. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    International Nuclear Information System (INIS)

    Sumantri, Indro; Purwanto,; Budiyono

    2015-01-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration

  15. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  16. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  17. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    Science.gov (United States)

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  18. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  19. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  20. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  1. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Science.gov (United States)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  2. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    International Nuclear Information System (INIS)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt_4_0/C or Pt_2_0/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  3. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jeena, S. E.; Gnanaprakasam, P. [Karunya University, Department of Chemistry (India); Selvaraju, T., E-mail: veluselvaraju@gmail.com [Bharathiar University, Department of Chemistry (India)

    2017-01-15

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt{sub 40}/C or Pt{sub 20}/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  4. Yeast physiology and flavour formation during production of alcohol-free beer

    NARCIS (Netherlands)

    Iersel, van M.

    1999-01-01

    Production of alcohol-free beer is performed with immobilized cells of Saccharomyces cerevisiae var. uvarum . In the reactor, combined stress factors such as low temperature (0-4°C) and anaerobic conditions limit cell

  5. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  7. Alcohol advertising and youth: a measured approach.

    Science.gov (United States)

    Jernigan, David H; Ostroff, Joshua; Ross, Craig

    2005-09-01

    Where alcohol industry self-regulation is the primary protection against youth exposure to alcohol advertising, independent, systematic monitoring of youth exposure can promote public awareness of and greater accountability in the industry's practices. Using commercially available databases, the Center on Alcohol Marketing and Youth has combined occurrence and audience data to calculate youth (aged 12-20 years) and adult (above the United States legal drinking age of 21 years) exposure to alcohol advertising on television and radio, in magazines and on the Internet. This research in the United States shows that alcohol companies have placed significant amounts of advertising where youth are more likely per capita to be exposed to it than adults. Further analyses by the Center have demonstrated that much of this excess exposure of youth to alcohol advertising in the United States could be eliminated if alcohol companies would adopt a threshold of 15% (roughly the proportion of 12-20-years-old in the population 12 and above) as the maximum youth audience composition for their advertising. Although adoption of such a threshold would still leave much youth exposure to alcohol marketing in such "unmeasured" activities as sponsorships, on-premise promotions and campus marketing, it would assist alcohol companies in reaching their intended audiences more efficiently while reducing overall youth exposure to their advertising.

  8. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  9. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  11. Is anaerobic blood culture necessary? If so, who needs it?

    Science.gov (United States)

    Iwata, Kentaro; Takahashi, Miwa

    2008-07-01

    The role of anaerobic blood cultures is not validated, although they are drawn routinely. We performed a retrospective chart review at a private hospital in Japan for patients admitted between July 1, 2004 to June 30, 2005 to determine patient characteristics resulting in anaerobic blood culture. During the study period, 17,775 blood culture bottles were sent for the analysis, and 2132 bottles (12.0%) were positive for microbial growth. Bacteria were grown from 958 anaerobic bottles (44.7%), and 719 (33.7%) of those were judged to represent real infections, which accounted for 410 cases of bacteremia. Only 47 cases (11.5%) were detected by anaerobic cultures alone. Among those 47, obligate anaerobes represented 12 cases. Clinical evaluation could have predicted 7 of 12 cases of obligate anaerobic bacteremia. In the remaining 5 cases, the source of bacteremia was unclear. There were 2.7 cases of anaerobic bacteremia per 1000 blood cultures. The mortality attributable to anaerobic bacteremia was 50%. Among bacteremic cases not caused by obligate anaerobes yet diagnosed solely by anaerobic bottles, either the standard 2 sets of blood were not taken or their clinical outcomes were favorable. Anaerobic blood culture can be avoided in most cases. Anaerobic blood culture may be most helpful when (1) bacteremia because of obligate anaerobes is clinically suspected, (2) patients are severely immunocompromised, and (3) source of bacteremia is not identified by clinical evaluation.

  12. Anaerobic digestion of food waste: A review focusing on process stability.

    Science.gov (United States)

    Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di

    2018-01-01

    Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fetal alcohol syndrome

    Science.gov (United States)

    ... a baby when a mother drinks alcohol during pregnancy. Causes Using alcohol during pregnancy can cause the same risks as using alcohol in general. But it poses extra risks to the unborn baby. When a pregnant woman drinks ... use during pregnancy. Larger amounts of alcohol appear to increase the ...

  14. Turning to alcohol?

    International Nuclear Information System (INIS)

    Reiboro, S.K.

    1998-01-01

    Brazil is examining whether turning to alcohol could solve its problems. The fuel alcohol producers are lobbying hard for the government to increase the use of alcohol to fuel the country's cars. Not only does using alcohol reduce CO 2 , runs the argument, but the Kyoto agreement might just attract international financing for the project. (author)

  15. Clearinghouse: alcohol and poppers.

    Science.gov (United States)

    1999-03-01

    Ten articles from magazines and journals are referenced on the subjects of alcohol and poppers. Topics include alcohol consumption and HIV/AIDS-related risky sexual behavior, alcohol and drug abuse, and self-esteem, gender, and alcohol use. Contact information is provided.

  16. Children of Alcoholics.

    Science.gov (United States)

    Krois, Deborah Helen

    Although alcoholism has long been considered a serious problem, the impact of parental alcoholism on children has only recently begun to receive attention from researchers and clinicians. A review of the empirical literature on children of alcoholics was conducted and it was concluded that children raised in an alcoholic family are at increased…

  17. Fetal Alcohol Exposure

    Science.gov (United States)

    ... categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder (ARND) » Alcohol-Related Birth ... either prenatally, after birth, or both Partial FAS (pFAS) Partial FAS (pFAS) involves prenatal alcohol exposure, and ...

  18. Internet Alcohol Marketing and Underage Alcohol Use.

    Science.gov (United States)

    McClure, Auden C; Tanski, Susanne E; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D

    2016-02-01

    Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13-2.78 and odds ratio 2.15; 95% confidence interval, 1.06-4.37 respectively) but not with initiation of ever drinking. Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. Copyright © 2016 by the American Academy of Pediatrics.

  19. Internet Alcohol Marketing and Underage Alcohol Use

    Science.gov (United States)

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  20. Report on a survey in fiscal 1999. Survey on industrial utilization of microorganism reaction mechanisms under anaerobic condition; 1999 nendo kenki jokenka ni okeru biseibutsu hanno kiko no kogyoteki riyo ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Industrial utilization of reaction mechanisms of microorganisms under anaerobic condition permits structuring energy saving type production processes. The present survey has investigated features of new microorganisms under anaerobic condition and the status of researches thereon inside and outside the country, and discussed their future applications. Chapter 1 compares anaerobic microorganisms and functions of microorganism under anaerobic condition with those aerobic to describe their general features, and describes the purpose of this survey and the summary of the investigations. Chapter 2 surveys the current status of technologies to utilize microorganisms under anaerobic condition. Chapter 3 outlines metabolic characteristics of the anaerobic microorganisms, and extracts functions effective for material production by different anaerobic microorganisms to describe their applicability. Chapter 4 evaluates the system classification for the anaerobic microorganisms utilizing the basic arrangement of 16S rRNA genes, and extracts technical problems therein. Chapter 5 proposes structuring a total methane fermentation system including a raw material collecting process, and enhancing alcohol productivity of Zymomonas bacteria. (NEDO)

  1. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  2. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Alcohol and Breastfeeding

    DEFF Research Database (Denmark)

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per

    2014-01-01

    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  4. Integration of ozonation and an anaerobic sequencing batch reactor (AnSBR) for the treatment of cherry stillage.

    Science.gov (United States)

    Alvarez, Pedro M; Beltrán, Fernando J; Rodríguez, Eva M

    2005-01-01

    Cherry stillage is a high strength organic wastewater arising from the manufacture of alcoholic products by distillation of fermented cherries. It is made up of biorefractory polyphenols in addition to readily biodegradable organic matter. An anaerobic sequencing batch reactor (AnSBR) was used to treat cherry stillage at influent COD ranging from 5 to 50 g/L. Different cycle times were selected to test biomass organic loading rates (OLR(B)), from 0.3 to 1.2 g COD/g VSS.d. COD and TOC efficiency removals higher than 80% were achieved at influent COD up to 28.5 g/L but minimum OLR(B) tested. However, as a result of the temporary inhibition of acetogens and methanogens, volatile fatty acids (VFA) noticeably accumulated and methane production came to a transient standstill when operating at influent COD higher than 10 g/L. At these conditions, the AnSBR showed signs of instability and could not operate efficiently at OLR(B) higher than 0.3 g COD/g VSS.d. A feasible explanation for this inhibition is the presence of toxic polyphenols in cherry stillage. Thus, an ozonation step prior to the AnSBR was observed to be useful, since more than 75% of polyphenols could be removed by ozone. The integrated process was shown to be a suitable treatment technology as the following advantages compared to the single AnSBR treatment were observed: greater polyphenols and color removals, higher COD and TOC removal rates thus enabling the process to effectively operate at higher OLR, higher degree of biomethanation, and good stability with less risk of acidification.

  5. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-01-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD rem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  6. Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kiwook [Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588 (Korea, Republic of); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078 (China); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588 (Korea, Republic of); Oh, Juhyun; Bae, Jisu [Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588 (Korea, Republic of)

    2016-08-05

    Highlights: • Coupled biodegradation of carbon tetrachloride (CT) and trichloroethylene (TCE) in biobarrier with polyethylene glycol carriers. • TCE aerobically cometabolized and CT anaerobically dechlorinated. • Removal efficiencies of over 98%, leaving residuals below or near the regulatory standards. • Coupled aerobic/anaerobic environments established by H{sub 2}O{sub 2} injected at 50% of electron donor. • Longer retention time (from 3.6 to 7.2 days) achieved satisfactory removal at lower temperature (18 °C). - Abstract: Simultaneous biodegradation of carbon tetrachloride (CT) and trichloroethylene (TCE) in a biobarrier with polyethylene glycol (PEG) carriers was studied. Toluene/methanol and hydrogen peroxide (H{sub 2}O{sub 2}) were used as electron donors and an electron acceptor source, respectively, in order to develop a biologically active zone. The average removal efficiencies for TCE and toluene were over 99.3%, leaving the respective residual concentrations of ∼12 and ∼57 μg/L, which are below or close to the groundwater quality standards. The removal efficiency for CT was ∼98.1%, with its residual concentration (65.8 μg/L) slightly over the standards. TCE was aerobically cometabolized with toluene as substrate while CT was anaerobically dechlorinated in the presence of electron donors, with the respective stoichiometric amount of chloride released. The oxygen supply at equivalent to 50% chemical oxygen demand of the injected electron donors supported successful toluene oxidation and also allowed local anaerobic environments for CT reduction. The originally augmented (immobilized in PEG carriers) aerobic microbes were gradually outcompeted in obtaining substrate and oxygen. Instead, newly developed biofilms originated from indigenous microbes in soil adapted to the coupled anaerobic/aerobic environment in the carrier for the simultaneous and almost complete removal of CT, TCE, and toluene. The declined removal rates when temperature

  7. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  8. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  9. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  10. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  11. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  12. Detoxification of carbaryl by anaerobic gastrointestinal organisms

    International Nuclear Information System (INIS)

    Laszewski, S.J.; Harkin, J.M.

    1990-01-01

    Bacteria originating from the human gastrointestinal tract (GIT) were tested in vitro for their ability to hydrolyze carbaryl, the most widely used carbamate insecticide. Carbaryl hydrolysis prevents acetylcholinesterase inhibition. Degradation of [1- 14 C]naphthyl N-methylcarbamate was assessed through the use of carbon-and nitrogen-free enrichment cultures as well as a cometabolic enrichment culture. The carbon-free enrichment culture showed the greatest ability to hydrolyze carbaryl. Two facultative anaerobes, identified as DF-3 and Citrobacter freundii were isolated. Cell-free extracts from these bacteria were able to hydrolyze p-nitrophenyl acetate, 1-naphthyl acetate and carbaryl. This investigation suggests carbaryl degradation could occur prior to gastrointestinal absorption. Human GIT organisms are also widespread in anaerobic environments. Microbial hydrolysis of a xenobiotic can be an important reaction in the anaerobic environments of man or nature

  13. Alcohol tax, consumption and mortality in tsarist Russia: is a public health perspective applicable?

    Science.gov (United States)

    Norström, Thor; Stickley, Andrew

    2013-04-01

    The public health perspective on alcohol comprises two main tenets: (i) population drinking impacts on alcohol-related harm and (ii) population drinking is affected by the physical and economic availability of alcohol, where alcohol taxes are the most efficient measure for regulating consumption. This perspective has received considerable empirical support from analyses of contemporary data mainly from Europe and North America. However, as yet, it has been little examined in a historical context. The aims of the present article are to use data from tsarist Russia to explore (i) the relation between changes in the tax on alcohol and per capita alcohol consumption and (ii) the relation between per capita alcohol consumption and alcohol mortality. The material comprised annual data on alcohol taxes, alcohol consumption and alcohol mortality. The tax and alcohol consumption series spanned the period 1864-1907 and the mortality data covered the period 1870-94. The data were analysed by estimating autoregressive integrated moving average models on differenced data. Changes in alcohol taxes were significantly associated with alcohol consumption in the expected direction. Increases in alcohol consumption, in turn, were significantly related to increases in alcohol mortality. This study provides support for the utility of the public health perspective on alcohol in explaining changes in consumption and alcohol-related harm in a historical context. We discuss our findings from tsarist Russia in the light of experiences from more recent alcohol policy changes in Russia.

  14. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  15. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    Science.gov (United States)

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  16. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Science.gov (United States)

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  17. Biodegradation of Methylene Blue Dye by Sequential Treatment Using Anaerobic Hybrid Reactor and Submerged Aerobic Fixed Film Bioreactor

    Science.gov (United States)

    Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika

    2017-12-01

    Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.

  18. [Activity of doripenem against anaerobic bacteria].

    Science.gov (United States)

    Dubreuil, L; Neut, C; Mahieux, S; Muller-Serieys, C; Jean-Pierre, H; Marchandin, H; Soussy, C J; Miara, A

    2011-04-01

    This study examines the activity of doripenem, a new carbapenem compound compared with amoxicillin-clavulanic acid, piperacillin+tazobactam, imipenem, clindamycin and metronidazole against 316 anaerobes. Inoculum preparation and agar dilution method were performed according to the CLSI method for anaerobes (M11A7). At a concentration of 4μg/ml doripenem and imipenem (IMP) inhibited 122 (96 %) and 126 (99 %) strains of the Bacteroides fragilis group, respectively. In contrast, doripenem appeared more potent than IMP against Gram-positive anaerobes inhibiting at the same concentration of 4μg/ml 145/145 strains (100 %) versus 115/145 for IMP (79.3 %). Against 316 anaerobic strains, the carbapenem doripenem had an MIC(50) of 0.25μg/ml and an MIC(90) of 2μg/ml. Results were similar to those for imipenem (MIC(50) of 0.125μg/ml and MIC(90) of 4μg/ml). If we consider the resistant breakpoints of the two carbapenems as defined by EUCAST, the resistance rate for doripenem (MIC>4μg/ml) 1.6 % is similar to that of imipenem (MIC>8μg/ml) 1.3 %. Thus independently of the PK/PD parameters the two carbapenems demonstrated very close activity; doripenem was more potent on Gram-positive anaerobes and slightly less potent against Gram-negative anaerobes mainly the B. fragilis group. Further clinical studies are needed to assess its usefulness in patients. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. In vitro activity of mecillinam against anaerobic bacteria.

    OpenAIRE

    Steinkraus, G E; McCarthy, L R

    1980-01-01

    A microtiter broth dilution method was employed to determine the in vitro activity of mecillinam against 201 recent clinical isolates of anaerobic bacteria. Both the anerobic gram-positive and anaerobic gram-negative bacilli displayed a wide range of minimal inhibitory concentrations of mecillinam; most strains were resistant to the antibiotic. The anaerobic cocci exhibited a narrower range of minimal inhibitory concentrations than were observed with other anaerobes, but also exhibited mecill...

  20. The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    OpenAIRE

    Weersink, Alfons; Mallon, Shawn

    2007-01-01

    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The res...

  1. What is alcoholic fermentation? A study about the alcoholic fermentation conception through the history

    Directory of Open Access Journals (Sweden)

    C.A. F. Cardoso

    2004-05-01

    Full Text Available This work shows the historical development of the alcoholic fermentation conception, based on expe-rimental results obtained from European scientists, from Renascence to the beginning of 20th century(1930. From this, ve concepts were identied for the phenomenon: putrefactive, spiritual, chemical,biological and biochemical. The current conception of alcoholic fermentation was also evaluated. Forthis proposal, three groups of teachers were interviewed through the question? What is alcoholicfermentation? The P group (pilot, n=12 made of professionals that teach on secondary and highschools, group A composed of PhDs from the Center of Technology Education - NUTES (n=9 andgroup B from Department of Medical Biochemistry (called group B, n=41 both of Federal Universityof Rio de Janeiro, respectively. Key words associated with the fermentative process were identiedidentify in the interviewees answers. The group A components mentioned only six key words andpointed out the alcoholic fermentation products. Dierently, subjects from P and B groups cited ahigher number and also more unusual key words (n = 9 and 12, respectively. We also analyzedtheir answers throughout fermentative descriptive words (sugar, alcohol, carbon dioxide, anaerobic,yeast and ATP. These words were established after an evaluation of alcoholic fermentation conceptstated in the Biology/Biochemistry books most adopted in high schools and Universities. Our analysisshowed that group A used only three descriptive words (sugar, alcohol and yeast while componentsof group B used all the selected descriptive words. However, only one interviewee used all the sixwords together. From this analysis, we proposed that the chemical concept of alcoholic fermentationprevailed on the other concepts found on the historical research (spiritual, putrefactive, biological ebiochemical.

  2. Transforming anaerobic digestion with the Model T of digesters

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.F.; Ciotola, R.; Castano, J.; Eger, C.; Schlea, D. [Ohio State Univ., Columbus, OH (United States). Ecological Engineering Program

    2010-07-01

    Most livestock farmers in the United States do not take advantage of anaerobic digester technology because of the high cost and large scale. These limitations therefore reduce the production of renewable energy from farmlands. In order to expand anaerobic digestion methods and improve environmental quality, affordable and smaller-scale digesters should be developed to enable most livestock farmers to convert manure to methane. Doing so would improve their economic efficiency and environmental sustainability. This paper provided an analogy to the development of the Model T to better explain the need and potential for this technology. A modified fixed-dome digester was installed on the Ohio State University dairy in Columbus, Ohio. The digester was unheated, buried, had a volume of 1 m{sup 3} and received diluted dairy manure as feedstock. Biogas was produced at digester temperatures as low 10 degrees C during colder ambient temperatures. Water quality also improved. Results from the first year of operation will be analyzed to improve performance and enable future development of this technology.

  3. Assessment of anaerobic biodegradability of five different solid organic wastes

    Science.gov (United States)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  4. Antimicrobial activity of alcohols from Musca domestica.

    Science.gov (United States)

    Gołębiowski, Marek; Dawgul, Małgorzata; Kamysz, Wojciech; Boguś, Mieczysława I; Wieloch, Wioletta; Włóka, Emilia; Paszkiewicz, Monika; Przybysz, Elżbieta; Stepnowski, Piotr

    2012-10-01

    Information on the stimulatory and inhibitory effects of cuticular alcohols on growth and virulence of insecticidal fungi is unavailable. Therefore, we set out to describe the content of cuticular and internal alcohols in the body of housefly larvae, pupae, males and females. The total cuticular alcohols in larvae, males and females of Musca domestica were detected in comparable amounts (4.59, 3.95 and 4.03 μg g(-1) insect body, respectively), but occurred in smaller quantities in pupae (2.16 μg g(-1)). The major free alcohol in M. domestica larvae was C(12:0) (70.4%). Internal alcohols of M. domestica larvae were not found. Among cuticular pupae alcohols, C(12:0) (31.0%) was the most abundant. In the internal lipids of pupae, only five alcohols were identified in trace amounts. The most abundant alcohol in males was C(24:0) (57.5%). The percentage content of cuticular C(24:0) in males and females (57.5 and 36.5%, respectively) was significantly higher than that of cuticular lipids in larvae and pupae (0.9 and 5.6%, respectively). Only two alcohols were present in the internal lipids of males in trace amounts (C(18:0) and C(20:0)). The most abundant cuticular alcohols in females were C(24:0) (36.5%) and C(12:0) (26.8%); only two alcohols (C(18:0) and C(20:0)) were detected in comparable amounts in internal lipids (3.61±0.32 and 5.01±0.42 μg g(-1), respectively). For isolated alcohols, antimicrobial activity against 10 reference strains of bacteria and fungi was determined. Individual alcohols showed approximately equal activity against fungal strains. C(14:0) was effective against gram-positive bacteria, whereas gram-negative bacteria were resistant to all tested alcohols. Mixtures of alcohols found in cuticular lipids of larvae, pupae, males and females of M. domestica generally presented higher antimicrobial activity than individual alcohols. In contrast, crude extracts containing both cuticular and internal lipids showed no antifungal activity against the

  5. Anaerobic Digestion: Mass Balances and Products

    DEFF Research Database (Denmark)

    Møller, Jacob; Christensen, Thomas Højlund; Jansen, Jes la Cour

    2011-01-01

    While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories. Underst......While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories...

  6. Anaerobic digestion of cider apple residues

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, A. (E.T.S.I.I., U.N.E.D., Madrid (Spain). Dept. Quimica Applicada a la Ingenieria); Lopez Bobo, R. (E.T.S. Ingeneiros Industriales, Asturias (Spain). Dept. de Energia)

    1992-12-01

    Apple residue from the cider industry is used here for anaerobic fermentation. The effect of retention time and volatile solids concentration on the production of biogas and methane was investigated by using continuously mixed anaerobic fermentors with a working volume of 1 1. The maximum proportions of biogas and methane obtained were 430 1 biogas/kg per day (12 days' retention time and 3% of volatile solids) and 281 1 of methane per day (a retention time of 30 days and 2% of volatile solids), respectively. (author)

  7. Anaerobic digestion of industrial activated aerobic sludge

    International Nuclear Information System (INIS)

    Goodloe, J.G.; Roberts, R.S.

    1990-04-01

    The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge

  8. Pu sorption to activated conglomerate anaerobic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Kudo, Akira

    2001-01-01

    The sorption of Pu to the anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after long dormant period was investigated. After 4 h at neutral pH, the distribution coefficient (K d ) between bacteria and aqueous phase at 308 and 278 K had around 10 3 to 10 4 . After over 5 days, however, the K d at only 308 K had increased to over 10 5 . Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. (author)

  9. The IWA Anaerobic Digestion Model No 1 (ADM1)

    NARCIS (Netherlands)

    Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavalostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A.

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as

  10. The IWA Anaerobic digestion model no 1. (ADM1)

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Keller, J.; Angelidaki, Irini

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well...

  11. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  12. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  13. Anaerobic wastewater treatment in single-and double-stage digesters; Tratamiento anaerobio de aguas residuales en digestores de simple y doble etapa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Lopez, M.; Vazquez Garcia, M. J.; Pena Caamano, P.; Soto Castineira, M. [Universidad da Coruna (Spain)

    2000-07-01

    Anaerobic treatment are a major alternative in wastewater treatment due to simplicity and lower power requirements, although greater understanding of this process and its technology is needed to make it possible. The most important concepts and parameters developed to treat medium-and high-load effluents are defined and various technologies are discussed, including: anaerobic filter (AF), upflow anaerobic sludge blanket (UASB) reactors, fluidized bed (FB) reactors, expanded granular sludge beds (EGSB). To determine the efficiency in municipal wastewater treatment, a pilot plant was constructed with a UASB reactor, obtaining elimination efficiency values of 60-65% for total COD and 55% for TSS. Finally a comparative chart of aerobic versus anaerobic treatment is provided, high-lighting the major possibilities offered by the latter. (Author) 28 refs.

  14. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Global alcohol policy and the alcohol industry.

    Science.gov (United States)

    Anderson, Peter

    2009-05-01

    The WHO is preparing its global strategy on alcohol, and, in so doing, has been asked to consult with the alcohol industry on ways it could contribute in reducing the harm done by alcohol. This review asks which is more effective in reducing harm: the regulatory approaches that the industry does not favour; or the educational approaches that it does favour. The current literature overwhelmingly finds that regulatory approaches (including those that manage the price, availability, and marketing of alcohol) reduce the risk of and the experience of alcohol-related harm, whereas educational approaches (including school-based education and public education campaigns) do not, with industry-funded education actually increasing the risk of harm. The alcohol industry should not be involved in making alcohol policy. Its involvement in implementing policy should be restricted to its role as a producer, distributor, and marketer of alcohol. In particular, the alcohol industry should not be involved in educational programmes, as such involvement could actually lead to an increase in harm.

  16. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    2004-01-01

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  17. Consumo de alcohol alcoholismo

    OpenAIRE

    Rodríguez Páez, Pablo E.; Fundación Valle de Lili

    1999-01-01

    ¿Qué es el alcohol?/¿Cómo actual el alcohol en el organismo?/¿Qué efectos causa?/Efectos por el consumo crónico/¿El consumo de alcohol durante el embarazo afecta el embrión?/¿Qué otras consecuencias tiene el consumo de alcohol?/¿Cuándo se considera que una persona tiene problemas con su consumo de alcohol?/¿Cuándo se debe sospechar que alguien tiene problemas con el consumo de alcohol?/Características del saber beber adecuadamente?/¿Cuales son las alternativas de tratamiento para este problem...

  18. Alcoholic hepatitis.

    Science.gov (United States)

    Damgaard Sandahl, Thomas

    2014-10-01

    Alcoholic hepatitis (AH) is an acute inflammatory syndrome causing significant morbidity and mortality. The prognosis is strongly dependent on disease severity, as assessed by clinical scoring systems. Reliable epidemiological data as well as knowledge of the clinical course of AH are essential for planning and resource allocation within the health care system. Likewise, individual evaluation of risk is desirable in the clinical handling of patients with AH as it can guide treatment, improve patient information, and serve as strata in clinical trials. The present PhD thesis is based on three studies using a cohort of nearly 2000 patients diagnosed with AH in Denmark from 1999 to 2008 as a cohort, in a population-based study design. The aims of this thesis were as follows. (1) To describe the incidence and short- and long-term mortality, of AH in Denmark (Study I). (2) To validate and compare the ability of the currently available prognostic scores to predict mortality in AH (Study II). (3) To investigate the short- and long-term causes of death of patients with AH (Study III). During the study decade, the annual incidence rate in the Danish population rose from 37 to 46 per 106 for men and from 24 to 34 per 106 for women. Both short- and long-term mortality rose for men and women, and the increase in short-term mortality was attributable to increasing patient age and prevalence of cirrhosis. Our evaluation of the most commonly used prognostic scores for predicting the mortality of patients with AH showed that all scores performed similarly, with Area under the Receiver Operator Characteristics curves giving values between 0.74 and 0.78 for 28-day mortality assessed on admission. Our study on causes of death showed that in the short-term (thesis provides novel warranted epidemiological information about AH that shows increasing incidence and mortality rates. Consequently, it reiterates the fact that AH is a life-threatening disease and suggests that AH is an

  19. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-10-17

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H(+)-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts.

  20. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  1. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  2. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of

  3. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the

  4. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  5. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  6. Anaerobic digestion of dairy farm slurry

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C

    1973-04-01

    Bell described the intermittent operation of a pilot-scale anaerobic digester receiving dilute dairy farm slurry. A 65 to 75 percent reduction of the ''permanganate (COD) value'' could be obtained at 35/sup 0/ and a 60 day detention time. Methane content of the gases ranged between 40 and 70 percent.

  7. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    Anaerobic digestion processes for production of renewable energy in the form of biogas, and in the future hydrogen, are becoming increasingly important worldwide. Sustainable solutions for renewable energy production systems are given high political priority, amongst other things due to global...

  8. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  9. Anaerobic oxidation of methane and ammonium.

    NARCIS (Netherlands)

    Strous, M.; Jetten, M.S.M.

    2004-01-01

    Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been

  10. Comparative effects of undigested and anaerobically digested ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology ... The pot experiment consisted of sixty (60) nursery bags, set out in the greenhouse. ... (NPK 20:10:10) applied at the 120 kgN/ha; air-dried undigested and anaerobically digested ...

  11. Anaerobic prefermentation and primary sedimentation of wastewater ...

    African Journals Online (AJOL)

    This research was carried out with the aim of evaluating the solubilisation and acidification capacity of fermenting organisms in suspension in a sequencing batch reactor (SBR), which had a volume of 1 800 ℓ. Using 8 h cycles with 340 min of anaerobic reaction time, the wastewater fed to the SBR presented an average of ...

  12. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  13. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Anaerobic work capacity in elite wheelchair athletes

    NARCIS (Netherlands)

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, DirkJan (H. E. J.); Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer,

  15. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  16. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  17. Teleosts in hypoxia : Aspects of anaerobic metabolism

    NARCIS (Netherlands)

    Van den Thillart, G.; van Waarde, Aren

    1985-01-01

    Moderate hypoxia can be tolerated by many fish species, while only some species survive severe hypoxia or anoxia. Hypoxia usually activates anaerobic glycolysis, which may be temporary when the animals are able to improve their oxygen extraction capacity. Switching over to aerobic metabolism allows

  18. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs.

  19. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    Science.gov (United States)

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  1. Digestion of cheese whey with anaerobic rotating biological contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale anaerobic rotating biological contact reactor receiving full strength cheese whey was studied over a range of hydraulic retention times from 11 to 5 days at 35 degrees C. Methane production rates ranging from 1.68 to 3.26 litres CH/sub 4//litre/day and a 76 to 93% reduction in chemical oxygen demand were achieved. At hydraulic retention times shorter than 5 days, steady-state operation could not be maintained for reactors receiving either full strength or diluted whey. A two-stage fermentation system was also studied; the results indicated that stable operation and treatment efficiency (89.5% COD removal) could be achieved.

  2. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  3. Automatic process control in anaerobic digestion technology: A critical review.

    Science.gov (United States)

    Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar

    2015-10-01

    Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  5. Startup and stability of thermophilic anaerobic digestion of OFMSW

    KAUST Repository

    El-Fadel, Mutasem E.; Saikaly, Pascal; Ghanimeh, Sophia A.

    2013-01-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and more recently as a greenhouse gas (GHG) mitigation measure. In this context, AD systems operating at thermophilic temperatures (55-60°C)-compared to mesophilic temperatures (35-40°C)-have the unique feature of producing hygienic soil conditioners with greater process efficiency, higher energy yield, and more GHG savings. Startup of AD systems is often constrained by the lack of acclimated seeds, leading to process instability and failure. The authors focus on strategies to startup thermophilic digesters treating OFMSW in the absence of acclimated seeds and examines constraints associated with process stability and ways to overcome them. Relevant gaps in the literature and future research needs are delineated. © 2013 Taylor & Francis Group, LLC.

  6. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    International Nuclear Information System (INIS)

    Martins, Monica; Faleiro, Maria Leonor; Costa, Ana M. Rosa da; Chaves, Sandra; Tenreiro, Rogerio; Matos, Antonio Pedro; Costa, Maria Clara

    2010-01-01

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  7. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    ) and mesophilic (388C) operation of the UASB reactor was investigated. At an OLR of 3.5 kg- VS/(m3 day) a methane yield of 340 L/kg-VS was achieved for thermophilic operation (538C) while 270 L/kg-VS was obtained under mesophilic conditions (388C). For loading rates higher than 5 kg-VS/(m3 day) the methane yields...... of suspended matter reduced the degradation efficiency. The retention time of the anaerobic system could be reduced from 70 to 7 h by additional removal of suspended matter by clarification. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher carbon utilization...

  8. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  9. Analysis of anaerobic blood cultures in burned patients.

    Science.gov (United States)

    Regules, Jason A; Carlson, Misty D; Wolf, Steven E; Murray, Clinton K

    2007-08-01

    The utility of anaerobic blood culturing is often debated in the general population, but there is limited data on the modern incidence, microbiology, and utility of obtaining routine anaerobic blood cultures for burned patients. We performed a retrospective review of the burned patients electronic medical records database for all blood cultures drawn between January 1997 and September 2005. We assessed blood cultures for positivity, organisms identified, and growth in aerobic or anaerobic media. 85,103 blood culture sets were drawn, with 4059 sets from burned patients. Three hundred and forty-five single species events (619 total blood culture isolates) were noted in 240 burned patients. For burned patients, four isolates were obligate anaerobic bacteria (all Propionibacterium acnes). Anaerobic versus aerobic culture growth was recorded in 310 of 619 (50.1%) burned patient blood culture sets. 46 (13.5%) of the identified organisms, most of which were not obligate anaerobic bacteria, were identified from solely anaerobic media. The results of our study suggest that the detection of significant anaerobic bacteremia in burned patients is very rare and that anaerobic bottles are not needed in this population for that indication. However anaerobic blood cultures systems are also able to detect facultative and obligate aerobic bacteria; therefore, the deletion of the anaerobic culture medium may have deleterious clinical impact.

  10. Techniques for controlling variability in gram staining of obligate anaerobes.

    Science.gov (United States)

    Johnson, M J; Thatcher, E; Cox, M E

    1995-01-01

    Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fixing and staining techniques within a gloveless anaerobic chamber. Under anaerobic conditions, gram-positive staining occurred in all test organisms with "quick" fixing techniques with both absolute methanol and formalin. The results support the hypothesis that, when anaerobic bacteria are exposed to oxygen, a breakdown of the physical integrity of the cell wall occurs, introducing Gram stain variability in gram-positive anaerobes. PMID:7538512

  11. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    International Nuclear Information System (INIS)

    Ramakrishnan, Anushyaa; Gupta, S.K.

    2006-01-01

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 ± 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors

  12. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.

    Science.gov (United States)

    Alkan-Ozkaynak, A; Karthikeyan, K G

    2011-11-01

    Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  14. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  15. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  16. Shock resistance characteristic of a spiral symmetry stream anaerobic bio-reactor.

    Science.gov (United States)

    Chen, Xiaoguang; Dai, Ruobin; Xiang, Xinyi; Li, Gang; Xu, Zhengqi; Hu, Tao; Abdelgadir, Awad

    2016-01-01

    The shock resistance characteristic (SRC) of an anaerobic bioreactor characterizes the ability of the anaerobic community in the reactor to withstand violent change in the living environment. In comparison with an upflow anaerobic sludge blanket reactor (UASBR), the SRC of a spiral symmetry stream anaerobic bio-reactor (SSSAB) was systematically investigated in terms of removal efficiency, adsorption property, settling ability, flocculability and fluctuations in these parameters. A quantitative assessment method for SRC was also developed. The results indicated that the SSSAB showed better SRC than the UASBR. The average value (m value) of chemical oxygen demand removal rates of the SSSAB was 86.0%. The contact angle of granules in the SSSAB present gradient distribution, that is the m value of contact angle increasing from bottom (84.5°) to top (93.9°). The m value of the density at the upper and lower sections of the SSSAB were 1.0611 g·cm(-3) and 1.0423 g·cm(-3), respectively. The surface mean diameter of granules in the SSSAB increased from 1.164 to 1.292 mm during operation. The absolute m value of zeta potential of granular sludge at the upper and lower sections of the SSSAB were 40.4 mV and 44.9 mV, respectively. The weighted mean coefficient variance (C̅V̅) value indicated SSSAB was more stable than the UASBR.

  17. Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors

    KAUST Repository

    Labarge, Nicole

    2016-10-17

    An anaerobic fluidized bed membrane bioreactor (AFMBR) is a new and effective method for energy-efficient treatment of low strength wastewater, but the factors that affect performance are not well known. Different inocula and acclimation methods of the granular activated carbon (GAC) used in the reactor were examined here to determine their impact on chemical oxygen demand (COD) removal and microbial community composition of domestic wastewater-fed AFMBRs. AFMBRs inoculated with anaerobic digester sludge (D) or domestic wastewater (W) and fed domestic wastewater, or inoculated with a microbiologically diverse anaerobic bog sediment and acclimated using methanol (M), all produced the same COD removal of 63 ± 12% using a diluted wastewater feed (100 ± 21 mg L−1 COD). However, an AFMBR with GAC inoculated with anaerobic digester sludge and acclimated using acetate (A) showed significantly increased wastewater COD removal to 84 ± 6%. In addition, feeding the AFMBR with the M-acclimated GAC with an acetate medium for one week subsequently increased COD removal to 70 ± 6%. Microbial communities enriched on the GAC included Geobacter, sulfur-reducing bacteria, Syntrophaceae, and Chlorobiaceae, with reactor A having the highest relative abundance of Geobacter. These results showed that acetate was the most useful substrate for acclimation of GAC communities, and GAC harbors unique communities relative to those in the AFMBR influent and recirculated solution.

  18. Selective separation of anaerobic sludge by means of hydrocyclones; Selektive Abtrennung von Anaerobschlamm mit Hydrozyklonen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.; Bohnet, M. [Technische Univ. Braunschweig (Germany). Inst. fuer Verfahrens- und Kerntechnik

    1999-07-01

    In anaerobic waste water cleaning, biomass concentration constitutes a central problem because of long generating times and low biomass sinking speeds. In order to decouple hydraulic retention time from biomass retention time, biomass must be fed back into the reactor. The fact that separation by means of common gravitational separators such as sedimentation tanks and baffle plate thickeners is unspecific results in the enrichment in the reactor of inorganic solids, whose presence is corollary to the anaerobic sludge process. Hence, industry has a great interest in separating anaerobic sludge into organic and inorganic constituents as a means of safeguarding high operating stability and degradation efficiency of anaerobic reactors. Hydrocyclones, permitting selective separation, are an obvious approach. (orig.) [German] Bei der anaeroben Abwasserreinigung ist die Biomassekonzentrierung aufgrund langer Generationszeiten und geringer Sinkgeschwindigkeiten der Biomasse ein zentrales Problem. Zur Entkopplung der hydraulischen Verweilzeit von der Verweilzeit der Biomasse ist eine Rueckfuehrung der Biomasse erforderlich. Da bisher eingesetzte Schwerkraftabscheider, wie Absetzbecken und Lamellenklaerer, unspezifisch trennen, kommt es zu einer Anreicherung anorganischer Feststoffe im Reaktor, die sich prozessbedingt im Anaerobschlamm befinden. So hat die Industrie ein grosses Interesse an einer Auftrennung des Anaerobschlamms in organische und anorganische Bestandteile, um eine hohe Betriebsstabilitaet und Abbauleistung der Anaerobreaktoren zu gewaehrleisten. Hierzu bieten sich Hydrozyklone an, weil mit ihnen eine selektive Trennung moeglich ist. (orig.)

  19. Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability.

    Science.gov (United States)

    Xu, Huacheng; He, Pinjing; Yu, Guanghui; Shao, Liming

    2011-01-01

    To investigate the effect of ultrasonic pretreatment on anaerobic digestion and sludge dewaterability and further to probe into the influencing factors on sludge dewaterability, sludge flocs were stratified into four fractions: (1) slime; (2) loosely bound extracellular polymeric substances (LB-EPS); (3) tightly bound EPS (TB-EPS); and (4) EPS-free pellets. The results showed that ultrasonic pretreatment increased the anaerobic digestion efficiency by 7%-8%. Anaerobic digestion without ultrasonic pretreatment deteriorated the sludge dewaterability, with the capillary suction time (CST) increased from 1.42 to 47.3 (sec x L)/g-TSS. The application of ultrasonic pretreatment firstly deteriorated the sludge dewaterability (normalized CST increased to 44.4 (sec x L)/g-TSS), while subsequent anaerobic digestion offset this effect and ultimately decreased the normalized CST to 23.2 (sec x L)/g-TSS. The dewaterability of unsonicated sludge correlated with protein (p = 0.003) and polysaccharide (p = 0.004) concentrations in the slime fraction, while that of sonicated sludge correlated with protein concentrations in the slime and LB-EPS fractions (p anarobic digestion.

  20. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2017-11-01

    Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  1. Carbon Emissions, Renewable Electricity, and Profits: Comparing Policies to Promote Anaerobic Digesters on Dairies

    OpenAIRE

    Key, Nigel D.; Sneeringer, Stacy E.

    2012-01-01

    Anaerobic digesters can provide renewable energy and reduce greenhouse gas emissions from manure management. Government policies that encourage digester adoption by livestock operations include construction cost-share grants, renewable electricity subsidies, and carbon pricing (offset) programs. However, the effectiveness and efficiency of these policies is not well understood. For the U.S. dairy sector, we compare predicted digester adoption rates, carbon emission reductions, renewable elect...

  2. Women and Alcohol

    Science.gov (United States)

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  3. Alcohol and Cancer Risk

    Science.gov (United States)

    ... or more than 14 drinks per week for men. What is the evidence that alcohol drinking is a cause of cancer? Based on extensive reviews of research studies , there is a strong scientific consensus of an association between alcohol drinking ...

  4. Genetics of Alcoholism.

    Science.gov (United States)

    Zhu, Ena C; Soundy, Timothy J; Hu, Yueshan

    2017-05-01

    Consuming excessive amounts of alcohol has the potential to modify an individual's brain and lead to alcohol dependence. Alcohol use leads to 88,000 deaths every year in the U.S. alone and can lead to other health issues including cancers, such as colorectal cancer, and mental health problems. While drinking behavior varies due to environmental factors, genetic factors also contribute to the risk of alcoholism. Certain genes affecting alcohol metabolism and neurotransmitters have been found to contribute to or inhibit the risk. Geneenvironment interactions may also play a role in the susceptibility of alcoholism. With a better understanding of the different components that can contribute to alcoholism, more personalized treatment could cater to the individual. This review discusses the major genetic factors and some small variants in other genes that contribute to alcoholism, as well as considers the gene-environmental interactions. Copyright© South Dakota State Medical Association.

  5. Children of alcoholics

    Directory of Open Access Journals (Sweden)

    Robert Oravecz

    2002-09-01

    Full Text Available The author briefly interprets the research – results, referring to the phenomenon of children of alcoholics, especially the psychological and psychopathological characteristics of children of alcoholics in adolescence and young adulthood. The author presents a screening study of adolescents. The sample contains 200 high school students at age 18. The aim of the survey was to discover the relationship between alcohol consumption of parents, PTSD - related psychopathological symptoms and reported life quality of their children. The study confirmed the hypothesis about a substantial correlation between high alcohol consumption of parents, higher psychopathological symptom - expression and lower reported life quality score of their children. Higher PTSD-related symptomatology in children of alcoholics is probably resulted by home violence, which is very often present in family of alcoholics. The article also evaluated the results regarding suicide ideation of children of alcoholics, which is definitely more frequent and more intense than in their peers living in non alcohol – dependent families.

  6. an Unrecorded Alcohol Beverage

    African Journals Online (AJOL)

    NICO

    Chemical analysis of volatile compounds fromkhadi, an unrecorded alcoholic beverage from Botswana, was ... quality, some of them may be contaminated and toxic, thereby ... home-brewed alcoholic beverages exist in Botswana and are.

  7. Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Alcohol can harm your baby at any stage during a pregnancy. That includes the earliest stages, before ... can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Children who are born with ...

  8. Benzyl Alcohol Topical

    Science.gov (United States)

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  9. What We Fund - Alcohol

    International Development Research Centre (IDRC) Digital Library (Canada)

    NCDP

    Analysis of the regulatory environment (national ... Predicting and evaluating policy impact. PA. N ... constrain the use of a holistic approach engaging ... alcohol, and ultra-processed food and drink industries, ... Alcohol and Other Drugs, 2003.

  10. Alcohol Facts and Statistics

    Science.gov (United States)

    ... Standard Drink? Drinking Levels Defined Alcohol Facts and Statistics Print version Alcohol Use in the United States: ... 1238–1245, 2004. PMID: 15010446 National Center for Statistics and Analysis. 2014 Crash Data Key Findings (Traffic ...

  11. Alcohol use disorder

    Science.gov (United States)

    ... have problems with alcohol if you: Are a young adult under peer pressure Have depression, bipolar disorder , anxiety disorders , or schizophrenia Can easily obtain alcohol Have low self-esteem Have problems with relationships Live a stressful lifestyle ...

  12. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.

    Science.gov (United States)

    Schink, B; Stieb, M

    1983-06-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycol-fermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEG-containing nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.

  13. Improving the sustainability of farming practices through the use of a symbiotic approach for anaerobic digestion and digestate processing

    NARCIS (Netherlands)

    Pierie, Frank; Benders, René M.J.; Moll, Henri C.; D'Souza, Austin; van Someren, Christian; van Gemert, Wim

    2017-01-01

    The dairy sector in the Netherlands aims for a 30% increase in efficiency and 30% carbon dioxide emission reduction compared to the reference year of 1990, and a 20% share of renewable energy, all by the year 2020. Anaerobic Digestion (AD) can play a substantial role in achieving these aims.

  14. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F J; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  15. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  16. Improving the Sustainability of Farming Practices through the Use of a Symbiotic Approach for Anaerobic Digestion and Digestate Processing

    NARCIS (Netherlands)

    Pierie, Frank; Dsouza, Austin; van Someren, Christian E. J.; Benders, René M.J.; van Gemert, Wim J. Th.; Moll, Henri C.

    2017-01-01

    The dairy sector in the Netherlands aims for a 30% increase in efficiency and 30% carbon dioxide emission reduction compared to the reference year of 1990, and a 20% share of renewable energy, all by the year 2020. Anaerobic Digestion (AD) can play a substantial role in achieving these aims.

  17. Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane

    International Nuclear Information System (INIS)

    Li, Hailong; Larsson, Eva; Thorin, Eva; Dahlquist, Erik; Yu, Xinhai

    2015-01-01

    Highlights: • Anaerobic digestion and biomass gasification are integrated. • The novel concept can produce much more biomethane. • The novel concept can improve the exergy efficiency. • The novel concept demonstrates a big potential of income increase. - Abstract: There is a rapid growing interest in using biomethane as fuel for transport applications. A new concept is proposed to combine anaerobic digestion and biomass gasification to produce biomethane. H 2 is separated from the syngas generated by biomass gasification in a membrane system, and then is used to upgrade raw biogas from anaerobic digestion. Simulations have been conducted based on the real operation data of one full scale biogas plant and one full scale biomass gasification plant in order to investigate the feasibility of the new concept. Results show that although less power and heat are generated compared to the gasification plant, which results in a lower overall efficiency, much more biomethane can be produced than the biogas plant; and the new concept can achieve a higher exergy efficiency. Due to the increasing price of biomethane, the novel concept demonstrates a big potential of income increase. For example, at a biomethane price of 12.74SEK/kg, the annual income can be increased by 5.3% compared to the total income of the biogas and gasification plant

  18. Alcoholism and Lesbians

    Science.gov (United States)

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  19. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-01-01

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines

  20. Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions.

    Science.gov (United States)

    Lu, Qin; Yi, Jing; Yang, Dianhai

    2016-01-01

    High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.