WorldWideScience

Sample records for efficiency-enhancing anode interfacial

  1. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    Science.gov (United States)

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  2. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.

    2008-01-01

    To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.

  3. Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; De Silveira, G. [Materials Technology Laboratory, Natural Resources Canada, CANMET, 405 Rochester Street, Ottawa, Ontario (Canada) K1A OG3

    2003-04-01

    Lanthanum gallate doped with strontium and magnesium (LSGM) is a promising electrolyte system for intermediate temperature solid oxide fuel cells (SOFCs). The reported formation of interfacial layers in monolithic type SOFCs based on lanthanum gallate is of concern because of its impact on the performance of the fuel cell. Planar anode-supported SOFC elements (without the cathode) were prepared by the tape casting technique in order to determine the nature of the anode/electrolyte interface after sintering. Two anode systems were studied, one a NiO-CeO{sub 2} cermet, and the other, a modified lanthanum gallate anode containing manganese. Sintering studies were conducted at 1250, 1300, 1350, 1400 and 1450 C to determine the effect of temperature on the interfacial characteristics. Scanning electron microscopy (SEM) revealed a significant diffusion of Ni from the NiO-CeO{sub 2} anode resulting in the formation of an interfacial layer regardless of sintering temperature. Significant La diffusion from the electrolyte into the anode was also observed. In the case of the modified lanthanum gallate anode containing manganese, there was no interfacial layer formation, but a significant diffusion of Mn into the electrolyte was observed.

  4. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  5. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  6. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-05-01

    Full Text Available In flexible OLEDs (FOLEDs, the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  7. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    Science.gov (United States)

    Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui

    2018-05-01

    In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  8. Efficiency increase in flexible bulk heterojunction solar cells with a nano-patterned indium zinc oxide anode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong Hwan; Seifter, Jason; Heeger, Alan J. [Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106-5090 (United States); Park, Jong Hyeok [School of Chemical Engineering and SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Dae-Geun [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2012-11-15

    Efficient flexible bulk-heterojunction polymer solar cells based on PCDTBT/PC{sub 70}BM were successfully fabricated by a simple nano-imprint technique. The flexible nano-patterned IZO anode with ordered periodic dot structures led to improved light absorption and increased interfacial contact area between the anode and polymer as well as between the polymer and cathode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    Science.gov (United States)

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  10. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  11. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  12. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  13. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells

    DEFF Research Database (Denmark)

    Pan, Hongbin; Zuo, Lijian; Fu, Weifei

    2013-01-01

    Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3–Au co-evaporation composite film as the anode interfacial layer (AIL). The optical...

  14. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    Chang, Chao-Hsuan; Lin, Hsin-Han; Chen, Chin-Cheng; Hong, Franklin C.-N.

    2014-01-01

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O 2 plasma treatment and further immersed in titanium tetrachloride (TiCl 4 ) solution. The process conditions for producing a very thin TiO 2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO 2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm 2 using backside illumination mode. Surface treatments of Ti substrate and TiO 2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  15. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  16. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The enhanced electron injection by fluorinated tris-(8-hydroxy-quinolinato) aluminum derivatives in high efficient Si-anode OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shi, M.M., E-mail: minminshi@zju.edu.c [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, Y.Z. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Shi, Y.W. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ran, G.Z.; Qin, G.G. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Wang, M.; Chen, H.Z. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Fabrication of organic light-emitting diodes (OLEDs) and lasers on silicon substrates is a feasible route to integrate microelectronic chips with optical devices for telecommunications. However, the efficiency of Si-anode based OLEDs is restricted by the imbalance of hole-electron injection because a p-type Si anode owns better hole injection ability than ITO. We have used fluorinated tris-(8-hydroxy-quinolinato) aluminum (FAlq{sub 3}) derivatives to prepare Si-anode based OLEDs. We observed that, when tris-(5-fuloro-8-hydroxyquinolinato) aluminum (5FAlq{sub 3}) is used as the electron-transporting material instead of Alq{sub 3}, the cathode electron injection is enhanced due to its lower lowest unoccupied molecular orbital (LUMO) compared to the Alq{sub 3}. The device can keep the relative carrier balance even when a Si anode capable of stronger hole injection was used. Further optimization of the device structure by introducing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as a hole blocking layer showed significant increase in the device power efficiency from 0.029 to 0.462 lm/W. This indicates that use of fluorinated Alq{sub 3} derivatives is an effective way to improve the performance of Si-anode based OLEDs.

  18. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    Science.gov (United States)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  19. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  20. Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhu, Yanfei; Hu, Aiping; Tang, Qunli; Zhang, Shiying; Deng, Weina; Li, Yanhua; Liu, Zheng; Fan, Binbin; Xiao, Kuikui; Liu, Jilei; Chen, Xiaohua

    2018-03-14

    A novel strategy is proposed to construct a compact-nanobox (CNB) structure composed of irregular nanograins (average diameter ≈ 10 nm), aiming to confine the electrode-electrolyte contact area and enhance initial Coulombic efficiency (ICE) of transition metal oxide (TMO) anodes. To demonstrate the validity of this attempt, CoO-CNB is taken as an example which is synthesized via a carbothermic reduction method. Benefiting from the compact configuration, electrolyte can only contact the outer surface of the nanobox, keeping the inner CoO nanograins untouched. Therefore, the solid electrolyte interphase (SEI) formation is reduced. Furthermore, the internal cavity leaves enough room for volume variation upon lithiation and delithiation, resulting in superior mechanical stability of the CNB structure and less generation of fresh SEI. Consequently, the SEI remains stable and spatially confined without degradation, and hence, the CoO-CNB electrode delivers an enhanced ICE of 82.2%, which is among the highest values reported for TMO-based anodes in lithium-ion batteries. In addition, the CoO-CNB electrode also demonstrates excellent cyclability with a reversible capacity of 811.6 mA h g -1 (90.4% capacity retention after 100 cycles). These findings open up a new way to design high-ICE electrodes and boost the practical application of TMO anodes.

  1. Anode engineering for photocurrent enhancement in a polymer solar cell and applied on plastic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsing-Wang; Li, Pei-Wen [Department of Electrical Engineering, National Central University, Chungli 32001 (China); Pei, Zingway; Cheng, Shor-Jeng; Hsieh, Wei-Shung [Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung 40227 (China); Chen, Chun-Chao; Chan, Yi-Jen [Electronics and Optoelectronics Research Laboratories (EOL), Industrial Technology Research Institute (ITRI), Hsinchu 31040 (China)

    2011-02-15

    In this work, a multilayer structure, PEDOT:PSS/insulator/PEDOT:PSS (CIC), was designed and used as the anode in a polymer solar cell (PSC) to enhance the efficiency at low annealing temperature. The efficiency for PSC with CIC multilayers could increase around 22% as compared to the reference cell. The internal electrical field enhancement due to the effective work function increase by CIC multilayer was assumed and responded to efficiency enhancement. The work function of the multilayer anode structure was explored by an electrostatic force microscopy (EFM) analysis. The EFM result shows that the surface potential of PEDPT:PSS in CIC structure is around 0.6 V higher than PEDOT:PSS in reference structure, indicating a higher work function for PEDOT:PSS in multilayer structure. By the input photon-to-current conversion efficiency (IPCE) study, the major enhancement in photocurrent occurred at solar spectrum range of 400-650 nm. Further applied to plastic substrate, the PSC exhibits 9.2% enhancement in efficiency. (author)

  2. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    Science.gov (United States)

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  3. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  4. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    International Nuclear Information System (INIS)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, Yoon-Jae; Park, Man-Jin; Moon, Dae Won

    2012-01-01

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m 2 SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  5. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    Science.gov (United States)

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  6. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2012-02-15

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  7. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    Science.gov (United States)

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  8. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  9. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  10. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F.; Kong, Desheng; Criddle, Craig S.; Cui, Yi

    2011-01-01

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  11. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  12. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    Science.gov (United States)

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Yang, Hwi Soo; Kim, Sang-Hyung; Kannan, Aravindaraj G; Kim, Seon Kyung; Park, Cheolho; Kim, Dong-Won

    2016-04-05

    The development of silicon-based anodes with high capacity and good cycling stability for next-generation lithium-ion batteries is a very challenging task due to the large volume changes in the electrodes during repeated cycling, which results in capacity fading. In this work, we synthesized silicon alloy as an active anode material, which was composed of silicon nanoparticles embedded in Cu-Al-Fe matrix phases. Poly(amide imide)s, (PAI)s, with different thermal treatments were used as polymer binders in the silicon alloy-based electrodes. A systematic study demonstrated that the thermal treatment of the silicon alloy electrodes at high temperature made the electrodes mechanically strong and remarkably enhanced the cycling stability compared to electrodes without thermal treatment. The silicon alloy electrode thermally treated at 400 °C initially delivered a discharge capacity of 1084 mAh g(-1) with good capacity retention and high Coulombic efficiency. This superior cycling performance was attributed to the strong adhesion of the PAI binder resulting from enhanced secondary interactions, which maintained good electrical contacts between the active materials, electronic conductors, and current collector during cycling. These findings are supported by results from X-ray photoelectron spectroscopy, scanning electron microscopy, and a surface and interfacial cutting analysis system.

  14. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  15. Organic photovoltaic device with interfacial layer and method of fabricating same

    Science.gov (United States)

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  16. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    Science.gov (United States)

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    Science.gov (United States)

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  18. Porous anodic film formation on an Al-3.5 wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M.A.; Bustos, O.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Wood, G.C.

    2000-03-01

    Anodic film growth has been undertaken on an electropolished Al-3.5 wt % Cu alloy to determine the influence of copper in solid solution on the anodizing behavior. At the commencement of anodizing of the electropolished alloy, in the presence of interfacial enrichment of copper, Al{sup 3+} and Cu{sup 2+} ions egress and O{sup 2{minus}} ion ingress proceed; film growth occurs at the alloy/film interface though O{sup 2{minus}} ion ingress, with outwardly mobile Al{sup 3+} and Cu{sup 2+} ions ejected at the film/electrolyte interface, and field-assisted dissolution proceeding at the bases of pores. Oxidation of copper, in the presence of the enriched layer, is also associated with O{sub 2} gas generation, leading to development of oxygen-filled voids. As a result of significant pressures in the voids, film rupture proceeds, with electrolyte access to the alloy, dissolution of the enriched interfacial layer and re-anodizing. The consequence of such processes in the development of anodic films of increased porosity and reduced efficiency of film formation compared with anodizing of superpure aluminum under similar conditions.

  19. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells

    KAUST Repository

    Sergeant, Nicholas P.

    2012-01-03

    The use of an ITO-free MoO 3/Ag/MoO 3 anode to control the photon harvesting in PCDTBT:PC 70BM solar cells is proposed. At first sight, the fact that these anodes possess reduced far-field transmission compared to ITO may seem to be a disadvantage. But, despite this, we show that by carefully tuning the resonant optical cavity we can enhance the external quantum efficiency close to the band edge of PCDTBT, resulting in high photocurrent and power conversion efficiency on par with ITO. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular Level Manipulation of Interfacial Charge Transport

    Science.gov (United States)

    Song, Charles Kiseok

    The bulk-heterojunction organic (BHJ) photovoltaics (OPVs) and lithium ion battery (LiB) have been extensively studied. Power conversion efficiency (PCE) of an OPV greater than 10% and utilizing group 4 elements as the anode to accommodate high capacity for LiBs are the goals of many studies. However, the currently ubiquitous hole-collecting layer of OPVs limit device performance and durability, and group 4 elements are unstable and brittle to be commercially produced. Thus, my thesis has focused on developing functional and durable interfacial layers (IFLs) for OPVs and characterizing flexible artificial solid-electrolyte interphase (SEI) for LiBs. In Chapter 2, a series of robust organosilane-based dipolar self-assembled monolayer (SAM) IFLs on the tin-doped indium oxide (ITO) anodes of OPVs are developed. These hydrophobic and amorphous IFLs modify anode work functions from 4.66 to 5.27 eV. Two series of Glass/ITO/SAM IFL/Active Layer/LiF/Al BHJ OPVs are fabricated, and a strong positive correlation between the electrochemically-derived heterogeneous electron transport rate constants (ks) and OPV PCEs are observed due to enhanced anode carrier extraction. In Chapter 3, a series of unusually denser organosilane-based SAM IFLs on ITO anodes of OPVs are developed. Precursor mixtures having short and long tail groups were simultaneously deposited to minimize sterical encumbrance and denser SAM IFLs are achieved. These heterogeneous supersaturated SAMs (SHSAMs), with PCE (7.62%) exceeding that of PEDOT:PSS IFL, are found to be 17% denser and enhances PCE by 54% versus comparable devices with homogeneous SAM IFLs due to enhanced charge selectivity and collection. In Chapter 4, libraries of electron affinities (EAs) of widely used conductive polymers are constructed by cyclic voltammetry (CV) in conventional and LiB media. The EAs of the conductive polymer films measured via CV in conventional (EAC) and Li+ battery (EAB) media could be linearly correlated by EAB = (1

  1. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    Science.gov (United States)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  2. Enhanced Efficiency of GaAs Single-Junction Solar Cells with Inverted-Cone-Shaped Nanoholes Fabricated Using Anodic Aluminum Oxide Masks

    Directory of Open Access Journals (Sweden)

    Kangho Kim

    2013-01-01

    Full Text Available The GaAs solar cells are grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD and fabricated by photolithography, metal evaporation, annealing, and wet chemical etch processes. Anodized aluminum oxide (AAO masks are prepared from an aluminum foil by a two-step anodization method. Inductively coupled plasma dry etching is used to etch and define the nanoarray structures on top of an InGaP window layer of the GaAs solar cells. The inverted-cone-shaped nanoholes with a surface diameter of about 50 nm are formed on the top surface of the solar cells after the AAO mask removal. Photovoltaic and optical characteristics of the GaAs solar cells with and without the nanohole arrays are investigated. The reflectance of the AAO nanopatterned samples is lower than that of the planar GaAs solar cell in the measured range. The short-circuit current density increased up to 11.63% and the conversion efficiency improved from 10.53 to 11.57% under 1-sun AM 1.5 G conditions by using the nanohole arrays. Dependence of the efficiency enhancement on the etching depth of the nanohole arrays is also investigated. These results show that the nanohole arrays fabricated with an AAO technique may be employed to improve the light absorption and, in turn, the conversion efficiency of the GaAs solar cell.

  3. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    Science.gov (United States)

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.

  4. Improvement of the current efficiency of an Al-Zn-In anode by heat-treatment

    International Nuclear Information System (INIS)

    Lin, J.C.; Shih, H.C.

    1987-01-01

    Aluminum anodes, each having one of several heat-treatments [namely as-cast (A), furnace-cooled (B), quenched (C), and quenched and aged (D-1)] were electrically coupled to structural steels to provide cathodic protection. The electro-chemical potential of each galvanic couple depended on the type of heat-treatment: anodes A, B, and C exhibited a potential of -1.10V, and anode D-1 was somewhat less negative at -0.95V. Empirical relationships between galvanic current density and area ratio (AR), based on 120h tests, have been established. Surface examination showed that anodes A, B, and C corrode uniformly, whereas anode D-1 dissolves locally. Results showed that the current efficiency of a sacrificial aluminum anode is dependent on its microstructure, which is, in turn, affected by its heat-treatment. Both anodes A and B possessed an equilibrium precipitate of In and the corresponding efficiencies did not vary with time. However, anode C, and especially anode D-1, suffered from aging, and their efficiencies varied with time. The microstructure of anode C contained thermal defects such as dislocation loops, while anode D-1 contained both dislocation loops and microsegregates. Results confirm that as-cast and furnace-cooled anodes have the best efficiencies (94-98%), while quenched and aged anodes have significantly lower efficiencies

  5. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  6. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  7. Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Reddy, V. S.

    2018-01-01

    Polymer solar cells were fabricated with solution-processed transition metal oxides, MoO3 and V2O5 as anode buffer layers (ABLs). The optimized device with V2O5 ABL exhibited considerably higher power conversion efficiency (PCE) compared to the devices based on MoO3 and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ABLs. The space charge limited current measurements and impedance spectroscopy results of hole-only devices revealed that V2O5 provided a very low charge transfer resistance and high hole mobility, facilitating efficient hole transfer from the active layer to the ITO anode. More importantly, incorporation of V2O5 as ABL resulted in substantial improvement in device stability compared to MoO3 and PEDOT:PSS based devices. Unencapsulated PEDOT:PSS-based devices stored at a relative humidity of 45% have shown complete failure within 96 h. Whereas, MoO3 and V2O5 based devices stored in similar conditions retained 22% and 80% of their initial PCEs after 96 h. Significantly higher stability of the V2O5-based device is ascribed to the reduction in degradation of the anode/active layer interface, as evident from the electrical measurements.

  8. Simple solution-processed CuOX as anode buffer layer for efficient organic solar cells

    International Nuclear Information System (INIS)

    Shen, Wenfei; Yang, Chunpeng; Bao, Xichang; Sun, Liang; Wang, Ning; Tang, Jianguo; Chen, Weichao; Yang, Renqiang

    2015-01-01

    Graphical abstract: - Highlights: • Simple solution-processed CuO X hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO X as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO X anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO X was the composite of CuO and Cu 2 O. The CuO X modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO X layer was optimized by varying the thickness of CuO X films through changing solution concentration. With P3HT:PC 61 BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO X anode buffer layer, compared with that of PEDOT:PSS layer. The CuO X layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC 71 BM as the active layer. The long-term stability of CuO X device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO X film can act as an efficient anode buffer layer for high-efficiency OSCs

  9. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  10. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries

    International Nuclear Information System (INIS)

    Liu Yu; Horikawa, Kumi; Fujiyosi, Minako; Imanishi, Nobuyuki; Hirano, Atsushi; Takeda, Yasuo

    2004-01-01

    We report the approach to overcome the deterrents of the hexagonal Li 2.6 Co 0.4 N as potential insertion anode for lithium ion batteries: the rapid capacity fading upon long cycles and the fully Li-rich state before cycling. Research reveals that the appropriate amount of Co substituted by Cu can greatly improve the cycling performance of Li 2.6 Co 0.4 N. It is attributed to the enhanced electrochemical stability and interfacial comparability. However, doped Cu leads to a slightly decreased capacity. High energy mechanical milling (HEMM) was found to effectively improve the reversible capacity associated with the electrochemical kinetics by modifying the active hosts' morphology characteristics. Moreover, the composite based on mesocarbon microbead (MCMB) and Li 2.6 Co 0.4 N was developed under HEMM. The composite demonstrates a high first cycle efficiency at 100% and a large reversible capacity of ca. 450 mAh g -1 , as well as a stable cycling performance. This work may contribute to a development of the lithium transition metal nitrides as novel anodes for lithium ion batteries

  11. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  12. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    Science.gov (United States)

    Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  13. A Review on Anodic Aluminum Oxide Methods for Fabrication of Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Cielecki, Pawel Piotr

    2018-01-01

    Implementation of nanostructures into the organic solar cell (OSC) architecture has great influence on the device performance. Nanostructuring the active layer increases the interfacial area between donor and acceptor, which enhances the probability of exciton dissociation. Introduction of nanost......Implementation of nanostructures into the organic solar cell (OSC) architecture has great influence on the device performance. Nanostructuring the active layer increases the interfacial area between donor and acceptor, which enhances the probability of exciton dissociation. Introduction......, low fabrication cost and easy control over its nano-scale morphology, make AAO patterning methods an intriguing candidate for nanopatterning. Hence, in this work, we present a review on the fabrication techniques and on nanostructures from Anodic Aluminum Oxide (AAO) for OSC applications...

  14. Stability enhancement of P3HT:PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Radhakrishnan, Thulasi; Reddy, V. S.

    2018-02-01

    Polymer solar cells have been fabricated with thermally evaporated MoO3 as anode buffer layer (ABL). The stability of MoO3 and PEDOT:PSS based devices was examined under different test conditions. The MoO3 based device exhibited a slightly better efficiency and significantly higher stability compared to PEDOT:PSS based device. At a relative humidity of 45% the unencapsulated PEDOT:PSS based device degraded completely within 96 h. On the other hand, MoO3 based device retained more than 60% of its initial efficiency after 96 h. The reason behind stability enhancement was investigated by measuring time-evolution of reflectance and hole-current. Experimental results revealed that the stability enhancement for MoO3 based device originates from the reduction in degradation of anode/active layer interface.

  15. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, S., E-mail: agarwala.shweta@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore); Ho, G.W. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore)

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  16. Enhancement of organic light-emitting device performances with Hf-doped indium tin oxide anodes

    International Nuclear Information System (INIS)

    Chen, T.-H.; Liou, Y.; Wu, T.J.; Chen, J.Y.

    2004-01-01

    We have enhanced the luminance and the power efficiency of organic light-emitting devices with Hf-doped indium tin oxide (ITO) anodes instead of a CuPc layer. The Hf-doped ITO layer with a thickness of 15 nm was deposited on top of the ITO anode. Less than 10 mol. % of Hf was doped in ITO films by adjusting the sputtering rates of both sources. The highest work function of the Hf-doped ITO layers was 5.4 eV at the Hf concentrations about 10 mol. %. The driving voltages of the device have been reduced by 1 V. A luminance of 1000 cd/m 2 at 7 mA/cm 2 , a current efficiency of 14 cd/A, and a power efficiency of 6 lm/W at 6 mA/cm 2 have been achieved in the device with a 4 mol. % Hf-doped ITO layer (work function=5.2 eV). In general, the performance was about 50% better than the device with a CuPc buffer layer

  17. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  18. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Yang, Wei-En; Lee, Tzu-Hsin

    2014-01-01

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  19. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  20. Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy.

    Science.gov (United States)

    Lin, Xingdong; Zhu, Yunhui; Zhang, Baohua; Zhao, Xiaofei; Yao, Bing; Cheng, Yanxiang; Li, Zhanguo; Qu, Yi; Xie, Zhiyuan

    2018-01-10

    Solution-processed organic light-emitting diodes (s-OLED) consisting of TAPC/TmPyPB interfacial exciplex host and polymer PAPTC TADF emitter are prepared, simultaneously displaying ultralow voltages (2.50/2.91/3.51/4.91 V at luminance of 1/100/1000/1000 cd m -2 ), high efficiencies (14.9%, 50.1 lm W -1 ), and extremely low roll-off rates (J 50 of 63.16 mA cm -2 , L 50 of ca. 15000 cd m -2 ). Such performance is distinctly higher than that of pure-PAPTC s-OLED. Compared to pure-PAPTC, the advanced emissive layer structure of TAPC:PAPTC/TmPyPB is unique in much higher PL quantum yield (79.5 vs 36.3%) and nearly 4-fold enhancement in k RISC of the PAPTC emitter to 1.48 × 10 7 s -1 .

  1. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    Science.gov (United States)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  2. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.

    Science.gov (United States)

    Guo, Gen-Cai; Wang, Da; Wei, Xiao-Lin; Zhang, Qi; Liu, Hao; Lau, Woon-Ming; Liu, Li-Min

    2015-12-17

    There is a great desire to develop the high-efficient anodes materials for Li batteries, which require not only large capacity but also high stability and mobility. In this work, the phosphorene/graphene heterostructure (P/G) was carefully explored based on first-principles calculations. The binding energy of Li on the pristine phosphorene is relatively weak (within 1.9 eV), whereas the phosphorene/graphene heterostructure (P/G) can greatly improve the binding energy (2.6 eV) without affecting the high mobility of Li within the layers. The electronic structures show that the large Li adsorption energy and fast diffusion ability of the P/G origin from the interfacial synergy effect. Interestingly, the P/G also displays ultrahigh stiffness (Cac = 350 N/m, Czz = 464 N/m), which can effectively avoid the distortion of the pristine phosphorene after the insertion of lithium. Thus, P/G can greatly enhance the cycle life of the battery. Owing to the high capacity, good conductivity, excellent Li mobility, and ultrahigh stiffness, P/G is a very promising anode material in Li-ion batteries (LIBs).

  3. Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery

    International Nuclear Information System (INIS)

    Hu, Renzong; Zhang, Houpo; Bu, Yunfei; Zhang, Hanyin; Zhao, Bote; Yang, Chenghao

    2017-01-01

    Here we report our findings in synthesis and characterization of porous Co 3 O 4 nanofibers coated with a surface-modification layer, reduced graphene oxide. The unique porous Co 3 O 4 @rGO architecture enables efficient stress relaxation and fast Li + ions and electron transport during discharge/charge cycling. When tested in a half cell, the Co 3 O 4 @rGO electrodes display high Coulombic efficiency, enhanced cyclic stability, and high rate capability (∼900 mAh/g at 1A/g, and ∼600 mAh/g at 5 A/g). The high capacity is contributed by a stable capacity yielded from reversible conversion reactions above 0.8 V vs. Li/Li + , and a increasing capacity induced by the electrolyte decomposition and interfacial storage between 0.8 0.01 V during discahrge. A full cell constructed from a Co 3 O 4 @rGO anode and a LiMn 2 O 4 cathode delivers good capacity retention with operation voltage of ∼2.0 V. These performances are better than those of other full cells using alloy or metal oxide anodes. Our work is a preliminary attempt for practicality of high capacity metal oxide anodes in Li-ion batteries used for the electronic devices.

  4. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-03-01

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  6. Simple solution-processed CuO{sub X} as anode buffer layer for efficient organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Yang, Chunpeng [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Sun, Liang; Wang, Ning [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Tang, Jianguo [Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Yang, Renqiang, E-mail: yangrq@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Simple solution-processed CuO{sub X} hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO{sub X} as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO{sub X} anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO{sub X} was the composite of CuO and Cu{sub 2}O. The CuO{sub X} modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO{sub X} layer was optimized by varying the thickness of CuO{sub X} films through changing solution concentration. With P3HT:PC{sub 61}BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO{sub X} anode buffer layer, compared with that of PEDOT:PSS layer. The CuO{sub X} layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC{sub 71}BM as the active layer. The long-term stability of CuO{sub X} device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO{sub X} film can act as an efficient anode buffer layer for high-efficiency OSCs.

  7. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    International Nuclear Information System (INIS)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-01-01

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO_x passivation layer and Al_2O_3 gate dielectric was fabricated. • The detrimental SiO_x interfacial layer could be effectively restrained by the LaSiO_x passivation layer. • The passivation mechanism of LaSiO_x was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO_x passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO_x) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO_x) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al_2O_3 gate dielectric. The interfacial LaSiO_x formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO_x passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO_x passivation interlayer can effectively restrain SiO_x formation and improve the Al_2O_3/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  8. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Zheng, Li, E-mail: zhengli@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Peiyi; Li, Menglu [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2017-07-15

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO{sub x} passivation layer and Al{sub 2}O{sub 3} gate dielectric was fabricated. • The detrimental SiO{sub x} interfacial layer could be effectively restrained by the LaSiO{sub x} passivation layer. • The passivation mechanism of LaSiO{sub x} was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO{sub x} passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO{sub x}) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO{sub x}) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al{sub 2}O{sub 3} gate dielectric. The interfacial LaSiO{sub x} formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO{sub x} passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO{sub x} passivation interlayer can effectively restrain SiO{sub x} formation and improve the Al{sub 2}O{sub 3}/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  9. Enhancement of device performance of organic solar cells by an interfacial perylene derivative layer

    KAUST Repository

    Kim, Inho

    2010-05-26

    We report that device performance of organic solar cells consisting of zinc phthalocyanine and fullerene (C60) can be enhanced by insertion of a perylene derivative interfacial layer between fullerene and bathocuproine (BCP) exciton blocking layer (EBL). The morphology of the BCP is influenced by the underlying N,N′-dihexyl-perylene-3,4,9,10-bis(dicarboximide) (PTCDI-C6), which promotes migration of the cathode metal into the BCP layer. Insertion of a PTCDI-C6 layer between fullerene and BCP layers enhances the power conversion efficiency to 2.5%, an improvement of 32% over devices without PTCDI-C6 layer. The enhancement in device performance by insertion of PTCDI-C6 is attributed to a reduction in series resistance due to promoted metal migration into BCP and optimized optical interference effects in multilayered devices. © 2010 American Chemical Society.

  10. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    International Nuclear Information System (INIS)

    Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Argitis, P.; Kennou, S.; Kostis, I.; Papadimitropoulos, G.; Stathopoulos, N.A.; Iliadis, A.A.; Konofaos, N.; Davazoglou, D.; Sygellou, L.

    2011-01-01

    Tungsten oxide (WO 3 ) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO 3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO 3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO 3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  11. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  12. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  13. Simple O2 Plasma-Processed V2O5 as an Anode Buffer Layer for High-Performance Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bao, Xichang; Zhu, Qianqian; Wang, Ting

    2015-01-01

    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating...... the illumination of AM 1.5G (100 mW/cm2). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PEDOT:PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2...... plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge...

  14. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly reversible and fast sodium storage boosted by improved interfacial and surface charge transfer derived from the synergistic effect of heterostructures and pseudocapacitance in SnO2-based anodes.

    Science.gov (United States)

    Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Ling, Rui; Cai, Shu; Zheng, Chunming; Hu, Wenbin

    2018-02-01

    Sodium-ion batteries have attracted worldwide attention as potential alternatives for large scale stationary energy storage due to the rich reserves and low cost of sodium resources. However, the practical application of sodium-ion batteries is restricted by unsatisfying capacity and poor rate capability. Herein, a novel mechanism of improving both interfacial and surface charge transfer is proposed by fabricating a graphene oxide/SnO 2 /Co 3 O 4 nanocomposite through a simple hydrothermal method. The formation of heterostructures between ultrafine SnO 2 and Co 3 O 4 could enhance the charge transfer of interfaces owing to the internal electric field. The pseudocapacitive effect, which is led by the high specific area and the existence of ultrafine nanoparticles, takes on a feature of fast faradaic surface charge-transfer. Benefiting from the synergistic advantages of the heterostructures and the pseudocapacitive effect, the as-prepared graphene oxide/SnO 2 /Co 3 O 4 anode achieved a high reversible capacity of 461 mA h g -1 after 80 cycles at a current density of 0.1 A g -1 . Additionally, at a high current density of 1 A g -1 , a high reversible capacity of 241 mA h g -1 after 500 cycles is obtained. A full cell coupled by the as-prepared graphene oxide/SnO 2 /Co 3 O 4 anode and the Na 3 V 2 (PO 4 ) 3 cathode was also constructed, which exhibited a reversible capacity of 310.3 mA h g -1 after 100 cycles at a current density of 1 A g -1 . This method of improving both interfacial and surface charge transfer may pave the way for the development of high performance sodium-ion batteries.

  16. Influence of microstructure in current draining efficiency in magnesium sacrificial anodes

    International Nuclear Information System (INIS)

    Robles P, E.F.

    1994-01-01

    In the last few years the efficiency of magnesium anodes used as cathodic protection of structures and metallic components, has presented outstanding variations. In spite of the fulfillment with the standard of chemicomposition, the working efficiency is low, existing the possibility that this be own to microstructural variations still not studied. For this reason, in the present work are shown some experiences with solidification of magnesium, in order to observe the influence of the structure of casting in the efficiency of current drain. For this purpose, pure magnesium (99.98%) was melt in graphite crucibles using protecting flux, pouring then in three different moulds: graphite, steel and aluminium, this last supplied with refrigeration using water as coolant up till now, the attained structures does not exert a determinant influence in the efficiency of magnesium anodes, and for this reason it is recommended to carry out thermomechanical treatments to continue with the study. (Author)

  17. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency

    Science.gov (United States)

    Zhang, Lifeng; Song, Jiajia; Liu, Yi; Yuan, Xiaoyan; Guo, Shouwu

    2018-03-01

    Developing high energy storage lithium ion batteries (LIBs) using manganese oxides as anodes is an attractive challenge due to their high theoretical capacity and abundant resources. However, the manganese oxides anodes still suffer from the low initial Coulombic efficiency and poor rate performance. Herein, we demonstrate that nano-sized morphological engineering is a facile and effective strategy to improve the electrochemical performance of the manganese dioxide (MnO2) for LIBs. The tailored MnO2 nanoparticles (NPs) exhibit high reversible capacity (1095 mAh g-1 at 100 mA g-1), high initial Coulombic efficiency (94.5%) and good rate capability (464 mAh g-1 at 2000 mA g-1). The enhanced electrochemical performance of MnO2 NPs can be attributed to the presences of numerous electrochemically active sites and interspaces among the NPs.

  18. Enhanced performance of microbial fuel cells by using MnO_2/Halloysite nanotubes to modify carbon cloth anodes

    International Nuclear Information System (INIS)

    Chen, Yingwen; Chen, Liuliu; Li, Peiwen; Xu, Yuan; Fan, Mengjie; Zhu, Shemin; Shen, Shubao

    2016-01-01

    The modification of anode materials is important to enhance the power generation of MFCs (microbial fuel cells). A novel and cost-effective modified anode that is fabricated by dispersing manganese dioxide (MnO_2) and HNTs (Halloysite nanotubes) on carbon cloth to improve the MFCs' power production was reported. The results show that the MnO_2/HNT anodes acquire more bacteria and provide greater kinetic activity and power density compared to the unmodified anode. Among all modified anodes, 75 wt% MnO_2/HNT exhibits the highest electrochemical performance. The maximum power density is 767.3 mWm"−"2, which 21.6 higher than the unmodified anode (631 mW/m"2). Besides, CE (Coulombic efficiency) was improved 20.7, indicating that more chemical energy transformed to electricity. XRD (X-Ray powder diffraction) and FTIR (Fourier transform infrared spectroscopy) are used to characterize the structure and functional groups of the anode. CV (cyclic voltammetry) scans and SEM (scanning electron microscope) images demonstrate that the measured power density is associated with the attachment of bacteria, the microorganism morphology differed between the modified and the original anode. These findings demonstrate that MnO_2/HNT nanocomposites can alter the characteristics of carbon cloth anodes to effectively modify the anode for practical MFC applications. - Highlights: • Different contents of MnO_2/HNT composites were prepared and used to modify anodes in MFCs. • The performance of MFCs was improved by the anode modification. • 75% wt MnO_2/HNT modified anode showed the better capacity on power density. • Water contact angle, CV, SEM were determined to figure out the effect of modification on MFCs. • MnO_2/HNT modified anode in MFCs was first studied to push MFCs technology forward.

  19. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  20. Role of interfacial rheological properties in oil field chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I.; Kosztin, B.

    1996-12-31

    Interfacial rheological properties of different Hungarian crude oil/water systems were determined in wide temperature and shear rate range and in presence of inorganic electrolytes, tensides, alkaline materials and polymers. The detailed laboratory study definitely proved that the interfacial rheological properties are extremely sensitive parameters towards the chemical composition of inmiscible formation liquids. Comparison and interpretation of the interfacial rheological properties may contribute significantly to extension of the weaponry of the reservoir characterization, better understanding of the displacement mechanism, development of the more profitable EOR/IOR methods, intensification of the surface technologies, optimization of the pipeline transportation and improvement of the refinery operations. It was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance the knowledge on formation, structure, properties and behaviour of interfacial layers. 17 refs., 18 figs., 2 tabs.

  1. TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Chia-Hsun; Hsu, Chan-Wei; Lu, Shih-Yuan

    2018-07-01

    TiO 2 nanocrystals decorated core-shell CdS-CdO nanorod arrays, TiO 2 @CdO/CdS NR, were fabricated as high efficiency anodes for photoelctrochemical hydrogen generation. The novel sandwich heterostructure was constructed from first growth of CdS nanorod arrays on a fluorine doped tin oxide (FTO) substrate with a hydrothermal process, followed by in situ generation of CdO thin films of single digit nanometers from the CdS nanorod surfaces through thermal oxidation, and final decoration of TiO 2 nanocrystals of 10-20 nm via a successive ionic layer absorption and reaction process. The core-shell CdS-CdO heterostructure possesses a Z-scheme band structure to enhance interfacial charge transfer, facilitating effective charge separation to suppress electron-hole recombination within CdS for much improved current density generation. The final decoration of TiO 2 nanocrystals passivates surface defects and trap states of CdO, further suppressing surface charge recombination for even higher photovoltaic conversion efficiencies. The photoelectrochemical performances of the plain CdS nanorod array were significantly improved with the formation of the sandwich heterostructure, achieving a photo current density of 3.2 mA/cm 2 at 1.23 V (vs. RHE), a 141% improvement over the plain CdS nanorod array and a 32% improvement over the CdO/CdS nanorod array. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Experimental study of the organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Ma, G.L.; Xu, A.G.; Ran, G.Z.; Qiao, Y.P.; Zhang, B.R.; Chen, W.X.; Dai, L.; Qin, G.G.

    2006-01-01

    We have fabricated and studied an organic light emitting diode (OLED) with a p-type silicon anode and a SiO 2 buffer layer between the anode and the organic layers which emits light from a semitransparent top Yb/Au cathode. The luminance of the OLED is up to 5600 cd/m 2 at 17 V and 1800 mA/cm 2 , the current efficiency is 0.31 cd/A. Both its luminance and current efficiency are much higher than those of the OLEDs with silicon as the anodes reported previously. The enhancement of the luminance and efficiency can be attributed to an improved balance between the hole- and electron-injection through two efficient ways: 1) restraining the hole-injection by inserting an ultra-thin SiO 2 buffer layer between the Si anode and the organic layers; and 2) enhancing the electron-injection by using a low work function, low optical reflectance and absorption semitransparent Yb/Au cathode

  3. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  4. Thermodynamic and molecular origin of interfacial rate enhancements and endo-selectivities of a Diels-Alder reaction.

    Science.gov (United States)

    Beniwal, Vijay; Kumar, Anil

    2017-02-08

    Organic reactions in general display large rate accelerations when performed under interfacial conditions, such as on water or at ionic liquid interfaces. However, a clear picture of the physicochemical factors responsible for this large rate enhancements is not available. To gain an understanding of the thermodynamic and molecular origin of these large rate enhancements, we performed a Diels-Alder reaction between cyclopentadiene and methyl acrylate at ionic liquid/n-hexane interfaces. This study describes, for the first time, a methodology for the calculation of the activation parameters of an interfacial reaction. It has been seen that the energy of activation for an interfacial reaction is much smaller than that of the corresponding homogeneous reaction, resulting into the large rate acceleration for the interfacial reaction. Furthermore, the study describes the effects of the alkyl chain length of ionic liquid cations, the extent of heterogeneity, and the polarity of ionic liquids on the rate constants and stereoselectivity of the reaction.

  5. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.

    Science.gov (United States)

    Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing

    2017-09-01

    High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells; FINAL

    International Nuclear Information System (INIS)

    Christini, R.A.; Dawless, R.K.; Ray, S.P.; Weirauch, D.A. Jr.

    2001-01-01

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  7. Enhancing Photocatalytic Performance through Tuning the Interfacial Process between -Assembled and Pt-Loaded Microspheres

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-01-01

    Full Text Available This work reports on a simple two-step approach to rutile TiO2-assembled microspheres loaded by Pt with an aim to tune semiconductor-metal interfacial processes for enhancing the photocatalytic performance. Systematic sample characterizations and structural analysis indicate that Pt loading did not produce any significant influences on the lattice structure of TiO2-assembled microspheres. Instead, upon Pt loading, Schottky barrier was formed in the interfaces between microspheres and Pt nanoparticles, which inhabited efficiently the recombination of photo-generated electron-hole pairs essential for the photocatalytic activities. In addition, TiO2 microspheres also showed a capacity of electrons storage and releasing as represented by a high dielectric constant, which increased the utility rate of photogenerated electrons. All these structural advantages contribute to the excellent photocatalytic activity under ultraviolet light irradiation. The interfacial process between microspheres and Pt nanoparticles was further tuned through adjusting the loading Pt content of metal Pt. As a consequence, the best photocatalytic activity on TiO2 was obtained at 0.85 wt% Pt loading, above or below which photocatalytic activity was apparently decreased.

  8. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  9. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  10. The effect of zinc (Zn) content to cell potential value and efficiency aluminium sacrificial anode in 0.2 M sulphuric acid environment

    Science.gov (United States)

    Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko

    2018-04-01

    Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy

  11. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...... with that of cyt c in the absence of AuNPs is observed. AuNPs appear to serve as excellent ET relays, most likely by facilitating the electronic coupling between the protein redox center and the electrode surface....

  12. Aquivion Perfluorosulfonic Superacid as an Efficient Pickering Interfacial Catalyst for the Hydrolysis of Triglycerides.

    Science.gov (United States)

    Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc

    2017-09-11

    Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells

    Science.gov (United States)

    Zhou, Yongfang; Wang, Min; Wang, Liang; Liu, Shuli; Chen, Shufen; Cao, Kun; Shang, Wenjuan; Mai, Jiangquan; Zhao, Baomin; Feng, Jing; Lu, Xinhui; Huang, Wei

    2017-09-01

    An insulated poly(sodium 4-styrenseulfonate) (PSS) was used to modify monolayer graphene for anode applications of organic photovoltaics (OPVs). With this PSS interfacial modification layer, the OPVs showed a significant increase of 56.4% in efficiency due to an improved work function and hydrophilic feature of graphene and an enlarged recombination resistance of carriers/excitons. Doping a highly contorted 1,2,5-thiadiazole-fused 12-ring polyaromatic hydrocarbon into the active layer to form ternary blended OPVs further enlarged the recombination resistance of carriers/excitons and improved light absorption of the active layer, with which a high power conversion efficiency of 6.29% was acquired.

  14. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    Science.gov (United States)

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

      Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  15. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...... of temperature (700-800 °C) and anode sweep gas (N2, 4-100% CO2 in N2-CO2). It was shown that the addition of silver based catalysts (Ag, Ag2O, Ag2CO3) into the carbon-carbonate slurry enhanced the performance of the HDCFC....

  16. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei, 112 Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung, 413 Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao [Institute of Oral Biology, National Yang-Ming University, Taipei, 112 Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung, 402 Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung, 402 Taiwan (China)

    2013-12-31

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment.

  17. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment

  18. °Enhancing High Temperature Anode Performance with 2° Anchoring Phases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Robert A. [Montana State Univ., Bozeman, MT (United States); Sofie, Stephen W. [Montana State Univ., Bozeman, MT (United States); Amendola, Roberta [Montana State Univ., Bozeman, MT (United States)

    2015-10-01

    Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant or prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.

  19. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  20. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  1. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    International Nuclear Information System (INIS)

    Kim, J.; Teo, M.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2005-01-01

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi] + /[Al 2 O] + SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H 2 plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization

  2. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Teo, M. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2005-12-15

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi]{sup +}/[Al{sub 2}O]{sup +} SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H{sub 2} plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization.

  3. Sampling natural biofilms: a new route to build efficient microbial anodes.

    Science.gov (United States)

    Erable, Benjamin; Roncato, Marie-Anne; Achouak, Wafa; Bergel, Alain

    2009-05-01

    Electrochemically active biofilms were constructed on graphite anodes under constant polarization at -0.1V vs saturated calomel reference (SCE) with 10 mM acetate as substrate. The reactors were inoculated with three different microbial samples that were drawn from exactly the same place in a French Atlantic coastal port (i) by scraping the biofilm that had formed naturally on the surface of a floating bridge, (ii) by taking marine sediments just under the floating bridge, and (iii) by taking nearby beach sand. Current densities of 2.0 A/m2 were reached using the biofilm sample as inoculum while only 0.4 A/m2 and 0.8 A/m2 were obtained using the underlying sediments and the beach sand, respectively. The structure of bacterial communities forming biofilms was characterized by denaturing gradient gel electrophoresis (DGGE) analysis, and revealed differences between samples with the increase in relative intensities of some bands and the appearance of others. Bacteria close related to Bacteroidetes, Halomonas, and Marinobacterium were retrieved only from the efficient EA-biofilms formed from natural biofilms, whereas, bacteria close related to Mesoflavibacter were predominant on biofilm formed from sediments. The marine biofilm was selected as the inoculum to further optimize the microbial anode. Epifluorescence microscopy and SEM confirmed that maintaining the electrode under constant polarization promoted rapid settlement of the electrode surface by a bacterial monolayer film. The microbial anode was progressively adapted to the consumption of acetate by three serial additions of substrate, thus improving the Coulombic efficiency of acetate consumption from 31 to 89%. The possible oxidation of sulfide played only a very small part in the current production and the biofilm was not able to oxidize hydrogen. Graphite proved to be more efficient than dimensionally stable anode (DSA) or stainless steel butthis result might be due to differences in the surface roughness

  4. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  5. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.

    Science.gov (United States)

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C

    2016-10-12

    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  6. Enhancement of device performance of organic solar cells by an interfacial perylene derivative layer

    KAUST Repository

    Kim, Inho; Haverinen, Hanna M.; Li, Jian; Jabbour, Ghassan E.

    2010-01-01

    We report that device performance of organic solar cells consisting of zinc phthalocyanine and fullerene (C60) can be enhanced by insertion of a perylene derivative interfacial layer between fullerene and bathocuproine (BCP) exciton blocking layer

  7. Enhancement of the Electrocatalytic Activity of Gold Nanoparticles via Anodic Treatment and the Decrease of the Enhanced Activity with Aging

    International Nuclear Information System (INIS)

    Jo, Kyung Min; Kang, Hyun Ju; Yang, Hae Sik

    2011-01-01

    We have recently shown that the electrocatalytic activity of Au nanoparticles (AuNPs) can be enhanced via NaBH 4 treatment and cathodic treatment and that the enhanced activity slowly decreases with aging. We have also demonstrated that the electrocatalytic activity of the AuNPs freshly prepared by electrochemical or chemical reduction slowly decreases with aging in both air and solution. Likewise, the electrocatalytic activity of anodically treated Au electrodes or AuNPs might change with aging. Herein, we report that the electrocatalytic activity of long-aged AuNPs can be enhanced via anodic treatment and that the enhanced electrocatalytic activity decreases with aging in air. The change in the electrocatalytic activity of AuNPs was evaluated by comparing cyclic voltammograms for the electrooxi-dation of hydrogen peroxide (H 2 O 2 ) and formic acid

  8. Interfacial effects in a multistage mixer-settler operation

    International Nuclear Information System (INIS)

    Jiinshiung Horng; Daluh Lu; Yingchu Hoh

    1988-01-01

    A pilot-scale mixer-settler with twenty-one stages was used to investigate the interfacial tension change during extraction cycle for the complicated system: NdCl 3 -SmCl 3 -EuCl 3 -GdCl 3 -TbCl 3 -DyCl 3 -HCl- 1 M D2EHPA-kerosene. Interfacial tension, total rare earth (TRE) concentrations in both phases, aqueous acidities, and organic entrainment in the raffinate, etc., were measured for each stage. Murphree stage efficiencies based on organic phase were calculated and related to the interfacial tension profiles. In general, the lower the interfacial tension, the higher the stage efficiency observed. For the extraction section, the stage efficiency ranged from 80% - 100%, but for stripping (including scrubbing) section, it varied from 100% - 15%. For high acidic stripping agent, 5 M HCl, the relatively lower stage efficiency might be due to the protonation of the acidic extractant, therefore the interfacial resistance increased significantly. From the information of stage efficiency, mass transfer direction, and interfacial tension versus solute concentration etc., the Marangoni effect could be used to explain the interfacial phenomena of this complicated extraction system. The results of real stream tests in this investigation will be useful in future plant design. (author)

  9. Study of the effect of the doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) polymeric anode on the organic light-emitting diode performances

    Energy Technology Data Exchange (ETDEWEB)

    De Girolamo Del Mauro, Anna, E-mail: anna.degirolamo@enea.it; Nenna, Giuseppe; Villani, Fulvia; Minarini, Carla

    2012-06-01

    Bottom-emitting organic diode devices with polymeric anode were fabricated and their performances were compared to devices with different anodes. The highly transparent (transmittance Almost-Equal-To 90%) and conductive (700 S/cm) anode was poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) processed from aqueous solution and modified by addition of dimethyl sulfoxide (DMSO). The electro-optical characteristics of the DMSO-doped PEDOT:PSS based device and devices with architectures based on undoped PEDOT:PSS and/or indium tin oxide (ITO) were investigated and the effects of the different anodes were analyzed by means of electrical responses in static and dynamic regimes. The efficiency of the device with the proposed polymeric anode was comparable to that of ITO based device but reduced with respect to the device including PEDOT:PSS as hole-injection layer. These results were correlated to the film morphological properties and discussed in terms of interfacial state density modification. - Highlights: Black-Right-Pointing-Pointer Doped Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) is proposed as anode. Black-Right-Pointing-Pointer Transparent and conductive polymeric anode is used in organic light-emitting diodes. Black-Right-Pointing-Pointer Efficiency of polymeric anode device is comparable to device with indium tin oxide. Black-Right-Pointing-Pointer Lower optical switch-on and higher luminance are observed. Black-Right-Pointing-Pointer Interface state density is modified by addition of the dopant in polymeric electrode.

  10. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-02-01

    Full Text Available GeP5 is a recently reported new anode material for lithium ion batteries (LIBs, it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance.

  11. Anodic oxidation of InP in pure water

    International Nuclear Information System (INIS)

    Robach, Y.; Joseph, J.; Bergignat, E.; Hollinger, G.

    1989-01-01

    It is shown that thin InP native oxide films can be grown by anodization of InP in pure water. An interfacial phosphorus-rich In(PO 3 ) 3 -like condensed phosphate is obtained this way. This condensed phosphate has good passivating properties and can be used in electronic device technology. The chemical composition of these native oxides was found similar to that of an anodic oxide grown in an anodization in glycol and water (AGW) electrolyte. From the similarity between the two depth profiles observed in pure water and AGW electrolyte, they can conclude that dissolution phenomena do not seem to play a major role. The oxide growth seems to be controlled by the drift of ionic species under the electric field

  12. Enhanced coercivity in α-(Fe,Co)/(Nd,Pr)2Fe14B nanocomposite magnets via interfacial modification

    International Nuclear Information System (INIS)

    Li Wei; Li Lanlan; Li Xiaohong; Sun Hongyu; Zhang Xiangyi

    2008-01-01

    We have prepared α-(Fe,Co)/(Nd,Pr) 2 Fe 14 B nanocomposite magnets having a high coercivity H c = 7.5 kOe and a large energy product (BH) max = 22.7 MGOe by interfacial modification using an intergranular amorphous phase, as compared with the corresponding values obtained without the intergranular phase, H c = 5.5 kOe and (BH) max = 16.1 MGOe. The enhanced coercivity is attributed to the increase in the nucleation field for magnetization reversal due to interfacial modification. This demonstrates a counter-intuitive approach for enhancing the magnetic properties of nanocomposite magnets

  13. Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold.

    Science.gov (United States)

    Xie, Keyu; Wei, Wenfei; Yuan, Kai; Lu, Wei; Guo, Min; Li, Zhihua; Song, Qiang; Liu, Xingrui; Wang, Jian-Gan; Shen, Chao

    2016-10-05

    Owing to its ultrahigh specific capacity and low electrochemical potential, lithium (Li) metal is regarded as one of the most attractive anode materials for next-generation lithium batteries. Nevertheless, the commercialization of Li-metal-based rechargeable batteries (LiMBs) has been retarded by the uncontrollable growth of Li dendrites, as well as the resulting poor cycle stability and safety hazards. In this work, a 3D graphene@Ni scaffold has been proposed to accomplish dendrite-free Li deposition via structural and interfacial synergistic effects. Due to the intrinsic high surface area used to reduce the effective electrode current density and the surface-coated graphene working as an artificial protection layer to provide high cycle stability as well as suppress the growth of Li dendrites, the Coulombic efficiencies of Li deposition on 3D graphene@Ni foam after 100 cycles can be sustained as high as 96, 98, and 92% at the current densities of 0.25, 0.5, and 1.0 mA cm -2 , respectively, which shows more excellent cycle stability than that of its planar Cu foil and bare Ni foam counterparts. The results obtained here demonstrate that the comprehensive consideration of multiaspect factors could be more help to enhance the performance of Li metal anode so as to achieve its real application in next-generation LiMBs.

  14. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Stephen Everett [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO2 film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  15. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Kang, Haijiao; Zhang, Wei [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Zhang, Shifeng, E-mail: shifeng.zhang@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Li, Jianzhang, E-mail: lijzh@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China)

    2017-04-15

    Highlights: • A novel interface of MMT was fabricated by natural polyphenol (TA)-inspired chemistry. • The resultant biomimetic surface exhibited good interface and surface compatibility. • TA can act as a bridge between MMT and SPI to enhance the interfacial interaction. • Surface-modified MMT gets the potential to be used in the modification of SPI biofilms for improving the mechanical properties and water resistance apparently. - Abstract: In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the “green dip-coating” method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (Fe{sup III}) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-Fe{sup III} coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.

  16. Interfacial properties of the enhanced visible-light plasmonic Ag/Bi{sub 2}WO{sub 6} (0 0 1) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Cao, Kun; Wu, Yi [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Zhang, Kun-Hao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China)

    2016-01-01

    Graphical abstract: - Highlights: • The parallel adsorption of silver on Bi{sub 2}WO{sub 6} (0 0 1) makes energetically favorable configurations. The positive charged Ag cluster may act as excited electron traps. • New isolated levels appear above the valence bands due to the hybridization of Ag 5s and O 2p, and they become dispersed as Ag content increases. This is responsible for the improved visible-light response. • Optical spectra confirm obvious red-shifts of the absorption edge with the increment of silver content, which enhances efficiently the photocatalytic activity of Bi{sub 2}WO{sub 6} (0 0 1). - Abstract: First principle calculations are performed to study the interfacial photoelectric properties of Ag{sub n}/Bi{sub 2}WO{sub 6} (0 0 1) (n = 1, 2, 3, 4) hybrid photocatalyst. The parallel adsorption of Ag cluster leads to more energetic favorable structures due to stronger interfacial interactions. The positive charged Ag cluster may act as excited electron traps and facilitate the electron–hole separation. In particular, hybridization between Ag 5s and O 2p leads to the formation of isolated energy levels above the valence bands, and they become more dispersed with broader bandwidth with the increment of silver cluster size, which is responsible for the enhanced absorption in visible-light region. In the deep valence region, Ag 4d orbital turns more delocalized and hybrid with O 2p states as the cluster size increases, which contributes to more covalent bond feature of Ag–O. Moreover, optical spectra demonstrate obvious red-shifts of the absorption edge with the increment of silver content, which enhances efficiently the visible-light photocatalytic activities of Bi{sub 2}WO{sub 6} (0 0 1). The study provides insights into the enhanced photocatalyic mechanism of Ag/Bi{sub 2}WO{sub 6} (0 0 1) and aids in the design of noble metal loaded visible-light plasmonic photocatalyst.

  17. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  18. Measurement of the Photoelectron Detection Efficiency of the HPD Anode

    CERN Document Server

    Carson, L; Soler, P

    2009-01-01

    This paper reports on measurements carried out on the Hybrid Photon Detectors (HPDs) of the LHCb RICH detectors. The purpose of these tests is to determine the photoelectron detection efficiency $\\eta$ of the HPD anode. Knowledge of $\\eta$ is required for an accurate simulation of the RICH detectors. It is found that this efficiency is $(93.3\\pm0.7)\\%$ for a 50 ns digital readout window, and $(87.9\\pm1.4)\\%$ for a 25 ns digital readout window. The 25 ns result exceeds the LHCb-RICH requirement of 85\\%, and is in agreement both with direct $\\eta$ measurements using preseries HPDs, and with indirect measurements from testbeams using preseries and production HPDs.

  19. “Double-Sandwich-Like” CuS@reduced graphene oxide as an Anode in Lithium Ion Batteries with Enhanced Electrochemical Performance

    International Nuclear Information System (INIS)

    Ren, Yurong; Wei, Hengma; Yang, Bo; Wang, Jiawei; Ding, Jianning

    2014-01-01

    Graphical abstract: CuS@reduced graphene oxide displays excellent electrochemical behavior as an anode material for Lithium ion batteries. - Abstract: The CuS@reduced graphene oxide (CSG) was synthesized and used as an anode material in lithium ion batteries (LIBs). CuS nanoparticles were homogeneously dispersed on the surfaces of reduced graphene oxide (rGO) nanosheets via a hydrothermal method. The rGO nanosheets in the CSG hydrids can improve the electrical conductivity and structure stability of CSG. The LIB with a CSG anode displays excellent performance, with a first discharge capacity up to 851 mAh/g, a reversible capacity of 648.1 mAh/g in the initial cycle, and an enhanced cyclic performance with a discharge capacity of 710.7 mAh/g at the 100 th cycle, which corresponds to 114.3% of the theoretical value of CSG and 83.5% of the first discharge capacity accompanied by an excellent Coulombic efficiency of 99.1% at a current density of 0.2 C, which is much larger than (close to 4.5 times) that with a pure CuS anode at the 100 th cycle (159.7 mAh/g). This phenomenon can be attributed to the synergistic action of CuS nanoparticles and rGO nanosheets in the “double-sandwich-like” CSG hybrids. These results indicate that CSG is an excellent anode material and has promising prospects in lithium ion batteries applications

  20. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhanced interfacial radiation-induced reaction for improving the interfacial adhesion of incompatible polymer blend PP/BR

    International Nuclear Information System (INIS)

    Liu Changhai; Yang Huili; Xu Jun

    1995-01-01

    γ-radiation induced interfacial changes of incompatible polymer isotactic polypropylene (PP) and cis1,4-polybutadiene (BR) blends containing polyfunctional monomer (PFM) triallyl isocyanurate (TAIC) were investigated. The results of the study are as following: PP is incompatible with BR; TAIC is hardly dissolved in both PP and BR; when blended with PP/BR, the concentration of TAIC in the interfacial region is higher than that in dispersion phase of BR or matrix of PP. The crosslinking and/or grafting of which TAIC occurred under radiation in the interfacial region anchored the dispersed BR phase to PP matrix. The interaction between adjacent phases is changed from sole van der Waals force to co-action of both chemical bond and molecular forces. Crosslinking between adjacent phases links the dispersed phase with PP matrix, and grafting in the boundary regions increases the thickness of interface. These result in a good interfacial adhesion between dispersed phase and matrix. (author)

  2. Preparation of mesoporous titanium dioxide anode by a film- and pore-forming agent for the dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjing; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Zhou, Haihan; Chang, Yunzhen; Zhang, Ying

    2016-04-15

    Highlights: • PVP is used as a film- and pore-forming agent to prepare the mesoporous TiO{sub 2} anode. • The TiO{sub 2} anode supplies high surface area for the dye adsorption. • The DSSC efficiency is strongly dependent on the pore properties of the TiO{sub 2} anode. • The DSSC efficiency with the TiO{sub 2} anode prepared by 20 wt% PVP reaches 8.39%. - Abstract: A novel mean of generating mesoporous titanium dioxide (TiO{sub 2}) anodes by employing polyvinylpyrrolidone (PVP) as the film- and pore-forming agent are proposed for dye-sensitized solar cells (DSSCs). The influences on the morphology and photovoltaic performances of the TiO{sub 2} anodes are investigated by adjusting the PVP content in synthesizing the mesoporous TiO{sub 2} anodes. The photovoltaic conversion efficiency of the DSSC is found to be strongly dependent on the pore properties of the TiO{sub 2} anode. After the sintering process, the removal of the PVP leaves porously interconnected channel structures inside the TiO{sub 2} anode, supplying enhanced specific surface area for the dye adsorption as well as the efficient electron transmission. As a result, the TiO{sub 2} anode prepared by 20 wt% PVP presents the highest performances, based on which the DSSC achieves the highest conversion efficiency of 8.39%, approximately increased by 56.53% than that of the DSSC fabricated without PVP (5.36%).

  3. Enhanced degradation of Orange G by permanganate with the employment of iron anode.

    Science.gov (United States)

    Bu, Lingjun; Shi, Zhou; Zhou, Shiqing

    2017-01-01

    Iron anode was employed to enhance the degradation of Orange G (OG) by permanganate (EC/KMnO 4 ). Continuously generated Fe 2+ from iron anode facilitated the formation of fresh MnO 2 , which plays a role in catalyzing permanganate oxidation. The EC/KMnO 4 system also showed a better performance to remove OG than Fe 2+ /KMnO 4 , indicating the importance of in situ formed fresh MnO 2 . Besides, the effects of applied current, KMnO 4 dosage, solution pH, and natural organics were evaluated and results demonstrated that high current and oxidant dosage are favorable for OG removal. And the application of iron anode has a promoting effect on the KMnO 4 oxidation over a wide pH range (5.0-9.0), while the Fe 2+ /KMnO 4 process does not. For natural organics, its presence could inhibit OG removal due to its competitive role. And the promoting effect of OG removal by the EC/KMnO 4 process in natural water was confirmed. At last, the EC/KMnO 4 process showed a satisfying performance on the decolorization and mineralization of OG. This study provides a potential technology to enhance permanganate oxidation and broadens the knowledge of azo dye removal.

  4. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  5. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-01-01

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications

  6. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Ma, Lichun; Qi, Meiwei; Yu, Jiali [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-15

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications.

  7. The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Foltyn, Stephen R [Los Alamos National Laboratory; Wang, Haiyan [Los Alamos National Laboratory; Civale, Leonardo [Los Alamos National Laboratory; Maiorov, Boris A [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory

    2009-01-01

    The critical current density (J{sub c}) of YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} (YBCO) films can approach 10 MA/cm{sup 2} at 77 K in self field , but only for very thin films. We have shown previously that strong thickness dependence results if J{sub c} is enhanced near the film-substrate interface. In the present work we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO{sub 3} substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. Interestingly, we find that the 'on' state is accompanied by interfacial misfit dislocations, establishing an unambiguous correlation between enhanced J{sub c} and dislocations at the film-substrate interface.

  8. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  9. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  10. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Lodder, R.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    To create an efficient MEC high current densities and high coulombic efficiencies are required. The aim of this study was to increase cur-rent densities and coulombic efficiencies by influencing mass and charge transport in porous electrodes by: (i) introduction of a forced flow through the anode to

  11. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  12. Novel enhancement of thin-form-factor galvanic cells: Probing halogenated organic oxidizers and metal anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M.; Adornato, Lori; Short, R. Timothy; Langebrake, Larry [SRI International, Engineering and Systems Division, Marine Technology Program, 140 Seventh Avenue South, St Petersburg, FL 33701 (United States)

    2008-09-15

    The work reported herein demonstrates a novel method to improve the overall performance of thin-form-factor galvanic cells, fabricated via micro-electromechanical systems (MEMS) processes. Use of solid, low cost, cyclic-halogenated, organic catholyte materials permits water activation of cells consisting of metal anode and catalytic platinum positive electrodes. Similar cells, employing aluminum and zinc anodes, have been activated using sodium hypochlorite (NaClO) solutions, i.e. bleach, in the past. The oxidizers chosen for this study (bromo-, chloro- and iodo-succinimides, and sodium dichloroisocyanuric acid) supply the cathode's oxy-halogenated ions when in contact with water. Zinc, magnesium and aluminum anodes are utilized to fabricate galvanic cells. A comparison between these anodes, coupled with various oxidizers, is included herein. Results using aluminum anode cells show that, even though the utilization efficiency of the catholyte reagents is low (faradic efficiencies between 16 and 19%), the performance of the new water-activated cells (6 cm x 6 cm x 0.25 cm) is superior when compared to those activated with bleach. For instance, operational lives of 6 h (activation with 10% NaClO solution) increase to more than 30 h using the new approach, with a 100-ohm-load. It is also shown that specific energies of 90-110 Wh kg{sup -1} (calculated to include both reagent and packaging mass) could be obtained using the described approach with current draws between 10 and 20 mA. The specific energies obtained suggest that novel MEMS-type cells could have much broader application than low-current, bleach-activated cells. (author)

  13. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  14. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Hui; Wu, Ping; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming; Lu, Tianhong

    2014-01-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO 2 spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g −1 after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g −1 ), which is much higher than that of bare Si spheres (430.7 mA h g −1 )

  15. Enhanced coercivity in {alpha}-(Fe,Co)/(Nd,Pr){sub 2}Fe{sub 14}B nanocomposite magnets via interfacial modification

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei; Li Lanlan; Li Xiaohong; Sun Hongyu; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China)], E-mail: xyzh66@ysu.edu.cn

    2008-08-07

    We have prepared {alpha}-(Fe,Co)/(Nd,Pr){sub 2}Fe{sub 14}B nanocomposite magnets having a high coercivity H{sub c} = 7.5 kOe and a large energy product (BH){sub max} = 22.7 MGOe by interfacial modification using an intergranular amorphous phase, as compared with the corresponding values obtained without the intergranular phase, H{sub c} = 5.5 kOe and (BH){sub max} = 16.1 MGOe. The enhanced coercivity is attributed to the increase in the nucleation field for magnetization reversal due to interfacial modification. This demonstrates a counter-intuitive approach for enhancing the magnetic properties of nanocomposite magnets.

  16. Effects of Anodic Buffer Layer in Top-Illuminated Organic Solar Cell with Silver Electrodes

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2013-01-01

    Full Text Available An efficient ITO-free top-illuminated organic photovoltaic (TOPV based on small molecular planar heterojunction was achieved by spinning a buffer layer of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS, on the Ag-AgOx anode. The PEDOT:PSS thin film separates the active layer far from the Ag anode to prevent metal quenching and redistributes the strong internal optical field toward dissociated interface. The thickness and morphology of this anodic buffer layer are the key factors in determining device performances. The uniform buffer layer contributes a large short-circuit current and open-circuit voltage, benefiting the final power conversion efficiency (PCE. The TOPV device with an optimal PEDOT:PSS thickness of about 30 nm on Ag-AgOx anode exhibits the maximum PCE of 1.49%. It appreciates a 1.37-fold enhancement in PCE over that of TOPV device without buffer layer.

  17. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available with the polymer matrix. Therefore, the constituents need to be chemically modified to enhancing adhesion between fibre and polymer matrix. The aim of this work is to improve the interfacial adhesion between the polypropylene matrix and the natural fibre...

  18. "Supersaturated" self-assembled charge-selective interfacial layers for organic solar cells.

    Science.gov (United States)

    Song, Charles Kiseok; Luck, Kyle A; Zhou, Nanjia; Zeng, Li; Heitzer, Henry M; Manley, Eric F; Goldman, Samuel; Chen, Lin X; Ratner, Mark A; Bedzyk, Michael J; Chang, Robert P H; Hersam, Mark C; Marks, Tobin J

    2014-12-24

    To achieve densely packed charge-selective organosilane-based interfacial layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4-difluorophenyl, n = 3, 6, 10, and 18, was synthesized, characterized, and chemisorbed on OPV anodes to serve as IFLs. To minimize lateral nonbonded -NAr2···Ar2N- repulsions which likely limit IFL packing densities in the resulting self-assembled monolayers (SAMs), precursor mixtures having both small and large n values are simultaneously deposited. These "heterogeneous" SAMs are characterized by a battery of techniques: contact angle measurements, X-ray reflectivity, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), cyclic voltammetry, and DFT computation. It is found that the headgroup densities of these "supersaturated" heterogeneous SAMs (SHSAMs) are enhanced by as much as 17% versus their homogeneous counterparts. Supersaturation significantly modifies the IFL properties including the work function (as much as 16%) and areal dipole moment (as much as 49%). Bulk-heterojunction OPV devices are fabricated with these SHSAMs: ITO/IFL/poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][2-[[(2-ethylhexyl)oxy]carbonyl]-3-fluorothieno[3,4-b]thiophenediyl

  19. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daqian; Li, Xiang; Raymond, Dustin; Mooradain, James; Li, Baikun [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-15

    Multi-anode/cathode microbial fuel cells (MFCs) incorporate multiple MFCs into a single unit, which maintain high power generation at a low cost and small space occupation for the scale-up MFC systems. The power production of multi-anode/cathode MFCs was similar to the total power production of multiple single-anode/cathode MFCs. The power density of a 4-anode/cathode MFC was 1184 mW/m{sup 3}, which was 3.2 times as that of a single-anode/cathode MFC (350 mW/m{sup 3}). The effect of chemical oxygen demand (COD) was studied as the preliminary factor affecting the MFC performance. The power density of MFCs increased with COD concentrations. Multi-anode/cathode MFCs exhibited higher power generation efficiencies than single-anode/cathode MFCs at high CODs. The power output of the 4-anode/cathode MFCs kept increasing from 200 mW/m{sup 3} to 1200 mW/m{sup 3} as COD increased from 500 mg/L to 3000 mg/L, while the single-anode/cathode MFC showed no increase in the power output at CODs above 1000 mg/L. In addition, the internal resistance (R{sub in}) exhibited strong dependence on COD and electrode distance. The R{sub in} decreased at high CODs and short electrode distances. The tests indicated that the multi-anode/cathode configuration efficiently enhanced the power generation. (author)

  1. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes

    International Nuclear Information System (INIS)

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu; Marzorati, Massimo; Lockington, Robin; Naidu, Ravi

    2016-01-01

    Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800 mg l"−"1 and which now showed complete removal of this concentration of diesel within 30 days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81 mW/m"2 and 15.04 mW/m"2 respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000 mg l"−"1) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60 nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs.

  2. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes

    Energy Technology Data Exchange (ETDEWEB)

    Venkidusamy, Krishnaveni [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Megharaj, Mallavarapu, E-mail: megh.mallavarapu@newcastle.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308 (Australia); Marzorati, Massimo [Laboratory for Microbial Ecology and Technology (LabMET), Gent University, 9000 Gent (Belgium); Lockington, Robin [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South (Australia); CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095 (Australia); Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-01-01

    Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800 mg l{sup −1} and which now showed complete removal of this concentration of diesel within 30 days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81 mW/m{sup 2} and 15.04 mW/m{sup 2} respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000 mg l{sup −1}) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60 nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs.

  3. Monte Carlo studies on the interfacial properties and interfacial structures of ternary symmetric blends with gradient copolymers.

    Science.gov (United States)

    Sun, Dachuan; Guo, Hongxia

    2012-08-09

    Using Monte Carlo simulation methods, the effects of the comonomer sequence distribution on the interfacial properties (including interfacial tension, interfacial thickness, saturated interfacial area per copolymer, and bending modulus) and interfacial structures (including chain conformations and comonomer distributions of the simulated copolymers at the interfaces) of a ternary symmetric blend containing two immiscible homopolymers and one gradient copolymer are investigated. We find that copolymers with a larger composition gradient width have a broader comonomer distribution along the interface normal, and hence more pronouncedly enlarge the interfacial thickness and reduce the interfacial tension. Furthermore, the counteraction effect, which arises from the tendency of heterogeneous segments in gradient copolymers to phase separate and enter their miscible phases to reduce the local enthalpy, decreases the stretching of copolymers along the interface normal direction. As a result, copolymers with a larger width of gradient composition can occupy a larger interfacial area and form softer monolayers at saturation and are more efficient in facilitating the formation of bicontinuous microemulsions. Additionally, chain length ratio, segregation strength, and interactions between homopolymers and copolymers can alter the interfacial character of gradient copolymers. There exists a strong coupling between the comonomer sequence distribution, chain conformation, and interfacial properties. Especially, bending modulus is mainly determined by the complicated interplay of interfacial copolymer density and interfacial chain conformation.

  4. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  5. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  6. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    Science.gov (United States)

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  7. Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode

    International Nuclear Information System (INIS)

    Chen, Hedong; Wang, Zhoulu; Hou, Xianhua; Fu, Lijun; Wang, Shaofeng; Hu, Xiaoqiao; Qin, Haiqing; Wu, Yuping

    2017-01-01

    Carbon-coated core-shell structure artificial graphite@plasma nano-silicon@carbon (AG@PNSi@C) composite, applying as lithium ion battery anode material, has been prepared via spray drying method. The plasma nano-silicon (<100 nm), which contained amorphous silicon, was synthesized by radio frequency induction plasma system with the high temperatures processing capability and high quench rates. The artificial graphite in the composite acts as the core which supports the particle and provides electroconductivity, while PNSi attached on the surface of the core, enhances the specific capacity of the composite. The as prepared composite shows superior performance as anode in lithium-ion batteries, regarding to the initial Coulombic efficiency and cycle life. The initial Coulombic efficiency of AG@PNSi@C electrode is 81.0% with a discharge capacity of 553 mAh g −1 and a recharge capacity of 448 mAh g −1 . During cycling, AG@PNSi@C exhibits excellent performance with a very low capacity fading that the discharge capacity maintains 498.2 mAh g −1 and 449.4 mAh g −1 after 250 cycles and 500 cycles. AG@PNSi@C also shows enhanced resistance against high current density. Besides the remarkable electrochemical performances, the facile and mass-producible synthesis process makes the AG@PNSi@C composite very promising for its application in lithium-ion batteries.

  8. Enhanced Stability of Li Metal Anode by using a 3D Porous Nickel Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lu; Canfield, Nathan L.; Chen, Shuru; Lee, Hongkyung; Ren, Xiaodi; Engelhard, Mark H.; Li, Qiuyan; Liu, Jun; Xu, Wu; Zhang, Jiguang

    2018-03-02

    Lithium (Li) metal is considered the “holy grail” anode for high energy density batteries, but its applications in rechargeable Li metal batteries are still hindered by the formation of Li dendrites and low Coulombic efficiency for Li plating/stripping. An effective strategy to stabilize Li metal is by embedding Li metal anode in a three-dimensional (3D) current collector. Here, a highly porous 3D Ni substrate is reported to effectively stabilize Li metal anode. Using galvanostatic intermittent titration technique combined with scanning electron microscopy, the underlying mechanism on the improved stability of Li metal anode is revealed. It is clearly demonstrated that the use of porous 3D Ni substrate can effectively suppress the formation of “dead” Li and forms a dense surface layer, whereas a porous “dead” Li layer is accumulated on the 2D Li metal which eventually leads to mass transport limitations. X-ray photoelectron spectroscopy results further revealed the compositional differences in the solid-electrolyte interphase layer formed on the Li metal embedded in porous 3D Ni substrate and the 2D copper substrate.

  9. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    Science.gov (United States)

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Rechargeable sodium all-solid-state battery

    International Nuclear Information System (INIS)

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B.

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  11. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  12. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  13. Investigation of different anode materials for aluminium rechargeable batteries

    Science.gov (United States)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  14. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  15. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  16. Multi-functional integration of pore P25@C@MoS{sub 2} core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China); Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China)

    2017-04-15

    Highlights: • P25@carbon supported MoS{sub 2} composite was prepared by a one-step process. • The distribution and interaction of C, MoS{sub 2} and TiO{sub 2} are systematically examined. • The enjoyable features of the three components are complementarily integrated. • The smart ternary electrode exhibits excellent cycling stability and rate capability. - Abstract: Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS{sub 2} and TiO{sub 2} in the MoS{sub 2}/C/TiO{sub 2} composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS{sub 2} nanosheet (P25@C@FL-MoS{sub 2}) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS{sub 2} and TiO{sub 2} in the obtained P25@C@FL-MoS{sub 2} hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS{sub 2} shell and coats the P25 core via Ti−O−C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS{sub 2} anode are achieved.

  17. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts

    International Nuclear Information System (INIS)

    Zhang Bin; Chen Xudong; Ma Shaohua; Yang Jin; Zhang Mingqiu; Chen Yujie

    2010-01-01

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  18. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts.

    Science.gov (United States)

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-10

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  19. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  20. Stability of interfacial waves in two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The influence of the interfacial pressure and the flow distribution in the one-dimensional two-fluid model on the stability problems of interfacial waves is discussed. With a proper formulation of the interfacial pressure, the following two-phase phenomena can be predicted from the stability and stationary criteria of the interfacial waves: onset of slug flow, stationary hydraulic jump in a stratified flow, flooding in a vertical pipe, and the critical void fraction of a bubbly flow. It can be concluded that the interfacial pressure plays an important role in the interfacial wave propagation of the two-fluid model. The flow distribution parameter may enhance the flow stability range, but only plays a minor role in the two-phase characteristics. (author). 20 refs., 3 tabs., 4 figs.

  1. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  2. Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance.

    Science.gov (United States)

    Shih, Yen-Chen; Lan, Yu-Bing; Li, Chia-Shuo; Hsieh, Hsiao-Chi; Wang, Leeyih; Wu, Chih-I; Lin, King-Fu

    2017-06-01

    Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO 2 electron-transporting layer with various amino acids, which affects charge transfer efficiency at the TiO 2 /CH 3 NH 3 PbI 3 interface in PSC, among which the l-alanine-modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino-acid-modified TiO 2 as observed in grazing-incidence wide-angle X-ray scattering of thin CH 3 NH 3 PbI 3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO 2 /CH 3 NH 3 PbI 3 interface after being modified with amino acids, which is also supported by the lower intensity of steady-state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino-acid-modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap-passivation are the niche for better photovoltaic performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Kai Syu

    2016-08-01

    Full Text Available Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs. To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA+ in this work. The short-circuit current density (Jsc of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE values in the wavelength range of 400–450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475–600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC.

  4. Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface

    Directory of Open Access Journals (Sweden)

    Takayuki Nozaki

    2018-02-01

    Full Text Available We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA and the voltage-controlled magnetic anisotropy (VCMA in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices.

  5. Synthesis and characterization of 10%Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Jadhav, L. D.

    2011-01-01

    In the present research work spray pyrolysis technique (SPT) is employed to synthesize GDC (10%Gd doped ceria) thin films on anode-grade-ceramic substrate (porous NiO-GDC). The film/substrate structure was characterized for their micro-structural and electrical properties along with their interfa......In the present research work spray pyrolysis technique (SPT) is employed to synthesize GDC (10%Gd doped ceria) thin films on anode-grade-ceramic substrate (porous NiO-GDC). The film/substrate structure was characterized for their micro-structural and electrical properties along...... with their interfacial-quality. By optimization of preparative parameters of SPT and modification of surface of anode-grade ceramic substrate, we were able to prepare the GDC films having thickness of the order of 13 μm on NiO-GDC substrate. Further to improve the interfacial quality and densification of film, annealing...

  6. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jin; Park, Jae-Won

    2012-01-01

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  7. Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells

    International Nuclear Information System (INIS)

    Heidary, H.; Abbassi, A.; Kermani, M.J.

    2013-01-01

    Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC

  8. The performance analysis of direct methanol fuel cells with different hydrophobic anode channels

    Science.gov (United States)

    Yeh, Hung-Chun; Yang, Ruey-Jen; Luo, Win-Jet; Jiang, Jia-You; Kuan, Yean-Der; Lin, Xin-Quan

    In order to enhance the performance of the direct methanol fuel cell (DMFC), the product of CO 2 bubble has to be efficiently removed from the anode channel during the electrochemical reaction. In this study, the materials of Polymethyl Methacrylate (PMMA) with hydrophilic property and polydimethylsiloxane (PDMS) with hydrophobic property are used to form the anode cannel. The channel is fabricated through a microelectromechanical system (MEMS) manufacture process of the DMFCs. In addition, some particles with high hydrophobic properties are added into the PDMS materials in order to further reduce the hydro-resistance in the anode channel. The performance of the DMFCs is investigated under the influence of operation conditions, including operation temperature, flow rate, and methanol concentration. It is found that the performance of the DMFC, which is made of PDMS with high hydrophobic particles, can be greatly enhanced and the hydrophobic property of the particles can be unaffected by different operation conditions.

  9. Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite interfacial layer

    Science.gov (United States)

    Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine

    2017-06-01

    The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.

  10. Effect of microwave exposure on the photo anode of DSSC sensitized with natural dye

    Science.gov (United States)

    Swathi, K. E.; Jinchu, I.; Sreelatha, K. S.; Sreekala, C. O.; Menon, Sreedevi K.

    2018-02-01

    Dye Sensitized solar cells (DSSC) are also referred to as dye sensitised cells (DSC) or Graetzel cell are the device that converts solar energy in to electricity by the photovoltaic effect. This is the class of advanced cell that mimics the artificial photosynthesis. DSSC fabrication is simple and can be done using readily available low cost materials that are nontoxic, environment friendly and works even under low flux of sunlight. DSSC exhibits good efficiency of ~ 10-14 %. This paper emphasis on the study of enhancing the efficiency of DSSC by exposing the photo anode to microwave frequency. Effect of duration of microwave exposure at 2.6 GHz on energy efficiency of solar cell is studied in detail. The SEM analysis and dye desorption studies of the photo anode confirms an increased solar energy conversion efficiency of the DSSC.

  11. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  12. Morphology and stress at silicon-glass interface in anodic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiali [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cai, Cheng [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Ming, Xiaoxiang [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Yu, Xinhai, E-mail: yxhh@ecust.edu.cn [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Shuangliang, E-mail: szhao@ecust.edu.cn [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Tu, Shan-Tung [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Honglai [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2016-11-30

    Highlights: • Amorphous SiO{sub 2} is the most probable silica morphology generated in anodic bonding. • Amorphous SiO{sub 2} thickness at the interface is at least 2 nm for 90 min anodic bonding. • Silicon oxidation rate at the interface is 0.022 nm min{sup −1} from 30 to 90 min. - Abstract: The morphologies and structural details of formed silica at the interface of silicon-glass anodic bonding determine the stress at the interface but they have been rarely clarified. In this study, a miniaturized anodic bonding device was developed and coupled with a Raman spectrometer. The silicon-glass anodic bonding was carried out and the evolution of the stress at the bonding interface was measured in situ by a Raman spectrometer. In addition, large-scale atomistic simulations were conducted by considering the formed silica with different morphologies. The most conceivable silica morphology was identified as the corresponding silicon-glass interfacial stress presents qualitatively agreement with the experimental observation. It was found that amorphous SiO{sub 2} is the silica morphology generated in anodic bonding. The amorphous SiO{sub 2} thickness is at least 2 nm in the case of 90 min anodic bonding at 400 °C with the DC voltage of −1000 V. The combination of experimental and simulation results can ascertain the silicon oxidation reaction rate in anodic bonding process, and under the above-mentioned condition, the reaction rate was estimated as 0.022 nm min{sup −1} from 30 to 90 min.

  13. Controlling Interfacial Separation in Porous Structures by Void Patterning

    Science.gov (United States)

    Ghareeb, Ahmed; Elbanna, Ahmed

    Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

  14. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    Science.gov (United States)

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  15. Efficient CsF interlayer for high and low bandgap polymer solar cell

    Science.gov (United States)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  16. Polyelectrolyte microparticles for enhancing anode performance in an air–cathode μ-Liter microbial fuel cell

    International Nuclear Information System (INIS)

    Chen, Yan-Yu; Wang, Hsiang-Yu

    2015-01-01

    Highlights: • Microparticles with high consistency and surface area per volume are fabricated. • P(DADMAC) microparticles facilitate microorganism accumulation and charge transfer. • Microbes in microparticles are capable of proliferation and electricity generation. • Microparticles increase limiting current/power output to more than 200% of biofilm. • Microparticles decrease the anode charge-transfer resistance to 44% of biofilm. - Abstract: Microbial fuel cell (MFC) is considered an environmentally friendly energy source because it generates electrical power by digesting organic substrates in the wastewater. However, it is still challenging for MFC to become an economically affordable and highly efficient energy source due to its relatively low power output and coulombic efficiency. The aim of this study is to increase the performance of anode by using polyelectrolyte microparticles to facilitate the accumulation of microorganisms and the collection of electrons. The polyelectrolyte microparticle is subjected to microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and continuous electricity generation in an air–cathode μ-Liter MFC (μMFC) to validate its biocompatibility, ability in retaining redox species, reduced electron transfer resistance, and sustained energy generation. During the 168-hour operation, microorganisms proliferate inside the microparticle and generate around 250% power output and 200% limiting current of those from microorganism biofilm. The polyelectrolyte microparticle also decreased charge-transfer resistance of anode electrode in air–cathode μMFC by 56% compared with biofilm.

  17. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    International Nuclear Information System (INIS)

    Bang, Do; Awano, Hiroyuki

    2015-01-01

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching

  18. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Do, E-mail: bang@spin.mp.es.osaka-u.ac.jp [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan); Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Awano, Hiroyuki [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan)

    2015-05-07

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching.

  19. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao

    2016-01-22

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  20. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao; Zhang, Lianbin; Wang, Peng

    2016-01-01

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  1. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  2. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  3. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength

    International Nuclear Information System (INIS)

    He, Hongwei; Wang, Jianlong; Li, Kaixi; Wang, Jian; Gu, Jianyu

    2010-01-01

    The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix's structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.

  4. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode

    International Nuclear Information System (INIS)

    Peng, Xiang; Li, Wan; Wang, Lei; Hu, Liangsheng; Jin, Weihong; Gao, Ang; Zhang, Xuming; Huo, Kaifu; Chu, Paul K.

    2016-01-01

    Vanadium nitride (VN) is promising in lithium ion battery (LIB) anode due to its high energy density, chemical stability, and corrosion resistivity. Herein, porous VN nanosheets are synthesized hydrothermally followed by an ammonia treatment. The porous nanosheets offer a large interfacial area between the electrode and electrolyte as well as short Li + diffusion path and consequently, the VN nanosheets electrode has high capacity and rate capability as an anode in LIB. The VN anode delivers a high reversible capacity of 455 mAh g −1 at a current density of 100 mA g −1 and it remains at 341 mAh g −1 when the current density is increased to 1 A g −1 . The charge transfer and Li + diffusion kinetics during the lithiation process is studied systematically. A highly stable SEI film is formed during the initial discharging-charging cycles to achieve a long cycle life and sustained capacity at a high level for 250 discharging-charging cycles without deterioration. This work demonstrates the preparation of high-performance LIB anode materials by a simple method and elucidates the lithiation kinetics.

  5. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes

    International Nuclear Information System (INIS)

    Li Miao; Feng Chuanping; Zhang Zhenya; Sugiura, Norio

    2009-01-01

    Electrochemical reduction of nitrate using Fe, Cu, and Ti as cathodes and Ti/IrO 2 -Pt as anode in an undivided and unbuffered cell was studied. In the presence of appropriate amount of NaCl, both cathodic reduction of nitrate and anodic oxidation of the by-products of ammonia and nitrite were achieved by all cathodes under a proper condition. Both in the absence and presence of NaCl, the order of nitrate removal rate was Fe > Cu > Ti. The nitrate removal was 87% and selectivity to nitrogen was 100% in 3 h with Fe cathode in the presence of NaCl. Ti/IrO 2 -Pt anode played an important role during nitrate reduction, especially in the presence of NaCl, at which by-products could efficiently be oxidized. Moreover, atomic force microscopy (AFM) investigation shown Ti/IrO 2 -Pt anode was suitable for nitration reduction and the surface roughness of all cathodes increased. The concentrations of Fe, Cu, and Ti in the electrolyte were less than 0.15, 0.12 and 0.09 mg/L after 3 h electrolysis, respectively.

  7. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  8. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  9. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    Science.gov (United States)

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  10. Highly efficient blue organic light emitting device using indium-free transparent anode Ga:ZnO with scalability for large area coating

    International Nuclear Information System (INIS)

    Wang Liang; Matson, Dean W.; Polikarpov, Evgueni; Swensen, James S.; Bonham, Charles C.; Cosimbescu, Lelia; Gaspar, Daniel J.; Padmaperuma, Asanga B.; Berry, Joseph J.; Ginley, David S.

    2010-01-01

    Organic light emitting devices have been achieved with an indium-free transparent anode, Ga doped ZnO (GZO). A large area coating technique was used (RF magnetron sputtering) to deposit the GZO films onto glass. The respective organic light emitting devices exhibited an operational voltage of 3.7 V, an external quantum efficiency of 17%, and a power efficiency of 39 lm/W at a current density of 1 mA/cm 2 . These parameters are well within acceptable standards for blue OLEDs to generate a white light with high enough brightness for general lighting applications. It is expected that high-efficiency, long-lifetime, large area, and cost-effective white OLEDs can be made with these indium-free anode materials.

  11. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, Ahmad [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering; Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saremi, Mohsen [Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saeri, Mohammad Reza [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2012-12-15

    Al-Zn-In anodes show better performance due to the beneficial effects of Zn and In on prevention of aluminum passivity and producing a homogeneous structure for uniform corrosion of the anodes. However, there are different views about the optimum concentration of each element in the anode. In this study, the anodic behavior of Al-Zn-In alloy with different concentrations of zinc from 1 to 6wt.% and indium from 0.01 to 0.05wt.% are studied. The NACE efficiency test and polarization are used in 3wt.% NaCl solution for corrosion characterization. The results showed that zinc and indium change the anode potential to more active potentials and improve the microstructure uniformity of anodes. The latter leads to more uniform corrosion. Optimum concentrations of zinc (5wt.%) and indium (0.02wt.%) were found in this respect. (orig.)

  12. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Saveleva, Viktoriia A; Savinova, Elena R; Daletou, Maria K

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt 3 Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide. (paper)

  13. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  14. Structure of the Copper–Enriched Layer Introduced by Anodic Oxidation of Copper-Containing Aluminium Alloy

    International Nuclear Information System (INIS)

    Hashimoto, T.; Zhou, X.; Skeldon, P.; Thompson, G.E.

    2015-01-01

    This paper investigates the structure of the copper–enriched layer formed at the alloy/anodic film interface during anodizing of Al–2 wt.% Cu binary alloy using transmission electron microscopy. It was revealed that θ′ phase was formed within the copper–enriched layer. For the copper–enriched layer formed on {1 0 0} aluminum planes, the interface between the aluminum matrix and the θ′ phase within the copper-enriched layer is coherent. For the copper–enriched layer formed on {1 1 0} and {1 1 1} aluminum planes, the interfaces between the aluminum matrix and the θ′ phase within the copper-enriched layer are semi-coherent or incoherent. The interfacial coherency influences the formation of oxygen gas bubbles within the resultant anodic films.

  15. On anodic stability and decomposition mechanism of sulfolane in high-voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xing, Lidan; Tu, Wenqiang; Vatamanu, Jenel; Liu, Qifeng; Huang, Wenna; Wang, Yating; Zhou, Hebing; Zeng, Ronghua; Li, Weishan

    2014-01-01

    Graphical abstract: - Highlights: • Influence of lithium salts on the anodic stability of sulfolane has been investigated. • Oxidation decomposition mechanisms of LiPF 6 /Sulfolane electrolyte have been well understood by theoretical and experimental methods. • Decomposition products of the electrolyte can be found on the electrode surface and in the interfacial electrolyte. - Abstract: In this work, we investigated the anodic stability and decomposition mechanism of sulfolane (SL). The anodic stability of SL-based electrolyte with different lithium salts on Pt and LiNi 0.5 Mn 1.5 O 4 electrodes was found to decrease as follows: LiPF 6 /SL > LiBF 4 /SL > LiClO 4 /SL. The oxidation potential of 1M LiPF 6 /SL electrolyte on both Pt and electrodes is about 5.0V vs Li/Li + . The presence of PF 6 - and another SL solvent dramatically alters the decomposition mechanism of SL. Oxidation decomposition of SL-SL cluster is the most favorable reaction in LiPF 6 /SL electrolyte. The dimer products with S-O-R group were detected by IR spectra on the charged LiNi 0.5 Mn 1.5 O 4 electrode surface and in the electrolyte near the electrode surface, and were found to increase the interfacial reaction resistance of the LiNi 0.5 Mn 1.5 O 4 electrode

  16. Recent advances in interfacial engineering of perovskite solar cells

    Science.gov (United States)

    Ye, Meidan; He, Chunfeng; Iocozzia, James; Liu, Xueqin; Cui, Xun; Meng, Xiangtong; Rager, Matthew; Hong, Xiaodan; Liu, Xiangyang; Lin, Zhiqun

    2017-09-01

    Due to recent developments, organometallic halide perovskite solar cells (PSCs) have attracted even greater interest owing to their impressive photovoltaic properties and simple device manufacturing processes with the potential for commercial applications. The power conversion efficiencies (PCEs) of PSCs have surged from 3.8% for methyl ammonium lead halide-sensitized liquid solar cells, CH3NH3PbX3 (X  =  Cl, Br, I), in 2009, to more than 22% for all-solid-state solar cells in 2016. Over the past few years, significant effort has been dedicated to realizing PSCs with even higher performance. In this review, recent advances in the interfacial engineering of PSCs are addressed. The specific strategies for the interfacial engineering of PSCs fall into two categories: (1) solvent treatment and additives to improve the light-harvesting capabilities of perovskite films, and (2) the incorporation of various functional materials at the interfaces between the active layers (e.g. electron transporting layer, perovskite layer, and hole transporting layer). This review aims to provide a comprehensive overview of strategies for the interfacial engineering of PSCs with potential benefits including enhanced light harvesting, improved charge separation and transport, improved device stability, and elimination of photocurrent hysteresis.

  17. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    The effect of multi-walled carbon nanotube (MWCNT) modification of anodes and the optimisation of relevant parameters thereof for application in an Enterobacter cloacae microbial fuel cell were examined. The H – type microbial fuel cells were used for the fundamental studies, with a carbon sheet as a control anode and ...

  18. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    Science.gov (United States)

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanxin, E-mail: xiongsx@xust.edu.cn; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-07-15

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  20. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    International Nuclear Information System (INIS)

    Xiong, Shanxin; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-01-01

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  1. Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials.

    Science.gov (United States)

    Chen, Ke; Zhang, Shuhao; Li, Anran; Tang, Xuke; Li, Lidong; Guo, Lin

    2018-05-22

    Many biological organisms usually derived from the ordered assembly of heterogeneous, hierarchical inorganic/organic constituents exhibit outstanding mechanical integration, but have proven to be difficult to produce the combination of excellent mechanical properties, such as strength, toughness, and light weight, by merely mimicking their component and structural characteristics. Herein, inspired by biologically strong chelating interactions of phytic acid (PA) or IP6 in many biomaterials, we present a biologically interfacial chelating-like reinforcement (BICR) strategy for fabrication of a highly dense ordered "brick-and-mortar" microstructure by incorporating tiny amounts of a natural chelating agent ( e. g., PA) into the interface or the interlamination of a material ( e. g., graphene oxide (GO)), which shows joint improvement in hardness (∼41.0%), strength (∼124.1%), maximum Young's modulus (∼134.7%), and toughness (∼118.5%) in the natural environment. Besides, for different composite matrix systems and artificial chelating agents, the BICR strategy has been proven successful for greatly enhancing their mechanical properties, which is superior to many previous reinforcing approaches. This point can be mainly attributed to the stronger noncovalent cross-linking interactions such as dense hydrogen bonds between the richer phosphate (hydroxyl) groups on its cyclohexanehexol ring and active sites of GO, giving rise to the larger energy dissipation at its hybrid interfaces. It is also simple and environmentally friendly for further scale-up fabrication and can be readily extended to other material systems, which opens an advanced reinforcement route to construct structural materials with high mechanical performance in an efficient way for practical applications.

  2. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    Science.gov (United States)

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  3. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    Science.gov (United States)

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  4. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic.

    Science.gov (United States)

    Tang, Bo; Du, Jiannan; Feng, Qingmao; Zhang, Jiaqi; Wu, Dan; Jiang, Xiankai; Dai, Ying; Zou, Jinlong

    2018-05-01

    Anodic electro-catalysis oxidation is a highly effective way to solve the pollution problem of antibiotics in wastewater and receiving water bodies. In this study, for the first time, molybdenum trioxide/Nano-graphite (MoO 3 /Nano-G) composites are synthesized as anodic catalysts by a surfactant-assisted solvothermal method followed by low-temperature calcination. The effects of the proportion of MoO 3 to Nano-G (10, 30 and 50%) on the properties of composites are investigated through structural characterizations and electrochemical measurements. Results indicate that MoO 3 (30)/Nano-G electrode displays the electro-catalysis degradation efficiency of 99.9% towards ceftazidime, which is much higher than those of Nano-G (46.7%) and dimensionally stable anode (69.2%). The degradation mechanism for ceftazidime is studied by investigating the yields and kinds of active species. Results show that all of the OH, O 2- and H 2 O 2 are responsible for the electro-catalytic degradation process, and the produced OH radicals are the major active species for ceftazidime degradation. The synergistic effects between MoO 3 and Nano-G greatly contribute to the activation of H 2 O molecules to produce OH, meanwhile the special sesame cake-like structure facilitates to the exposure of contaminants to OH on active sites to enhance the degradation efficiency. These results suggest that MoO 3 /Nano-G electrodes can be considered as the promising catalysts for treating bio-refractory organic wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Guangshun; Ma, Lichun; Zhao, Min [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  6. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  7. Design, synthesis, thin film deposition and characterization of new indium tin oxide anode functionalization/hole transport organic materials and their application to high performance organic light-emitting diodes

    Science.gov (United States)

    Huang, Qinglan

    The primary goals of this dissertation were to understand the physical and chemical aspects of organic light-emitting diode (OLED) fundamentals, develop new materials as well as device structures, and enhance OLED electroluminescent (EL) response. Accordingly, this dissertation analyzes the relative effects of indium tin oxide (ITO) anode-hole transporting layer (HTL) contact vs. the intrinsic HTL material properties on OLED EL response. Two siloxane-based HTL materials, 4,4'-bis[(4″ -trichlorosilylpropyl-1″-naphthylphenylamino)biphenyl (NPB-Si2) and 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPD-Si2) have thereby been designed, synthesized and covalently bound to ITO surface. They afford a 250% increase in luminance and ˜50% reduction in turn-on voltage vs. comparable 4,4'-bis(1-naphthylphenylamino)biphenyl (NPB) HTL-based devices. These results suggest new strategies for developing OLED HTL structures, with focus on the anode-HTL contact. Furthermore, archetypical OLED device structures have been refined by simultaneously incorporating the TPD-Si2 layer and a hole- and exciton-blocking/electron transport layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) in tris(8-hydroxyquinolato)aluminum(III) and tetrakis(2-methyl-8-hydroxyquinolinato)borate-based OLEDs. The refined device structures lead to high performance OLEDs such as green-emitting OLEDs with maximum luminance (Lmax) ˜ 85,000 cd/m2, power and forward external quantum efficiencies (eta p and etaext) as high as 15.2 lm/W and 4.4 +/- 0.5%, respectively, and blue-emitting OLEDs with Lmax 30,000 cd/m 2, and ˜5.0 lm/W and 1.6 +/- 0.2% etap and eta ext, respectively. The high performance is attributed to synergistically enhanced hole/electron injection and recombination efficiency. In addition, molecule-scale structure effects at ITO anode-HTL interfaces have been systematically probed via a self-assembly approach. A series of silyltriarylamine precursors differing in aryl group and

  8. Impact of anode catalyst layer porosity on the performance of a direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Bauskar, Akshay S.; Rice, Cynthia A.

    2012-01-01

    Highlights: ► Lithium carbonate is used as a pore-former to increase porosity of anode catalyst layer. ► Maximum power density increased by 25%. ► Onset potential for formic acid electro-oxidation reduced by 30 mV for anode catalyst layer with 17.5 wt% pore-former. ► Electrochemical impedance spectra confirm increased formic acid concentration inside the anode catalyst layer pores. - Abstract: Direct formic acid fuel cells (DFAFCs) have attracted much attention in the last few years for portable electronic devices, due to their potential of being high efficiency power sources. They have the potential to replace the state-of-the-art batteries in cell phones, PDAs, and laptop computers if their power density and durability can be improved. In the present investigation, the influence of increased anode catalyst layer porosity on DFAFC power density performance is studied. Lithium carbonate (Li 2 CO 3 ) was used as a pore-former in this study because of its facile and complete removal after catalyst layer fabrication. The anode catalyst layers presented herein contained unsupported Pt/Ru catalyst and Li 2 CO 3 (in the range of 0–50 wt%) bound with proton conducting ionomer. Higher DFAFC performance is obtained because of the increased porosity within the anode catalyst layer through enhanced reactant and product mass transport. The maximum power density of DFAFC increased by 25% when pore-former was added to the anode catalyst ink. The formic acid onset potential for the anode catalyst layer with 17.5 wt% pore-former was reduced by 30 mV. A constant phase element based equivalent-circuit model was used to investigate anode impedance spectra. Fitted values for the anode impedance spectra confirm the improvement in performance due to an increase in formic acid concentration inside the anode catalyst layer pores along with efficient transport of reactants and products.

  9. Enhanced Corrosion Resistance and Interfacial Conductivity of TiC x/a-C Nanolayered Coatings via Synergy of Substrate Bias Voltage for Bipolar Plates Applications in PEMFCs.

    Science.gov (United States)

    Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin

    2018-06-06

    Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.

  10. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Etacheri, Vinodkumar; Hong, Chulgi Nathan; Pol, Vilas G

    2015-09-15

    Porous carbon microsheet anodes with Li-ion storage capacity exceeding the theoretical limit are for the first time derived from waste packing-peanuts. Crystallinity, surface area, and porosity of these 1 μm thick carbon sheets were tuned by varying the processing temperature. Anodes composed of the carbon sheets outperformed the electrochemical properties of commercial graphitic anode in Li-ion batteries. At a current density of 0.1 C, carbon microsheet anodes exhibited a specific capacity of 420 mAh/g, which is slightly higher than the theoretical capacity of graphite (372 mAh/g) in Li-ion half-cell configurations. At a higher rate of 1 C, carbon sheets retained 4-fold higher specific capacity (220 mAh/g) compared to those of commercial graphitic anode. After 100 charge-discharge cycles at current densities of 0.1 and 0.2 C, optimized carbon sheet anodes retained stable specific capacities of 460 and 370 mAh/g, respectively. Spectroscopic and microscopic investigations proved the structural integrity of these high-performance carbon anodes during numerous charge-discharge cycles. Considerably higher electrochemical performance of the porous carbon microsheets are endorsed to their disorderness that facilitate to store more Li-ions than the theoretical limit, and porous 2-D microstructure enabling fast solid-state Li-ion diffusion and superior interfacial kinetics. The work demonstrated here illustrates an inexpensive and environmentally benign method for the upcycling of packaging materials into functional carbon materials for electrochemical energy storage.

  11. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  12. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  13. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    Science.gov (United States)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  14. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  16. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  17. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-09-01

    Full Text Available The Blocking temperature (TB of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (Heb was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of TB in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance TB and Heb. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200 texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  18. Tin–indium/graphene with enhanced initial coulombic efficiency and rate performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Hongxun; Li, Ling

    2014-01-01

    Graphical abstract: -- Highlights: • Tin–indium/graphene hybrid was firstly synthesized. • Indium in the hybrid reduces charge transfer resistance of electrode. • Graphene can accommodate the volume change of nanoparticles during cycling. • Tin–indium/graphene hybrid shows enhanced initial coulombic efficiency. • Tin–indium/graphene hybrid shows enhanced rate capability. -- Abstract: Tin is an attractive anode material replacing the current commercial graphite for the next generation lithium ion batteries because of its high theoretical storage capacity and energy density. However, poor capacity retention caused by large volume changes during cycling, and low rate capability frustrate its practical application. In this study, a new ternary composite based on tin–indium alloy (Sn–In) and graphene nanosheet (GNS) was prepared via a facile solvothermal synthesis followed by thermal treatment in hydrogen and argon at 550 °C. Characterizations show that the tin–indium nanoparticles with about 100 nm in size were wrapped between the graphene nanosheets. As an anode for lithium ion batteries, the Sn–In/GNS composite exhibits a remarkably improved electrochemical performance in terms of lithium storage capacity (865.6 mAh g −1 at 100 mA g −1 rate), initial coulombic efficiency (78.6%), cycling stability (83.9% capacity retention after 50 cycles), and rate capability (493.2 mAh g −1 at 600 mA g −1 rate after 25 cycles) compared to Sn/GNS and Sn–In electrode. This improvement is attributed to the introduction of lithium activity metal, indium, which reduces the charge transfer resistance of electrode, and the graphene nanosheet which accommodates the volume change of tin–indium nanoparticles during cycling and improves electrical conductivity of material

  19. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    . Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to

  20. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems.

    Science.gov (United States)

    Feng, Huajun; Tang, Chenyi; Wang, Qing; Liang, Yuxiang; Shen, Dongsheng; Guo, Kun; He, Qiaoqiao; Jayaprada, Thilini; Zhou, Yuyang; Chen, Ting; Ying, Xianbin; Wang, Meizhen

    2018-04-01

    This study reports a high-performance 3D stainless-steel photoanode (3D SS photoanode) for bioelectrochemical systems (BESs). The 3D SS photoanode consists of 3D carbon-coated SS felt bioactive side and a flat α-Fe 2 O 3 -coated SS plate photoactive side. Without light illumination, the electrode reached a current density of 26.2 ± 1.9 A m -2 , which was already one of the highest current densities reported thus far. Under illumination, the current density of the electrode was further increased to 46.5 ± 2.9 A m -2 . The mechanism of the photo-enhanced current production can be attributed to the reduced charge-transfer resistance between electrode surface and the biofilm with illumination. It was also found that long-term light illumination can enhance the biofilm formation on the 3D SS photoanode. These findings demonstrate that using the synergistic effect of photocatalysis and microbial electrocatalysis is an efficient way to boost the current production of the existing high-performance 3D anodes for BESs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chai, Lili; Qu, Qunting; Zhang, Longfei; Shen, Ming; Zhang, Li; Zheng, Honghe

    2013-01-01

    Highlights: • Chitosan is used as a new electrode binder for graphite anode. • Electrochemical properties of the chitosan-based electrode are compared with that of PVDF-based one. • Electrochemical performances of the graphite anode are improved by using chitosan binder. • Chitosan binder facilitates the formation of a thin, homogenous and stable SEI film of the electrode. -- Abstract: Chitosan was applied as the electrode binder material for a spherical graphite anode in lithium-ion batteries. Compared to using poly (vinylidene fluoride) (PVDF) binder, the graphite anode using chitosan exhibited enhanced electrochemical performances in terms of the first Columbic efficiency, rate capability and cycling behavior. With similar specific capacity, the first Columbic efficiency of the chitosan-based anode is 95.4% compared to 89.3% of the PVDF-based anode. After 200 charge–discharge cycles at 0.5C, the capacity retention of the chitosan-based electrode showed to be significantly higher than that of the PVDF-based electrode. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) measurements were carried out to investigate the formation and evolution of the solid electrolyte interphase (SEI) formed on the graphite electrodes. The results show that a thin, homogenous and stable SEI layer is formed on the graphite electrode surface with chitosan binder compared with that using the conventional PVDF binder

  2. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    Science.gov (United States)

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  3. Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts.

    Science.gov (United States)

    Liang, Ruowen; Shen, Lijuan; Jing, Fenfen; Qin, Na; Wu, Ling

    2015-05-13

    In this work, MIL-53(Fe)-reduced graphene oxide (M53-RGO) nanocomposites have been successfully fabricated by a facile and efficient electrostatic self-assembly strategy for improving the interfacial contact between RGO and the MIL-53(Fe). Compared with D-M53-RGO (direct synthesis of MIL-53(Fe)-reduced graphene oxide nanocomposites via one-pot solvothermal approach), M53-RGO nanocomposites exhibit improved photocatalytic activity compared with the D-M53-RGO under identical experimental conditions. After 80 min of visible light illumination (λ ≥ 420 nm), the reduction ratio of Cr(VI) is rapidly increased to 100%, which is also higher than that of reference sample (N-doped TiO2). More significantly, the M53-RGO nanocomposites are proven to perform as bifunctional photocatalysts with considerable activity in the mixed systems (Cr(VI)/dyes) under visible light, which made it a potential candidate for industrial wastewater treatment. Combining with photoelectrochemical analyses, it could be revealed that the introduction of RGO would minimize the recombination of photogenerated electron-hole pairs. Additionally, the effective interfacial contact between MIL-53(Fe) and RGO surface would further accelerate the transfer of photogenerated electrons, leading to the enhancement of photocatalytic activity of M53-RGO toward photocatalytic reactions. Finally, a possible photocatalytic reaction mechanism is also investigated in detail.

  4. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  5. Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Vaenas, Naoum; Stergiopoulos, Thomas; Kontos, Athanassios G.; Likodimos, Vlassis; Falaras, Polycarpos

    2013-01-01

    The effect of the electrochemical anodization growth process on the development of self-organized TiO 2 nanotube (NT) films and their efficiency as photoelectrodes in dye sensitized solar cells (DSCs) has been comparatively investigated, by keeping constant the total anodization charge. Slow and rapid potentiostatic anodization processes were accordingly compared to the galvanostatic one, while a two step potentiostatic–galvanostatic technique was applied for the first time for the growth of TiO 2 NT arrays, as a step forward in relation to the existing potentiostatic–potentiostatic (P–P) technique. Scanning electron microscopy and Raman spectroscopy verified the wide diversity in the morphological and structural characteristics of the TiO 2 NTs obtained by the different anodization modes. The novel approach of galvanostatic tube growth on a potentiostatically patterned Ti foil provided the most uniform TiO 2 nanotubular films with clean top surface exempt of nanograss or cracks over extended areas. Evaluation of the TiO 2 NTs performance as photoelectrodes in DSC devices showed distinct differences of their electrical parameters that reflected finely the underlying structure/morphology variations of the different anodic oxidation conditions. Galvanostatic TiO 2 NT films presented the most favorable (open-ordered) structure for DSC photoelectrodes with superior electrical performance, essentially impaired by a relatively low fill factor that requires improvement by appropriate post-treatment. Furthermore, despite the marked differences in morphology, the TiO 2 NT photoelectrodes exhibited comparable overall performance (of the order of 4%), with only exception the P–P samples which presented slightly lower (about 25%) photovoltaic efficiency. These results indicate that the anodization charge is a critical factor that effectively controls the nanotubes behavior when they are used as photoelectrodes in DSCs

  6. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    International Nuclear Information System (INIS)

    Huang, Like; Hu, Ziyang; Zhang, Ke; Chen, Peipei; Zhu, Yuejin

    2015-01-01

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS

  7. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Like; Hu, Ziyang, E-mail: huziyang@nbu.edu.cn; Zhang, Ke; Chen, Peipei; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    2015-03-02

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS.

  8. Multilayer tape cast SOFC – Effect of anode sintering temperature

    DEFF Research Database (Denmark)

    Hauch, Anne; Birkl, Christoph; Brodersen, Karen

    2012-01-01

    Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...

  9. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  10. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10{sup 5} cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  11. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Aziz, Hany

    2014-01-01

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10 5  cd/m 2 is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  12. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  13. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    International Nuclear Information System (INIS)

    Jiao, Shuhong; University of Science and Technology of China, Hefei; Zheng, Jianming; Li, Qiuyan; Li, Xing

    2017-01-01

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cycle causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.

  14. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  15. Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries

    Science.gov (United States)

    Zou, Mingzhong; Li, Jiaxin; Wen, WeiWei; Chen, Luzhuo; Guan, Lunhui; Lai, Heng; Huang, Zhigao

    2014-12-01

    Composites of Ag-incorporated carbon nanofibers (CNFs) confined with Fe2O3 nanoparticles (Ag-Fe2O3/CNFs) have been synthesized through an electrospinning method and evaluated as anodes for lithium batteries (LIBs). The obtained Ag-Fe2O3/CNF anodes show good LIB performance with a capacity of 630 mAh g-1 tested at 800 mA g-1 after 150 cycles with almost no capacity loss and superb rate performance. The obtained properties for Ag-Fe2O3/CNF anodes are much better than Fe2O3/CNF anodes without Ag-incorporating. In addition, the low-temperature LIB performances for Ag-Fe2O3/CNF anodes have been investigated for revealing the enhanced mechanism of Ag-incorporating. The superior electrochemical performances of the Ag-Fe2O3/CNFs are associated with a synergistic effect of the CNF matrix and the highly conducting Ag incorporating. This unique configuration not only facilitates electron conduction especially at a relative temperature, but also maintains the structural integrity of active materials. Meanwhile, the related analysis of the AC impedance spectroscopy and the corresponding hypothesis for DC impedance confirm that such configuration can effectively enhance the charge-transfer efficiency and the lithium diffusion coefficient. Therefore, CNF-supported coupled with Ag incorporating synthesis supplied a promising route to obtain Fe2O3 based anodes with high-performance LIBs especially at low temperature.

  16. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  17. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.

    Science.gov (United States)

    Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G

    2016-01-26

    Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.

  18. Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure

    International Nuclear Information System (INIS)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Mai, Yiu-Wing; Lai, Siu-Kai

    2016-01-01

    Vertical integration of 2D materials has recently appeared as an effective method for the design of novel nano-scale devices. Using non-equilibrium molecular dynamics simulations, we study the interfacial thermal transport property of graphene/phosphorene heterostructures where phosphorene is sandwiched in between graphene. Various modulation techniques are thoroughly explored. We found that the interfacial thermal conductance at the interface of graphene and phosphorene can be enhanced significantly by using vacancy defects, hydrogenation and cross-plane compressive strain. By contrast, the reduction in the interfacial thermal conductance can be achieved by using cross-plane tensile strain. Our results provide important guidelines for manipulating the thermal transport in graphene/phosphorene based-nano-devices. (paper)

  19. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    Science.gov (United States)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  20. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes.

    Science.gov (United States)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-08

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  1. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy

    Science.gov (United States)

    Liu, Yamei; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Shen, Guizhi; Yan, Xuehai

    2017-02-01

    Nanoengineering of hydrophobic photosensitizers (PSs) is a promising approach for improved tumor delivery and enhanced photodynamic therapy (PDT) efficiency. A variety of delivery carriers have been developed for tumor delivery of PSs through the enhanced permeation and retention (EPR) effect. However, a high-performance PS delivery system with minimum use of carrier materials with excellent biocompatibility is highly appreciated. In this work, we utilized the spatiotemporal interfacial adhesion and assembly of supramolecular coordination to achieve the nanoengineering of water-insoluble photosensitizer Chlorin e6 (Ce6). The hydrophobic Ce6 nanoparticles are well stabilized in a aqueous medium by the interfacially-assembled film due to the coordination polymerization of tannic acid (TA) and ferric iron (Fe(III)). The resulting Ce6@TA-Fe(III) complex nanoparticles (referenced as Ce6@TA-Fe(III) NPs) significantly improves the drug loading content (~65%) and have an average size of 60 nm. The Ce6@TA-Fe(III) NPs are almost non-emissive as the aggregated states, but they can light up after intracellular internalization, which thus realizes low dark toxicity and excellent phototoxicity under laser irradiation. The Ce6@TA-Fe(III) NPs prolong blood circulation, promote tumor-selective accumulation of PSs, and enhanced antitumor efficacy in comparison to the free-carrier Ce6 in vivo evaluation.

  2. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    Science.gov (United States)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed

  3. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    Science.gov (United States)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  4. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.

    Science.gov (United States)

    Xie, Keyu; Guo, Min; Lu, Wei; Huang, Haitao

    2014-11-14

    A novel TiO₂ three-dimensional (3D) anode with an aligned TiO₂ nanotube/nanoparticle heterostructure (TiO₂ NTs/NPs) is developed by simply immersing as-anodized TiO₂ NTs into water and further crystallizing the TiO₂ NTs by post-annealing. The heterostructure, with its core in a tubular morphology and with both the outer and inner surface consisting of nanoparticles, is confirmed by FESEM and TEM. A reversible areal capacity of 0.126 mAh · cm(-2) is retained after 50 cycles for the TiO₂ NTs/NPs heterostructure electrode, which is higher than that of the TiO₂ NTs electrode (0.102 mAh · cm(-2) after 50 cycles). At the current densities of 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mA · cm(-2), the areal capacities are 0.142, 0.127, 0.117, 0.110, 0.104 and 0.089 mAh · cm(-2), respectively, for the TiO₂ NTs/NPs heterostructure electrode compared to the areal capacities of 0.123, 0.112, 0.105, 0.101, 0.094 and 0.083 mAh · cm(-2), respectively, for the the TiO₂ NTs electrode. The enhanced electrochemical performance is attributed to the unique microstructure of the TiO₂ NTs/NPs heterostructure electrode with the TiO₂ NT core used as a straight pathway for electronic transport and with TiO₂ NP offering enhanced surface areas for facile Li+ insertion/extraction. The results described here inspire a facile approach to fabricate a 3D anode with an enhanced electrochemical performance for lithium-ion microbattery applications.

  5. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.

    Science.gov (United States)

    Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V

    2016-09-21

    We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

  6. A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes

    Science.gov (United States)

    Cui, Jiewu; Wu, Yucheng; Wang, Yan; Zheng, Hongmei; Xu, Guangqing; Zhang, Xinyi

    2012-05-01

    The well aligned porous anodic aluminum oxide (AAO) membrane is fabricated by a two-step anodization method. The oxide barrier layer of AAO membrane must be removed to get through-hole membrane for synthesizing nanowires and nanotubes of metals, semiconductors and conducting polymers. Removal of the barrier layer of oxide and pore-extending is of significant importance for the preparation of AAO membrane with through-hole pore morphology and desired pore diameter. The conventional method for pore opening is that AAO membrane after removing of aluminum substrate is immersed in chemical etching solution, which is completely empirical and results in catastrophic damage for AAO membrane frequently. A very simple and efficient approach based on capillary action for detecting pore opening of AAO membrane is introduced in this paper, this method can achieve the detection for pore opening visually and control the pore diameter precisely to get desired morphology and the pore diameter of AAO membrane. Two kinds of AAO membranes with different pore shape were obtained by different pore opening methods. In addition, one-dimensional gradient gold nanowires are also fabricated by electrodeposition based on AAO membranes.

  7. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    Science.gov (United States)

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  8. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    International Nuclear Information System (INIS)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-01-01

    Boron-doped diamond anodes allow to directly produce OH· radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included

  9. Silver-nickel oxide core-shell nanoparticle array electrode with enhanced lithium-storage performance

    International Nuclear Information System (INIS)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-01-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoparticle arrays via a one-step solution-immersion process and subsequent RF-sputtering technique. The Ag nanoparticle arrays on copper substrate are firstly prepared by a displacement reaction at mild temperature of 303K. Then, a NiO layer is deposited onto the surface of the Ag nanoparticles via RF-sputtering technique. When evaluated as an anode for lithium-ion batteries, the Ag-NiO core-shell electrode shows higher capacity and better cycling performance than the planar NiO electrode. The in-situ synthesized Ag nanoparticles can enhance the interfacial strength between the active material and substrate, andimprove the electrical conductivity of the electrode, which may be responsible for the enhanced performance

  10. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer.

    Science.gov (United States)

    Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J

    2016-06-09

    Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack.

  11. Interfacial crystalline structures in injection over-molded polypropylene and bond strength.

    Science.gov (United States)

    Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian

    2010-11-01

    This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.

  12. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    Science.gov (United States)

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  13. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  14. Mechanical constraint and release generates long, ordered horizontal pores in anodic alumina templates

    International Nuclear Information System (INIS)

    Bolger, Ciara T; Petkov, Nikolay; Holmes, Justin D; Fois, Giovanni; Cross, Graham L W; Sassiat, Nicolas; Burke, Micheál; Quinn, Aidan J

    2012-01-01

    We describe the formation of long, highly ordered arrays of planar oriented anodic aluminum oxide (AAO) pores during plane parallel anodization of thin aluminum ‘finger’ microstructures fabricated on thermally oxidized silicon substrates and capped with a silicon oxide layer. The pore morphology was found to be strongly influenced by mechanical constraint imposed by the oxide layers surrounding the Al fingers. Tractions induced by the SiO 2 substrate and capping layer led to frustrated volume expansion and restricted oxide flow along the interface, with extrusion of oxide into the primary pore volume, leading to the formation of dendritic pore structures and meandering pore growth. However, partial relief of the constraint by a delaminating interfacial fracture, with its tip closely following the anodization front, led to pore growth that was highly ordered with regular, hexagonally packed arrays of straight horizontal pores up to 3 µm long. Detailed characterization of both straight and dendritic planar pores over a range of formation conditions using advanced microscopy techniques is reported, including volume reconstruction, enabling high quality 3D visualization of pore formation. (paper)

  15. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  16. Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite

    Science.gov (United States)

    Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo

    2018-05-01

    The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.

  17. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  18. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  19. Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode.

    Science.gov (United States)

    Mahmood, Nasir; Zhang, Chenzhen; Liu, Fei; Zhu, Jinghan; Hou, Yanglong

    2013-11-26

    A facile strategy was designed for the fabrication of hybrid of Co3Sn2@Co nanoparticles (NPs) and nitrogen-doped graphene (NG) sheets through a hydrothermal synthesis, followed by annealing process. Core-shell architecture of Co3Sn2@Co pin on NG is designed for the dual encapsulation of Co3Sn2 with adaptable ensembles of Co and NG to address the structural and interfacial stability concerns facing tin-based anodes. In the resulted unique architecture of Co3Sn2@Co-NG hybrid, the sealed cobalt cover prevents the direct exposer of Sn with electrolyte because of encapsulated structure and keeps the structural and interfacial integrity of Co3Sn2. However, the elastically strong, flexible and conductive NG overcoat accommodates the volume changes and therefore brings the structural and electrical stabilization of Co3Sn2@Co NPs. As a result, Co3Sn2@Co-NG hybrid exhibits extraordinary reversible capacity of 1615 mAh/g at 250 mA/g after 100 cycles with excellent capacity retention of 102%. The hybrid bears superior rate capability with reversible capacity of 793.9 mAh/g at 2500 mA/g and Coulombic efficiency nearly 100%.

  20. Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nasser A. M. Barakat

    2018-05-01

    Full Text Available The internal resistances of fuel cells strongly affect the generated power. Basically, in the fuel cell, the anode can be prepared by deposition of a film from the functional electrocatalyst on a proper gas diffusion layer. Accordingly, an interfacial resistance for the electron transport is created between the two layers. Electrocatalyst-functionalized gas diffusion layer (GDL can distinctly reduce the interfacial resistance between the catalyst layer and the GDL. In this study, NiMn nanoparticles-decorated carbon felt is introduced as functionalized GDL to be exploited as a ready-made anode in a direct urea fuel cell. The proposed treated GDL was prepared by calcination of nickel acetate/manganese acetate-loaded carbon felt under an argon atmosphere at 850 °C. The physiochemical characterizations confirmed complete reduction for the utilized precursors and deposition of pristine NiMn nanoparticles on the carbon felt fiber. In passive direct urea fuel cells, investigation the performance of the functionalized GDLs indicated that the composition of the metal nanoparticles has to be optimized as the GDL obtained from 40 wt % manganese acetate reveals the maximum generated power density; 36 mW/m2 at room temperature and 0.5 M urea solution. Moreover, the electrochemical measurements proved that low urea solution concentration is preferred as utilizing 0.5 M solution resulted into generating higher power compared to 1.0 and 2.0 M solution. Overall, this study opens a new avenue toward functionalization of the GDL as a novel strategy to overcome the interfacial resistance between the electrocatalyst and the GDL.

  1. Enhanced electrochemical properties of vanadium-doped titanium niobate as a new anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Xiaoyan; Ma, Chenxiang; Du, Chenqiang; Liu, Jie; Zhang, Xinhe; Qu, Deyang; Tang, Zhiyuan

    2015-01-01

    The Vanadium-doped TiNb 2 O 7 (TNO) samples have been investigated as novel anode active materials for application in lithium-ion batteries. The samples are characterized by X-ray diffraction patterns (XRD), raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge tests, and cyclic voltammetry (CV) tests. The XRD results indicate that V-doping expands the lattice parameters of TiNb 2 O 7 samples and facilitates the enhanced lithium ion diffusion. SEM and TEM results show that lattice expansion caused by V-doping doesn’t significantly change the particle size distribution of TiNb 2 O 7 samples. The electrochemical measurements indicate that the TiNb 1.98 V 0.02 O 7 anode material displays a highly reversible capacity and excellent cycling stability. The initial discharge capacities of TiNb 1.98 V 0.02 O 7 are 298.48 mAh g −1 and 171.99 mAh g −1 at 0.3C and 10C, respectively, indicating that the TiNb 1.98 V 0.02 O 7 material can be utilized as a promising anode material for lithium-ion batteries.

  2. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties.

    Science.gov (United States)

    Roumeli, Eleftheria; Papageorgiou, Dimitrios G; Tsanaktsis, Vasilios; Terzopoulou, Zoe; Chrissafis, Konstantinos; Avgeropoulos, Apostolos; Bikiaris, Dimitrios N

    2015-06-03

    In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.5 wt %) of amino-functionalized multiwalled carbon nanotubes (f-MWCNTs) prepared by ring-opening polymerization (ROP) are reported. This method allows the creation of a covalent-bonding zone on the surface of nanotubes, which leads to efficient debundling and therefore satisfactory dispersion and effective load transfer in the nanocomposites. The high covalent grafting extent combined with the higher crystallinity provide the basis for a significant enhancement of the mechanical properties, which was detected in the composites with up to 1 wt % f-MWCNTs. Increasing filler concentration encourages intrinsic aggregation forces, which allow only minor grafting efficiency and poorer dispersion and hence inferior mechanical performance. f-MWCNTs also cause a significant improvement on the polymerization reaction of PCL. Indeed, the in situ polymerization kinetics studies reveal a significant decrease in the reaction temperature, by a factor of 30-40 °C, combined with accelerated the reaction kinetics during initiation and propagation and a drastically reduced effective activation energy.

  3. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  4. Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Song, Huawei; Li, Na; Cui, Hao; Wang, Chengxin

    2014-01-01

    A facile way towards high rate and long lifespan anode materials based on SnO 2 and commercial multiwalled carbon nanotubes (MWCNTs) is readily achieved through a combination of activation and hydrothermal treatment. The former endows the MWCNTs with abundant hydrophilic radicals, while the latter guarantees intimate connection between SnO 2 and MWCNTs; eventually, monodisperse SnO 2 nanocrystals ca. 3 nm are firmly anchored on the MWCNTs without agglomeration. When used for lithium ion batteries (LIBs) anodes, the hybrid composite exhibits excellent cycling capability with high reversible capacity about 700 mAh g −1 (based on total weight of the composite) for 150 cycles at 0.1 A g −1 superior to both components involved. Besides large rates of 5 A g −1 with recoverable initial reversible capacity, it also last for more than 1000 cycles with little capacity decay, outperforming most SnO 2 based carbon nanotubes composites (SnO 2 /CNTs) so far. Insights into the electrochemical processes reveal the hybrid composite exhibits enhanced redox capacitance and interfacial capacitance in comparison with SnO 2 nanocrystals which indicate the perfect interfaces and robust structure of the hybrid composite

  5. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells

    International Nuclear Information System (INIS)

    Mehdinia, Ali; Ziaei, Ehsan; Jabbari, Ali

    2014-01-01

    Nanocomposit of multi-walled carbon nanotubes and tin oxide (MWCNTs/SnO 2 ) was used as an anode material in Microbial fuel cells (MFCs). The anode was constructed by coating of the nanocomposits on the glassy carbon electrode (GCE). The MWCNTs-SnO 2 /GCE showed the highest electrochemical performance as compared to MWCNT/GCE and bare GCE anodes. MWCNTs-SnO 2 /GCE, MWCNT/GCE and bare GCE anodes showed maximum power densities of 1421 mWm −2 , 699 mW m −2 and 457 mW m −2 , respectively. The electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The electrochemical properties of the MFC have been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). High conductivity and large unique surface area extremely enhanced the charge transfer efficiency and the growth of bacterial biofilm on the electrode surface in MFC. Comparison of the power density of the proposed MFC with the other one in the literature showed that the MWCNTs/SnO 2 nanocomposit was a desirable anode material for the MFCs

  6. Interfacial Transformation of an Amorphous Carbon Nanofilm upon Fe@Ag@Si Nanoparticle Landing and its Colloidal Nanoscrolls: Enhanced Nanocompositing-Based Performance for Bioapplications.

    Science.gov (United States)

    Kim, Jeong-Hwan; Benelmekki, Maria

    2016-12-07

    We report a novel method for generating magneto-plasmonic carbon nanofilms and nanoscrolls using a combination of two gas-phase synthetic techniques. Ternary Fe@Ag@Si "onion-like" nanoparticles (NPs) are produced by a magnetron sputtering inert gas condensation source and are in situ landed onto the surface of carbon nanofilms, which were previously deposited by a DC arc discharge technique. Subsequently, a polyethylenimine-mediated chemical exfoliation process is performed to obtain carbon nanoscrolls (CNS) with embedded NPs (CNS-NPs). Of note, the carbon nanofilms undergo an interfacial transition upon addition of NPs and become rich in the sp 2 phase. This transformation endows and enhances multiple functions, such as thermal conductivity and the plasmonic properties of the nanocomposites. The obtained two-dimentional (2D) nanocomposites not only exhibit a highly efficient surface-enhanced Raman scattering property, allowing sensitive detection of malachite green isothiocyanate (MGIT) and adenosine-triphosphate (ATP) molecules at concentrations as low as 1 × 10 -10 M, but also show enhanced near-infrared-responsive photothermal activity when forming stable colloidal 1D CNS-NPs. In addition, the CNS-NPs present an enhanced single- and two-photon fluorescence in comparison with pristine CNS and NPs. These results make them suitable for the rational fabrication of "all-in-one" multifunctional nanocomposites with tubular structures toward a wide range of biomedical solutions.

  7. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    Science.gov (United States)

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Interfacial hydrothermal synthesis of nanorod-like CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Linrui, E-mail: houlr629@163.com; Lian, Lin; Zhang, Longhai; Zhou, Lu; Yuan, Changzhou, E-mail: ayuancz@163.com

    2014-12-15

    In the work, CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with various compositions in the entire range of 0 ≤ x ≤ 1 have been prepared successfully by a facile interfacial hydrothermal method. All CdMo{sub 1−x}W{sub x}O{sub 4} products are composed of one-dimensional (1D) nanorods (NRs) with tetragonal structure. The composition-dependent structure, absorption properties and photocatalytic efficiencies of the resulting 1D CdMo{sub 1−x}W{sub x}O{sub 4} samples are systematically investigated. The photocatalytic degradation of methylene blue (MB) under ultraviolet (UV) light irradiation was utilized as a model reaction to evaluate the photocatalytic activities of all the samples. The sample, CdMo{sub 0.5}W{sub 0.5}O{sub 4} (i.e., x = 0.5) NRs, exhibits the highest photocatalytic activity and appealing stability for widespread photocatalytic application, owing to the unique 1D nanoscale architecture, suitable band gap and strong absorption in the UV region. Our approach developed here provides an elegant technique to tune both the nanoarchitecture and band gap of the photocatalysts by simply adjusting the composition of the solid solutions, resulting in the enhanced photocatalytic activity. Moreover, the method we proposed can be further extended to the smart design and controllable synthesis of other novel and highly efficient multi-component photocatalysts for environmental remediation. - Graphical abstract: 1D nanorod-based CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with various W compositions in the entire range of 0 ≤ x ≤ 1 were fabricated by a facile interfacial hydrothermal strategy, and exhibited intriguing photodecomposition of the MB under UV light irradiation. - Highlights: • CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with W compositions of 0 ≤ x ≤ 1 were prepared. • Facile interfacial hydrothermal strategy was developed. • 1D nanorod-based CdMo{sub 1−x}W{sub x}O{sub 4} photocatalysts were synthesized.

  9. Closing to Scaling-Up High Reversible Si/rGO Nanocomposite Anodes for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Tokur, Mahmud; Algul, Hasan; Ozcan, Seyma; Cetinkaya, Tugrul; Uysal, Mehmet; Akbulut, Hatem

    2016-01-01

    Highlights: • rGO wrapped Si composite anodes for li-ion batteries were prepared by a hybrid assembly and followed by GO reduction. • To improve mechanical bonding between rGO and Si nanoparticles, mechanical alloying method was performed. • Different Si/rGO composite mixtures were prepared to investigate electrochemical performance of composite anodes. - Abstract: In spite of its excellent discharge capacity, low conductivity and poor cycling stability prevent to commercialize silicon negative electrodes for the Lithium ion batteries (LIBs). Since graphene has large surface area, high electrical conductivity and discharge capacity, silicon/graphene nanocomposite anodes in proper architectures alleviate difficulties to improve electrochemical performances of the LIBs. This article demonstrates the nanocomposite synthesizing with 10 wt.%, 30 wt.% and 50 wt.% graphene oxide (GO) dispersion in the silicon matrix following reduction of GO (rGO) result in remarkable improvements in the discharge capacity, cycle stability and rate capability. Mechanical milling after GO reduction provides decoration of silicon nanoparticles between the rGO sheets and improves interfacial bonding between silicon and rGO which alleviates huge volume increase during cycling. Among the nanocomposite negative electrodes, 50 wt.% rGO exhibits highest reversible capacity of about 2000 mAh g −1 after 100 cycles and good coulombic efficiency approximately 99%. This study proves that dispersion of silicon with rGO and the increase content of rGO lead to improve ionic conductivity, cycling stability, reversibility and rate capability of the Lithium ion cell. Because of the easy scaling-up possibility of the method Si/rGO hybrid nanocomposites can be new electrodes for electrochemical energy storage. .

  10. Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance

    Science.gov (United States)

    Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng

    2018-03-01

    Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.

  11. Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Nicharee Wongsawatgul

    2017-01-01

    Full Text Available Carbon deposition on Ni-based anode is well-known as a major barrier for the practical use and commercialization of hydrocarbon-fuelled solid oxide fuel cells (SOFCs. In this work, Co alloying in Ni-YSZ was studied as an alternative anode material for using CH4 as a fuel. The Ni-YSZ and Ni-Co alloyed-YSZ were prepared by the traditional impregnation method without further mixing processes. After sintering and reduction in H2 atmosphere, the introduced Co can completely dissolved into the Ni lattice and changed the morphology with an increase in the Ni-YSZ grain size and showed a better uniform microstructure. The Co alloying also enhanced the electrochemical performance under CH4 fuel by reducing the resistance and anodic overvoltage. Moreover, the Co addition enhanced the stability of the cell with CH4 a constant load current of 80 mA for 60 h. This performance related to the carbon deposition on the anode surface. The Co alloying showed a high efficiency to suppress the carbon deposition and improved the electrochemical performance of an SOFC cell operating under CH4 fuel.

  12. Organic light emitting diodes on ITO-free polymer anodes

    Energy Technology Data Exchange (ETDEWEB)

    Fehse, Karsten; Schwartz, Gregor; Walzer, Karsten; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden, D-01062 Dresden (Germany)

    2007-07-01

    The high material cost of indium, being the main component of the commonly used indium-tin-oxide anodes (ITO) in organic light emitting diodes (OLEDs), is an obstacle for the production of efficient low-cost OLEDs. Therefore, new anode materials are needed for large scale OLED production. Recently, we demonstrated that the polymer PEDOT:PSS can substitute ITO as anode. Another highly conductive polymer is polyaniline (PANI) that provides 200 S/cm with a work function of 4.8 eV. In this study, we use PANI as anode for OLEDs (without ITO layer underneath the polymer) with electrically doped hole- and electron transport layers and intrinsic materials in between. Fluorescent blue (Spiro-DPVBi) as well as phosphorescent green (Ir(ppy){sub 3}) and red emitters (Ir(MDQ){sub 2}(acac)) were used for single colour and white OLEDs. Green single and double emission OLEDs achieve device efficiencies of 34 lm/W and 40.7 lm/W, respectively. The white OLED shows a power efficiency of 8.9 lm/W at 1000 cd/m{sup 2} with CIE coordinates of (0.42/0.39).

  13. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    Science.gov (United States)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  14. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  15. Interfacial phenomenon theory

    International Nuclear Information System (INIS)

    Kim, Jong Deuk

    2000-02-01

    This book is composed of 8 chapters. It tells what interfacial phenomenon is by showing interfacial energy, characteristic of interface and system of interface from chapter 1. It also introduces interfacial energy and structure theory, molecular structure and orientation theory, and interfacial electricity phenomenon theory in the following 3 chapters. It still goes on by introducing super molecule cluster, disequilibrium dispersion, and surface and film through 3 chapters. And the last chapter is about colloid and application of interface.

  16. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  17. Enhanced Absorption in Organic Thin-Films from Imprinted Concave Nanostructures

    Directory of Open Access Journals (Sweden)

    Arkadiusz Jarosław GOSZCZAK

    2017-02-01

    Full Text Available In this work, a rapid, replicable method for imprinting concave nanostructures to be used as functional light-trapping nanostructures in organic thin-films is presented. Porous anodic alumina templates were fabricated both by anodization of thick Al foils and by anodization of submicrometer thin Al films evaporated via e-beam evaporation on Si substrates. The template formation leads to natural patterning of the underlying Al layers that are used as rigid masters for stamp fabrication, after selective etching of the porous anodic alumina. PDMS stamps were made after replicating the Al concave patterns and used for imprinting of spin coated photoresist on glass substrates. We have investigated semi-periodic and aperiodic imprinted large concave patterns fabricated from rigid masters after anodization of Al in H3PO4. We show that metal covered imprinted concaves show enhancement in absorption that is attributed to field enhancement and diffuse scattering, leading to efficient light trapping for a selected active layer material (P3HT:PCBM.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14188

  18. Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone).

    Science.gov (United States)

    Ortega-Toro, Rodrigo; Santagata, Gabriella; Gomez d'Ayala, Giovanna; Cerruti, Pierfrancesco; Talens Oliag, Pau; Chiralt Boix, M Amparo; Malinconico, Mario

    2016-08-20

    The use of a modified poly(ε-caprolactone) (gPCL) to enhance polymer miscibility in films based on thermoplastic starch (S) and poly(ε-caprolactone) is reported. PCL was functionalized by grafting with maleic anyhdride (MA) and/or glycidyl methacrylate (GMA) by reactive blending in a batch mixer. gPCL based materials were analysed in terms of their grafting degree, structural and thermal properties. Blends based on starch and PCL (wt. ratio 80:20) with including gPCL (0, 2.5 and 5wt.%), as a compatibilizer, were obtained by extrusion and compression moulding, and their structural, thermal, mechanical and barrier properties were investigated. Blends containing gPCL evidenced better interfacial adhesion between starch and PCL domains, as deduced from both structural (XRD, FTIR, SEM) and bulk properties (DSC, TGA). Moreover, grafted PCL-based compatibilizers greatly improved functional properties of S-PCL blend films, as pointed out from mechanical performance and higher barrier properties, valuable to meet the food packaging requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ITO-free organic light-emitting diodes with MoO3/Al/MoO3 as semitransparent anode fabricated using thermal deposition method

    International Nuclear Information System (INIS)

    Lu, Hsin-Wei; Huang, Ching-Wen; Kao, Po-Ching; Chu, Sheng-Yuan

    2015-01-01

    Highlights: • In this paper, the structure of the proposed devices is substrate (glass; polyethersulfone (PES))/anode (MoO 3 /Al/MoO 3 ; MoO 3 /Al)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris (8-hydroxyquinoline) aluminum (Alq3) (60 nm)/LiF (1 nm)/Al (150 nm). • The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO 3 ) and metal (Al) layers. • The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. • The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m 2 and 3.18 cd/A, respectively. • The bending effects on PES substrate by depositing metal oxidation (MoO 3 ) and metal (Al) layers were also investigated. • MoO 3 covering the Al layer modifies the surface of the electrode and enhances the durability. The surface roughness of the bi-layer films was higher than that of the tri-layer films. Therefore, OLEDs with OMO anode outperform those with bi-layer films anode. - Abstract: In this paper, semitransparent electrodes with the structure substrate/MoO 3 /Al/MoO 3 (OMO) were fabricated via the thermal deposition method for use as the anode in organic light-emitting diodes (OLEDs). The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO 3 ) and metal (Al) layers. The optimal thickness of the Al thin films was determined to be 15 nm for high optical transmittance and good electrical conductivity. The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m 2 and 3.18 cd/A, respectively. In addition, bending effects on the polyethersulfone (PES) substrate/MoO 3 /Al/MoO 3 and PES substrate/MoO 3 /Al structures were

  20. Anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex enhances emotion recognition in depressed patients and controls.

    Science.gov (United States)

    Brennan, Sean; McLoughlin, Declan M; O'Connell, Redmond; Bogue, John; O'Connor, Stephanie; McHugh, Caroline; Glennon, Mark

    2017-05-01

    Transcranial direct current stimulation (tDCS) can enhance a range of neuropsychological functions but its efficacy in addressing clinically significant emotion recognition deficits associated with depression is largely untested. A randomized crossover placebo controlled study was used to investigate the effects of tDCS over the left dorsolateral prefrontal cortex (L-DLPFC) on a range of neuropsychological variables associated with depression as well as neural activity in the associated brain region. A series of computerized tests was administered to clinical (n = 17) and control groups (n = 20) during sham and anodal (1.5 mA) stimulation. Anodal tDCS led to a significant main effect for overall emotion recognition (p = .02), with a significant improvement in the control group (p = .04). Recognition of disgust was significantly greater in the clinical group (p = .01). Recognition of anger was significantly improved for the clinical group (p = .04) during anodal stimulation. Differences between groups for each of the six emotions at varying levels of expression found that at 40% during anodal stimulation, happy recognition significantly improved for the clinical group (p = .01). Anger recognition at 80% during anodal stimulation significantly improved for the clinical group (p = .02). These improvements were observed in the absence of any change in psychomotor speed or trail making ability during anodal stimulation. Working memory significantly improved during anodal stimulation for the clinical group but not for controls (p = .03). The tentative findings of this study indicate that tDCS can have a neuromodulatory effect on a range of neuropsychological variables. However, it is clear that there was a wide variation in responses to tDCS and that individual difference and different approaches to testing and stimulation have a significant impact on final outcomes. Nonetheless, tDCS remains a promising tool for future neuropsychological research.

  1. Co{sub 3}O{sub 4} nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu; Kim, Gil-Pyo [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of); Umh, Ha Nee [Kwangwoon University, Department of Chemical Engineering (Korea, Republic of); Nam, Inho; Park, Soomin [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of); Kim, Younghun [Kwangwoon University, Department of Chemical Engineering (Korea, Republic of); Yi, Jongheop, E-mail: jyi@snu.ac.kr [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of)

    2013-09-15

    A Co{sub 3}O{sub 4}/ordered mesoporous carbon (OMC) nanocomposite, in which Co{sub 3}O{sub 4} nanoparticles (NPs), with an average size of about 10 nm homogeneously embedded in the OMC framework, are prepared for use as an anode material in Li-ion batteries. The composite is prepared by a one-pot synthesis based on the solvent evaporation-induced co-self-assembly of a phenolic resol, a triblock copolymer F127, and Co(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O, followed by carbonization and oxidation. The resulting material has a high reversible capacity of {approx}1,025 mA h g{sup -1} after 100 cycles at a current density of 0.1 A g{sup -1}. The enhanced cycling stability and rate capability of the composite can be attributed to the combined mesoporous nanostructure which provides efficient pathways for Li-ion transport and the homogeneous distribution of the Co{sub 3}O{sub 4} NPs in the pore wall of the OMC, which prevents aggregation. These findings suggest that the OMC has promise for use as a carbon metric for metals and metal oxides as an anode material in high performance Li-ion batteries.

  2. Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics

    International Nuclear Information System (INIS)

    Abdullah, M.R.; Prawoto, Y.; Cantwell, W.J.

    2015-01-01

    As the adhesion quality plays an important role in determining the mechanical performance and environmental stability of most types of fibre-metal laminates (FMLs), investigating the interfacial fracture properties becomes one of the key factors for the improvement. Adhesion of a self-reinforced polypropylene (SRPP) and glass fibre reinforced polypropylene (GFPP) based FML is evaluated experimentally. Single Cantilever Beam (SCB) tests were performed to access interfacial fracture energy (G c ) of the bi-material laminates and their associated interlayer materials. Simulations mimicking the experiments were also performed. The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. The test results show that good adhesion between the aluminium and fibre reinforced thermoplastics can be achieved using a sulphuric acid anodising surface pre-treatment. Further examination has shown that the edges of the test samples highlighted the presence of significant fibre bridging in the SRPP and plastics deformation in the GFPP. - Highlights: • Adhesion of a self-reinforced polypropylene and glass fibre reinforced polypropylene is evaluated. • Single Cantilever Beam tests were performed to access interfacial fracture energy. • The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. • The test results show that best adhesion is achieved using a sulphuric acid anodizing surface pre-treatment

  3. Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Nguyen, Si Hieu; Lim, Jong Choo; Lee, Joong Kee

    2012-01-01

    Highlights: ► A metal-assisted chemical etching technique was performed on Si thin films. ► The etching process resulted in the formation of bundle-type Si nanorods. ► The morphology of Si electrodes closely relate to electrochemical characteristics. - Abstract: In order to prepare bundle-type silicon nanorods, a silver-assisted chemical etching technique was used to modify a 1.6 μm silicon thin film, which was deposited on Cu foil by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition. The bundle-type silicon nanorods on Cu foil were employed as anodes for a lithium secondary battery, without further treatment. The electrochemical characteristics of the pristine silicon thin film anodes and the bundle-type silicon nanorod anodes are different from one another. The electrochemical performance of the bundle-type silicon nanorod anodes exceeded that of the pristine Si thin film anodes. The specific capacity of the bundle-type silicon nanorod anodes is much higher than 3000 mAh g −1 at the first charge (Li insertion) cycle. The coulombic efficiency of bundle-type silicon anodes was stable at more than 97%, and the charge capacity remained at 1420 mAh g −1 , even after 100 cycles of charging and discharging. The results from the differential voltage analysis showed a side reaction at around 0.44–0.5 V, and the specific potential of this side reaction decreased after each cycle. The apparent diffusion coefficients of the two anode types were in the range of 10 −13 –10 −16 cm 2 s −1 in the first cycle. In subsequent charge cycles, these values for the silicon thin film anodes and the silicon nanorod bundle anode were approximately 10 −12 –10 −14 and 10 −13 –10 −15 cm 2 s −1 , respectively.

  4. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  5. Synthesis and photo-electrochemical properties of spinel-ferrite-coated hematite for solar water splitting

    Science.gov (United States)

    Selvaraj, Seenivasan; Moon, Hee; Kim, Do-Heyoung

    2018-01-01

    Photo-electrochemical water splitting with hematite photo-anodes under solar irradiation has attracted considerable attention as regards the production of renewable hydrogen energy. However, many challenges remain unresolved, as the full contribution of the catalytic over-layers has not been fully realized. Herein, we incorporate uniform spinel nickel-ferrite over-layers in hematite photo-anodes to obtain an improved understanding of the associated intrinsic changes. We achieve a 1.5-mA/cm2 photo-current density at 1.23 VRHE (RHE: reversible hydrogen electrode) under one-sun illumination conditions, along with a negative shift of 200 mV in the onset potential, for NiFe2O4-coated Sn-doped hematite photo-anodes. Fundamental electrochemical analyses clearly show that the shift in the onset potential is predominantly due to the enhanced photo-voltage development inside the hematite, rather than being purely caused by the interfacial kinetics. These insights reveal a new direction for fundamental research on photo-anodes towards fabrication of more efficient photo-anode systems.

  6. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  7. Collective ion acceleration in the system with an isolated anode

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskii, V M; Didenko, A N; Krasik, Ya E; Lopatin, V S; Podkatov, V I [Tomskij Politekhnicheskij Inst. (USSR). Inst. Yadernoj Fiziki, Ehlektroniki i Avtomatiki

    1980-01-01

    Processes of collective proton acceleration in vacuum are studied in the system of an isolated anode and isolated or earthed electrodes located behind the anode on heavy-current electron accelerators ''Tonus'' and ''Vera''. The effect of external conditions and electron beam parameters on the efficiency of accelerating processes is studied. The effect of the presence of a charge pre-pulse and the number of the after-anode electrodes on the energy of accelerated energy electrons is studied. In the system with a single anode the proton yield is Nsub(p)=10sup(14) at 2Esub(e)anode electrodes. Possible mechanism of proton acceleration is discussed. The results are compared with those obtained elsewhere. Possibilities to increase the efficiency of this acceleration method are considered.

  8. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  9. Electrochemical characteristics of porous TiO2 encapsulated silicon anode

    International Nuclear Information System (INIS)

    Jeon, Bup Ju; Lee, Joong Kee

    2011-01-01

    Graphical abstract: Cycling performances of the TiO 2 coated silicon anode at different catalyst pH values. Display Omitted Highlights: → TiO 2 coated silicon was used as the anode material for lithium batteries. → TiO 2 layer acted as a buffer layer for reducing the volume expansion. → Pore size distribution of TiO 2 coated silicon influenced discharge capacity. → Higher capacity retention was exhibited at pH 10.7. - Abstract: TiO 2 coated silicon, which was prepared by the modified sol-gel method, was employed as the anode material for lithium secondary batteries and the relationship between the diffusivity and electrochemical characteristics was investigated. The results showed that the physical properties of the samples, such as their diffusivity and pore size distribution, enhanced the cycling efficiency of the TiO 2 coated silicon, probably due to the reduction of the side reactions, which may be closely related to the pore size distribution of the TiO 2 coating layer. The pore size of the coating layer plays an important role in retarding the lithium ion diffusion. In the experimental range studied herein, higher capacity retention was exhibited for the TiO 2 coated silicon prepared at pH 10.7.

  10. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Shashank, Priya [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  11. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength; TOPICAL

    International Nuclear Information System (INIS)

    GE Fryxell; KL Alford; KL Simmons; RD Voise; WD Samuels

    1999-01-01

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer

  12. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  13. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  14. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    Science.gov (United States)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  15. Interfacial behaviour between oil/water systems using ionic surfactants from regional vegetable industry and animal pet

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Francisco Klebson G.; Alves, Juan V.A.; Dantas, Tereza N. Castro; Dutra Junior, Tarcilio V.; Barros Neto, Eduardo L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Interfacial tension (IFT) is one of the most important physical properties in the study of fluid-fluid interfaces. In this research the surfactants - saponified coconut oil, saponified castor oil, saponified soybean oil, saponified sunflower oil and basis soap - were synthesized in laboratory, using carboxylic acids from regional industry and animal fat (bovine fat). This study focuses on the search of a high-efficient, low-cost, and safe for the environment flooding system to be applied in enhanced oil recovery. The principal aim of this work is the obtaining of interfacial tensions between oil/water systems, using the developed ionic surfactants. Results showed that the studied surfactants are able to reduce the IFT between oil and brine. The surfactant that was more effective in reducing the IFT value was the one from animal fat. The composition, as well as the kind of the bond, as saturated or unsaturated, of the surfactants has influence in the IFT value. The ionic surfactants from regional industry and animal fat besides presenting low cost propitiate very low interfacial tensions between oil and brine, favoring the interactions with residual oil and thus increasing oil recovery. (author)

  16. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  17. Direct growth of Fe3O4-MoO2 hybrid nanofilm anode with enhanced electrochemical performance in neutral aqueous electrolyte

    Directory of Open Access Journals (Sweden)

    Ruizhi Li

    2016-06-01

    Full Text Available To enhance the electrochemical energy storage performance of supercapacitors (SCs, the current researches are general directed towards the cathode materials. However, the anode materials are relatively less studied. In the present work, Fe3O4-MoO2 (FO-MO hybrid nano thin film directly grown on Ti substrate is investigated, which is used as high-performance anode material for SCs in Li2SO4 electrolyte with the comparison to pristine Fe3O4 nanorod array. The areal capacitance of FO-MO hybrid electrode was initially found to be 65.0 mF cm−2 at 2 mV s−1 and continuously increased to 260.0% after 50 cycles of activation. The capacitance values were considerably comparable or higher than many reported thin-film iron oxide-based anodes in neutral electrolyte. With the protection of MoO2 shell, the FO-MO electrode developed in this study also exhibited excellent cyclic stability (increased to 230.8% after 1000 cycles. This work presents a promising way to improve the electrochemical performance of iron oxide-based anodes for SCs.

  18. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    Science.gov (United States)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing

  19. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    Science.gov (United States)

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces.

  20. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  1. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    Science.gov (United States)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  2. Do uniform tangential interfacial stresses enhance adhesion?

    Science.gov (United States)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  3. ITO-free organic light-emitting diodes with MoO{sub 3}/Al/MoO{sub 3} as semitransparent anode fabricated using thermal deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hsin-Wei; Huang, Ching-Wen [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Kao, Po-Ching [Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2015-08-30

    Highlights: • In this paper, the structure of the proposed devices is substrate (glass; polyethersulfone (PES))/anode (MoO{sub 3}/Al/MoO{sub 3}; MoO{sub 3}/Al)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris (8-hydroxyquinoline) aluminum (Alq3) (60 nm)/LiF (1 nm)/Al (150 nm). • The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO{sub 3}) and metal (Al) layers. • The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. • The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m{sup 2} and 3.18 cd/A, respectively. • The bending effects on PES substrate by depositing metal oxidation (MoO{sub 3}) and metal (Al) layers were also investigated. • MoO{sub 3} covering the Al layer modifies the surface of the electrode and enhances the durability. The surface roughness of the bi-layer films was higher than that of the tri-layer films. Therefore, OLEDs with OMO anode outperform those with bi-layer films anode. - Abstract: In this paper, semitransparent electrodes with the structure substrate/MoO{sub 3}/Al/MoO{sub 3} (OMO) were fabricated via the thermal deposition method for use as the anode in organic light-emitting diodes (OLEDs). The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO{sub 3}) and metal (Al) layers. The optimal thickness of the Al thin films was determined to be 15 nm for high optical transmittance and good electrical conductivity. The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m{sup 2} and 3.18 cd/A, respectively. In addition, bending effects on the polyethersulfone (PES) substrate/MoO{sub 3

  4. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  5. Graphene composites as anode materials in lithium-ion batteries

    Science.gov (United States)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  6. Interfacial area and interfacial transfer in two-phase systems. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru; Hibiki, T.; Revankar, S.T.; Kim, S.; Le Corre, J.M.

    2002-07-01

    In the two-fluid model, the field equations are expressed by the six conservation equations consisting of mass, momentum and energy equations for each phase. The existence of the interfacial transfer terms is one of the most important characteristics of the two-fluid model formulation. The interfacial transfer terms are strongly related to the interfacial area concentration and to the local transfer mechanisms such as the degree of turbulence near interfaces. This study focuses on the development of a closure relation for the interfacial area concentration. A brief summary of several problems of the current closure relation for the interfacial area concentration and a new concept to overcome the problem are given.

  7. Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.

    Science.gov (United States)

    Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui

    2017-11-08

    Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.

  8. A demonstration of enhancements in interfacial rheological characterisations

    DEFF Research Database (Denmark)

    Hodder, Peter; Baldursdottir, Stefania G.

    It has been a number of years since the rotational rheometer have really become sensitive enough to provide a suitable platform to help characterise an interface, whether liquid / air or liquid /liquid. It has been a path to discovery all and many iterations of designs of the actual measuring...... we have compared the performance of two models of the new Discovery Hybrid Rheometer and the AR G2 rheometer when studying the interfacial adsorption of lysozyme (from hen egg white, Sigma-Aldrich, Denmark) using the double wall ring geometry. The results show great improvement in the detection limit...

  9. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  10. Electrochemical degradation of clofibric acid in water by anodic oxidation

    International Nuclear Information System (INIS)

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  11. Anode baking process optimization through computer modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D.; Lancaster, D.; Crowell, B. [Noranda Aluminum, New Madrid, MO (United States); Ouellet, R.; Jiao, Q. [Noranda Technology Centre, Pointe Claire, PQ (Canada)

    1998-12-31

    Carbon anodes used in aluminum electrolysis are produced in vertical or horizontal type anode baking furnaces. The carbon blocks are formed from petroleum coke aggregate mixed with a coal tar pitch binder. Before the carbon block can be used in a reduction cell it must be heated to pyrolysis. The baking process represents a large portion of the aluminum production cost, and also has a significant effect on anode quality. To ensure that the baking of the anode is complete, it must be heated to about 1100 degrees C. To improve the understanding of the anode baking process and to improve its efficiency, a menu-driven heat, mass and fluid flow simulation tool, called NABSIM (Noranda Anode Baking SIMulation), was developed and calibrated in 1993 and 1994. It has been used since then to evaluate and screen firing practices, and to determine which firing procedure will produce the optimum heat-up rate, final temperature, and soak time, without allowing unburned tar to escape. NABSIM is used as a furnace simulation tool on a daily basis by Noranda plant process engineers and much effort is expended in improving its utility by creating new versions, and the addition of new modules. In the immediate future, efforts will be directed towards optimizing the anode baking process to improve temperature uniformity from pit to pit. 3 refs., 4 figs.

  12. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  13. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  14. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation

    Institute of Scientific and Technical Information of China (English)

    George Z. Chen

    2013-01-01

    The recent fast development of supercapacitors, also known scientifically as electrochemical capacitors, has benefited significantly from synthesis, characterisations and electrochemistry of nanoma-terials. Herein, the principle of supercapacitors is explained in terms of performance characteristics and charge storage mechanisms, i.e. double layer (or interfacial) capacitance and pseudo-capacitance. The semiconductor band model is applied to qualitatively account for the pseudo-capacitance in association with rectangular cyclic voltammograms (CVs) and linear galvanostatic charging and discharging plots (GCDs), aiming to differentiate supercapacitors from rechargeable batteries. The invalidity of using peak shaped CVs and non-linear GCDs for capacitance measurement is highlighted. A selective review is given to the nano-hybrid materials between carbon nanotubes and redox active materials such as electronically conducting polymers and transition metal oxides. A new concept,“interfacial conjugation”, is introduced to reflect the capacitance enhancement resulting from π-π stacking interactions at the interface between two materials with highly conjugated chemical bonds. The prospects of carbon nanotubes and graphenes for supercapacitor applications are briefly compared and discussed. Hopefully, this article can help readers to understand supercapacitors and nano-hybrid materials so that further developments in materials design and synthesis, and device engineering can be more efficient and objective.

  15. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.

    Science.gov (United States)

    Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min

    2015-04-08

    Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.

  16. Enhanced Electrochemical Performance of Electrospun Ag/Hollow Glassy Carbon Nanofibers as Free-standing Li-ion Battery Anode

    International Nuclear Information System (INIS)

    Shilpa; Sharma, Ashutosh

    2015-01-01

    Silver with a high theoretical capacity for lithium storage is an attractive alloy based anode for Li-ion batteries, but large volume changes associated with AgLi x alloy formation leads to electrode cracking, pulverization and rapid capacity fading. A buffer matrix, like the electrospun hollow carbon nanofibers, can reduce this problem to a great extent. Herein, we demonstrate the facile synthesis of a free-standing, binder free Ag-C hybrid electrode through co-axial electrospinning, where well dispersed Ag nanoparticles are embedded in hollow carbon nanofibers. Using this approach, the long cycle life of carbon is complemented with the high lithium storage capacity of Ag, resulting in a high performance anode. The Ag-C composite electrode delivers a capacity of 739 mAh g −1 (>conventional graphite anodes) at 50 mA g −1 , with ∼85% capacity retention after 100 cycles. In addition, the Ag-C composite nanofibers are highly porous and exhibit a large accessible surface area (∼726.9 m 2 g −1 ) with an average pore diameter of ∼6.07 nm. The encapsulation of Ag in the hollow interiors not only provides additional lithium storage sites but also enhances the electronic conductivity, which combined with the reduced lithium diffusion path lengths in the nanofibers result in faster charge-discharge kinetics and hence a high rate performance

  17. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    Science.gov (United States)

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  18. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  19. Removal Efficiency of Nitrite and Sulfide Pollutants by Electrochemical Process by Using Ti/RuIrO2 Anode

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2018-05-01

    Full Text Available In general, wastewater treatment by physical, chemical and biological methods are only focused on TSS, BOD and COD removals that the effluent still contains anion pollutant as NO2- and S2-. Electrochemical technology is a proper method for those pollutants treatment due to its fast process, easy operation and minimum amount of sludge. Electrocatalytic reactor with 8 L capacity using Ti/RuIrO2 cylinder as anode and Fe plate as cathode was arranged and applied to treat anion pollutants. Hydraulic retention time (30, 60, 90 and 120 min, salt concentration (250, 500 and 750 mg/L and voltage (4, 5, and 6 V were chosen as operation variables and NO2- and S2- concentrations as parameter indicators. Nitrite removal efficiency reached 75 and 99.7% after 60 and 120 min of electrolysis, respectively, while sulfide could obtain higher efficiency, i.e., 97 and 99.9% after 60 and 90 min, respectively, at operation variables of potential of 5 V and salt of 500 mg/L. Removal process is dominated by indirect oxidation mechanism by HClO/ClO- oxidators generated at anode surface as intermediate products. The lifespan of electrode and electric consumption are two main factors of operation cost. Electric consumed was 0.452 kWh per 1 g nitrite removed.

  20. Atmospheric pressure arc discharge with ablating graphite anode

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2015-01-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement. (paper)

  1. Atmospheric pressure arc discharge with ablating graphite anode

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  2. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    Directory of Open Access Journals (Sweden)

    Wang Fang

    2011-01-01

    Full Text Available Abstract Self-assembled monolayer (SAM with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry.

  3. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  4. Hydrogen effects in anodic grinding of WC-Co sintered alloy

    International Nuclear Information System (INIS)

    Lunarska, E.; Zaborski, St.

    2001-01-01

    The effects of anodic polarization applied in grinding of sintered WC C o alloy on properties of surface layer, quality of ground surface and efficiency of the treatment were studied. The nonmonotonical change of the surface roughness, the energy consumption and the wear of tool was stated at increasing anodic polarization. The optimum values of above parameters were achieved at application of anodic polarization at which the Co selective dissolution and hydrogen ingress into the ground metal. affecting the internal friction spectra were stated. The assistance of hydrogen induced deterioration and Co selective dissolution in the surface layer in the anodic grinding of WC-Co alloy has been discussed. (author)

  5. Towards anode with low indium content as effective anode in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S. [Unite de Physique des Dispositifs a Semi-conducteurs, Universite El Manar Faculte des Sciences de Tunis, Campus Universitaire 2092 (Tunisia); Cattin, L.; Nguyen, D-T. [LUNAM, Universite de Nantes, Institut Jean Rouxel (IMN), UMR 6502, 2 rue de la Houssiniere, BP 92208, Nantes F-44322 (France); Morsli, M. [LUNAM, Universite de Nantes, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44322 (France); Louarn, G. [LUNAM, Universite de Nantes, Institut Jean Rouxel (IMN), UMR 6502, 2 rue de la Houssiniere, BP 92208, Nantes F-44322 (France); Bouteville, A.; Froger, V. [Arts et Metiers Paris Tech Angers, Laboratoire Procedes-Materiaux-Instrumentation, 2, bd du Ronceray, BP 3525, 49035 Angers Cedex (France); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la Houssiniere, BP 92208, Nantes F-44322 (France)

    2012-01-15

    In{sub 2}O{sub 3} thin films (100 nm thick) have been deposited by reactive evaporation of indium, in an oxygen partial atmosphere. Conductive ({sigma} = 3.5 Multiplication-Sign 10{sup 3} S/cm) and transparent films are obtained using the following experimental conditions: oxygen partial pressure = 1 Multiplication-Sign 10{sup -1} Pa, substrate temperature = 300 Degree-Sign C and deposition rate = 0.02 nm/s. Layers of this In{sub 2}O{sub 3} thick of 5 nm have been introduced in AZO/In{sub 2}O{sub 3} and FTO/In{sub 2}O{sub 3} multilayer anode structures. The performances of organic photovoltaic cells, based on the couple CuPc/C{sub 60}, are studied using the anode as parameter. In addition to these bilayers, other structures have been used as anode: AZO, FTO, AZO/In{sub 2}O{sub 3}/MoO{sub 3}, FTO/In{sub 2}O{sub 3}/MoO{sub 3} and FTO/MoO{sub 3}. It is shown that the use of the In{sub 2}O{sub 3} film in the bilayer structures improves significantly the cell performances. However the open circuit voltage is quite small while better efficiencies are achieved when MoO{sub 3} is present. These results are discussed in the light of surface roughness and surface work function of the different anodes.

  6. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  7. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    Science.gov (United States)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  8. Interfacial structures - Thermodynamical and experimental studies of the interfacial mass transfer

    International Nuclear Information System (INIS)

    Morel, Jean-Emile

    1972-01-01

    In the first section, we put forward hypotheses concerning the structure of the interfacial regions between two immiscible liquid phases. It appears that the longitudinal structure is comparable with that of a crystallized solid and that the transversal structure is nearest of that of a liquid. In the second section, we present a thermodynamical treatment of the irreversible phenomena in the interfacial region. The equation of evolution of a system consisting of two immiscible liquid phases are deduced. The third part allows an experimental verification of the theoretical relations. We also make clear, in certain cases, the appearance of a great 'interfacial resistance' which slows down the interfacial mass transfer. (author) [fr

  9. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  10. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation

    Directory of Open Access Journals (Sweden)

    Mohamad Mohsen Momeni

    2016-01-01

    Full Text Available To improve the photo-catalytic degradation of salicylic acid, we reported the fabrication of ordered TiO2 nanotube arrays by a simple and effective two-step anodization method and then these TiO2 nanotubes treated in a methanol solution under UV light irradiation. The TiO2 nanotubes prepared in the two-step anodization process showed better photo-catalytic activity than TiO2 nanotubes prepared in one-step anodization process. Also, compared with TiO2 nanotubes without the UV pretreatment, the TiO2 nanotubes pretreated in a methanol solution under UV light irradiation exhibited significant enhancements in both photocurrent and activity. The treated TiO2 nanotubes exhibited a 5-fold enhancement in photocurrent and a 2.5-fold increase in the photo-catalytic degradation of salicylic acid. Also the effect of addition of persulfate and periodate on the photo-catalytic degradation of salicylic acid were investigated. The results showed that the degradation efficiency of salicylic acid increased with increasing persulfate and periodate concentrations. These treated TiO2 nanotubes are promising candidates for practical photochemical reactors.

  11. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  12. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    Science.gov (United States)

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  13. The effect of interfacial intermixing on magnetization and anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2015-05-01

    The effect of interfacial intermixing on magnetization and anomalous Hall effect (AHE) in Co/Pd multilayers is studied by using rapid thermal annealing to enhance the interfacial diffusion. The dependence of saturation magnetization and coercivity on the temperature of rapid thermal annealing at 5 K is discussed. It is found that AHE is closely related to the relative thickness of the Co and Pd layers. Localized paramagnetism has been observed which destroys AHE, while AHE can be enhanced by annealing.

  14. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  15. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  16. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.; Trifkovic, Milana; Abdullahi, Inusa; Rohani, Sohrab M F; Ray, Ajay

    2014-01-01

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing

  17. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1983-01-04

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  18. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1981-10-20

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  19. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    Science.gov (United States)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  20. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  1. Influence of microstructure in current draining efficiency in magnesium sacrificial anodes; Influencia de la microestructura en la eficiencia de drenado de corriente en anodos de sacrificio de magnesio

    Energy Technology Data Exchange (ETDEWEB)

    Robles P, E F [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1994-12-31

    In the last few years the efficiency of magnesium anodes used as cathodic protection of structures and metallic components, has presented outstanding variations. In spite of the fulfillment with the standard of chemicomposition, the working efficiency is low, existing the possibility that this be own to microstructural variations still not studied. For this reason, in the present work are shown some experiences with solidification of magnesium, in order to observe the influence of the structure of casting in the efficiency of current drain. For this purpose, pure magnesium (99.98%) was melt in graphite crucibles using protecting flux, pouring then in three different moulds: graphite, steel and aluminium, this last supplied with refrigeration using water as coolant up till now, the attained structures does not exert a determinant influence in the efficiency of magnesium anodes, and for this reason it is recommended to carry out thermomechanical treatments to continue with the study. (Author).

  2. Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions

    Directory of Open Access Journals (Sweden)

    H. F. Li

    2014-12-01

    Full Text Available Using density functional theory (DFT method combined with non-equilibrium Green’s function approach, we systematically investigated the structural, ferroelectric and electronic transport properties of Pt/BaTiO3/Pt ferroelectric tunnel junctions (FTJ with the interface atomic layers doped by charge neutral NbTi substitution. It is found that interfacial NbTi substitution will produce several anomalous effects such as the vanishing of ferroelectric critical thickness and the decrease of junction resistance against tunneling current. Consequently, the thickness of the ferroelectric thin film (FTF in the FTJ can be reduced, and both the electroresistance effect and sensitivity to external bias of the FTJ are enhanced. Our calculations indicate that the enhancements of conductivity and ferroelectric distortion can coexist in FTJs, which should be important for applications of functional electronic devices based on FTJs.

  3. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Lee, Min-Ku; Rhee, Chang-Kyu; Rhee, Won-Hyuk

    2015-01-01

    Highlights: • 6061Al–B 4 C neutron shielding composites are fabricated by sintering and HIP. • HIP process improves the wettability of B 4 C particles into 6061Al matrix. • Neutron attenuation performance can be enhanced by application of HIP process. - Abstract: Sandwich type of 6061Al–B 4 C composite plates, which are used as a thermal neutron absorber for spent nuclear fuel pool storage rack, were fabricated using two different consolidation ways as sintering and hot isostatic pressing (HIP) processes and their thermal neutron shielding efficiency was investigated as a function of B 4 C concentration ranging from 0 to 40 wt.%. For this purpose, two respective inner core compaction parts of sintered and HIPped neutron absorbing composite materials were first produced and then cladded them between two outer plates by HIP process. The application of HIP process provided not only a lead of excellent interfacial adhesion due to the improved wettability but also an enhancement of thermal neutron shielding efficiency owing to the more uniform dispersion of B 4 C particles

  4. Spectrometric performances of high quantum efficiency multi and single anode PMTs coupled to LaBr3(Ce) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Maria Nerina, E-mail: marianerina.cinti@uniroma1.it [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy); INFN Rome 1 Section, Rome (Italy); Pani, Roberto; Pellegrini, Rosanna [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy); INFN Rome 1 Section, Rome (Italy); Bennati, Paolo [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy); Orlandi, Chiara [Medical Physics Post Graduate School, Sapienza University of Rome, Rome 00161 (Italy); Fabbri, Andrea [Department of Physics, Roma Tre University, Rome (Italy); INFN Rome 3 Section, Rome (Italy); Ridolfi, Stefano; Scafè, Raffaele [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy)

    2013-10-01

    High quantum efficiency semiconductor photodetectors have recently drawn the attention of the scientific community for their potential in the realization of a new class of scintillation imagers with very high energy and spatial resolution performance. However, this goal does not seem within easy reach, due to various technological issues such as, for example, the difficulty to scale the characteristics of a single detector to an imager with suitable dimensions. Lately a definite technical improvement in increasing quantum efficiency up to 42% for position sensitive photomultipliers was achieved. The aim of this work is thus to test this new technological progress and to study the possible implications in imaging applications. Four Hamamatsu PMTs were tested: two multi anode photomultipliers, one with a bialkali (27% quantum efficiency) and the other one with a super-bialkali photocathode (38% quantum efficiency), and two 1×1 in. PMTs, both equipped with an ultra bialkali photocathode (42% quantum efficiency). In particular one of the ultra bialkali PMT has also an increased efficiency of first dynode charge collection. The results were compared with the ones obtained with a reference PMT (Hamamatsu R6231), mainly used in spectroscopy. The PMTs were coupled to LaBr3(Ce), NaI(Tl) and LSO(Ce) continuous scintillation crystals. The tests were done using two independent electronic chains: one dedicated for spectroscopic application and a second one, using a multi wire 64 channel readout, for imaging applications. The super-bialkali MA-PMTs have shown high energy resolution, both with spectroscopic and imaging setup, highlighting the appropriateness of these devices for the development of imaging devices with high spectroscopic performance. -- Highlights: • A study of energy resolution results coming from position sensitive photomultipliers are proposed. • The study is also extended on mono- anode photomultiplier. • The selected scintillation crystal is LeBr3(Ce

  5. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  6. The fuel-cladding interfacial friction coefficient in water-cooled reactor fuel rods

    International Nuclear Information System (INIS)

    Smith, E.

    1979-01-01

    A central problem in the development of cladding failure criteria and of effective operational, design or material remedies is to know whether the cladding stress is enhanced significantly near cladding ridges, pellet chips or fuel pellet cracks; the latter may also be coincident with cladding ridges at pellet-pellet interfaces. As regards the fuel pellet crack source of cladding stress concentration, the magnitude of the uranium dioxide-Zircaloy interfacial friction coefficient μ governs the magnitude and distribution of the enhanced cladding stress. Considerable discussion, particularly at a Post-Conference Seminar associated with the SMIRT 4 Conference, has focussed on the value of μ, the author taking the view that it is unlikely to be large (< 0.5). The reasoning behind this view is as follows. A fuel pellet should fracture during a power ramp when the tensile hoop stress within the pellet exceeds the fuel's fracture stress. Since the preferred position for a fuel pellet crack to form is at the fuel-cladding interface midway between existing fuel cracks, where the interfacial shear stress changes sign, the pellet segment size after a power ramp provides a limit to the magnitude of the interfacial shear stresses and consequently to the value of μ. With this argument as a basis, the author's early work used the Gittus fuel rod model, in which there is a symmetric distribution of fuel pellet cracks and symmetric interfacial slippage, to show that μ < 0.5 if it is assumed that the average hoop stress within the cladding attains yield levels. It was therefore suggested that a high interfacial friction coefficient is unlikely to be operative during a power ramp; this result was used to support the view that interfacial friction effects do not play a dominant role in stress corrosion crack formation within the cladding. (orig.)

  7. Anthraquinone-2-sulfonate immobilized to conductive polypyrrole hydrogel as a bioanode to enhance power production in microbial fuel cell.

    Science.gov (United States)

    Tang, Xinhua; Ng, How Yong

    2017-11-01

    In this study, anthraquinone-2-sulfonate (AQS), a redox mediator, was covalently bound to conductive polypyrrole hydrogel (CPH) via electrochemical reduction of the in-situ-generated AQS diazonium salts. The porous structure and hydrophilic surface of this CPH/AQS anode enhanced biofilm formation while the AQS bound on the CPH/AQS anode worked as a redox mediator. The CPH/AQS bioanode reduced the charge transfer resistance from 28.3Ω to 4.1Ω while increased the maximum power density from 762±37mW/m 2 to 1919±69mW/m 2 , compared with the bare anode. These results demonstrated that the facile synthesis of the CPH/AQS anode provided an efficient route to enhance the power production of microbial fuel cell (MFC). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  9. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  10. Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.

    Science.gov (United States)

    Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan

    2014-06-25

    Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.

  11. Carbon Nanotubes as Counter Electrodes for Gratzel Solar Cells

    Science.gov (United States)

    Shodive, Hasan; Aliev, Ali; Zhang, Mei; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2006-03-01

    The role of interfaces is very critical for solar cell devices which use nanostructured materials. Dye Sensitized Solar Cells (DSSC) are devices which parts are interfacial in character and physico --chemical processes occur at the interface of two distinct media. DSSC are of great interest due to combination of their high efficiency and relatively low cost. An effective counterelectrode with high electrochemical activity is an important component of DSSC to enhance its practical utility. Presently used Pt coated ITO counterelectrode can not be applied in flexible DSSC architectures, while there is a growing need for flexible anodes which are transparent and have desired interface characteristics. In this work in order to search for such materials for counter electrode in dye sensitized solar cells, newly developed strong and transparent and modified carbon nanotube sheets [1] are used in interfacial counter electrode. To increase the electrochemical activity of the anode the CNT sheets are coated with highly conductive SWCNT and compared with pure multiwall CNT sheets. We show that the transparent sheets of SWCNT/MWCNT perform as a flexible anode and as electrochemical catalyst and also can be used in tandems of dye sensitized solar cells as transparent charge recombination or interconnect layers. [1] M. Zhang, S.Fang, A.Zakhidov, S.B.Lee, A.Aliev et.al., Science, 309,(2005) 1215

  12. Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries

    International Nuclear Information System (INIS)

    Cao, F.; Xia, X.H.; Pan, G.X.; Chen, J.; Zhang, Y.J.

    2015-01-01

    Highlights: • CuO/C core/shell nanowire arrays are prepared by electro-deposition + ALD method. • Carbon shell is favorable for structural stability. • CuO/C core/shell arrays show enhanced cycle stability and high capacity. - Abstract: Tailored metal oxide/carbon composite structures have attracted great attention due to potential synergistic effects and enhanced properties. In this work, novel CuO/C core/shell nanowire arrays are prepared by the combination of electro-deposition of CuO and atomic-layer-deposition-assisted formation of carbon nanoflakes shell. The CuO nanowires with diameters of ∼200 nm are homogenously coated by carbon nanoflakes shell. When evaluated as anode materials for lithium ion batteries (LIBs), compared to the unmodified CuO nanowire arrays, the CuO/C core/shell nanowire arrays exhibit improved electrochemical performances with higher capacity, better electrochemical reactivity and high-rate capability as well as superior cycling life (610 mAh g"−"1 at 0.5C after 290 cycles). The enhanced electrochemical performance is mainly attributed to the introduction of carbon flake shell in the core/shell nanowire arrays structure, which provides higher active material-electrolyte contact area, improved electrical conductivity, and better accommodation of volume change. The proposed method provides a new way for fabrication of high-performance metal oxides anodes of LIBs.

  13. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  14. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weifeng; Cheng, Shaoan, E-mail: shaoancheng@zju.edu.cn; Guo, Jian

    2014-11-30

    Highlights: • Carbon cloth anode is modified with formic acid by a simple and reliable approach. • The modification significantly enhances the power output of microbial fuel cells. • The modified anode surface favors the bacterial attachment and growth on anode. • The electron transfer rate of anode is promoted. - Abstract: The physicochemical properties of anode material directly affect the anodic biofilm formation and electron transfer, thus are critical for the power generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was modified with formic acid to enhance the power production of MFCs. Formic acid modification of anode increased the maximum power density of a single-chamber air-cathode MFC by 38.1% (from 611.5 ± 6 mW/m{sup 2} to 877.9 ± 5 mW/m{sup 2}). The modification generated a cleaner electrode surface and a reduced content of oxygen and nitrogen groups on the anode. The surface changes facilitated bacterial growth on the anode and resulted in an optimized microbial community. Thus, the electron transfer rate on the modified anodes was enhanced remarkably, contributing to a higher power output of MFCs. Anode modification with formic acid could be an effective and simple method for improving the power generation of MFCs. The modification method holds a huge potential for large scale applications and is valuable for the scale-up and commercialization of microbial fuel cells.

  15. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  16. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  17. Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-12-01

    Full Text Available Nanostructures exhibit numerous merits to improve the efficiency in solar-to-energy conversion. These include shortened carrier collection pathways, an increased volume ratio between depletion layer and bulk, enhanced light capture due to multiple light scattering in nanostructures, and a high surface area for photochemical conversion reactions. In this study, we describe the synthesis of morphology-controlled W-doped BiVO4 by simply tuning the solvent ratio in precursor solutions. Planar and porous W-doped BiVO4 thin films were prepared and compared. The porous film, which exhibits increased surface area and enhanced light absorption, has displayed enhanced charge separation and interfacial charge injection. Our quantitative analysis showed an enhancement of about 50% of the photoelectrochemical performance for the porous structure compared to the planar structure. This enhancement is attributed to improved light absorption (13% increase, charge separation (14% increase, and interfacial charge injection (20% increase.

  18. A nanoscale study of charge extraction in organic solar cells: the impact of interfacial molecular configurations.

    Science.gov (United States)

    Tang, Fu-Ching; Wu, Fu-Chiao; Yen, Chia-Te; Chang, Jay; Chou, Wei-Yang; Gilbert Chang, Shih-Hui; Cheng, Horng-Long

    2015-01-07

    In the optimization of organic solar cells (OSCs), a key problem lies in the maximization of charge carriers from the active layer to the electrodes. Hence, this study focused on the interfacial molecular configurations in efficient OSC charge extraction by theoretical investigations and experiments, including small molecule-based bilayer-heterojunction (sm-BLHJ) and polymer-based bulk-heterojunction (p-BHJ) OSCs. We first examined a well-defined sm-BLHJ model system of OSC composed of p-type pentacene, an n-type perylene derivative, and a nanogroove-structured poly(3,4-ethylenedioxythiophene) (NS-PEDOT) hole extraction layer. The OSC with NS-PEDOT shows a 230% increment in the short circuit current density compared with that of the conventional planar PEDOT layer. Our theoretical calculations indicated that small variations in the microscopic intermolecular interaction among these interfacial configurations could induce significant differences in charge extraction efficiency. Experimentally, different interfacial configurations were generated between the photo-active layer and the nanostructured charge extraction layer with periodic nanogroove structures. In addition to pentacene, poly(3-hexylthiophene), the most commonly used electron-donor material system in p-BHJ OSCs was also explored in terms of its possible use as a photo-active layer. Local conductive atomic force microscopy was used to measure the nanoscale charge extraction efficiency at different locations within the nanogroove, thus highlighting the importance of interfacial molecular configurations in efficient charge extraction. This study enriches understanding regarding the optimization of the photovoltaic properties of several types of OSCs by conducting appropriate interfacial engineering based on organic/polymer molecular orientations. The ultimate power conversion efficiency beyond at least 15% is highly expected when the best state-of-the-art p-BHJ OSCs are combined with present arguments.

  19. Anodal transcranial direct current stimulation of parietal cortex enhances action naming in Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Rosa eManenti

    2015-04-01

    Full Text Available Background: Corticobasal Syndrome (CBS is a neurodegenerative disorder that overlaps both clinically and neuropathologically with Frontotemporal dementia and is characterized by apraxia, alien limb phenomena, cortical sensory loss, cognitive impairment, behavioural changes and aphasia. It has been recently demonstrated that transcranial direct current stimulation (tDCS improves naming in healthy subjects and in subjects with language deficits.Objective: The aim of the present study was to explore the extent to which anodal transcranial direct current stimulation (anodal tDCS over the parietal cortex (PARC could facilitate naming performance in CBS subjects. Methods: Anodal tDCS was applied to the left and right PARC during object and action naming in seventeen patients with a diagnosis of possible CBS. Participants underwent two sessions of anodal tDCS (left and right and one session of placebo tDCS. Vocal responses were recorded and analyzed for accuracy and vocal Reaction Times (vRTs. Results: A shortening of naming latency for actions was observed only after active anodal stimulation over the left PARC, as compared to placebo and right stimulations. No effects have been reported for accuracy.Conclusions: Our preliminary finding demonstrated that tDCS decreased vocal reaction time during action naming in a sample of patients with CBS. A possible explanation of our results is that anodal tDCS over the left PARC effects the brain network implicated in action observation and representation. Further studies, based on larger patient samples, should be conducted to investigate the usefulness of tDCS as an additional treatment of linguistic deficits in CBS patients.

  20. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    Science.gov (United States)

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of wrinkles on electrochemical performance of multiwalled carbon nanotubes as anode material for Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2015-01-01

    Highlights: • Wrinkly surfaced gC is employed as anode material for Li ion battery. • Temperature controlled protrusions were uniformly distributed over the nanotubes. • gC shows superior performance of 373 mAh g −1 at 100 mA g −1 after 150 cycle. • Synergistic effect of defects and conductivity gives higher Li storage over MWNTs. - Abstract: A 1-D monohybrid of multiwalled carbon nanotubes and graphene sheets, graphene wrapped multiwalled carbon nanotubes (gC) structure, synthesized in a template-free simple chemical vapor deposition technique without any chemical functionalization, was employed as efficient anode material for Li ion battery. Graphene nanosheets affixed to the multiwalled carbon nanotubes (MWNTs) surface by van der Waal's attraction gives a wrinkled surface to the final 1-D gC configuration. The protrusions on the surface of the tube enhances the porosity of the system and also acts as defects, enhancing lithium adsorption sites while the inner MWNT core gives high electrical conductivity, resulting enhanced electrochemical performance of 373 mAh g −1 at 100 mA g −1 current density after 150 cycles.

  2. Asymmetric Membranes Containing Micron-Size Silicon for High Performance Lithium Ion Battery Anode

    International Nuclear Information System (INIS)

    Byrd, Ian; Wu, Ji

    2016-01-01

    Micron-size Si anode is notorious for having extremely poor cycle life. It is mainly caused by the large volume change (∼300%) and poor mechanical strength of the Si electrode. Satisfying methods to address this issue are seriously lacking in literature. In this study, novel single-layer, double-layer and triple-layer asymmetric membranes containing micron-size silicon have been fabricated using a simple phase inversion method to dramatically improve its cyclability. The electrochemical performance of these asymmetric membranes as lithium ion battery anodes are evaluated and compared to pure micron-size Si powders and carbonaceous asymmetric membranes. All three types of asymmetric membrane electrodes demonstrate significantly enhanced stability as compared to pure Si powders. The single-layer asymmetric membrane has the largest capacity degradation due to the loss of pulverized Si powders from the membrane surface, only 40% of whose capacity can be retained in 100 cycles. But this performance is still much better than pure micron-size silicon electrode. After being coated with nanoporous carbonaceous layers on both sides of a single-layer asymmetric membrane to make a triple-layer asymmetric membrane (sandwich structure), the capacity retention is notably increased to 88% in 100 cycles at 610 mAh g"−"1 and 0.5C. The enhanced stability is attributed to the extra nanoporous coatings that can prevent the fractured Si powders from being leached out and allow facile lithium ion diffusions. Such a novel, efficient and scalable method may provide beneficiary guidance for designing high capacity lithium ion battery anodes with large volume change issues.

  3. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap

  4. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    Science.gov (United States)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  5. Facile Interfacial Electron Transfer of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2005-12-01

    Full Text Available Abstract: We herein describe a method of depositing hemoglobin (Hb and sulfonated polyaniline (SPAN on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated Polymers

  6. Thermodynamics of photon-enhanced thermionic emission solar cells

    International Nuclear Information System (INIS)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures

  7. Electronic properties of electrolyte/anodic alumina junction during porous anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka Street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany); InnoMat GmbH, Chemnitz (Germany); Goedel, Werner A. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2007-03-15

    The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 deg. C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.

  8. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  9. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  10. Enhanced cathodoluminescence from InGaN/GaN light-emitting diodes with nanohole arrays fabricated using anodic aluminum-oxide masks

    International Nuclear Information System (INIS)

    Doan, M. H.; Lim, H.; Lee, J. J.; Nguyen, D. H.; Rotermund, F.; Mho, S. I.

    2010-01-01

    Blue InGaN/GaN light emitting diodes (LEDs) have been grown by using low-pressure metalorganic chemical vapor deposition. To improve the light extraction from the LEDs, we have fabricated nanohole arrays on top of the p-GaN layer by using anodic aluminum oxides as etch masks. The AAO membranes are fabricated by using a two-step anodization process in an oxalic-acid solution. Atomic force microscopy and field emission scanning electron microscopy show that the nanohole arrays formed on top of the LEDs have a quasi-hexagonal geometry. The cathodoluminescence measurements are used to investigate the light extraction from the nanopatterned samples. Cathodoluminescence intensity of a LED with the nanohole array is enhanced up to 10 times compared to that of a sample without a nanohole array. We also investigated the spatially-resolved luminescence profile around the nanoholes.

  11. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  12. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes

    KAUST Repository

    Boulfrad, Samir; Cassidy, Mark; Djurado, Elisabeth; Irvine, John Ts S; Jabbour, Ghassan E.

    2013-01-01

    then dispersed into organic based vehicles to form a screen-printable ink which was deposited and fired to form SOFC anode layers. Electrochemical tests show a considerable enhancement of the pre-coated anode performances under 50 ml/min wet H2 flow

  13. Study of Internal and External Leaks in Tests of Anode-Supported SOFCs

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hendriksen, Peter Vang; Hagen, Anke

    2008-01-01

    A planar anode-supported solid oxide fuel cell (SOFC) has been tested to investigate gas tightness of the electrolyte and the applied seals. Gas leaks reduce the efficiency of the SOFC and it is thus important to determine and minimise them. Probe gases (He and Ar) and a Quadrupole Mass Spectrome......A planar anode-supported solid oxide fuel cell (SOFC) has been tested to investigate gas tightness of the electrolyte and the applied seals. Gas leaks reduce the efficiency of the SOFC and it is thus important to determine and minimise them. Probe gases (He and Ar) and a Quadrupole Mass...... Spectrometer were used to detect both internal (through electrolyte) and external (through seals) gas leaks. The internal gas leak through the electrolyte was quantified under different conditions, as was the external leak from the surroundings to the anode. The internal gas leak did not depend on the pressure...... difference between the anode and the cathode gas compartment, and can thus be described as diffusion driven. External leaks between the surroundings and the anode, but not the cathode gas compartment was observed. They were influenced by the pressure difference and are thus driven by both concentration...

  14. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    Science.gov (United States)

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  15. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells

    KAUST Repository

    Sergeant, Nicholas P.; Hadipour, Afshin; Niesen, Bjoern; Cheyns, David; Heremans, Paul; Peumans, Peter; Rand, Barry P.

    2012-01-01

    The use of an ITO-free MoO 3/Ag/MoO 3 anode to control the photon harvesting in PCDTBT:PC 70BM solar cells is proposed. At first sight, the fact that these anodes possess reduced far-field transmission compared to ITO may seem to be a disadvantage

  16. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup −} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2 eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91 cd/A, 102 lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  17. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites.

    Science.gov (United States)

    Wang, Guorui; Dai, Zhaohe; Liu, Luqi; Hu, Hai; Dai, Qing; Zhang, Zhong

    2016-08-31

    The van der Waals (vdW) force dominated interface between graphene and polymer matrix creates weak points in the mechanical sense. Chemical functionalization was expected to be an effective approach in transfer of the outstanding performance of graphene across multiple length scales up to the macroscopic level, due to possible improvements in the interfacial adhesion. However, published works showed the contradiction that improvements, insensitivity, or even worsening of macro-mechanical performance have all been reported in graphene-based polymer nanocomposites. Particularly central cause of such discrepancy is the variations in graphene/polymer interfacial chemistry, which is critical in nanocomposites with vast interfacial area. Herein, O3/H2O gaseous mixture was utilized to oxidize monolayer graphene sheet with controlled functionalization degrees. Hydrogen bonds (H bonds) are expected to form between oxidized graphene sheet/poly(methyl methacrylate) (PMMA) at the interface. On the basis of in situ tensile-micro Raman spectroscopy, the impacts of bonding types (vdW and H-bonds) on both key interfacial parameters (such as interfacial shear strength and critical length) and failure modes of graphene/PMMA nanocomposite were clarified for the first time at the microscopic level. Our results show that owing to improved interfacial interaction via H bonds, the interface tends to be stiffening and strengthening. Moreover, the mechanical properties of the functionalized graphene/PMMA interface will be set by the competition between the enhanced interfacial adhesion and the degraded elastic modulus of graphene, which was caused by structural defects in the graphene sheet during the functionalization process and could lead to catastrophic failure of graphene sheets in our experimental observation. Our results will be helpful to design various nanofiller-based nanocomposites with high mechanical performance.

  18. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  19. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  20. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  1. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process.

    Science.gov (United States)

    Zhao, Xu; Wang, Haidong; Chen, Fayuan; Mao, Ran; Liu, Huijuan; Qu, Jiuhui

    2013-01-01

    A real electroplating wastewater, containing heavy metals, cyanide, and organic contaminants, was treated by electrocoagulation (EC), H2O2 oxidation, H2O2 pre-oxidation followed by EC, and the anodic Fenton process and the efficacy of the processes was compared. Concentration of cyanide, Cu, Ni, Zn, and Cr was largely decreased by EC within 5 min. When the reaction time was extended, removal of residual cyanide, Cu, and Ni was limited. In H2O2 oxidation, the concentration of cyanide decreased from initial 75 to 12 mg L(-1) in 30 min. The effluents from the H2O2 oxidation were further treated by EC or anodic Fenton. In EC, the concentration of total cyanide, Ni, and Cu decreased to below 0.3, 0.5, and 1.5 mg L(-1), respectively. Removal efficiency of chemical oxygen demand by EC was less than 20.0%. By contrast, there was 73.5% reduction by the anodic Fenton process with 5 mM H2O2 at 30 min; this can be attributed to the oxidation induced by hydroxyl radicals generated by the reaction of H2O2 with the electrogenerated Fe(2+). Meanwhile, residual cyanide, Cu, and Ni can also be efficiently removed. Transformation of organic components in various processes was analyzed using UV-visible and fluorescence excitation-emission spectra.

  2. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode.

    Science.gov (United States)

    Zhou, Xiaosi; Yin, Ya-Xia; Cao, An-Min; Wan, Li-Jun; Guo, Yu-Guo

    2012-05-01

    The utilization of silicon particles as anode materials for lithium-ion batteries is hindered by their low intrinsic electric conductivity and large volume changes during cycling. Here we report a novel Si nanoparticle-carbon nanoparticle/graphene composite, in which the addition of carbon nanoparticles can effectively alleviate the aggregation of Si nanoparticles by separating them from each other, and help graphene sheets build efficient 3D conducting networks for Si nanoparticles. Such Si-C/G composite shows much improved electrochemical properties in terms of specific capacity and cycling performance (ca. 1521 mA h g(-1) at 0.2 C after 200 cycles), as well as a favorable high-rate capability.

  3. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  4. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  5. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex.

    Science.gov (United States)

    Hsu, Wan-Yu; Zanto, Theodore P; Anguera, Joaquin A; Lin, Yung-Yang; Gazzaley, Adam

    2015-08-01

    The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18-35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session 1 h later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  7. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  8. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays

    Science.gov (United States)

    Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng

    2013-11-01

    This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.

  9. Semitransparent Flexible Organic Solar Cells Employing Doped-Graphene Layers as Anode and Cathode Electrodes.

    Science.gov (United States)

    Shin, Dong Hee; Jang, Chan Wook; Lee, Ha Seung; Seo, Sang Woo; Choi, Suk-Ho

    2018-01-31

    Semitransparent flexible photovoltaic cells are advantageous for effective use of solar energy in many areas such as building-integrated solar-power generation and portable photovoltaic chargers. We report semitransparent and flexible organic solar cells (FOSCs) with high aperture, composed of doped graphene layers, ZnO, P3HT:PCBM, and PEDOT:PSS as anode/cathode transparent conductive electrodes (TCEs), electron transport layer, photoactive layer, and hole transport layer, respectively, fabricated based on simple solution processing. The FOSCs do not only harvest solar energy from ultraviolet-visible region but are also less sensitive to near-infrared photons, indicating semitransparency. For the anode/cathode TCEs, graphene is doped with bis(trifluoromethanesulfonyl)-amide or triethylene tetramine, respectively. Power conversion efficiency (PCE) of 3.12% is obtained from the fundamental FOSC structure, and the PCE is further enhanced to 4.23% by adding an Al reflective mirror on the top or bottom side of the FOSCs. The FOSCs also exhibit remarkable mechanical flexibilities through bending tests for various curvature radii.

  10. Corrosion Prevention of Steel Reinforcement in 7.5% NaCl Solution using Pure Magnesium Anode

    Science.gov (United States)

    Iyer Murthy, Yogesh; Gandhi, Sumit; Kumar, Abhishek

    2018-03-01

    The current work investigates the performance of pure Magnesium on corrosion prevention of steel reinforcements by way of sacrificial anoding. Two set of six steel reinforcements were tested for half-cell potential, weight loss, anode efficiency and tensile strength for each of the sacrificial anodes in a high chloride atmosphere of 7.5% NaCl in tap water. Significant reduction in weight of anode was observed during the initial 12 days. The reduction in weight of steel reinforcements tied with anodes was found to be negligible, while that of reinforcements without anodes was significantly higher. Five distinct zones of corrosion were observed during the test. The tensile strength of steel cathodically protected by Mg alloy anodes was found less affected. It could be concluded that pure Mg anode provides an effective way of corrosion mitigation.

  11. Functional interface of polymer modified graphite anode

    Science.gov (United States)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  12. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  13. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    Science.gov (United States)

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  14. Octahedral core–shell cuprous oxide/carbon with enhanced electrochemical activity and stability as anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiang, Jiayuan; Chen, Zhewei; Wang, Jianming

    2015-01-01

    Highlights: • Core–shell octahedral Cu 2 O/C is prepared by a one-step method. • Carbon shell is amorphous and uniformly decorated at the Cu 2 O octahedral core. • Core–shell Cu 2 O/C exhibits markedly enhanced capability and reversibility. • Carbon shell provides fast ion/electron transfer channel. • Core–shell structure is stable during cycling. - Abstract: Core–shell Cu 2 O/C octahedrons are synthesized by a simple hydrothermal method with the help of carbonization of glucose, which reduces Cu(II) to Cu(I) at low temperature and further forms carbon shell coating at high temperature. SEM and TEM images indicate that the carbon shell is amorphous with thickness of ∼20 nm wrapping the Cu 2 O octahedral core perfectly. As anode of lithium ion batteries, the core–shell Cu 2 O/C composite exhibits high and stable columbic efficiency (98%) as well as a reversible capacity of 400 mAh g −1 after 80 cycles. The improved electrochemical performance is attributed to the novel core–shell structure, in which the carbon shell reduces the electrode polarization and promotes the charge transfer at active material/electrolyte interface, and also acts as a stabilizer to keep the octahedral structure integrity during discharge–charge processes

  15. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  16. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-10-01

    Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction "on water" to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction "on water" could be a facile green platform to functionalize carbon fibers for many interesting applications.

  17. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance

    Science.gov (United States)

    Liu, Canjun; Yang, Yahui; Li, Wenzhang; Li, Jie; Li, Yaomin; Chen, Qiyuan

    2016-03-01

    In this study, Bi2S3 sensitive layer has been grown on the surface of WO3 nanoplate arrays via an in situ approach. The characterization of samples were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible absorption spectroscopy (UV-vis). The results show that the Bi2S3 layer is uniformly formed on the surface of WO3 nanoplates and less interfacial defects were observed in the interface between the Bi2S3 and WO3. More importantly, the Bi2S3/WO3 films as photoanodes for photoelectrochemical (PEC) cells display the enhanced PEC performance compared with the Bi2S3/WO3 films prepared by a sequential ionic layer adsorption reaction (SILAR) method. In order to understand the reason for the enhanced PEC properties, the electron transport properties of the photoelectrodes were studied by using the transient photocurrent spectroscopy and intensity modulated photocurrent spectroscopy (IMPS). The Bi2S3/WO3 films prepared via an in situ approach have a greater transient time constant and higher electron transit rate. This is most likely due to less interfacial defects for the Bi2S3/WO3 films prepared via an in situ approach, resulting in a lower resistance and faster carrier transport in the interface between WO3 and Bi2S3.

  18. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent

    DEFF Research Database (Denmark)

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei

    2017-01-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before...

  19. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    Science.gov (United States)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  20. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Science.gov (United States)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  1. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  2. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    Science.gov (United States)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  3. Influence of fluorozirconic acid on sulfuric acid anodizing of aluminum

    OpenAIRE

    Elaish, R.; Curioni, M.; Gowers, K.; Kasuga, A.; Habazaki, H.; Hashimoto, T.; Skeldon, P.

    2017-01-01

    The effects of additions of fluorozirconic acid to sulfuric acid on the anodizing behavior of aluminum have been investigated under a constant voltage at temperatures of 0 and 20◦C. The fluoroacid increased the rate of film growth, with a dependence on the fluoroacid concentration, the electrolyte temperature and the anodizing time. Compositional analyses showed that fluorine species were present in the films. However, zirconium species were absent. The fluoroacid generally enhanced film diss...

  4. Interplay between Interfacial Structures and Device Performance in Organic Solar Cells: A Case Study with the Low Work Function Metal, Calcium.

    Science.gov (United States)

    Ju, Huanxin; Knesting, Kristina M; Zhang, Wei; Pan, Xiao; Wang, Chia-Hsin; Yang, Yaw-Wen; Ginger, David S; Zhu, Junfa

    2016-01-27

    A better understanding of how interfacial structure affects charge carrier recombination would benefit the development of highly efficient organic photovoltaic (OPV) devices. In this paper, transient photovoltage (TPV) and charge extraction (CE) measurements are used in combination with synchrotron radiation photoemission spectroscopy (SRPES) to gain insight into the correlation between interfacial properties and device performance. OPV devices based on PCDTBT/PC71BM with a Ca interlayer were studied as a reference system to investigate the interfacial effects on device performance. Devices with a Ca interlayer exhibit a lower recombination than devices with only an Al cathode at a given charge carrier density (n). In addition, the interfacial band structures indicate that the strong dipole moment produced by the Ca interlayer can facilitate the extraction of electrons and drive holes away from the cathode/polymer interface, resulting in beneficial reduction in interfacial recombination losses. These results help explain the higher efficiencies of devices made with Ca interlayers compared to that without the Ca interlayer.

  5. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    Science.gov (United States)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-04-01

    Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher ( 2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of 589 Wh kg-1 and a Coulombic efficiency of 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

  6. Improving Multi-Functional Properties in Polymer Based Nano Composites by Interfacial

    Science.gov (United States)

    Tajaddod, Navid

    Polymer nanocomposites (PNCs) have become an area of increasing interest for study in the field of polymer science and technology since the rise of nanotechnology research. Despite the significant amount of progress being made towards producing high quality PNC materials, improvement in the mechanical, electrical, thermal and other functional properties still remain a challenge. To date, these properties are only a fraction of the expected theoretical values predicted for these materials. Development of interfacial regions between the filler and matrix within the composite has been found to be an important focus in terms of processing. Proper interfacial control and development may ensure excellent interaction and property transfer between the filler and polymer matrix in addition to improvement of multi-functional properties of PNCs. The property-structure importance for the existence of the interfacial and interphase region within PNCs is discussed in this thesis work. Two specific PNC systems are selected for study as part of this dissertation in order to understand the effect of interfacial region development on influencing multi-functional property trends. Polyethylene (PE)/boron nitride (BN) and polyacrylonitrile (PAN)/carbon nanotube (CNT) composites were selected to investigate their mechanical performance and thermal and electrical conductivity properties, respectively. For these systems it was found that the interfacial region structure is directly related to the enhancement of the subsequent multi-functional properties.

  7. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    Science.gov (United States)

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  9. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    Science.gov (United States)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  10. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  11. Bio-electro oxidation of indigo carmine by using microporous activated carbon fiber felt as anode and bioreactor support.

    Science.gov (United States)

    Garcia, Luane Ferreira; Rodrigues Siqueira, Ana Claudia; Lobón, Germán Sanz; Marcuzzo, Jossano Saldanha; Pessela, Benevides Costa; Mendez, Eduardo; Garcia, Telma Alves; de Souza Gil, Eric

    2017-11-01

    The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Measurement of Interfacial Area Production and Permeability within Porous Media

    International Nuclear Information System (INIS)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.

    2010-01-01

    An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO 2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.

  13. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); School of Mechanical and Electronic Engineering, Ningbo Dahongying University, Ningbo 315175 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Haibing, E-mail: xuhaibing@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Liu, Dong; Yan, Chun [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhu, Yingdan, E-mail: y.zhu@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2017-07-15

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  14. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    International Nuclear Information System (INIS)

    Chen, Xiang; Xu, Haibing; Liu, Dong; Yan, Chun; Zhu, Yingdan

    2017-01-01

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  15. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2005-01-01

    The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)

  16. Research of the photovoltaic properties of anodized films of Sn

    Science.gov (United States)

    Afanasyev, D. A.; Ibrayev, N. Kh; Omarova, G. S.; Smagulov, Zh K.

    2015-04-01

    The results of studies of photovoltaic properties of solar cells based on porous tin oxide films, sensitized with an organic dye are presented. Porous films were prepared by electrochemical anodization of tin in alkaline electrolytes based on aqueous solution of NaOH and aqueous ammonia NH4OH. It was found that the time of anodizing of the Sn films affects on conversion efficiency of light energy into electrical energy. Increasing of the sorption time leads to an increase of the number of molecules on the surface of the porous film. For the solar cell based on tin oxide there is a strong dark current, which significantly reduces the efficiency of conversion of light energy into electrical energy.

  17. Exploding metal film active anode source experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Bordonaro, G.J.; Greenly, J.B.; Hammer, D.A.

    1989-01-01

    In this paper the authors report results using an extractor geometry magnetically insulated ion diode on the 0.5 TW LION accelerator. Experiments with an exploding metal film active anode plasma source (EMFAAPS) have shown that intense beams with significantly improved turn-on time compared to epoxy-filled-groove anodes can be produced. A new geometry, in which a plasma switch is used to provide the current path that explodes the thin film anode, has improved the ion efficiency (to typically 70%) compared with the previous scheme in which an electron collector on the anode provided this current. Leakage electron current is reduced when no collector is used

  18. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  19. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  20. Gas-discharge particle detector with ball-tipped anodes

    International Nuclear Information System (INIS)

    Travkin, V.I.; Khazins, D.M.

    1987-01-01

    A new gas-discharge particle detector, whose anode is a set of balls 2mm in diameter is investigated. The chamber is blowing down by the argon-methane-methylal gas mixture with the ratio 3:1:1. The detector operates in the self-quenching streamer mode, has high efficiency and a wide counting characteristic plateau. The maximum counting rate of particles at one ball is ∼ 2.5x10 4 s -1 . The ball-tipped anodes allow making reliable complex-shaped detectors. Two-coordinate detection of multiparticle events can be naturally organized in detectors like that

  1. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  2. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life.

    Science.gov (United States)

    Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-03-07

    Sodium-ion batteries (SIBs) are prospective alternative to lithium-ion batteries for large-scale energy-storage applications, owing to the abundant resources of sodium. Metal sulfides are deemed to be promising anode materials for SIBs due to their low-cost and eco-friendliness. Herein, for the first time, series of copper sulfides (Cu 2 S, Cu 7 S 4 , and Cu 7 KS 4 ) are controllably synthesized via a facile electrochemical route in KCl-NaCl-Na 2 S molten salts. The as-prepared Cu 2 S with micron-sized flakes structure is first investigated as anode of SIBs, which delivers a capacity of 430 mAh g -1 with a high initial Coulombic efficiency of 84.9% at a current density of 100 mA g -1 . Moreover, the Cu 2 S anode demonstrates superior capability (337 mAh g -1 at 20 A g -1 , corresponding to 50 C) and ultralong cycle performance (88.2% of capacity retention after 5000 cycles at 5 A g -1 , corresponding to 0.0024% of fade rate per cycle). Meanwhile, the pseudocapacitance contribution and robust porous structure in situ formed during cycling endow the Cu 2 S anodes with outstanding rate capability and enhanced cyclic performance, which are revealed by kinetics analysis and ex situ characterization.

  3. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    Science.gov (United States)

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  4. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong; Wu, Feng-Yu; Kumar, Pushpendra; Ming, Jun

    2016-01-01

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery

  5. The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Hongfa; Mei, Donghai; Yan, Pengfei; Bhattacharya, Priyanka; Burton, Sarah D.; Cresce, Arthur V.; Cao, Ruiguo; Engelhard, Mark H.; Bowden, Mark E.; Zhu, Zihua; Polzin, Bryant; Wang, Chong M.; Xu, Kang; Zhang, Jiguang; Xu, Wu

    2015-09-10

    Propylene carbonate (PC) is seldom used in lithium-ion batteries (LIBs) due to its sustained co-intercalation into graphene structure and the eventual graphite exfoliation, despite potential advantages it brings, such as wider liquid range and lower cost. Here we discover that cesium cation (Cs+), originally used to suppress dendrite growth of Li metal anode, directs the formation of solid electrolyte interphase (SEI) on graphitic anode in PC-rich electrolytes through preferential solvation. Effective suppression of PC-decomposition and graphite-exfoliation was achieved when the ratio of ethylene carbonate (EC)/PC in electrolytes was so adjusted that the reductive decomposition of Cs+-(EC)m (1≤m≤2) complex precedes that of Li+-(PC)n (3≤n≤5). The interphase directed by Cs+ is stable, ultrathin and compact, leading to significant improvements in LIB performances. In a broader context, the accurate tailoring of SEI chemical composition by introducing a new solvation center represents a fundamental breakthrough in manipulating interfacial reactions processes that once were elusive.

  6. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  7. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  8. An arbitrary Lagrangian-Eulerian method for interfacial flows with insoluble surfactants

    Science.gov (United States)

    Yang, Xiaofeng

    Interfacial flows, fluid flows involving two or more fluids that do not mix, are common in many natural and industrial processes such as rain drop formation, crude oil recovery, polymer blending, fuel spray formation, and so on. Surfactants (surface active substances) play an important role in such processes because they significantly change the interfacial dynamics. In this thesis, an arbitrary Lagrangian-Eulerian (ALE) method has been developed to numerically simulate interfacial flows with insoluble surfactants. The interface is captured using a coupled level set and volume of fluid method. To evolve the surfactant concentration, the method directly tracks the surfactant mass and the interfacial area. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. By directly tracking the surfactant mass, the method conserves the surfactant mass exactly. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The evolution of the level set function, volume fraction, interfacial area, and the surfactant mass is performed using an ALE approach. The fluid flow is governed by Stokes equations, which are solved using a finite element method. The surface forces are included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, interfacial regions of high surface curvature, and near contact regions between two interacting interfaces, the grid near the interface is adaptively refined. The method is extendible to axisymmetric and 3D spaces, and can be coupled with other flow solvers, such as Navier-Stokes and viscoelastic flow solvers, as well. The method has been applied to study the effect of surfactants on drop deformation and breakup in an extensional flow. Drop deformation results are compared with available experimental and theoretical

  9. Effect of interlayer on structure and performance of anode-supported SOFC single cells

    International Nuclear Information System (INIS)

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-01-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm 2 at 800 deg. C and 0.44 W/cm 2 at 700 deg. C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer

  10. WS_2-Super P nanocomposites anode material with enhanced cycling stability for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, Jianfeng; Wang, Xin; Li, Jiayin; Cao, Liyun; Xu, Zhanwei; Wei, Hao

    2016-01-01

    WS_2-Super P nanocomposites are prepared for lithium battery anodes by a simple two-step process consisting of hydrothermal and sulfide reduction reactions. The addition of Super P (50 nm) as a conductive addictive is beneficial for decreasing the size of nanocomposites and improving their dispersibility, which could accelerate the insertion/extraction reaction between WS_2-Super P nanocomposite electrode and electrolyte. Compared to the pure WS_2, the WS_2-Super P nanocomposites exhibit highly improved electrochemical performance with initial discharge capacity of 421 mAh g"−"1, high initial Coulombic efficiency (81%), low charge transfer impedance (53 Ω) and good retentive capacity of 389 mAh g"−"1 after 200th cycles. The much improved electrochemical performance can be attributed to the incorporation of Super P, which facilitates the interface charge transfer and Li"+ diffusion. - Graphical abstract: The addition of Super P (50 nm) is beneficial for decreasing the size of WS_2-Super P nanocomposites, improving their dispersibility, accelerating the Li"+ transportation and the insertion/extraction reaction. The WS_2-Super P nanocomposites show higher cycling stability and rate performances than pure WS_2. - Highlights: • WS_2-Super P nanocomposites are prepared for LIBs anodes with good performances. • Super P as a conductive addictive is added into the WS_2 nanosheets. • The incorporation of Super P is beneficial for decreasing the size of composites. • Super P were embedded in WS_2 nanosheets for improving their dispersibility.

  11. Solvothermal syntheses of Bi and Zn co-doped TiO_2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    International Nuclear Information System (INIS)

    Li, Juan-Juan; Cai, Song-Cai; Xu, Zhen; Chen, Xi; Chen, Jin; Jia, Hong-Peng; Chen, Jing

    2017-01-01

    Highlights: • Bi-Zn co-doped TiO_2 catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO_2 generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi_1_._9_%Zn_1_%O_2 exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO_2 on photodegradation of gaseous toluene. The doped TiO_2 with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi_1_._9_%O_2 and TiBi_1_._9_%Zn_1_%O_2 can reach to 51% and 93%, respectively, which are much higher than 25% of TiO_2. Bi doping into TiO_2 lattice generates new intermediate energy level of Bi below the CB edge of TiO_2. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO_2 agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  12. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron

    International Nuclear Information System (INIS)

    Zhu Xiuping; Ni Jinren

    2011-01-01

    Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO 2+ , FeO 4 2− ) was enhanced by direct electrochemical oxidation at BDD anode.

  13. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  14. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  15. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  16. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  17. Dynamic interfacial tension behavior of alkyl amino sulfonate in crude oil-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhao Hua; Luo, Yue [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering

    2013-09-15

    The compatibility of surfactants, a series of alkyl amino sulfonate containing various the length of alkyl chain (dodecyl, tetradecyl, hexadecyl and octadecyl, developed in our laboratory), with formation water matching the Xinjiang Oil Field reservoir water and the dynamic interfacial tensions (DIT) behaviors between the crude oil and the formation water for a number of alkaline flooding systems were measured. These surfactants are found to be well compatible with formation water up to 0.10g L{sup -1} surfactant concentration, especially Dodec-AS and Tetradec-AS show a good compatibility with formation water over the full range of surfactant concentration investigated (0.01-0.20g L{sup -1}). All surfactants exhibit the dynamic interfacial tension behavior, and can reach and maintain low interfacial tension at very low concentration. The time for reaching the equilibrium DIT (DIT{sub eq}) is longer for surfactant with stronger lipophilicity, e.g. octadecyl-AS. It is interestingly found that the ratio value between DIT{sub eq} and the tension at crude oil/reservoir water interface in the absence of surfactant is in the range of 10{sup -4}-10{sup -3} mN m{sup -1}, accordingly based on which and the previous results, four surfactants individually or with other additives together may become potent candidates for enhanced oil recovery. Fortunately, the alkyl amino sulfonate combinational systems without alkali designed by our group can reduce the interfacial tension even to 10{sup -4} mN m{sup -1} at very low surfactant concentration. These surfactants or their systems have characteristic of 'Green', in addition to the excellent salt-tolerance and the less expensive cost for enhanced oil recovery, and therefore they are good oil-displacing reagents for enhanced oil recovery. (orig.)

  18. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    Science.gov (United States)

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  19. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  20. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhu Guang

    2010-01-01

    Full Text Available Abstract Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%. The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.

  1. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  2. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → Interfacial synthesis strategies are proposed to synthesize PPy samples. → Water/ionic liquid /organic three-phase interface for preparing coral-like PPy. → Coral-like PPy with more ordered structure and better electronic conductivity. → Coral-like PPy owns higher rate performance and better electrochemical stability. - Abstract: Two interfacial synthesis strategies are proposed to synthesize polypyrrole samples for electrochemical capacitors (ECs). In contrast to water/organic two-phase route, unique water/ionic liquid (IL)/organic three-phase interface strategy is first performed to prepare coral-like polypyrrole with even better electrochemical capacitance, where 1-Ethyl-3-methylimidazolium tetrafluoroborate IL, as a 'buffering zone', is set between the water and organic phases to control the morphology and micro-structure of the polypyrrole phase during polymerization. The polypyrrole synthesized by three-phase interfacial route owns more ordered structure, less charge transfer resistance and better electronic conductivity, compared with two-phase method, and delivers larger specific capacitance, higher rate performance and better electrochemical stability at large current densities in 3 M KCl aqueous electrolyte.

  3. Poly(4-Vinylpyridine)-Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells.

    Science.gov (United States)

    Chaudhary, Bhumika; Kulkarni, Ashish; Jena, Ajay Kumar; Ikegami, Masashi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Miyasaka, Tsutomu

    2017-06-09

    It is well known that the surface trap states and electronic disorders in the solution-processed CH 3 NH 3 PbI 3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (V oc ) by 120 to 160 mV whereas the standard cell fabricated in same conditions showed V oc as low as 0.9 V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with V oc more than 1.05 V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30 days of exposure to open atmosphere (50 % humidity). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  5. Recovery of Silver and Gold from Copper Anode Slimes

    Science.gov (United States)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2015-02-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  6. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    International Nuclear Information System (INIS)

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-01-01

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m 2 . This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  7. Evaluation of multi-brush anode systems in microbial fuel cells

    KAUST Repository

    Lanas, Vanessa

    2013-11-01

    The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicular to the cathode all produced similar power densities (1200±40mW/m2) and coulombic efficiencies (60%±5%). Reducing the number of brushes by either disconnecting or removing them reduced power, demonstrating the importance of anode projected area covering the cathode, and therefore the need to match electrode projected areas to maintain high performance. Multi-brush reactors had the same COD removal as single-brush systems (90%). The use of smaller Ti wire gages did not affect power generation, which will enable the use of less metal, reducing material costs. © 2013 Elsevier Ltd.

  8. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  9. Enhancement of catalytic activity of platinum-based nanoparticles towards electrooxidation of ethanol through interfacial modification with heteropolymolybdates

    Energy Technology Data Exchange (ETDEWEB)

    Barczuk, Piotr J.; Lewera, Adam; Miecznikowski, Krzysztof; Zurowski, Artur; Kulesza, Pawel J. [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland)

    2010-05-01

    As evidenced from the increase of electrocatalytic currents measured under voltammetric and chronoamperometric conditions, the activity of bimetallic Pt-Ru and Pt-Sn nanoparticles towards oxidation of ethanol is increased by modification of their surfaces with ultra-thin films of phosphododecamolybdic acid (H{sub 3}PMo{sub 12}O{sub 40}). The enhancement effect has been most pronounced in a case of heteropolymolybdate-modified carbon-supported Pt-Sn catalysts. Independent high-resolution XPS measurements indicate the ability of heteropolymolybdates to stabilize tin (in bimetallic Pt-Sn particles) at higher oxidation states (presumably as tin oxo species). The overall activation effect may also be ascribed to changes in the morphology of catalytic films following modification with heteropolymolybdates. Presence of the polyoxometallate is also likely to increase of the interfacial population of reactive oxo groups in the vicinity of platinum centers. (author)

  10. Enhancement of catalytic activity of platinum-based nanoparticles towards electrooxidation of ethanol through interfacial modification with heteropolymolybdates

    Science.gov (United States)

    Barczuk, Piotr J.; Lewera, Adam; Miecznikowski, Krzysztof; Zurowski, Artur; Kulesza, Pawel J.

    As evidenced from the increase of electrocatalytic currents measured under voltammetric and chronoamperometric conditions, the activity of bimetallic Pt-Ru and Pt-Sn nanoparticles towards oxidation of ethanol is increased by modification of their surfaces with ultra-thin films of phosphododecamolybdic acid (H 3PMo 12O 40). The enhancement effect has been most pronounced in a case of heteropolymolybdate-modified carbon-supported Pt-Sn catalysts. Independent high-resolution XPS measurements indicate the ability of heteropolymolybdates to stabilize tin (in bimetallic Pt-Sn particles) at higher oxidation states (presumably as tin oxo species). The overall activation effect may also be ascribed to changes in the morphology of catalytic films following modification with heteropolymolybdates. Presence of the polyoxometallate is also likely to increase of the interfacial population of reactive oxo groups in the vicinity of platinum centers.

  11. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongping; Swaraj, Sufal; Wang, Cheng; Ade, Harald [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Hwang, Inchan; Greenham, Neil C.; McNeill, Christopher R. [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE (United Kingdom); Groves, Chris [School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2010-12-21

    Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9-dioctylfluorene-co-bis(N,N'-(4,butylphenyl))bis(N,N'-phenyl-1,4-phenylene)diamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron-hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X-ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 C for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three-fold increase in the number of excitons dissociated. Under short-circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current-voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, Elva [CIICAp, Universidad Autonoma del Estado de Morelos, 62210 (Mexico); Reyes, Rene [Departamento de Ingenieria Quimica y Alimentos, Universidad de las Americas Puebla, Santa Catarina Martir Cholula, Puebla 72820 (Mexico)

    2006-08-15

    The interfacial energies effects on pool boiling were measured for combinations of aqueous ethanol mixtures and cationic surfactants. The mixture with 16% ethanol by weight had the lowest contact angle (associated to the highest wettability) and produced the highest convective heat transfer coefficient, h, among the aqueous ethanol mixtures. The surfactant sodium-lauryl-sulfate added at 100 ppm (its calculated critical micelle concentration CMC) to the 16% ethanol aqueous mixture produced an additional increment of the wettability of the mixture and of the h values; other concentrations of the surfactant reduced de contact angle and h values. The effect of these interfacial energies represents a mass-transfer contribution to pool boiling and the proposal of mixture effects both as increased spreadability and as micelle states. Several randomly constructed porous coverings, contributing to the breakage of vapor slugs around the heater, were tested; produced the highest h values for average pore diameters of 0.5 mm, and covering thickness of 0.972 mm. The synergistic effect on h of the interfacial energies of mixtures at their critical micelle concentration, and porous coverings was measured. Therefore, the independent driving forces combined in this study for increasing pool boiling heat transfer are (a) spreadability of the liquid on the solid; (b) the bubble's size reduction, achieved by micelle states; and (c) the bubble's breakage, induced by the porous coverings, for vapor flow not under pressure drop control. (author)

  13. Effect of nitrogen addition on the performance of microbial fuel cell anodes

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. © 2010 Elsevier Ltd.

  14. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    Science.gov (United States)

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  15. COFFEE - Coherent Optical System Field Trial for Spectral Efficiency Enhancement

    DEFF Research Database (Denmark)

    Imran, Muhammad; Fresi, Francesco; Rommel, Simon

    2016-01-01

    The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented.......The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented....

  16. An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Junnian; Peng, Tianyou; Shi, Wenye; Li, Renjie; Xia, Jiangbin

    2013-01-01

    A novel binary ionic liquid electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and binary ionic liquids, which is composed of 1-butyl-3-methylimidazolium iodide (BMII) and 1-butyl-3-methylimidazolium thiocyanate (BMISCN), is developed for dye-sensitized solar cells (DSSCs). It is found that incorporation of LiTFSI as charge transfer promoter with BMII has positive effect on the interfacial charge transfer of the dye/TiO 2 film, further addition of BMISCN into the above composite electrolyte can take advantage of its low viscosity to enhance the ionic conductivity and reduce the interfacial charge transfer resistance, and a photovoltaic conversion efficiency of 5.55% is obtained from the solar cell fabricated with the optimized binary ionic liquid electrolyte without iodine participation under AM 1.5 illumination at 100 mW cm −2 , with a 108.6% improvement in the efficiency with lower resistance and higher ionic conductivity as compared to the solar cell fabricated with single BMII ionic liquid-based electrolyte. The above results should be attributed to the reduced charge recombination and the effective interfacial charge transfer in the solar cell

  17. Enhanced counting efficiency of Cerenkov radiation from bismuth-210

    International Nuclear Information System (INIS)

    Peck, G.A.; Smith, J.D.

    1998-01-01

    This paper describes the measurement of 210 Bi by Cerenkov counting in a commercial liquid scintillation counter. The counting efficiency in water is 0.17 counts per second per Becquerel (17%). When the enhancers Triton X-100 (15% v/v) and sodium salicylate (1% m/v) are added to the solution the counting efficiency for 210 Bi increases from 17% to 75%. The 210 Po daughter of 210 Bi causes interference of 0.85 counts per second per Becquerel in the presence of the enhancers but not in water. When 210 Bi and 210 Po are present in secular equilibrium the total counting efficiency is 160%. When 210 Bi and 210 Po are not in secular equilibrium the 210 Po can be removed immediately before counting by plating onto silver foil. The use of the enhancers gives a substantial increase in counting efficiency compared to counting in water. Compared with solutions used in liquid scintillation counting the enhancer solution is inexpensive and can be disposed of without environmental hazard. (author)

  18. Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Kim, Sang-Wan; Ngo, Duc Tung; Heo, Jaeyeong; Park, Choong-Nyeon; Park, Chan-Jin

    2017-01-01

    Highlights: • Electrodeposition was applied for the synthesis of Ge/C composite. • High coulombic efficiency of ∼85% in the first cycle was attained for Ge/C composite. • Full cell of Ge/C-LiCoO 2 exhibits excellent electrochemical performance, without pre-lithiation of Ge/C. - Abstract: We demonstrate the synthesis of nano Ge/C composite using a facile and cost-effective electrochemical deposition method, and its application as an anode material in Li-ion batteries. Nano Ge/C composite is electrodeposited directly on Cu foil in ethylene glycol containing GeCl 4 and carbon black. The Ge particles with an average size of ∼20 nm are uniformly covered with carbon. Compared with the pure Ge electrode, the Ge/C electrode exhibits a higher first reversible capacity of 1224 mA g −1 , and maintains a capacity of 1095 mAh g −1 at 0.1C over 50 cycles. Even at the high rate of 2C, the capacity of the Ge/C electrode is still high at 972 mAh g −1 . The presence of carbon black and pores in the Ge/C electrode improves the conductivity of the electrode, and mitigates the stress inside the electrode by supplying buffer volume, leading to the enhanced electrochemical characteristics of the electrode. Further, the full Li-ion cell composed of Ge/C anode and LiCoO 2 cathode exhibits good cyclability, rate capability, and coulombic efficiency.

  19. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    International Nuclear Information System (INIS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-01-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ∼1.0 × 10 10 cm −2 and 3.0 × 10 10 cm −2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ∼600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure. (paper)

  20. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    Science.gov (United States)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  1. How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor's Premise to Currently Proposed Inter- and Intra-Molecular Mixtures.

    Science.gov (United States)

    Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny

    2013-01-01

    The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.

  2. Fast ion transport at solid-solid interfaces in hybrid battery anodes

    Science.gov (United States)

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2018-04-01

    Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.

  3. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  4. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  5. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J

    2006-01-01

    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  6. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    KAUST Repository

    Ou, Yiyu

    2017-09-09

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  7. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    KAUST Repository

    Ou, Yiyu; Iida, Daisuke; Liu, Jin; Wu, Kaiyu; Ohkawa, Kazuhiro; Boisen, Anja; Petersen, Paul Michael; Ou, Haiyan

    2017-01-01

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  8. Functional interface of polymer modified graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Komaba, S.; Ozeki, T.; Okushi, K. [Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2009-04-01

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm{sup -3} LiClO{sub 4} ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li{sup +}, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface. (author)

  9. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    Science.gov (United States)

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  10. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    Science.gov (United States)

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  11. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  12. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  13. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3%溶液法制备有机太阳电池阳极界面修饰层MoO3

    Institute of Scientific and Technical Information of China (English)

    李炎平; 於黄忠; 董一帆; 黄欣欣

    2016-01-01

    在全溶液低温制备高效、稳定有机光伏器件过程中,合理选择制备器件界面修饰材料的方法至关重要,它已成为近期有机光伏领域的重点研究内容之一.合理的界面材料能降低界面的势垒高度,减少器件的串联电阻.溶液法制备三氧化钼(MoO3)阳极界面缓冲层能有效地改善有机太阳电池阳极界面收集和载流子传输的效率,从而提高太阳电池能量转换效率,同时也提高太阳电池的稳定性.本文综述了近年来溶液法制备有机太阳电池阳极界面修饰层MoO3的研究进展,介绍了阳极界面修饰层MoO3的各种制备方法与原理,阐述了基于溶液法制备界面修饰层MoO3薄膜的研究现状与存在问题,以期为全溶液法制备高效稳定有机太阳电池的研究提供有价值的参考.%For the whole solution-processed efficient and stable organic photovoltaic devices at low temperature,reasonably selecting the method of interface modification material preparation is very crucial.It has become one of the most focuses in research community of organic photovoltaics in recent years.By choosing suitable interfacial materials,the energetic barrier height at the interface could be reduced to form an ohmic contact with less series resistance,inducing high charge collection efficiency of the corresponding electrodes for holes or electrons.Solution-prepared molybdenum oxide (MoO3) as anode buffer layer can effectively improve the efficiency of interface collection and carrier transmission,improving the energy conversion efficiency and stability of organic solar cells.This article reviews the research progress of anode buffer layer MoO3 of organic solar cells in recent years,introduces the some preparation methods and principles of MoO3 as anode interface layers,elaborated the current situation and existing problems of MoO3 film based on the prepared solution of interfacial modification,which provides valuable references for the

  14. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    Science.gov (United States)

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  16. Evaluation of performance enhancement by condensing the anode moisture in a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Shouzhen; Chen, Ben; Shu, Peng; Luo, Maji; Xie, Changjun; Quan, Shuhai; Tu, Zhengkai; Yu, Yi

    2017-01-01

    Highlights: • Anode Moisture condensing is introduced into a PEMFC stack. • Performance improves at high current density and high stack temperature after AMC. • MEA is dehydrated and poor performance occurs at low current density during AMC. - Abstract: Water management is an important issue for proton exchange membrane fuel cells. Back-diffusion of water from cathode to anode often occurs due to the differences in concentration and pressure during operation of fuel cell, resulting in the flooding and severe carbon corrosion in the cathode. Herein, we report a novel method of anode moisture condensing (AMC) in which a condenser is set at the outlet of the anode to cool down the anode moisture. With the help of AMC, liquid water is condensed from the moisture due to the variation of the saturated pressure of water vapor, which can accelerate the evaporating of the liquid water inside the anode and mitigate the probability of water flooding. A ten-cell stack with a condenser at the outlet of the anode is fabricated to systematically investigate the effects of the stack temperature and flow rate on the stack performance. The result shows that the PEMFC performance can be greatly improved at high current density and high operation temperature under the condition of AMC. The stack exhibits very similar performance before and after application of AMC below 500 mA cm"−"2, whereas the output power increases from 405 W to 436 W at 600 mA cm"−"2 at 65 °C. With further increase in operation temperature to 80 °C, the average voltage increases from 0.598 V to 0.641 V even at 500 mA cm"−"2. Moreover, the application of AMC can speed up the water evaporation, leading to the dehydration of the membrane and thus poor performance of PEMFC at low current density.

  17. Synthesis of Won-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes

    KAUST Repository

    Han, Shikui

    2017-07-04

    Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn -WX2 (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a proof-of-concept application, the WOn -WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO2.9 NP-WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.

  18. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    Directory of Open Access Journals (Sweden)

    Ou Yiyu

    2018-01-01

    Full Text Available We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  19. Preparation and electrochemistry of a pyrene-linked iron terpyridine and its anodic redox polymer

    International Nuclear Information System (INIS)

    Lin, Hsiao-Chu; Straus, Daniel A.; Johnson, Victoria Anne; Lu, Jia E.; Lopez, Louise; Terrill, Roger H.

    2012-01-01

    An iron(II)bis-terpyridine complex bearing 4′ pendant pyrenyl groups on each ligand (Fe(tpySCH 2 -pyr) 2 2+ ) was synthesized, characterized electrochemically and was shown to form a novel redox polymer via anodic electropolymerization. Immersion of glassy carbon electrodes into dilute acetonitrile solutions of the complex and then into clean electrolyte established that the complex will physisorb onto glassy carbon at 0.1 monolayer coverage from 500 μM solution. Anodic cyclic voltammetry of the pyrenyl iron compound revealed well-resolved Fe(II/III) centered redox waves near 0.9 V and an irreversible, pyrene centered oxidation at ca. 1.1 V. The Fe(II/III) waves grew in magnitude over time and persisted in fresh complex-free electrolyte indicating a surface electropolymerization reaction most likely mediated via the pyrene pendant groups, and exhibiting facile charge transport through a ca. 100 nm polymer film. Spectroelectrochemical analysis of Fe(tpySCH 2 -pyr) 2 (OTf) 2 films grown on indium–tin oxide transparent electrodes confirmed the presence of a Fe(II/III) redox-active film that has a nearly Nernstian response, but with a small Fe(II) component that does not oxidize interfacially.

  20. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Na, Zhaolin; Huang, Gang; Liang, Fei; Yin, Dongming; Wang, Limin

    2016-08-16

    The preparation of novel one-dimensional core-shell Fe/Fe2 O3 nanowires as anodes for high-performance lithium-ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2 O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core-shell Fe/Fe2 O3 nanowire maintains an excellent reversible capacity of over 767 mA h g(-1) at 500 mA g(-1) after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g(-1) , a stable capacity as high as 538 mA h g(-1) could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high-performance LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Fangwei; Zhang, Hui, E-mail: meszhanghui@zju.edu.cn; Qi, Yue; Wang, Jiazheng; Du, Ning; Yang, Deren

    2013-09-05

    Highlights: •Nanostructured SnCo/Cu electrodes have been successfully fabricated. •A simple electrodeposition approach was employed. •The Cu arrays offer large surface area and improve electronic/ionic conductivity. •The electrodes show improved performance as anode for Li-ion batteries. •The improved performance was attributed to the nanostructured current collectors. -- Abstract: In this article, we report a two-step electrodeposition method for the synthesis of Cu/SnCo core–shell rod-shaped arrays as anodes of lithium-ion batteries. Firstly, the arrayed Cu nanorods with diameters of 200 nm were fabricated on a Cu foil through an electrodeposition method with alumina oxide membrane (AAO) as the template. Secondly, the SnCo alloy shells were subsequently electrodeposited on the surface of the rod-shaped Cu arrays to form the hybrid nanostructures. These hybrid electrodes delivered the enhanced cyclic performance and high rate capability serving as the anode materials for lithium-ion batteries. The improved electrochemical performance might be attributed to the large surface-to-volume area, sufficient buffering space, and high electronic conductivity associated with these 3-dimensional (3D) nanostructures.

  2. Interfacial stability with mass and heat transfer

    International Nuclear Information System (INIS)

    Hsieh, D.Y.

    1977-07-01

    A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer

  3. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

    KAUST Repository

    Begum, Raihana; Parida, Manas R.; Abdelhady, Ahmed L.; Banavoth, Murali; AlYami, Noktan; Ahmed, Ghada H.; Hedhili, Mohamed N.; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT

  4. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Iida, Daisuke; Liu, Jin

    2018-01-01

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extr...

  5. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    Science.gov (United States)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  6. Performance and stability of a liquid anode high-temperature metal-air battery

    Science.gov (United States)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  7. Determination of interfacial heat transfer coefficient for TC11 titanium alloy hot forging

    Science.gov (United States)

    Lu, Baoshan; Wang, Leigang; Geng, Zhe; Huang, Yao

    2017-10-01

    In this paper, based on self-developed experimental apparatus, the upsetting test of TC11 titanium alloy on the hot flat die was conducted and Beck's nonlinear inverse estimation method was adopted to calculate the interfacial heat transfer coefficient (IHTC) and the change rules of IHTC following billet deformation rate, average interfacial temperature and holding time were investigated respectively. Experimental results indicate that IHTC increases with the increase of deformation rate as a whole, and the billet deformation heat and interfacial friction heat during forming that remarkably contribute to IHTC and the contributions by heat conduction to IHTC is differ from that by friction; the glass lubricant coated on the billet surface that weakens the heat transfer situation in the early stage of forging, however, this blocking effect of lubricant on IHTC soon vanishes with increasing deformation rate and it enhances the interface heat transfer later; the average interfacial temperature impacts on IHTC in many aspects and a high average interfacial temperature IHTC corresponds to a high IHTC when the deformation rate is certain, but this changing trend is not monotonous; the IHTC decreases with the increase of holding time due to oxidation. After certain holding time, the IHTC is only related to temperature and pressure in the absence of deformation rate, and the influence of pressure on IHTC is larger than that of temperature on it.

  8. Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Fan; Song, Jun; Hu, Rui; Xiang, Yuren; He, Junjie; Hao, Yuying; Lian, Jiarong; Zhang, Bin; Zeng, Pengju; Qu, Junle

    2018-05-01

    Organic-inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (V OC ). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the V OC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes.

    Science.gov (United States)

    Chen, Bingbing; Ju, Jiangwei; Ma, Jun; Zhang, Jianjun; Xiao, Ruijuan; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li 10 GeP 2 S 12 (LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li + migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS 4 - and GeS 4 -teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS 4 -terminated LGPS[001] surface (Li/PS 4 -LGPS) and the GeS 4 -terminated LGPS[001] surface (Li/GeS 4 -LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS 4 -LGPS and Li/GeS 4 -LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li + crossing the Li/GeS 4 -LGPS interface were relatively low compared with the Li/PS 4 -LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li + diffusion behaviors in all-solid-state batteries.

  11. Vacuum-Assisted Self-Assembly of Polymer Derived Siliconoxycarbide-Graphene Composite as Li-ion Battery Anode

    Science.gov (United States)

    David, Lamuel; Singh, Gurpreet

    2013-03-01

    Exfoliated graphene oxide (GO) and polysiloxane were blended and pyrolyzed to synthesize freestanding SiOC-graphene composite papers (~ 10 μm thick). The structural and chemical characterization of the composite prepared with varying ceramic concentrations was carried out using electron microscopy, XRD, XPS and FT-infrared spectroscopy. High resolution microscopy images shows layer by layer stacking of GO sheets and an increase in interlayer spacing was observed by X-ray analysis. FTIR peaks at 3400 cm-1 (O-H), 1720 cm-1 (C =O), 1600 cm-1 (graphene), 3056 cm-1 (Si-CH =CH2) and 1034 cm-1 (Si-O-Si) confirmed the successful functionalization of SiOC with GO. Thermo-gravimetric analysis showed enhanced thermodynamic stability of the composite paper up to at least 700 °C in flowing air. The SiOC/Graphene composite paper anodes showed stable electrochemical capacity of approx. 500 mAh/g which was twice that of free standing graphene anodes. The average coulombic efficiency (second cycle onwards) was observed to be approx. 97%.

  12. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  13. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    Science.gov (United States)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  14. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP

    Directory of Open Access Journals (Sweden)

    WEI Ru-bin

    2016-12-01

    Full Text Available To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP, the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.

  15. Interfacial heat transfer - State of the art

    International Nuclear Information System (INIS)

    Yadigaroglu, G.

    1987-01-01

    Interfacial heat exchanges control the interfacial mass exchange rate, depend on the interfacial area, and are tied to the prediction of thermal nonequilibrium. The nature of the problem usually requires the formulation of mechanistic laws and precludes the general use of universal correlations. This is partly due to the fact that the length scale controlling the interfacial exchanges varies widely from one situation to another and has a strong influence on the exchange coefficients. Within the framework of the ''two-fluid models'', the exchanges occurring at the interfaces are explicitly taken into consideration by the jump condition linking the volumetric mass exchange (evaporation) rate between the phases, to the interfacial energy transfer rates

  16. Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots

    International Nuclear Information System (INIS)

    Ruiyi, Li; Yuanyuan, Jiang; Xiaoyan, Zhou; Zaijun, Li; Zhiguo, Gu; Guangli, Wang; Junkang, Liu

    2015-01-01

    Graphical abstract: The study reported a facile synthesis of Li4Ti5O12/nitrogen and sulfur co-doped graphene quantum dots (LTO/N,S-GQDs). The unique architecture and the introduction of N,S-GQDs create both ultrafast electron transfer and electrolyte transport. The as-prepared LTO/N,S-GQDs anode provides prominent advantage of specific capacity, high-rate performance and cycle stability. - Highlights: • We reported a new lithium titanate/nitrogen and sulfur co-doped graphene quantum dots hybrid • The synthesis creates a crystalline interconnected porous framework composed of nanoscale LTO • The unique architecture achieves to maximize the rate performance and enhance the power density • Introduction of N,S-GQDs greatly enhances the electron transfer and the storage lithium capacity • The hybrid anode provides an excellent electrochemical performance for lithium-ion batteries - ABSTRACT: The paper reported a facile synthesis of lithium titanate/nitrogen and sulfur co-doped graphene quantum dots(LTO/N,S-GQDs). Tetrabutyl titanate was dissolved in tertbutanol and heated to refluxing state by microwave irradiation. Then, lithium acetate was added into the mixed solution to produce LTO precursor. The precursor was hybridized with N,S-GQDs in ethanol. Followed by drying and thermal annealing at 500 °C in Ar/H_2 to obtain LTO/N,S-GQDs. The synthesis creates fully crystalline interconnected porous framework composed of nanoscale LTO crystals. The unique architecture achieves to maximize the high-rate performance and enhance the power density. More importantly, the introduction of N,S-GQDs don't almost influence on the electrolyte transport, but greatly improve the electron transfer and the storage lithium capacity. The LTO/N,S-GQDs anode exhibits remarkably enhanced electrochemical performance for lithium ion battery. The specific discharge capacity is 254.2 mAh g"−"1 at 0.1C and 126.5 mAh g"−"1 at 10C. The capacity remains 96.9% at least after 2000 cycles

  17. The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.

    Science.gov (United States)

    Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2018-06-05

    Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity, and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of two to three when GO is exposed to moderate (~30% water wt.) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.

  18. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  19. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    International Nuclear Information System (INIS)

    Ohtsu, Naofumi; Kozuka, Taro; Hirano, Mitsuhiro; Arai, Hirofumi

    2015-01-01

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO 2 layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH 4 ) 2 O·5B 2 O 3 , (NH 4 ) 2 SO 4 , or (NH 4 ) 3 PO 4 , after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO 2 ), while incorporation from electrolyte was only observed for (NH 4 ) 3 PO 4 . Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO 2 formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials

  20. Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2013-01-28

    An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.