WorldWideScience

Sample records for efficiency optimizing shaft

  1. An Efficiency Optimizing Shaft Speed Control for Ships in Moderate Seas

    DEFF Research Database (Denmark)

    Blanke, Mogens; Pivano, Luca; Johansen, Tor Arne

    2007-01-01

    Ships in moderate sea experience time-varying thrust and torque load on the shaft of their prime mover. The reason is the varying inflow velocity to the propeller during the passage of a wave. This variation has been considered a nuisance to the main engine control where the induced fluctuations...

  2. Optimization Study of Shaft Tubular Turbine in a Bidirectional Tidal Power Station

    Directory of Open Access Journals (Sweden)

    Xinfeng Ge

    2013-01-01

    Full Text Available The shaft tubular turbine is a form of tidal power station which can provide bidirectional power. Efficiency is an important turbine performance indicator. To study the influence of runner design parameters on efficiency, a complete 3D flow-channel model of a shaft tubular turbine was developed, which contains the turbine runner, guide vanes, and flow passage and was integrated with hybrid grids calculated by steady-state calculation methods. Three aspects of the core component (turbine runner were optimized by numerical simulation. All the results were then verified by experiments. It was shown that curved-edge blades are much better than straight-edge blades; the optimal blade twist angle is 7°, and the optimal distance between the runner and the blades is 0.75–1.25 times the diameter of the runner. Moreover, the numerical simulation results matched the experimental data very well, which also verified the correctness of the optimal results.

  3. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  4. Parameter optimization method for longitudinal vibration absorber of ship shaft system

    Directory of Open Access Journals (Sweden)

    LIU Jinlin

    2017-05-01

    Full Text Available The longitudinal vibration of the ship shaft system is the one of the most important factors of hull stern vibration, and it can be effectively minimized by installing a longitudinal vibration absorber. In this way, the vibration and noise of ships can be brought under control. However, the parameters of longitudinal vibration absorbers have a great influence on the vibration characteristics of the shaft system. As such, a certain shafting testing platform was studied as the object on which a finite model was built, and the relationship between longitudinal stiffness and longitudinal vibration in the shaft system was analyzed in a straight alignment state. Furthermore, a longitudinal damping model of the shaft system was built in which the parameters of the vibration absorber were non-dimensionalized, the weight of the vibration absorber was set as a constant, and an optimizing algorithm was used to calculate the optimized stiffness and damping coefficient of the vibration absorber. Finally, the longitudinal vibration frequency response of the shafting testing platform before and after optimizing the parameters of the longitudinal vibration absorber were compared, and the results indicated that the longitudinal vibration of the shafting testing platform was decreased effectively, which suggests that it could provide a theoretical foundation for the parameter optimization of longitudinal vibration absorbers.

  5. Analysis and optimization of dynamic model of eccentric shaft grinder

    Science.gov (United States)

    Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying

    2018-04-01

    Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.

  6. Optimal energy control of a crushing process based on vertical shaft impactor

    International Nuclear Information System (INIS)

    Numbi, B.P.; Xia, X.

    2016-01-01

    Highlights: • Energy optimal control strategy of a VSI crushing process is modeled. • Potential of a daily energy cost saving of about 49.7% is shown. • Potential of a daily energy saving of about 15.3% is shown. • Most of energy cost saving is due to the optimal load shifting under time-of-use tariff. • Energy saving is due to the operation of the process at the boundary of the admissible region. - Abstract: This paper presents an optimal control model to improve the operation energy efficiency of a vertical shaft impact (VSI) crushing process. The optimal control model takes the energy cost as the performance index to be minimized by accounting for the time-of-use tariff and process constraints such as storage capacity of the VSI crusher hopper, capacity of the main storage system, flow rate limits, cascade ratio setting, production requirement and product quality requirement. The control variables in the developed model are the belt conveyor feed rate, the material feed rate into the VSI crusher rotor, the bi-flow or cascade feed rate and the rotor tip speed of the crusher. These four control variables are optimally coordinated in order to improve the operation energy efficiency of the VSI crushing process. Simulation results based on a crushing process in a coal-fired power plant demonstrate a potential of a daily energy cost saving of about 49.7% and energy saving of about 15.3% in a high-demand season weekday.

  7. OPTIMIZATION OF PLY STACKING SEQUENCE OF COMPOSITE DRIVE SHAFT USING PARTICLE SWARM ALGORITHM

    Directory of Open Access Journals (Sweden)

    CHANNAKESHAVA K. R.

    2011-06-01

    Full Text Available In this paper an attempt has been made to optimize ply stacking sequence of single piece E-Glass/Epoxy and Boron /Epoxy composite drive shafts using Particle swarm algorithm (PSA. PSA is a population based evolutionary stochastic optimization technique which is a resent heuristic search method, where mechanics are inspired by swarming or collaborative behavior of biological population. PSA programme is developed to optimize the ply stacking sequence with an objective of weight minimization by considering design constraints as torque transmission capacity, fundamental natural frequency, lateral vibration and torsional buckling strength having number of laminates, ply thickness and stacking sequence as design variables. The weight savings of the E-Glass/epoxy and Boron /Epoxy shaft from PAS were 51% and 85 % of the steel shaft respectively. The optimum results of PSA obtained are compared with results of genetic algorithm (GA results and found that PSA yields better results than GA.

  8. High Efficiency Jobsite Detection of Wind Turbine Main Shaft%风机主轴的现场高效检测

    Institute of Scientific and Technical Information of China (English)

    郭君渝; 石小兵

    2014-01-01

    采用先进的专业检测工具对风机主轴进行现场检测。通过优化检测手段,创新检测方法,有效提高风机主轴的现场检测效率。%Jobsite inspection has been conducted on wind turbine main shaft by advanced and professional detec-tion tool.Though implementing of detection means optimization and detection method innovation, jobsite detection effi-ciency of wind turbine main shaft has been improved effectively.

  9. Generalized solution of design optimization and failure analysis of composite drive shaft

    Energy Technology Data Exchange (ETDEWEB)

    Kollipalli, K.; Shivaramakrishna, K.V.S.; Prabhakaran, R.T.D. [Birla Institute of Technology and Science, Goa (India)

    2012-07-01

    Composites have an edge over conventional metals like steel and aluminum due to higher stiffness-to-weight ratio and strength-to-weight ratio. Due to these advantages, composites can bring out a revolutionary change in materials used in automotive engineering, as weight savings has positive impacts on other attributes like fuel economy and possible noise, vibration and harshness (NVH). In this paper, the drive line system of an automotive system is targeted for use of composites by keeping constraints in view such as such as torque transmission, torsional buckling load and fundamental natural frequency. Composite drive shafts made of three different composites ('HM Carbon/HS Carbon/E-glass'-epoxy) was modeled using Catia V5R16 CPD workbench and a finite element analysis with boundary conditions, fiber orientation and stacking sequence was performed using ANSYS Composite module. Results obtained were compared to theoretical results and were found to be accurate and in the limits. This paper also speaks on drive shaft modeling and analysis generalization i.e., changes in stacking sequence in the future can be incorporated directly into ANSYS model without modeling it again in Catia. Hence the base model and analysis method made up in this analysis generalization facilitated by CAD/CAE can be used to carry out any composite shaft design optimization process. (Author)

  10. Efficient AUC optimization for classification

    NARCIS (Netherlands)

    Calders, T.; Jaroszewicz, S.; Kok, J.N.; Koronacki, J.; Lopez de Mantaras, R.; Matwin, S.; Mladenic, D.; Skowron, A.

    2007-01-01

    In this paper we show an efficient method for inducing classifiers that directly optimize the area under the ROC curve. Recently, AUC gained importance in the classification community as a mean to compare the performance of classifiers. Because most classification methods do not optimize this

  11. Representative assessment of long bone shaft biomechanical properties: an optimized testing method

    NARCIS (Netherlands)

    Bramer, J. A.; Barentsen, R. H.; vd Elst, M.; de Lange, E. S.; Patka, P.; Haarman, H. J.

    1998-01-01

    Whole bone bending tests are commonly used in mechanical evaluation of long bones. Reliable information about the midshaft can only be obtained if the bending moment is uniformly distributed along the shaft, and if the distribution of the bending stress is not adversely influenced by rigid clamping

  12. Optimization of spacing between explosion holes in advancing shafts of uranium mine in Saghand

    International Nuclear Information System (INIS)

    Nikgoftar, M. R.; Bahrami, A.; Shoja, A.

    2004-01-01

    Uranium mine in Saghand area can be mined and exploited using different underground methods. In order to achieve this goal, two vertical shafts each 350 m in length were sunk and equipped. In this article two methods which have been applied by Russian and China experts will be explained and then they will be compared with each other. Based on the advantages and disadvantages of the applied methods, a third method has been derived from their comparisons. This last method was found to have many advantages and was accepted as an selected method for the Saghand uranium exploitation

  13. Shaft adjuster

    Science.gov (United States)

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  14. Optimization analysis of propulsion motor control efficiency

    Directory of Open Access Journals (Sweden)

    CAI Qingnan

    2017-12-01

    Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.

  15. Clay modified crushed salt for shaft sealing elements. Material optimization and evaluation in field tests

    Energy Technology Data Exchange (ETDEWEB)

    Glaubach, Uwe; Hofmann, Martin; Gruner, Matthias; Kudla, Wolfram [TU Bergakademie Freiberg (Germany). Inst. of Mining and Special Civil Engineering

    2015-07-01

    Salt-based materials are intended to use for backfill and sealing systems in geotechnical barriers in underground HLW-repositories. Due to the creep of the saliniferous host rock, the salt backfill will be compacted during several hundreds or thousands years of operation to a minimum of porosity resp. permeability. To raise the sealing potential of a salt-based backfill, the porosity after construction should be minimized by optimal material performance and compaction performance. A procedure to optimize the grain size distribution of crushed salt and its water and clay content is described. The optimized salt fraction gets a better compaction behavior than straight mine-run salt. The addition of a filler-like material (e.g. Friedland Clay Powder) reduces the total porosity and permeability. Backfill columns made from crushed salt and clay probably include an instant sealing function.

  16. Efficient Reanalysis Procedures in Structural Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded

    This thesis examines efficient solution procedures for the structural analysis problem within topology optimization. The research is motivated by the observation that when the nested approach to structural optimization is applied, most of the computational effort is invested in repeated solutions...... on approximate reanalysis. For cases where memory limitations require the utilization of iterative equation solvers, we suggest efficient procedures based on alternative termination criteria for such solvers. These approaches are tested on two- and three-dimensional topology optimization problems including...

  17. Computer-assisted three-dimensional correlation between the femoral neck-shaft angle and the optimal entry point for antegrade nailing.

    Science.gov (United States)

    Anastopoulos, George; Chissas, Dionisios; Dourountakis, Joseph; Ntagiopoulos, Panagiotis G; Magnisalis, Evaggelos; Asimakopoulos, Antonios; Xenakis, Theodore A

    2010-03-01

    Optimal entry point for antegrade femoral intramedullary nailing (IMN) remains controversial in the current medical literature. The definition of an ideal entry point for femoral IMN would implicate a tenseless introduction of the implant into the canal with anatomical alignment of the bone fragments. This study was undertaken in order to investigate possible existing relationships between the true 3D geometric parameters of the femur and the location of the optimum entry point. A sample population of 22 cadaveric femurs was used (mean age=51.09+/-14.82 years). Computed-tomography sections every 0.5mm for the entire length of femurs were produced. These sections were subsequently reconstructed to generate solid computer models of the external anatomy and medullary canal of each femur. Solid models of all femurs were subjected to a series of geometrical manipulations and computations using standard computer-aided-design tools. In the sagittal plane, the optimum entry point always lied a few millimeters behind the femoral neck axis (mean=3.5+/-1.5mm). In the coronal plane the optimum entry point lied at a location dependent on the femoral neck-shaft angle. Linear regression on the data showed that the optimal entry point is clearly correlated to the true 3D femoral neck-shaft angle (R(2)=0.7310) and the projected femoral neck-shaft angle (R(2)=0.6289). Anatomical parameters of the proximal femur, such as the varus-valgus angulation, are key factors in the determination of optimal entry point for nailing. The clinical relevance of the results is that in varus hips (neck-shaft angle shaft angle between 120 degrees and 130 degrees , the optimal entry point lies just medially to the trochanter tip (at the piriformis fossa) and the use of stiff implants is safe. In hips with neck-shaft angle over 130 degrees the anatomical axis of the canal is medially to the base of the neck, in a "restricted area". In these cases the entry point should be located at the insertion of the

  18. On the efficiency of chaos optimization algorithms for global optimization

    International Nuclear Information System (INIS)

    Yang Dixiong; Li Gang; Cheng Gengdong

    2007-01-01

    Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions

  19. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  20. An Efficient Algorithm for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Sergio Gerardo de-los-Cobos-Silva

    2015-01-01

    Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.

  1. Efficient reanalysis techniques for robust topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Sigmund, Ole; Lazarov, Boyan Stefanov

    2012-01-01

    efficient robust topology optimization procedures based on reanalysis techniques. The approach is demonstrated on two compliant mechanism design problems where robust design is achieved by employing either a worst case formulation or a stochastic formulation. It is shown that the time spent on finite...

  2. Improving the efficiency of aerodynamic shape optimization

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1994-01-01

    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  3. Efficient optimization of electrostatic interactions between biomolecules.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  4. Efficient Iris Localization via Optimization Model

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2017-01-01

    Full Text Available Iris localization is one of the most important processes in iris recognition. Because of different kinds of noises in iris image, the localization result may be wrong. Besides this, localization process is time-consuming. To solve these problems, this paper develops an efficient iris localization algorithm via optimization model. Firstly, the localization problem is modeled by an optimization model. Then SIFT feature is selected to represent the characteristic information of iris outer boundary and eyelid for localization. And SDM (Supervised Descent Method algorithm is employed to solve the final points of outer boundary and eyelids. Finally, IRLS (Iterative Reweighted Least-Square is used to obtain the parameters of outer boundary and upper and lower eyelids. Experimental result indicates that the proposed algorithm is efficient and effective.

  5. Efficient search by optimized intermittent random walks

    International Nuclear Information System (INIS)

    Oshanin, Gleb; Lindenberg, Katja; Wio, Horacio S; Burlatsky, Sergei

    2009-01-01

    We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor site with probability α or go off lattice with probability 1 - α to move in a random direction until it lands back on the lattice at a fixed distance L away from the departure point. Considering α and L as optimization parameters, we seek to enhance the chances of successful detection by minimizing the probability P N that the target remains undetected up to the maximal search time N. We show that even in this simple model, a number of very efficient search strategies can lead to a decrease of P N by orders of magnitude upon appropriate choices of α and L. We demonstrate that, in general, such optimal intermittent strategies are much more efficient than Brownian searches and are as efficient as search algorithms based on random walks with heavy-tailed Cauchy jump-length distributions. In addition, such intermittent strategies appear to be more advantageous than Levy-based ones in that they lead to more thorough exploration of visited regions in space and thus lend themselves to parallelization of the search processes.

  6. Optimizing Temporal Queries: Efficient Handling of Duplicates

    DEFF Research Database (Denmark)

    Toman, David; Bowman, Ivan Thomas

    2001-01-01

    , these query languages are implemented by translating temporal queries into standard relational queries. However, the compiled queries are often quite cumbersome and expensive to execute even using state-of-the- art relational products. This paper presents an optimization technique that produces more efficient...... translated SQL queries by taking into account the properties of the encoding used for temporal attributes. For concreteness, this translation technique is presented in the context of SQL/TP; however, these techniques are also applicable to other temporal query languages....

  7. Energy efficiency improvement by gear shifting optimization

    Directory of Open Access Journals (Sweden)

    Blagojevic Ivan A.

    2013-01-01

    Full Text Available Many studies have proved that elements of driver’s behavior related to gear selection have considerable influence on the fuel consumption. Optimal gear shifting is a complex task, especially for inexperienced drivers. This paper presents an implemented idea for gear shifting optimization with the aim of fuel consumption minimization with more efficient engine working regimes. Optimized gear shifting enables the best possible relation between vehicle motion regimes and engine working regimes. New theoretical-experimental approach has been developed using On-Board Diagnostic technology which so far has not been used for this purpose. The matrix of driving modes according to which tests were performed is obtained and special data acquisition system and analysis process have been developed. Functional relations between experimental test modes and adequate engine working parameters have been obtained and all necessary operations have been conducted to enable their use as inputs for the designed algorithm. The created Model has been tested in real exploitation conditions on passenger car with Otto fuel injection engine and On-Board Diagnostic connection without any changes on it. The conducted tests have shown that the presented Model has significantly positive effects on fuel consumption which is an important ecological aspect. Further development and testing of the Model allows implementation in wide range of motor vehicles with various types of internal combustion engines.

  8. Optimized systems for energy efficient optical tweezing

    Science.gov (United States)

    Kampmann, R.; Kleindienst, R.; Grewe, A.; Bürger, Elisabeth; Oeder, A.; Sinzinger, S.

    2013-03-01

    Compared to conventional optics like singlet lenses or even microscope objectives advanced optical designs help to develop properties specifically useful for efficient optical tweezers. We present an optical setup providing a customized intensity distribution optimized with respect to large trapping forces. The optical design concept combines a refractive double axicon with a reflective parabolic focusing mirror. The axicon arrangement creates an annular field distribution and thus clears space for additional integrated observation optics in the center of the system. Finally the beam is focused to the desired intensity distribution by a parabolic ring mirror. The compact realization of the system potentially opens new fields of applications for optical tweezers such as in production industries and micro-nano assembly.

  9. Efficient dynamic optimization of logic programs

    Science.gov (United States)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  10. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  11. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  12. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is ...

  13. Kantian Optimization, Social Ethos, and Pareto Efficiency

    OpenAIRE

    John E. Roemer

    2012-01-01

    Although evidence accrues in biology, anthropology and experimental economics that homo sapiens is a cooperative species, the reigning assumption in economic theory is that individuals optimize in an autarkic manner (as in Nash and Walrasian equilibrium). I here postulate an interdependent kind of optimizing behavior, called Kantian. It is shown that in simple economic models, when there are negative externalities (such as congestion effects from use of a commonly owned resource) or positive ...

  14. Finite-size effect on optimal efficiency of heat engines.

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  15. Lean and Efficient Software: Whole-Program Optimization of Executables

    Science.gov (United States)

    2015-09-30

    Lean and Efficient Software: Whole-Program Optimization of Executables” Project Summary Report #5 (Report Period: 7/1/2015 to 9/30/2015...TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Lean and Efficient Software: Whole-Program Optimization of Executables 5a...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Lean and Efficient Software: Whole-Program

  16. CHOICE OF THE OPTIMAL PARAMETERS OF MEASURING THE SHAFT ROTATION FREQUENCY OF THE HYDRAULIC TRANSMISSION OF THE LOCOMOTIVE USING MICROCONTROLLER

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2017-04-01

    Full Text Available Purpose. The article provides for finding solution to the problem of developing and improving the means for measuring tachometric data of the previously created information and measuring system for testing hydraulic locomotive transmission by substantiating the optimal sensor design and signal processing algorithms. At the same time first of all it is necessary to start from the possibility of modifying the already existing test bench for hydraulic locomotive transmissions at the Dnipropetrovsk diesel locomotive repair plant «Promteplovoz». Methodology. In the work, the researchers proposed a methodology for modifying the sensor design and the algorithm for processing its signals. It is grounded on previous developments of tachometric sensor of the optical type on the basis of D-2MMU-2 sensor of the microprocessor automated test bench system of hydraulic locomotive transmission in the locomotive repair plant conditions. Selection of the necessary measurement algorithm and the number of sensor teeth is substantiated by calculating instrumental and methodological errors. Also, the studies aimed at identifying the source of interference in the measurement of rotational speed are described and solution for its elimination has been found. Findings. For the designed rotation speed sensor of the optical type based on the existing D-2MMU-2 sensor, the authors analyzed the dependence of the methodological and instrumental errors. Based on the obtained data more rational variant of the rotation speed calculation algorithm is proposed, and the number of teeth of the sensor disk is justified. Further, the main source of measurement interference was established and a method for improving the hardware of the hydraulic locomotive test bench was proposed. Originality. There were conducted the studies according to the methodological and instrumental errors of the designed rotation speed of sensor. The mechanisms of interference filtering arising from the

  17. Circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.

  18. Efficient evolutionary algorithms for optimal control

    NARCIS (Netherlands)

    López Cruz, I.L.

    2002-01-01

    If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use

  19. Rotary shaft seal

    International Nuclear Information System (INIS)

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing

  20. Optimal Energy Taxation for Environment and Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Y.D. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    Main purpose of this research is to investigate about how to use energy tax system to reconcile environmental protection and economic growth, and promote sustainable development with the emphasis of double dividend hypothesis. As preliminary work to attain this target, in this limited study I will investigate the specific conditions under which double dividend hypothesis can be valid, and set up the model for optimal energy taxation. The model will be used in the simulation process in the next project. As the beginning part in this research, I provide a brief review about energy taxation policies in Sweden, Netherlands, and the United States. From this review it can be asserted that European countries are more aggressive in the application of environmental taxes like energy taxes for a cleaner environment than the United States. In next part I examined the rationale for optimal environmental taxation in the first-best and the second-best setting. Then I investigated energy taxation how it can provoke various distortions in markets and be connected to the marginal environmental damages and environmental taxation. In the next chapter, I examined the environmentally motivated taxation in the point of optimal commodity taxation view. Also I identified the impacts of environmental taxation in various circumstances intensively to find out when the environment tax can yield double dividend after taking into account of even tax-interaction effects. Then it can be found that even though in general the environmental tax exacerbates the distortion in the market rather than alleviates, it can also improve the welfare and the employment under several specific circumstances which are classified as various inefficiencies in the existing tax system. (author). 30 refs.

  1. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  2. Optimal database locks for efficient integrity checking

    DEFF Research Database (Denmark)

    Martinenghi, Davide

    2004-01-01

    In concurrent database systems, correctness of update transactions refers to the equivalent effects of the execution schedule and some serial schedule over the same set of transactions. Integrity constraints add further semantic requirements to the correctness of the database states reached upon...... the execution of update transactions. Several methods for efficient integrity checking and enforcing exist. We show in this paper how to apply one such method to automatically extend update transactions with locks and simplified consistency tests on the locked entities. All schedules produced in this way...

  3. A Method for Determining Optimal Residential Energy Efficiency Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gestwick, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  4. Improved circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1974-01-01

    Comparative tests of modified and unmodified carbon ring seals showed that addition of helical grooves to conventional segmented carbon ring seals reduced leakage significantly. Modified seal was insensitive to shaft runout and to flooding by lubricant.

  5. Methods for optimizing over the efficient and weakly efficient sets of an affine fractional vector optimization program

    DEFF Research Database (Denmark)

    Le, T.H.A.; Pham, D. T.; Canh, Nam Nguyen

    2010-01-01

    Both the efficient and weakly efficient sets of an affine fractional vector optimization problem, in general, are neither convex nor given explicitly. Optimization problems over one of these sets are thus nonconvex. We propose two methods for optimizing a real-valued function over the efficient...... and weakly efficient sets of an affine fractional vector optimization problem. The first method is a local one. By using a regularization function, we reformulate the problem into a standard smooth mathematical programming problem that allows applying available methods for smooth programming. In case...... the objective function is linear, we have investigated a global algorithm based upon a branch-and-bound procedure. The algorithm uses Lagrangian bound coupling with a simplicial bisection in the criteria space. Preliminary computational results show that the global algorithm is promising....

  6. A Concept for Optimizing Behavioural Effectiveness & Efficiency

    Science.gov (United States)

    Barca, Jan Carlo; Rumantir, Grace; Li, Raymond

    Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.

  7. Optimal control of operation efficiency of belt conveyor systems

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2010-01-01

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.

  8. Optimal control of operation efficiency of belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2010-06-15

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)

  9. Efficiency Optimization in Class-D Audio Amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2015-01-01

    This paper presents a new power efficiency optimization routine for designing Class-D audio amplifiers. The proposed optimization procedure finds design parameters for the power stage and the output filter, and the optimum switching frequency such that the weighted power losses are minimized under...... the given constraints. The optimization routine is applied to minimize the power losses in a 130 W class-D audio amplifier based on consumer behavior investigations, where the amplifier operates at idle and low power levels most of the time. Experimental results demonstrate that the optimization method can...... lead to around 30 % of efficiency improvement at 1.3 W output power without significant effects on both audio performance and the efficiency at high power levels....

  10. Enhancement of the efficiency of the Open Cycle Phillips Optimized Cascade LNG process

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.; El-Nigeily, M.

    2016-01-01

    Highlights: • Expanders replaced JT valves in the Phillips Optimized Cascade liquefaction process. • Improvement in plant liquefaction efficiency was evaluated in presence of expanders. • Comparison of the different optimum cases for the liquefaction process was presented. - Abstract: This study aims to improve the performance of the Open Cycle Phillips Optimized Cascade Process for the production of liquefied natural gas (LNG) through the replacement of Joule–Thomson (JT) valves by expanders. The expander has a higher thermodynamic efficiency than the JT valve. Moreover, the produced shaft power from the expander is integrated into the process. The study is conducted using the Aspen HYSYS-V7 simulation software for simulation of the Open Cycle Phillips Optimized Cascade Process having the JT valves. Simulation of several proposed cases in which expanders are used instead of JT valves at different locations in the process as at the propane cycle, ethylene cycle, methane cycle and the upstream of the heavies removal column is conducted. The optimum cases clearly indicate that expanders not only produce power, but also offer significant improvements in the process performance as shown by the total plant power consumption, LNG production, thermal efficiency, plant specific power and CO_2 emissions reduction. Results also reveal that replacing JT valves by expanders in the methane cycle has a dominating influence on all performance criteria and hence, can be considered as the main key contributor affecting the Phillips Optimized Cascade Process leading to a notable enhancement in its efficiency. This replacement of JT valves by liquid expanders at different locations of the methane cycle encounters power savings in the range of 4.92–5.72%, plant thermal efficiency of 92.64–92.97% and an increase in LNG production of 5.77–7.04%. Moreover, applying liquid expanders at the determined optimum cases for the different cycles, improves process performance and

  11. Modeling and energy efficiency optimization of belt conveyors

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2011-01-01

    Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.

  12. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  13. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    Science.gov (United States)

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  14. An efficient multilevel optimization method for engineering design

    Science.gov (United States)

    Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.

    1988-01-01

    An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.

  15. Efficient solution method for optimal control of nuclear systems

    International Nuclear Information System (INIS)

    Naser, J.A.; Chambre, P.L.

    1981-01-01

    To improve the utilization of existing fuel sources, the use of optimization techniques is becoming more important. A technique for solving systems of coupled ordinary differential equations with initial, boundary, and/or intermediate conditions is given. This method has a number of inherent advantages over existing techniques as well as being efficient in terms of computer time and space requirements. An example of computing the optimal control for a spatially dependent reactor model with and without temperature feedback is given. 10 refs

  16. Lean and Efficient Software: Whole Program Optimization of Executables

    Science.gov (United States)

    2016-12-31

    19b. TELEPHONE NUMBER (Include area code) 12/31/2016 Final Technical Report (Phase I - Base Period) 30-06-2014 - 31-12-2016 Lean and Efficient...Software: Whole-Program Optimization of Executables Final Report Evan Driscoll Tom Johnson GrammaTech, Inc. 531 Esty Street Ithaca, NY 14850 Office of...hardening U U U UU 30 Tom Johnson (607) 273-7340 x.134 Page 1 of 30 “ Lean and Efficient Software: Whole-Program Optimization of Executables

  17. Shaft siting decision

    International Nuclear Information System (INIS)

    1987-08-01

    This study identifies and establishes relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors that impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 8 refs., 2 figs., 5 tabs

  18. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  19. Optimal shaping and positioning of energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Barović Dušan D.

    2017-01-01

    Full Text Available Due to the number of variables and the complexity of objective functions, optimal design of an energy-efficient building is hard combinatorial problem of multi-objective optimisation. Therefore, it is necessary to describe structure and its position in surroundings precisely but by as few variables as possible. This paper presents methodology for finding adequate methodology for defining geometry and orientation of a given building, as well as its elements of importance for energy-efficiency analysis.

  20. A fractional optimal control problem for maximizing advertising efficiency

    OpenAIRE

    Igor Bykadorov; Andrea Ellero; Stefania Funari; Elena Moretti

    2007-01-01

    We propose an optimal control problem to model the dynamics of the communication activity of a firm with the aim of maximizing its efficiency. We assume that the advertising effort undertaken by the firm contributes to increase the firm's goodwill and that the goodwill affects the firm's sales. The aim is to find the advertising policies in order to maximize the firm's efficiency index which is computed as the ratio between "outputs" and "inputs" properly weighted; the outputs are represented...

  1. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  2. Modeling Vertical Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency

    Science.gov (United States)

    2011-03-24

    be forced to flow in a 90 serpentine manner back and forth as it moves upward through the wetland (think waiting in line at Disneyland ). This...Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  3. Efficiency optimized control of medium-size induction motor drives

    DEFF Research Database (Denmark)

    Abrahamsen, F.; Blaabjerg, Frede; Pedersen, John Kim

    2000-01-01

    The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (<10 kW) this can be done without considering the relatively small converter losses, but for medium-size drives (10-1000 kW) the losses can not be disr......The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (... not be disregarded without further analysis. The importance of the converter losses on efficiency optimization in medium-size drives is analyzed in this paper. Based on the experiments with a 90 kW drive it is found that it is not critical if the converter losses are neglected in the control, except...... that the robustness towards load disturbances may unnecessarily be reduced. Both displacement power factor and model-based efficiency optimizing control methods perform well in medium-size drives. The last strategy is also tested on a 22 kW drive with good results....

  4. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  5. Comparing effectiveness and efficiency in technical specifications and maintenance optimization

    International Nuclear Information System (INIS)

    Martorell, Sebastian; Sanchez, Ana; Carlos, Sofia; Serradell, Vicente

    2002-01-01

    Optimization of technical specification requirements and maintenance (TS and M) has been found interesting from the very beginning at Nuclear Power Plants (NPPs). However, the resolution of such a kind of optimization problem has been limited often to focus only on individual TS and M-related parameters (STI, AOT, PM frequency, etc.) and/or adopting an individual optimization criterion (availability, costs, plant risks, etc.). Nevertheless, a number of reasons exist (e.g. interaction, similar scope, etc.) that justify the interest to focus on the coordinated optimization of all of the relevant TS and M-related parameters based on multiple criteria. The purpose of this paper is on signifying benefits and improvement areas in performing the coordinated optimization of TS and M through reviewing the effectiveness and efficiency of common strategies for optimizing TS and M at system level. A case of application is provided for a stand-by safety-related system to demonstrate the basic procedure and to extract a number of conclusions and recommendations from the results achieved. Thus, it is concluded that the optimized values depend on the particular TS and M-related parameters being involved and the solutions with the largest benefit (minimum risk or minimum cost) are achieved when considering the simultaneous optimization of all of them, although increased computational resources are also required. Consequently, it is necessary to analyze not only the value reached but also the performance of the optimization procedure through effectiveness and efficiency measures which lead to recommendations on potential improvement areas

  6. System design for shaft safety and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Owen, D.; Parsons, R.; Ward, R.

    1988-03-01

    The aim of this paper is to describe the process of designing a system to improve safety and productivity in shafts. The objectives and constraints for the design were set out in official reports following a shaft accident at Markham Colliery in 1973. The problems to be solved were: to enable the shaftsmen to transfer the existing statutory code of signals efficiently from, or on top of, a conveyance anywhere in the shaft to the winding engineman and banksman at the surface: to detect the existence of slack rope or to detect that conditions have arisen that slack rope could be created and transmit this information to where action can be taken; and to allow conversations between winding engineman, banksman and shaftsman making allowances for the high level of acoustic noise in shafts. The approach adopted for slack rope monitoring was to monitor the tension in the cage suspension gear, thus measuring a first order effect. The three problems have a common element: information must be transferred through the shaft. This particular problem was solved with guided radio, using the winding rope as the transmission medium. The radio signal is coupled into the winding rope by means of fixed toroid encircling it at the cage and fixed magnetic antennas at the surface. The design of a digital transmission system for signalling and tension data is discussed. The 'top down' modular approach used in the design enabled full advantage to be taken of the opportunities for building a more reliable, safer and flexible system presented by technologies new to the shaft environment. The resultant system, the Safecom Shaft Signalling Communication and Winder Safety Monitoring System type S100, is in regular use at over 20 installations. 3 refs., 4 figs., 1 tab.

  7. Extension of the Consolidation 3 shaft

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenkamp, G [Gesteins- und Tiefbau G.m.b.H., Recklinghausen (Germany, F.R.)

    1978-02-01

    The conversion of a mine shaft into a central winning shaft is described, in particular planning principles, problems to be solved, preliminary work, timber drawing, extension work, shaft deepening, and the installation of shaft internals.

  8. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  9. ProxImaL: efficient image optimization using proximal algorithms

    KAUST Repository

    Heide, Felix

    2016-07-11

    Computational photography systems are becoming increasingly diverse, while computational resources-for example on mobile platforms-are rapidly increasing. As diverse as these camera systems may be, slightly different variants of the underlying image processing tasks, such as demosaicking, deconvolution, denoising, inpainting, image fusion, and alignment, are shared between all of these systems. Formal optimization methods have recently been demonstrated to achieve state-of-the-art quality for many of these applications. Unfortunately, different combinations of natural image priors and optimization algorithms may be optimal for different problems, and implementing and testing each combination is currently a time-consuming and error-prone process. ProxImaL is a domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety of linear and nonlinear image formation models and cost functions, advanced image priors, and noise models. The compiler intelligently chooses the best way to translate a problem formulation and choice of optimization algorithm into an efficient solver implementation. In applications to the image processing pipeline, deconvolution in the presence of Poisson-distributed shot noise, and burst denoising, we show that a few lines of ProxImaL code can generate highly efficient solvers that achieve state-of-the-art results. We also show applications to the nonlinear and nonconvex problem of phase retrieval.

  10. An Efficient PageRank Approach for Urban Traffic Optimization

    Directory of Open Access Journals (Sweden)

    Florin Pop

    2012-01-01

    to determine optimal decisions for each traffic light, based on the solution given by Larry Page for page ranking in Web environment (Page et al. (1999. Our approach is similar with work presented by Sheng-Chung et al. (2009 and Yousef et al. (2010. We consider that the traffic lights are controlled by servers and a score for each road is computed based on efficient PageRank approach and is used in cost function to determine optimal decisions. We demonstrate that the cumulative contribution of each car in the traffic respects the main constrain of PageRank approach, preserving all the properties of matrix consider in our model.

  11. Energy efficient LED layout optimization for near-uniform illumination

    Science.gov (United States)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  12. Efficient topology optimization in MATLAB using 88 lines of code

    DEFF Research Database (Denmark)

    Andreassen, Erik; Clausen, Anders; Schevenels, Mattias

    2011-01-01

    The paper presents an efficient 88 line MATLAB code for topology optimization. It has been developed using the 99 line code presented by Sigmund (Struct Multidisc Optim 21(2):120–127, 2001) as a starting point. The original code has been extended by a density filter, and a considerable improvemen...... of the basic code to include recent PDE-based and black-and-white projection filtering methods. The complete 88 line code is included as an appendix and can be downloaded from the web site www.topopt.dtu.dk....

  13. Mathematical efficiency calibration with uncertain source geometries using smart optimization

    International Nuclear Information System (INIS)

    Menaa, N.; Bosko, A.; Bronson, F.; Venkataraman, R.; Russ, W. R.; Mueller, W.; Nizhnik, V.; Mirolo, L.

    2011-01-01

    The In Situ Object Counting Software (ISOCS), a mathematical method developed by CANBERRA, is a well established technique for computing High Purity Germanium (HPGe) detector efficiencies for a wide variety of source shapes and sizes. In the ISOCS method, the user needs to input the geometry related parameters such as: the source dimensions, matrix composition and density, along with the source-to-detector distance. In many applications, the source dimensions, the matrix material and density may not be well known. Under such circumstances, the efficiencies may not be very accurate since the modeled source geometry may not be very representative of the measured geometry. CANBERRA developed an efficiency optimization software known as 'Advanced ISOCS' that varies the not well known parameters within user specified intervals and determines the optimal efficiency shape and magnitude based on available benchmarks in the measured spectra. The benchmarks could be results from isotopic codes such as MGAU, MGA, IGA, or FRAM, activities from multi-line nuclides, and multiple counts of the same item taken in different geometries (from the side, bottom, top etc). The efficiency optimization is carried out using either a random search based on standard probability distributions, or using numerical techniques that carry out a more directed (referred to as 'smart' in this paper) search. Measurements were carried out using representative source geometries and radionuclide distributions. The radionuclide activities were determined using the optimum efficiency and compared against the true activities. The 'Advanced ISOCS' method has many applications among which are: Safeguards, Decommissioning and Decontamination, Non-Destructive Assay systems and Nuclear reactor outages maintenance. (authors)

  14. Air conditioning with methane: Efficiency and economics optimization parameters

    International Nuclear Information System (INIS)

    Mastrullo, R.; Sasso, M.; Sibilio, S.; Vanoli, R.

    1992-01-01

    This paper presents an efficiency and economics evaluation method for methane fired cooling systems. Focus is on direct flame two staged absorption systems and alternative engine driven compressor sets. Comparisons are made with conventional vapour compression plants powered by electricity supplied by the national grid. A first and second law based thermodynamics analysis is made in which fuel use coefficients and exergy yields are determined. The economics analysis establishes annual energy savings, unit cooling energy production costs, payback periods and economics/efficiency optimization curves useful for preliminary feasibility studies

  15. On-line efficiency optimization of a synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Thierry; Razik, Hubert; Rezzoug, Abderrezak [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN, CNRS-UMR 7037, Universite Henri Poincare, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2007-04-15

    This paper deals with an on-line optimum-efficiency control of a synchronous reluctance motor drive. The input power minimization control is implemented with a search controller using Fibonacci search algorithm. It searches the optimal reference value of the d-axis stator current for which the input power is minimum. The input power is calculated from the measured dc-bus current and dc-bus voltage of the inverter. A rotor-oriented vector control of the synchronous reluctance machine with the optimization efficiency controller is achieved with a DSP board (TMS302C31). Experimental results are presented to validate the proposed control methods. It is shown that stability problems can appear during the search process. (author)

  16. Optimal power and efficiency of quantum Stirling heat engines

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  17. Improving the efficiency of aerodynamic shape optimization procedures

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1992-01-01

    The computational efficiency of an aerodynamic shape optimization procedure which is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit (ADI) methodology to calculate the highly converged flow solutions which are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. A substantial factor of 8 decrease in computational time for the optimization process was achieved by implementing both of the design improvements.

  18. Efficient relaxations for joint chance constrained AC optimal power flow

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kyri; Toomey, Bridget

    2017-07-01

    Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.

  19. Shape optimization for aerodynamic efficiency and low observability

    Science.gov (United States)

    Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.

    1993-01-01

    Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.

  20. High-efficiency design optimization of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Man Woong; Ma, Sang Bum; Shim, Hyeon Seok; Kim, Kwang Yong [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-09-15

    Design optimization of a backward-curved blades centrifugal pump with specific speed of 150 has been performed to improve hydraulic performance of the pump using surrogate modeling and three-dimensional steady Reynolds-averaged Navier-Stokes analysis. The shear stress transport model was used for the analysis of turbulence. Four geometric variables defining the blade hub inlet angle, hub contours, blade outlet angle, and blade angle profile of impeller were selected as design variables, and total efficiency of the pump at design flow rate was set as the objective function for the optimization. Thirty-six design points were chosen using the Latin hypercube sampling, and three different surrogate models were constructed using the objective function values calculated at these design points. The optimal point was searched from the constructed surrogate model by using sequential quadratic programming. The optimum designs of the centrifugal pump predicted by the surrogate models show considerable increases in efficiency compared to a reference design. Performance of the best optimum design was validated compared to experimental data for total efficiency and head.

  1. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a

  2. Efficiency optimization potential in supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, A.; Aumann, R. [Technische Universitaet Muenchen Institute of Energy Systems Boltzmannstr. 15, 85748 Garching (Germany); Karellas, S. [National Technical University of Athens Laboratory of Steam Boilers and Thermal Plants Heroon Polytechniou 9, 15780 Athens (Greece)

    2010-02-15

    Nowadays, the use of Organic Rankine Cycle (ORC) in decentralised applications is linked with the fact that this process allows the use of low temperature heat sources and offers an advantageous efficiency in small-scale concepts. Many state-of-the-art and innovative applications can successfully use the ORC process. In this process, according to the heat source level, special attention must be drawn to the choice of the appropriate working fluid, which is a factor that affects the thermal and exergetic efficiency of the cycle. The investigation of supercritical parameters of various working fluids in ORC applications seems to bring promising results concerning the efficiency of the application. This paper presents the results from a simulation of the ORC and the optimization potential of the process when using supercritical parameters. In order to optimize the process, various working fluids are considered and compared concerning their thermal efficiency and the usable percentage of heat. The reduction of exergy losses is discussed based on the need of surplus heat exchanger surface. (author)

  3. Optimal and efficient decoding of concatenated quantum block codes

    International Nuclear Information System (INIS)

    Poulin, David

    2006-01-01

    We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead

  4. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  5. Shaft Boring Machine: A method of mechanized vertical shaft excavation

    International Nuclear Information System (INIS)

    Goodell, T.M.

    1991-01-01

    The Shaft Boring Machine (SBM) is a vertical application of proven rock boring technology. The machine applies a rotating cutter wheel with disk cutters for shaft excavation. The wheel is thrust against the rock by hydraulic cylinders and slews about the shaft bottom as it rotates. Cuttings are removed by a clam shell device similar to conventional shaft mucking and the muck is hoisted by buckets. The entire machine moves down (and up) the shaft through the use of a system of grippers thrust against the shaft wall. These grippers and their associated cylinders also provide the means to maintain verticality and stability of the machine. The machine applies the same principles as tunnel boring machines but in a vertical mode. Other shaft construction activities such as rock bolting, utility installation and shaft concrete lining can be accomplished concurrent with shaft boring. The method is comparable in cost to conventional sinking to a depth of about 460 meters (1500 feet) beyond which the SBM has a clear host advantage. The SBM has a greater advantage in productivity in that it can excavate significantly faster than drill and blast methods

  6. Efficiency optimization of green phosphorescent organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Soo; Jeon, Woo Sik; Yu, Jae Hyung [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Pode, Ramchandra, E-mail: rbpode@khu.ac.k [Department of Physics, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Kwon, Jang Hyuk, E-mail: jhkwon@khu.ac.k [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of)

    2011-03-01

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp{sub 2}) and green phosphorescent Ir(ppy){sub 3} [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m{sup 2} is noticed in this Bepp{sub 2} single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  7. Utilization of Flexible Airspace Structure in Flight Efficiency Optimization

    Directory of Open Access Journals (Sweden)

    Tomislav Mihetec

    2013-04-01

    Full Text Available With increasing air traffic demand in the Pan-European airspace there is a need for optimizing the use of the airspace structure (civilian and military in a manner that would satisfy the requirements of civil and military users. In the area of Europe with the highest levels of air traffic (Core area 32% of the volume of airspace above FL 195 is shared by both civil and military users. Until the introduction of the concept of flexible use of airspace, flexible airspace structures were 24 hours per day unavailable for commercial air transport. Flexible use of airspace concept provides a substantial level of dynamic airspace management by the usage of conditional routes. This paper analyses underutilization of resources, flexible airspace structures in the Pan-European airspace, especially in the south-eastern part of the traffic flows (East South Axis, reducing the efficiency of flight operations, as result of delegating the flexible structures to military users. Based on previous analysis, utilization model for flexible use of airspace is developed (scenarios with defined airspace structure. The model is based on the temporal, vertical, and modular airspace sectorisation parameters in order to optimize flight efficiency. The presented model brings significant improvement in flight efficiency (in terms of reduced flight distance for air carriers that planned to fly through the selected flexible airspace structure (LI_RST-49.

  8. Efficiency Improvements of Antenna Optimization Using Orthogonal Fractional Experiments

    Directory of Open Access Journals (Sweden)

    Yen-Sheng Chen

    2015-01-01

    Full Text Available This paper presents an extremely efficient method for antenna design and optimization. Traditionally, antenna optimization relies on nature-inspired heuristic algorithms, which are time-consuming due to their blind-search nature. In contrast, design of experiments (DOE uses a completely different framework from heuristic algorithms, reducing the design cycle by formulating the surrogates of a design problem. However, the number of required simulations grows exponentially if a full factorial design is used. In this paper, a much more efficient technique is presented to achieve substantial time savings. By using orthogonal fractional experiments, only a small subset of the full factorial design is required, yet the resultant response surface models are still effective. The capability of orthogonal fractional experiments is demonstrated through three examples, including two tag antennas for radio-frequency identification (RFID applications and one internal antenna for long-term-evolution (LTE handheld devices. In these examples, orthogonal fractional experiments greatly improve the efficiency of DOE, thereby facilitating the antenna design with less simulation runs.

  9. Study of Effect of Quenching Deformation Influenced by 17CrNiMo6 Gear Shaft of Carburization

    Science.gov (United States)

    Pang, Zirui; Yu, Shenjun; Xu, Jinwu

    The 17CrNiMo6 steel is mainly used for the gear shaft of large modulus in many fields of heavy industry such as mining, transit, hoist, forging and so on[1]. The size of addendum circle and common normal line is changed a lot beyond the tolerance because of the long time of carburizing process and the out-of-step structural stress and thermal stress during the quenching process. And thus the posterior grinding efficiency and quality are influenced. In the paper comparison and analysis of the deformation affected by solid and hollow gear shafts were done and the methods of simulation and practice were both used. The results are as follows: the deformation of gear shaft was small before and after carburizing while that of gear shaft was large before and after quenching because of different cooling velocity, structure and hardness of each position. And the deformation of hollow was much smaller than that of solid. Therefore, if the hollow gear shaft is used, the waste of material will be decreased, and finishing cost will be reduced, and thus the technology of heat treatment will be optimized.

  10. More efficient optimization of long-term water supply portfolios

    Science.gov (United States)

    Kirsch, Brian R.; Characklis, Gregory W.; Dillard, Karen E. M.; Kelley, C. T.

    2009-03-01

    The use of temporary transfers, such as options and leases, has grown as utilities attempt to meet increases in demand while reducing dependence on the expansion of costly infrastructure capacity (e.g., reservoirs). Earlier work has been done to construct optimal portfolios comprising firm capacity and transfers, using decision rules that determine the timing and volume of transfers. However, such work has only focused on the short-term (e.g., 1-year scenarios), which limits the utility of these planning efforts. Developing multiyear portfolios can lead to the exploration of a wider range of alternatives but also increases the computational burden. This work utilizes a coupled hydrologic-economic model to simulate the long-term performance of a city's water supply portfolio. This stochastic model is linked with an optimization search algorithm that is designed to handle the high-frequency, low-amplitude noise inherent in many simulations, particularly those involving expected values. This noise is detrimental to the accuracy and precision of the optimized solution and has traditionally been controlled by investing greater computational effort in the simulation. However, the increased computational effort can be substantial. This work describes the integration of a variance reduction technique (control variate method) within the simulation/optimization as a means of more efficiently identifying minimum cost portfolios. Random variation in model output (i.e., noise) is moderated using knowledge of random variations in stochastic input variables (e.g., reservoir inflows, demand), thereby reducing the computing time by 50% or more. Using these efficiency gains, water supply portfolios are evaluated over a 10-year period in order to assess their ability to reduce costs and adapt to demand growth, while still meeting reliability goals. As a part of the evaluation, several multiyear option contract structures are explored and compared.

  11. Decomposition based parallel processing technique for efficient collaborative optimization

    International Nuclear Information System (INIS)

    Park, Hyung Wook; Kim, Sung Chan; Kim, Min Soo; Choi, Dong Hoon

    2000-01-01

    In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several MultiDisciplinary Analysis SubSystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and Multidisciplinary Design Optimization(MDO) methodology

  12. Optimal Learning for Efficient Experimentation in Nanotechnology and Biochemistry

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0018 Optimal Learning for Efficient Experimentation in Nanotechnology, Biochemistry Warren Powell TRUSTEES OF PRINCETON... Biochemistry 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0200 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Warren Powell 5d.  PROJECT NUMBER 5e...scientists. 15. SUBJECT TERMS Biochemistry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF 19a.  NAME OF RESPONSIBLE PERSON Warren

  13. A new efficient mixture screening design for optimization of media.

    Science.gov (United States)

    Rispoli, Fred; Shah, Vishal

    2009-01-01

    Screening ingredients for the optimization of media is an important first step to reduce the many potential ingredients down to the vital few components. In this study, we propose a new method of screening for mixture experiments called the centroid screening design. Comparison of the proposed design with Plackett-Burman, fractional factorial, simplex lattice design, and modified mixture design shows that the centroid screening design is the most efficient of all the designs in terms of the small number of experimental runs needed and for detecting high-order interaction among ingredients. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  14. Forging Long Shafts On Disks

    Science.gov (United States)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  15. Optimization design of power efficiency of exponential impedance transformer

    International Nuclear Information System (INIS)

    Wang Meng; Zou Wenkang; Chen Lin; Guan Yongchao; Fu Jiabin; Xie Weiping

    2011-01-01

    The paper investigates the optimization design of power efficiency of exponential impedance transformer with analytic method and numerical method. In numerical calculation, a sine wave Jantage with hypothesis of rising edge equivalence is regarded as the forward-going Jantage at input of transformer, and its dominant angular frequency is determined by typical rise-time of actual Jantage waveforms. At the same time, dissipative loss in water dielectric is neglected. The numerical results of three typical modes of impedance transformation, viz. linear mode, saturation mode and steep mode,are compared. Pivotal factors which affect the power efficiency of exponential impedance transformer are discussed, and a certain extent quantitative range of intermediate variables and accordance coefficients are obtained. Finally, the paper discusses some important issues in actual design, such as insulation safety factor in structure design, effects of coupling capacitance on impedance calculation, and dissipative loss in water dielectric. (authors)

  16. Opportunities of Optimization in Administrative Structures for Efficient Management

    Directory of Open Access Journals (Sweden)

    Venelin Terziev

    2017-12-01

    Full Text Available Current paper presents studies on the administrative structures in order to optimize the activities and the overall management through the example of the Bulgarian Commission for Protection against Discrimination. It aims at establishing duplicate functions in the organization under study. The main tasks in the analysis are related to the display of the basic findings and conclusions for the strongest sides and the fields for improvement regarding the relevance, the effectiveness and the efficiency of the administration of the Commission for Protection against Discrimination in Bulgaria. The following areas are thoroughly and critically analyzed: relevance of the functions and efficiency of the activity. As a result of the study a Strategy for Organizational Development and a Training Plan have been drafted.

  17. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  18. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2015-01-01

    Full Text Available Unsupervised data classification (or clustering analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

  19. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  20. Energy Efficiency - Spectral Efficiency Trade-off: A Multiobjective Optimization Approach

    KAUST Repository

    Amin, Osama

    2015-04-23

    In this paper, we consider the resource allocation problem for energy efficiency (EE) - spectral efficiency (SE) trade-off. Unlike traditional research that uses the EE as an objective function and imposes constraints either on the SE or achievable rate, we propound a multiobjective optimization approach that can flexibly switch between the EE and SE functions or change the priority level of each function using a trade-off parameter. Our dynamic approach is more tractable than the conventional approaches and more convenient to realistic communication applications and scenarios. We prove that the multiobjective optimization of the EE and SE is equivalent to a simple problem that maximizes the achievable rate/SE and minimizes the total power consumption. Then we apply the generalized framework of the resource allocation for the EE-SE trade-off to optimally allocate the subcarriers’ power for orthogonal frequency division multiplexing (OFDM) with imperfect channel estimation. Finally, we use numerical results to discuss the choice of the trade-off parameter and study the effect of the estimation error, transmission power budget and channel-to-noise ratio on the multiobjective optimization.

  1. Energy Efficiency - Spectral Efficiency Trade-off: A Multiobjective Optimization Approach

    KAUST Repository

    Amin, Osama; Bedeer, Ebrahim; Ahmed, Mohamed; Dobre, Octavia

    2015-01-01

    In this paper, we consider the resource allocation problem for energy efficiency (EE) - spectral efficiency (SE) trade-off. Unlike traditional research that uses the EE as an objective function and imposes constraints either on the SE or achievable rate, we propound a multiobjective optimization approach that can flexibly switch between the EE and SE functions or change the priority level of each function using a trade-off parameter. Our dynamic approach is more tractable than the conventional approaches and more convenient to realistic communication applications and scenarios. We prove that the multiobjective optimization of the EE and SE is equivalent to a simple problem that maximizes the achievable rate/SE and minimizes the total power consumption. Then we apply the generalized framework of the resource allocation for the EE-SE trade-off to optimally allocate the subcarriers’ power for orthogonal frequency division multiplexing (OFDM) with imperfect channel estimation. Finally, we use numerical results to discuss the choice of the trade-off parameter and study the effect of the estimation error, transmission power budget and channel-to-noise ratio on the multiobjective optimization.

  2. Energy-Efficient Optimization for HARQ Schemes over Time-Correlated Fading Channels

    KAUST Repository

    Shi, Zheng; Ma, Shaodan; Yang, Guanghua; Alouini, Mohamed-Slim

    2018-01-01

    in the optimization, which further differentiates this work from prior ones. Using a unified expression of asymptotic outage probabilities, optimal transmission powers and optimal rate are derived in closed-forms to maximize the energy efficiency while satisfying

  3. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  4. Shaft seal assembly and method

    Science.gov (United States)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  5. Parallel processing based decomposition technique for efficient collaborative optimization

    International Nuclear Information System (INIS)

    Park, Hyung Wook; Kim, Sung Chan; Kim, Min Soo; Choi, Dong Hoon

    2001-01-01

    In practical design studies, most of designers solve multidisciplinary problems with large sized and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several MultiDisciplinary Analysis SubSystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and Multidisciplinary Design Optimization(MDO) methodology

  6. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  7. Assisted closed-loop optimization of SSVEP-BCI efficiency

    Directory of Open Access Journals (Sweden)

    Jacobo eFernandez-Vargas

    2013-02-01

    Full Text Available We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain computer interfaces (BCI based on steady state visually evoked potentials (SSVEP. In traditional paradigms, the control over the BCI-performance completely depends on the subjects’ ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (i a closed-loop search for the best set of SSVEP flicker frequencies and (ii feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects’ state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g. under the new protocol, baseline resting state EEG measures predict subjects’ BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g. as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  8. Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory

    Science.gov (United States)

    Jaśkowski, Wojciech; Lipecki, Tomasz; Matwij, Wojciech; Jabłoński, Mateusz

    2018-03-01

    The shaft hoist assembly is the base of underground mining plant. Its efficiency and correct operation is subject to restrictive legal regulations and is controlled on a daily visual assessment by shaft crew and energomechanics. In addition, in the regular interval, the shaft hoist assembly is subject to a thorough inventory, which includes the determination of the geometrical relationships between the hoisting machine, the headframe and the shaft with its housing. Inventory measurements for shaft and headframe are used for years of conventional geodetic methods including mechanical or laser plumbing and tachymetric surveys. Additional precision levelling is also used for measuring shafts of hoisting machines and rope pulleys. Continuous modernization of measuring technology makes it possible to implement the further methods to the above mentioned purposes. The comparison of the accuracy and the economics of performing measurements based on many years of experience with comprehensive inventory of shaft hoist assembly using various research techniques was made and detailed in the article.

  9. Determining basic parameters of shafts with cage hoisting systems in mines with steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-05-01

    This paper analyzes problems associated with increasing depth of mine shafts in operating coal mines. Schemes of shaft excavation in mines with steep coal seams are analyzed. Removal of mine rock and the ground surface by existing mine shafts is most economical in most cases. Yuzhgiproshakht has investigated a number of hoisting schemes during mine shaft excavation in order to select the optimum shaft diameter which permits shaft reconstruction and deepening to be optimized. The following conditions are analyzed: coal output of a coal mine ranges from 0.9 megatons (Mt) to 1.8 Mt/year, mining depth ranges from 600 m to 1600 m (with intermediary depth of 800, 1000, 1200 and 1400 m also considered). Separate hoisting of coal and rock waste is used. Shaft sinking rate ranges from 10 to 50 m/month. The following hoisting schemes are analyzed: two independent systems which consist of a cage with counterweight, three systems of a cage with counterweight, double cage system and a cage with counterweight. Hoisting schemes are shown in 9 diagrams. Investigations show that a 7 to 8 m diameter of mine shafts is most economic. In mine shafts 7 m in diameter equipped with two cages with counterweights one of the cages is removed to form a free space for the hoisting bucket. In the 8 m shaft equipped with a double cage system and a cage with counterweight the cage with counterweight is removed to form a free place for the hoisting bucket used during shaft excavation.

  10. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  11. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.

    2016-01-06

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  12. Torsion of a growing shaft

    Directory of Open Access Journals (Sweden)

    Alexander V. Manzhirov

    2017-12-01

    Full Text Available The torsion of a shaft by rigid disks is considered. The shaft has the form of circular cylinder. Two rigid disks are attached to its end faces. The process of continuous growth of such shaft under the influence of twisting torques applied to the disks is studied. Dual series equations which reflect the mathematical content of the problem at the different stages of the growing process are derived and solved. Results of the numerical analysis and singularities of the qualitative mechanical behaviour of the fundamental characteristics are discussed.

  13. Generalized field-splitting algorithms for optimal IMRT delivery efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm. For more information on this article, see medicalphysicsweb.org.

  14. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  15. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of shaft liner tests as part of the large shaft development test proposed for the Hanford Site in support of the repository development program. The objectives of these tests are to develop techniques for measuring liner alignment (straightness), both construction assembly alignment and downhole cumulative alignment, and to assess the alignment information as a real time feedback to aid the installation procedure. The test plan is based upon installing a 16 foot ID shaft liner into a 20 foot diameter shaft to a depth of 1000 feet. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs

  16. Shaft and tunnel sealing considerations

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Shukla, D.K.

    1980-01-01

    Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing

  17. Generating spatially optimized habitat in a trade-off between social optimality and budget efficiency.

    Science.gov (United States)

    Drechsler, Martin

    2017-02-01

    Auctions have been proposed as alternatives to payments for environmental services when spatial interactions and costs are better known to landowners than to the conservation agency (asymmetric information). Recently, an auction scheme was proposed that delivers optimal conservation in the sense that social welfare is maximized. I examined the social welfare and the budget efficiency delivered by this scheme, where social welfare represents the difference between the monetized ecological benefit and the conservation cost incurred to the landowners and budget efficiency is defined as maximizing the ecological benefit for a given conservation budget. For the analysis, I considered a stylized landscape with land patches that can be used for agriculture or conservation. The ecological benefit was measured by an objective function that increases with increasing number and spatial aggregation of conserved land patches. I compared the social welfare and the budget efficiency of the auction scheme with an agglomeration payment, a policy scheme that considers spatial interactions and that was proposed recently. The auction delivered a higher level of social welfare than the agglomeration payment. However, the agglomeration payment was more efficient budgetarily than the auction, so the comparative performances of the 2 schemes depended on the chosen policy criterion-social welfare or budget efficiency. Both policy criteria are relevant for conservation. Which one should be chosen depends on the problem at hand, for example, whether social preferences should be taken into account in the decision of how much money to invest in conservation or whether the available conservation budget is strictly limited. © 2016 Society for Conservation Biology.

  18. Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-02-01

    Full Text Available In hybrid electric vehicles with power-split configurations, the engine can be decoupled from the wheel and operated with improved fuel economy, while the entire efficiency of the powertrain is affected by the circular electric power flow. Two planetary gear (2-PG sets with adding brakes/clutches, namely a type of four shaft elelctric continuously variable transmission (ECVT can provide multi-mode operation for the powertrain and extend the efficient area. First, a conventional 2-PG AT (Automatic Transmission architecture is investigated. By analyzing and comparing the connection and operating modes based on the kinematic relationship and lever analogy, a feasible four-shaft ECVT architecture with two brakes and two simplified versions are picked. To make a trade-off between fuel economy and configuration complexity, an instantaneous optimal control strategy based on the equivalent consumption minimization strategy (ECMS concept is then developed and employed as the unified optimization method in the simulations of three different configurations. Finally, the simulation results show that the simplified versions are suboptimal sets and the fuel economy is sacrificed by the limits of different modes. From the viewpoint of concept design, a multi-mode power-split configuration is more suitable for hybrid electric vehicles. This research applied a systematic methodology from concept design to energy management optimization, which can provide the guidelines for researchers to select a suitable multi-mode power-split hybrid powertrain.

  19. Balancing of highly flexible shaft lines on their critical bending speeds

    International Nuclear Information System (INIS)

    Chevalier, R.

    1990-01-01

    The balancing of EDF shaft lines has been performed for a decade with the help of the multiplane balancing method, using coefficients of influence at nominal speed. The method makes it possible to seek the minimum level of vibrations with the smallest possible corrective weights, using the least squares pseudo-inverse optimization technique. Due to the flexibility of the large shaft lines placed into service in the last few years, it is necessary to balance not only at nominal speed but also at critical bending speeds. Accordingly, we have developed a new method which combines the efficiency of modal balancing with the simplicity of balancing with coefficients of influence and which finds an optimum balancing for nominal and critical speeds thanks to its weightings option (for machines with low modal damping). The data analysis and balancing programs can run on of desk computers such as the HP 200, 300 and 500 series and allow the corrective weights to be determined immediately, on-site, from the data provided by EDF line shaft monitoring systems [fr

  20. Improving efficiency (optimization) of CIGS thin film solar cell using ...

    African Journals Online (AJOL)

    Jsc ,Voc , FF and Quantum efficiency (QE) decrease due to absorption of electrons of electrons to the surface of back connection and their participation in recomposition. Efficiency increases from 20.3399% to 21.3721% by increasing impurity density of absorbent layer and efficiency increases to 28.9266% and the quantum ...

  1. Domestic energy management methodology for optimizing efficiency in Smart Grids

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Bosman, M.G.C.; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2009-01-01

    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of domestic technologies have been developed to improve this efficiency. These technologies on their own already improve the efficiency, but more can be

  2. Auditory-like filterbank: An optimal speech processor for efficient ...

    Indian Academy of Sciences (India)

    The transmitter and the receiver in a communication system have to be designed optimally with respect to one another to ensure reliable and efficient communication. Following this principle, we derive an optimal filterbank for processing speech signal in the listener's auditory system (receiver), so that maximum information ...

  3. Humeral Shaft Fracture: Intramedullary Nailing.

    Science.gov (United States)

    Konda, Sanjit R; Saleh, Hesham; Fisher, Nina; Egol, Kenneth A

    2017-08-01

    This video demonstrates the technique of intramedullary nailing for a humeral shaft fracture. The patient is a 30-year-old man who sustained a gunshot wound to his right arm. The patient was indicated for humeral nailing given the comminuted nature of the diaphysis and to allow for minimal skin incisions. Other relative indications include soft-tissue compromise about the arm precluding a large surgical exposure. This video presents a case of a comminuted humeral shaft fracture treated with an intramedullary nail. Anatomic reduction and stable fixation was obtained with this technique. This case demonstrates a soft-tissue sparing technique of humeral shaft fixation using a humeral intramedullary nail. The technique is easy to perform and has significant benefits in minimizing surgical exposure, decreasing operative time, and decreasing blood loss. In the correct clinical setting, humeral nailing provides an expeditious form of fixation that restores length, alignment, and rotation of the fracture humeral diaphysis.

  4. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  5. Efficient use of iterative solvers in nested topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Stolpe, Mathias; Sigmund, Ole

    2009-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, it is suggested to reduce this computational cost by using an approximation to the solution of the nested problem, generated...... measures. The approximation is shown to be sufficiently accurate for the practical purpose of optimization even though the nested equation system is not solved accurately. The approach is tested on several medium-scale topology optimization problems, including three dimensional minimum compliance problems...

  6. Efficient use of iterative solvers in nested topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Stolpe, Mathias; Sigmund, Ole

    2010-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the analysis equations. In this study, it is suggested to reduce this computational cost by using an approximation to the solution of the analysis problem, generated by a Krylov....... The approximation is computationally shown to be sufficiently accurate for the purpose of optimization though the nested equation system is not necessarily solved accurately. The approach is tested on several large-scale topology optimization problems, including minimum compliance problems and compliant mechanism...

  7. An exploratory shaft facility in SALT: Draft shaft study plan

    International Nuclear Information System (INIS)

    1987-03-01

    This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs

  8. ProxImaL: efficient image optimization using proximal algorithms

    KAUST Repository

    Heide, Felix; Diamond, Steven; Nieß ner, Matthias; Ragan-Kelley, Jonathan; Heidrich, Wolfgang; Wetzstein, Gordon

    2016-01-01

    domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety

  9. Efficient Sensor Placement Optimization Using Gradient Descent and Probabilistic Coverage

    Directory of Open Access Journals (Sweden)

    Vahab Akbarzadeh

    2014-08-01

    Full Text Available We are proposing an adaptation of the gradient descent method to optimize the position and orientation of sensors for the sensor placement problem. The novelty of the proposed method lies in the combination of gradient descent optimization with a realistic model, which considers both the topography of the environment and a set of sensors with directional probabilistic sensing. The performance of this approach is compared with two other black box optimization methods over area coverage and processing time. Results show that our proposed method produces competitive results on smaller maps and superior results on larger maps, while requiring much less computation than the other optimization methods to which it has been compared.

  10. Three Essays on Robust Optimization of Efficient Portfolios

    OpenAIRE

    Liu, Hao

    2013-01-01

    The mean-variance approach was first proposed by Markowitz (1952), and laid the foundation of the modern portfolio theory. Despite its theoretical appeal, the practical implementation of optimized portfolios is strongly restricted by the fact that the two inputs, the means and the covariance matrix of asset returns, are unknown and have to be estimated by available historical information. Due to the estimation risk inherited from inputs, desired properties of estimated optimal portfolios are ...

  11. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    Science.gov (United States)

    2015-06-24

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly

  12. Global optimization of silicon nanowires for efficient parametric processes

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Xu, Jing; Mørk, Jesper

    2013-01-01

    We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions.......We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions....

  13. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; MacAlpine, S.

    2013-10-01

    No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.

  14. Control rod drive shaft latch

    International Nuclear Information System (INIS)

    Thorp, A.G. II.

    1976-01-01

    A latch mechanism is operated by differential pressure on a piston to engage the drive shaft for a control rod in a nuclear reactor, thereby preventing the control rod from being ejected from the reactor in case of failure of the control rod drive mechanism housing which is subjected to the internal pressure in the reactor vessel. 6 claims, 4 drawing figures

  15. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  16. Efficient transportation for Vermont : optimal statewide transit networks.

    Science.gov (United States)

    2011-01-01

    "Public transit systems are receiving increased attention as viable solutions to problems with : transportation system robustness, energy-efficiency and equity. The over-reliance on a single : mode, the automobile, is a threat to system robustness. I...

  17. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    OpenAIRE

    Zulfikar, Z

    2012-01-01

    A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared....

  18. Update of 1972 status report on deep shaft studies

    International Nuclear Information System (INIS)

    1976-09-01

    The following aspects of shaft sinking are considered: the effects of geology, factors affecting shaft size, the conventional shaft sinking techniques and the newer mechanized methods, several representative or difficult shafts, and certain long-term problems and solutions

  19. Efficient Approximation of Optimal Control for Markov Games

    DEFF Research Database (Denmark)

    Fearnley, John; Rabe, Markus; Schewe, Sven

    2011-01-01

    We study the time-bounded reachability problem for continuous-time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation techniques to break time into discrete intervals, and optimal control is approximated for each interval separately...

  20. On multigrid-CG for efficient topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Aage, Niels; Lazarov, Boyan Stefanov

    2014-01-01

    reduction is obtained by exploiting specific characteristics of a multigrid preconditioned conjugate gradients (MGCG) solver. In particular, the number of MGCG iterations is reduced by relating it to the geometric parameters of the problem. At the same time, accurate outcome of the optimization process...

  1. Efficient amplification of photonic qubits by optimal quantum cloning

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, A.; Lemr, K.; Soubusta, Jan; Stobińska, M.

    2014-01-01

    Roč. 89, č. 6 (2014), "062322-1"-"062322-10" ISSN 1050-2947 Institutional support: RVO:68378271 Keywords : optimal quantum cloning * cryptography * qubit * phase-independent quantum amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  2. 30 CFR 57.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 57.19106 Section 57.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19106 Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  3. 30 CFR 56.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 56.19106 Section 56.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  4. Deep shaft high rate aerobic digestion: laboratory and pilot plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tran, F; Gannon, D

    1981-01-01

    The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100-160 m); the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high O transfer efficiencies (O.T.E.) of less than or equal to 90% vs. 4-20% in other aerators. This high O.T.E. suggests real potential for Deep-Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. Laboratory and pilot plant Deep-Shaft aerobic digester studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep-Shaft digester are described.

  5. Research and industrialization of near-net rolling technology used in shaft parts

    Science.gov (United States)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  6. Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks.

    Science.gov (United States)

    Zhang, Jing; Zhou, Qingjie; Ng, Derrick Wing Kwan; Jo, Minho

    2017-09-15

    In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility function is a concave function for user association probability and receive threshold, respectively. At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can obtain a result close to optimal energy efficiency proportional fairness with significant reduction of computational complexity.

  7. A dynamic optimization on economic energy efficiency in development: A numerical case of China

    International Nuclear Information System (INIS)

    Wang, Dong

    2014-01-01

    This paper is based on dynamic optimization methodology to investigate the economic energy efficiency issues in developing countries. The paper introduces some definitions about energy efficiency both in economics and physics, and establishes a quantitative way for measuring the economic energy efficiency. The linkage between economic energy efficiency, energy consumption and other macroeconomic variables is demonstrated primarily. Using the methodology of dynamic optimization, a maximum problem of economic energy efficiency over time, which is subjected to the extended Solow growth model and instantaneous investment rate, is modelled. In this model, the energy consumption is set as a control variable and the capital is regarded as a state variable. The analytic solutions can be derived and the diagrammatic analysis provides saddle-point equilibrium. A numerical simulation based on China is also presented; meanwhile, the optimal paths of investment and energy consumption can be drawn. The dynamic optimization encourages governments in developing countries to pursue higher economic energy efficiency by controlling the energy consumption and regulating the investment state as it can conserve energy without influencing the achievement of steady state in terms of Solow model. If that, a sustainable development will be achieved. - Highlights: • A new definition on economic energy efficiency is proposed mathematically. • A dynamic optimization modelling links economic energy efficiency with other macroeconomic variables in long run. • Economic energy efficiency is determined by capital stock level and energy consumption. • Energy saving is a key solution for improving economic energy efficiency

  8. Performance indices and evaluation of algorithms in building energy efficient design optimization

    International Nuclear Information System (INIS)

    Si, Binghui; Tian, Zhichao; Jin, Xing; Zhou, Xin; Tang, Peng; Shi, Xing

    2016-01-01

    Building energy efficient design optimization is an emerging technique that is increasingly being used to design buildings with better overall performance and a particular emphasis on energy efficiency. To achieve building energy efficient design optimization, algorithms are vital to generate new designs and thus drive the design optimization process. Therefore, the performance of algorithms is crucial to achieving effective energy efficient design techniques. This study evaluates algorithms used for building energy efficient design optimization. A set of performance indices, namely, stability, robustness, validity, speed, coverage, and locality, is proposed to evaluate the overall performance of algorithms. A benchmark building and a design optimization problem are also developed. Hooke–Jeeves algorithm, Multi-Objective Genetic Algorithm II, and Multi-Objective Particle Swarm Optimization algorithm are evaluated by using the proposed performance indices and benchmark design problem. Results indicate that no algorithm performs best in all six areas. Therefore, when facing an energy efficient design problem, the algorithm must be carefully selected based on the nature of the problem and the performance indices that matter the most. - Highlights: • Six indices of algorithm performance in building energy optimization are developed. • For each index, its concept is defined and the calculation formulas are proposed. • A benchmark building and benchmark energy efficient design problem are proposed. • The performance of three selected algorithms are evaluated.

  9. Boosting the IGCLC process efficiency by optimizing the desulfurization step

    International Nuclear Information System (INIS)

    Hamers, H.P.; Romano, M.C.; Spallina, V.; Chiesa, P.; Gallucci, F.; Sint Annaland, M. van

    2015-01-01

    Highlights: • Pre-CLC hot gas desulfurization and post-CLC desulfurization are assessed. • Process efficiency increases by 0.5–1% points with alternative desulfurization methods. • Alternative desulfurization methods are more beneficial for CFB configurations. - Abstract: In this paper the influence of the desulfurization method on the process efficiency of an integrated gasification chemical-looping combustion (IGCLC) systems is investigated for both packed beds and circulating fluidized bed CLC systems. Both reactor types have been integrated in an IGCLC power plant, in which three desulfurization methods have been compared: conventional cold gas desulfurization with Selexol (CGD), hot gas desulfurization with ZnO (HGD) and flue gas desulfurization after the CLC reactors (post-CLC). For CLC with packed bed reactors, the efficiency gain of the alternative desulfurization methods is about 0.5–0.7% points. This is relatively small, because of the relatively large amount of steam that has to be mixed with the fuel to avoid carbon deposition on the oxygen carrier. The HGD and post-CLC configurations do not contain a saturator and therefore more steam has to be mixed with a negative influence on the process efficiency. Carbon deposition is not an issue for circulating fluidized bed systems and therefore a somewhat higher efficiency gain of 0.8–1.0% point can be reached for this reactor system, assuming that complete fuel conversion can be reached and no sulfur species are formed on the solid, which is however thermodynamically possible for iron and manganese based oxygen carriers. From this study, it can be concluded that the adaptation of the desulfurization method results in higher process efficiencies, especially for the circulating fluidized bed system, while the number of operating units is reduced.

  10. Efficient Guiding Towards Cost-Optimality in UPPAAL

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Fehnker, Ansgar; Hune, Thomas S.

    2001-01-01

    with prices on both locations and transitions. The presented algorithm is based on a symbolic semantics of UTPA, and an efficient representation and operations based on difference bound matrices. In analogy with Dijkstra’s shortest path algorithm, we show that the search order of the algorithm can be chosen......In this paper we present an algorithm for efficiently computing the minimum cost of reaching a goal state in the model of Uniformly Priced Timed Automata (UPTA). This model can be seen as a submodel of the recently suggested model of linearly priced timed automata, which extends timed automata...

  11. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    Directory of Open Access Journals (Sweden)

    . Zulfikar

    2012-10-01

    Full Text Available A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared. The VHDL code which limits range of integer values is occupies less area than the one which is not. This VHDL coding method is suitable for multi stage circuits.

  12. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    Directory of Open Access Journals (Sweden)

    Zulfikar .

    2015-05-01

    Full Text Available A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared. The VHDL code which limits range of integer values is occupies less area than the one which is not. This VHDL coding method is suitable for multi stage circuits.

  13. Optimization of high-efficiency components; Optimieren auf hohem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Eva

    2009-07-01

    High efficiency is a common feature of modern current inverters and is not a unique selling proposition. Other factors that influence the buyer's decision are cost reduction, reliability and service, optimum grid integration, and the challenges of the competitive thin film technology. (orig.)

  14. Optimizing the efficiency of femtosecond-laser-written holograms

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Hansen, Henrik Dueholm; Balling, Peter

    2013-01-01

    Computer-generated binary holograms are written on a polished copper surface using single 800-nm, 120-fs pulses from a 1-kHz-repetition-rate laser system. The hologram efficiency (i.e. the power in the holographic reconstructed image relative to the incoming laser power) is investigated...

  15. Efficient Guiding Towards Cost-Optimality in Uppaal

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Fehnker, Ansgar; Hune, Thomas S.

    2001-01-01

    with prices on both locations and transitions. The presented algorithm is based on a symbolic semantics of UTPA, and an efficient representation and operations based on difference bound matrices. In analogy with Dijkstra’s shortest path algorithm, we show that the search order of the algorithm can be chosen...

  16. Online optimization of a multi-conversion-level DC home microgrid for system efficiency enhancement

    DEFF Research Database (Denmark)

    Boscaino, V.; Guerrero, J. M.; Ciornei, I.

    2017-01-01

    stages, three paralleled DC/DC converters are implemented. A Genetic Algorithm performs the on-line optimization of the DC network’s global efficiency, generating the optimal current sharing ratios of the concurrent power converters. The overall DC/DC conversion system including the optimization section......In this paper, an on-line management system for the optimal efficiency operation of a multi-bus DC home distribution system is proposed. The operation of the system is discussed with reference to a distribution system with two conversion stages and three voltage levels. In each of the conversion...

  17. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  18. FEM Optimal Design of Energy Efficient Induction Machines

    Directory of Open Access Journals (Sweden)

    TUDORACHE, T.

    2009-06-01

    Full Text Available This paper deals with a comparative numerical analysis of performances of several design solutions of induction machines with improved energy efficiency. Starting from a typical cast aluminum cage induction machine this study highlights the benefit of replacing the classical cast aluminum cage with a cast copper cage in the manufacture of future generation of high efficiency induction machines used as motors or generators. Then the advantage of replacement of standard electrical steel with higher grade steel with smaller losses is pointed out. The numerical analysis carried out in the paper is based on 2D plane-parallel finite element approach of the induction machine, the numerical results being discussed and compared with experimental measurements.

  19. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  20. Mine-shaft conveyance monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Beus, M.J.; Ruff, T.M.; Iverson, S.; McCoy, W.G. [National Institute for Occupational Safety and Health, Spokane, WA (USA). Spokane Research Laboratory

    2000-10-01

    Monitoring conveyance position and wire rope load directly from the skip or cage top offers several significant safety and production advantages. The Spokane Research Laboratory (SRL) of the National Institute for Occupational Safety and Health (NIOSH) developed a shaft conveyance monitoring system (SCMS). This system consists of position and guide-displacement sensors, a maintenance-free battery power supply and a new sensor, which is mounted on the wire rope with a Crosby Clip, to measure hoist-rope tension. A radio data link transmits sensor output to the hoist room. A state-of-the-art automated hoisting test facility was also constructed to test the concept in a controlled laboratory setting. Field tests are now underway at the SRL hoisting research facility and in deep mine shafts in northern Idaho. 4 refs., 5 figs.

  1. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  2. Efficiency Optimization Methods in Low-Power High-Frequency Digitally Controlled SMPS

    Directory of Open Access Journals (Sweden)

    Aleksandar Prodić

    2010-06-01

    Full Text Available This paper gives a review of several power efficiency optimization techniques that are utilizing advantages of emerging digital control in high frequency switch-mode power supplies (SMPS, processing power from a fraction of watt to several hundreds of watts. Loss mechanisms in semiconductor components are briefly reviewed and the related principles of online efficiency optimization through power stage segmentation and gate voltage variation presented. Practical implementations of such methods utilizing load prediction or data extraction from a digital control loop are shown. The benefits of the presented efficiency methods are verified through experimental results, showing efficiency improvements, ranging from 2% to 30%,depending on the load conditions.

  3. Optimal Energy-Efficient Sensing and Power Allocation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Xia Wu

    2014-01-01

    Full Text Available We consider a joint optimization of sensing parameter and power allocation for an energy-efficient cognitive radio network (CRN in which the primary user (PU is protected. The optimization problem to maximize the energy efficiency of CRN is formulated as a function of two variables, which are sensing time and transmit power, subject to the average interference power to the PU and the target detection probability. During the optimizing process, the quality of service parameter (the minimum rate acceptable to secondary users (SUs has also been taken into consideration. The optimal solutions are analyzed and an algorithm combined with fractional programming that maximizes the energy efficiency for CRN is presented. Numerical results show that the performance improvement is achieved by the joint optimization of sensing time and power allocation.

  4. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of a large shaft development test at the Hanford site in support of the repository development program. The purpose and objective of the test plan is to obtain the information necessary to establish feasibility and to predict the performance of the drilling system used to drill large diameter shafts. The test plan is based upon drilling a 20 ft diameter shaft to a depth of 1,000 feet. The test plan specifies series of tests to evaluate the performance of the downhole assembly, the performance of the rig, and the ability of the system to cope with geologic hazards. The quality of the hole produced will also be determined. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs., 3 tabs

  5. Optimizing Sampling Efficiency for Biomass Estimation Across NEON Domains

    Science.gov (United States)

    Abercrombie, H. H.; Meier, C. L.; Spencer, J. J.

    2013-12-01

    Over the course of 30 years, the National Ecological Observatory Network (NEON) will measure plant biomass and productivity across the U.S. to enable an understanding of terrestrial carbon cycle responses to ecosystem change drivers. Over the next several years, prior to operational sampling at a site, NEON will complete construction and characterization phases during which a limited amount of sampling will be done at each site to inform sampling designs, and guide standardization of data collection across all sites. Sampling biomass in 60+ sites distributed among 20 different eco-climatic domains poses major logistical and budgetary challenges. Traditional biomass sampling methods such as clip harvesting and direct measurements of Leaf Area Index (LAI) involve collecting and processing plant samples, and are time and labor intensive. Possible alternatives include using indirect sampling methods for estimating LAI such as digital hemispherical photography (DHP) or using a LI-COR 2200 Plant Canopy Analyzer. These LAI estimations can then be used as a proxy for biomass. The biomass estimates calculated can then inform the clip harvest sampling design during NEON operations, optimizing both sample size and number so that standardized uncertainty limits can be achieved with a minimum amount of sampling effort. In 2011, LAI and clip harvest data were collected from co-located sampling points at the Central Plains Experimental Range located in northern Colorado, a short grass steppe ecosystem that is the NEON Domain 10 core site. LAI was measured with a LI-COR 2200 Plant Canopy Analyzer. The layout of the sampling design included four, 300 meter transects, with clip harvests plots spaced every 50m, and LAI sub-transects spaced every 10m. LAI was measured at four points along 6m sub-transects running perpendicular to the 300m transect. Clip harvest plots were co-located 4m from corresponding LAI transects, and had dimensions of 0.1m by 2m. We conducted regression analyses

  6. Efficient computation of optimal oligo-RNA binding.

    Science.gov (United States)

    Hodas, Nathan O; Aalberts, Daniel P

    2004-01-01

    We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.

  7. Increasing efficiency and optimizing thermoelectric power plant equipment. Povyshenie effektivnosti i optimizatsiia teploenergeticheskikh ustanovok

    Energy Technology Data Exchange (ETDEWEB)

    Andriushchenko, A.I.

    1981-01-01

    The problems of increasing the efficiency and optimizing the operational conditions of a thermoelectric power plant and providing efficient operational conditions of the primary and auxillary equipment at a thermoelectric power plant are examined. Methodologies and designs for optimizing the primary parameters of the power-generating equipment based on economic factors are given. A number of recommendations for designing equipment based on the research results are given.

  8. Buoyancy and Pressure Driven Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    Science.gov (United States)

    Tamm, Gunnar; Jaluria, Yogesh

    2003-11-01

    An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.

  9. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO. The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  10. Active load sharing technique for on-line efficiency optimization in DC microgrids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Zizzo, G.; Boscaino, V.

    2017-01-01

    Recently, DC power distribution is gaining more and more importance over its AC counterpart achieving increased efficiency, greater flexibility, reduced volumes and capital cost. In this paper, a 24-120-325V two-level DC distribution system for home appliances, each including three parallel DC......-DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table......, is created to store the real efficiencies of the converters taking into account components tolerances. A MATLAB/Simulink model of the DC distribution network has been set up and a Genetic Algorithm has been employed for the global efficiency optimization. Simulation results are shown to validate the proposed...

  11. Fast Generation of Near-Optimal Plans for Eco-Efficient Stowage of Large Container Vessels

    DEFF Research Database (Denmark)

    Pacino, Dario; Delgado, Alberto; Jensen, Rune Møller

    2011-01-01

    Eco-efficient stowage plans that are both competitive and sustainable have become a priority for the shipping industry. Stowage planning is NP-hard and is a challenging optimization problem in practice. We propose a new 2-phase approach that generates near-optimal stowage plans and fulfills indus...

  12. An efficient cost function for the optimization of an n-layered isotropic cloaked cylinder

    International Nuclear Information System (INIS)

    Paul, Jason V; Collins, Peter J; Coutu, Ronald A Jr

    2013-01-01

    In this paper, we present an efficient cost function for optimizing n-layered isotropic cloaked cylinders. Cost function efficiency is achieved by extracting the expression for the angle independent scatterer contribution of an associated Green's function. Therefore, since this cost function is not a function of angle, accounting for every bistatic angle is not necessary and thus more efficient than other cost functions. With this general and efficient cost function, isotropic cloaked cylinders can be optimized for many layers and material parameters. To demonstrate this, optimized cloaked cylinders made of 10, 20 and 30 equal thickness layers are presented for TE and TM incidence. Furthermore, we study the effect layer thickness has on optimized cloaks by optimizing a 10 layer cloaked cylinder over the material parameters and individual layer thicknesses. The optimized material parameters in this effort do not exhibit the dual nature that is evident in the ideal transformation optics design. This indicates that the inevitable field penetration and subsequent PEC boundary condition at the cylinder must be taken into account for an optimal cloaked cylinder design. Furthermore, a more effective cloaked cylinder can be designed by optimizing both layer thickness and material parameters than by additional layers alone. (paper)

  13. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.

    Science.gov (United States)

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-10-01

    Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.

  14. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    Science.gov (United States)

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  15. Optimization of photovoltaic energy production through an efficient switching matrix

    Directory of Open Access Journals (Sweden)

    Pietro Romano

    2013-09-01

    Full Text Available This work presents a preliminary study on the implementation of a new system for power output maximization of photovoltaic generators under non-homogeneous conditions. The study evaluates the performance of an efficient switching matrix and the relevant automatic reconfiguration control algorithms. The switching matrix is installed between the PV generator and the inverter, allowing a large number of possible module configurations. PV generator, switching matrix and the intelligent controller have been simulated in Simulink. The proposed reconfiguration system improved the energy extracted by the PV generator under non-uniform solar irradiation conditions. Short calculation times of the proposed control algorithms allow its use in real time applications even where a higher number of PV modules is required.

  16. Optimizing link efficiency for gated DPCCH transmission on HSUPA

    DEFF Research Database (Denmark)

    Zarco, Carlos Ruben Delgado; Wigard, Jeroen; Kolding, T. E.

    2007-01-01

    consider the E-DCH performance degradation caused by gating on other radio procedures relying on the DPCCH, such as inner and outer loop power control. Our studies show that gating is beneficial for both for 2 and 10 ms transmission time intervals. The gains in terms of LE with a Vehicular A 30 kmph......To minimize the terminal's transmission power in bursty uplink traffic conditions, the evolved High-Speed Uplink Packet Access (HSUPA) concept in 3GPP WCDMA includes a feature known as Dedicated Physical Control Channel (DPCCH) gating. We present here a detailed link level study of gating from...... a link efficiency (LE) perspective; LE being expressed in bits per second per Watt. While the overall gain mechanisms of gating are well known, we show how special challenges related to discontinuous Enhanced Dedicated Channel (E-DCH) transmission can be addressed for high link and system performance. We...

  17. Efficient distribution of toy products using ant colony optimization algorithm

    Science.gov (United States)

    Hidayat, S.; Nurpraja, C. A.

    2017-12-01

    CV Atham Toys (CVAT) produces wooden toys and furniture, comprises 13 small and medium industries. CVAT always attempt to deliver customer orders on time but delivery costs are high. This is because of inadequate infrastructure such that delivery routes are long, car maintenance costs are high, while fuel subsidy by the government is still temporary. This study seeks to minimize the cost of product distribution based on the shortest route using one of five Ant Colony Optimization (ACO) algorithms to solve the Vehicle Routing Problem (VRP). This study concludes that the best of the five is the Ant Colony System (ACS) algorithm. The best route in 1st week gave a total distance of 124.11 km at a cost of Rp 66,703.75. The 2nd week route gave a total distance of 132.27 km at a cost of Rp 71,095.13. The 3rd week best route gave a total distance of 122.70 km with a cost of Rp 65,951.25. While the 4th week gave a total distance of 132.27 km at a cost of Rp 74,083.63. Prior to this study there was no effort to calculate these figures.

  18. Optimizing Eco-Efficiency Across the Procurement Portfolio.

    Science.gov (United States)

    Pelton, Rylie E O; Li, Mo; Smith, Timothy M; Lyon, Thomas P

    2016-06-07

    Manufacturing organizations' environmental impacts are often attributable to processes in the firm's upstream supply chain. Environmentally preferable procurement (EPP) and the establishment of environmental purchasing criteria can potentially reduce these indirect impacts. Life-cycle assessment (LCA) can help identify the purchasing criteria that are most effective in reducing environmental impacts. However, the high costs of LCA and the problems associated with the comparability of results have limited efforts to integrate procurement performance with quantitative organizational environmental performance targets. Moreover, environmental purchasing criteria, when implemented, are often established on a product-by-product basis without consideration of other products in the procurement portfolio. We develop an approach that utilizes streamlined LCA methods, together with linear programming, to determine optimal portfolios of product impact-reduction opportunities under budget constraints. The approach is illustrated through a simulated breakfast cereal manufacturing firm procuring grain, containerboard boxes, plastic packaging, electricity, and industrial cleaning solutions. Results suggest that extending EPP decisions and resources to the portfolio level, recently made feasible through the methods illustrated herein, can provide substantially greater CO2e and water-depletion reductions per dollar spend than a product-by-product approach, creating opportunities for procurement organizations to participate in firm-wide environmental impact reduction targets.

  19. GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.

    Energy Technology Data Exchange (ETDEWEB)

    D' Helon, CD

    2004-08-18

    The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.

  20. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  1. Efficient optimal joint channel estimation and data detection for massive MIMO systems

    KAUST Repository

    Alshamary, Haider Ali Jasim

    2016-08-15

    In this paper, we propose an efficient optimal joint channel estimation and data detection algorithm for massive MIMO wireless systems. Our algorithm is optimal in terms of the generalized likelihood ratio test (GLRT). For massive MIMO systems, we show that the expected complexity of our algorithm grows polynomially in the channel coherence time. Simulation results demonstrate significant performance gains of our algorithm compared with suboptimal non-coherent detection algorithms. To the best of our knowledge, this is the first algorithm which efficiently achieves GLRT-optimal non-coherent detections for massive MIMO systems with general constellations.

  2. Efficiency Optimization by Considering the High Voltage Flyback Transformer Parasitics using an Automatic Winding Layout Technique

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    .The energy efficiency is optimized using a proposed new automatic winding layout (AWL) technique and a comprehensive loss model.The AWL technique generates a large number of transformer winding layouts.The transformer parasitics such as dc resistance, leakage inductance and self-capacitance are calculated...... for each winding layout.An optimization technique is formulated to minimize the sum of energy losses during charge and discharge operations.The efficiency and energy loss distribution results from the optimization routine provide a deep insight into the high voltage transformer designand its impact...

  3. Model-Based Energy Efficiency Optimization of a Low-Temperature Adsorption Dryer

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Low-temperature drying is important for heat-sensitive products, but at these temperatures conventional convective dryers have low energy efficiencies. To overcome this challenge, an energy efficiency optimization procedure is applied to a zeolite adsorption dryer subject to product quality. The

  4. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency

    NARCIS (Netherlands)

    Haseli, Y.

    2013-01-01

    The idea is to find out whether 2nd law efficiency optimization may be a suitable trade-off between maximum work output and maximum 1st law efficiency designs for a regenerative gas turbine engine operating on the basis of an open Brayton cycle. The primary emphasis is placed on analyzing the ideal

  5. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    Science.gov (United States)

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  6. Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences

    Directory of Open Access Journals (Sweden)

    Sie Long Kek

    2015-01-01

    Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.

  7. A genetic algorithm applied to a PWR turbine extraction optimization to increase cycle efficiency

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Schirru, Roberto

    2002-01-01

    In nuclear power plants feedwater heaters are used to heat feedwater from its temperature leaving the condenser to final feedwater temperature using steam extracted from various stages of the turbines. The purpose of this process is to increase cycle efficiency. The determination of the optimal fraction of mass flow rate to be extracted from each stage of the turbines is a complex optimization problem. This kind of problem has been efficiently solved by means of evolutionary computation techniques, such as Genetic Algorithms (GAs). GAs, which are systems based upon principles from biological genetics, have been successfully applied to several combinatorial optimization problems in nuclear engineering, as the nuclear fuel reload optimization problem. We introduce the use of GAs in cycle efficiency optimization by finding an optimal combination of turbine extractions. In order to demonstrate the effectiveness of our approach, we have chosen a typical PWR as case study. The secondary side of the PWR was simulated using PEPSE, which is a modeling tool used to perform integrated heat balances for power plants. The results indicate that the GA is a quite promising tool for cycle efficiency optimization. (author)

  8. Research on Power Factor Correction Boost Inductor Design OptimizationEfficiency vs. Power Density

    DEFF Research Database (Denmark)

    Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2011-01-01

    Nowadays, efficiency and power density are the most important issues for Power Factor Correction (PFC) converters development. However, it is a challenge to reach both high efficiency and power density in a system at the same time. In this paper, taking a Bridgeless PFC (BPFC) as an example......, a useful compromise between efficiency and power density of the Boost inductors on 3.2kW is achieved using an optimized design procedure. The experimental verifications based on the optimized inductor are carried out from 300W to 3.2kW at 220Vac input....

  9. Efficiency improvement and torque ripple minimization of Switched Reluctance Motor using FEM and Seeker Optimization Algorithm

    International Nuclear Information System (INIS)

    Navardi, Mohammad Javad; Babaghorbani, Behnaz; Ketabi, Abbas

    2014-01-01

    Highlights: • This paper proposes a new method to optimize a Switched Reluctance Motor (SRM). • A combination of SOA and GA with Finite Element Method (FEM) analysis is employed to solve the SRM design optimization. • The results show that optimized SRM obtains higher average torque and higher efficiency. - Abstract: In this paper, performance optimization of Switched Reluctance Motor (SRM) was determined using Seeker Optimization Algorithm (SOA). The most efficient aim of the algorithm was found for maximum torque value at a minimum mass of the entire construction, following changing the geometric parameters. The optimization process was carried out using a combination of Seeker Optimization Algorithm and Finite Element Method (FEM). Fitness value was calculated by FEM analysis using COMSOL3.4, and the SOA was realized by MATLAB. The proposed method has been applied for a case study and it has been also compared with Genetic Algorithm (GA). The results show that the optimized motor using SOA had higher torque value and efficiency with lower mass and torque ripple, exhibiting the validity of this methodology for SRM design

  10. Shaft placement in a bedded salt repository

    International Nuclear Information System (INIS)

    Klasi, M.L.

    1982-10-01

    Preferred shaft pillar sizes and shaft locations were determined with respect to the induced thermal stresses in a generic bedded salt repository at a depth of 610 m with a gross thermal loading of 14.8 W/m 2 . The model assumes isotropic material properties, plane strain and linear elastic behavior. Various shaft locations were analyzed over a 25 year period. The thermal results show that for this time span, the stratigraphy is unimportant except for the region immediately adjacent to the repository. The thermomechanical results show that for the given repository depth of 610 m, a minimum central shaft pillar radius of 244 m is required to equal the material strength in the barrier pillar. An assumed constant stress and constant temperature distribution creep model of the central shaft region adjacent to the repository conservatively overestimates a creep closure of 310 mm in a 6.1 m diameter centrally-located shaft

  11. The SSC access shafts calculational study

    International Nuclear Information System (INIS)

    Baishev, I.S.; Mokhov, N.V.; Toohig, T.E.

    1991-06-01

    The SSC generic shaft requirements and access spacing are considered elsewhere. The shafts connecting the ground surface with the underground accelerator tunnel deliver to the surface some portion of the radiation created in the tunnel. The radiation safety problem of access shafts consists of two major questions: Does the dose equivalent at the ground surface exceed permissible limits? If it exceeds those limits, what additional shielding measures are required? A few works deal with this problem for high energy machines. This work is an attempt to answer these questions for the basic types of shafts specific to the SSC magnet delivery, utility and personnel shafts using full-scale Monte-Carlo calculations of the entire process from hadronic cascades in the lattice elements to particles scattered in the tunnel, niches, alcoves, shafts and surface bunkers and buildings. 9 refs., 16 figs., 1 tab

  12. Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors

    Science.gov (United States)

    Matveev, V.; Goriachkin, E.; Volkov, A.

    2018-01-01

    The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  13. Game-Theoretic Rate-Distortion-Complexity Optimization of High Efficiency Video Coding

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Milani, Simone; Forchhammer, Søren

    2013-01-01

    profiles in order to tailor the computational load to the different hardware and power-supply resources of devices. In this work, we focus on optimizing the quantization parameter and partition depth in HEVC via a game-theoretic approach. The proposed rate control strategy alone provides 0.2 dB improvement......This paper presents an algorithm for rate-distortioncomplexity optimization for the emerging High Efficiency Video Coding (HEVC) standard, whose high computational requirements urge the need for low-complexity optimization algorithms. Optimization approaches need to specify different complexity...

  14. Shaft MisalignmentDetectionusing Stator Current Monitoring

    OpenAIRE

    Alok Kumar Verma, Somnath Sarangi and M.H. Kolekar

    2013-01-01

    This paper inspects the misaligned of shaft by usingdiagnostic medium such as current and vibration.Misalignments in machines can cause decrease inefficiency and in the long-run it may cause failurebecause of unnecessary vibration, stress on motor,bearings and short-circuiting in stator and rotorwindings.In this study, authors investigate the onsetof instability on a shaft mounted on journal bearings.Shaft displacement and stator current samples duringmachine run up under misaligned condition...

  15. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  16. Energy-Efficient Optimization for HARQ Schemes over Time-Correlated Fading Channels

    KAUST Repository

    Shi, Zheng

    2018-03-19

    Energy efficiency of three common hybrid automatic repeat request (HARQ) schemes including Type I HARQ, HARQ with chase combining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR), is analyzed and joint power allocation and rate selection to maximize the energy efficiency is investigated in this paper. Unlike prior literature, time-correlated fading channels is considered and two widely concerned quality of service (QoS) constraints, i.e., outage and goodput constraints, are also considered in the optimization, which further differentiates this work from prior ones. Using a unified expression of asymptotic outage probabilities, optimal transmission powers and optimal rate are derived in closed-forms to maximize the energy efficiency while satisfying the QoS constraints. These closed-form solutions then enable a thorough analysis of the maximal energy efficiencies of various HARQ schemes. It is revealed that with low outage constraint, the maximal energy efficiency achieved by Type I HARQ is $\\\\frac{1}{4\\\\ln2}$ bits/J, while HARQ-CC and HARQ-IR can achieve the same maximal energy efficiency as $\\\\frac{\\\\kappa_\\\\infty}{4\\\\ln2}$ bits/J where $\\\\kappa_\\\\infty = 1.6617$. Moreover, time correlation in the fading channels has a negative impact on the energy efficiency, while large maximal allowable number of transmissions is favorable for the improvement of energy efficiency. The effectiveness of the energy-efficient optimization is verified by extensive simulations and the results also show that HARQ-CC can achieve the best tradeoff between energy efficiency and spectral efficiency among the three HARQ schemes.

  17. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  18. Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Mehrabipour, Reza

    2012-01-01

    A simple gas turbine cycle namely as the Kraftwerk Union AG unit including a Siemens gas turbine model V93.1 with 60 MW nominal power and 26.0% thermal efficiency utilized in the Fars power plant located is considered for the efficiency enhancement. A typical tubular vertical recuperative heat exchanger is designed in order to integrate into the cycle as an air pre-heater for thermal efficiency improvement. Thermal and geometric specifications of the recuperative heat exchanger are obtained in a multi-objective optimization process. The exergetic efficiency of the gas cycle is maximized while the payback time for the capital investment of the recuperator is minimized. Combination of these objectives and decision variables with suitable engineering and physical constraints makes a set of the MINLP optimization problem. Optimization programming is performed using the NSGA-II algorithm and Pareto optimal frontiers are obtained in three cases including the minimum, average and maximum ambient air temperatures. In each case, the final optimal solution has been selected using three decision-making approaches including the fuzzy Bellman-Zadeh, LINMAP and TOPSIS methods. It has been shown that the TOPSIS and LINMAP decision-makers when applied on the Pareto frontier which is obtained at average ambient air temperature yields best results in comparison to other cases. -- Highlights: ► A simple Brayton gas cycle is considered for the efficiency improvement by integrating of a recuperator. ► Objective functions based on thermodynamic and economic analysis are obtained. ► The payback time for the capital investment is minimized and the exergetic efficiency of the system is maximized. ► Pareto optimal frontiers at various site conditions are obtained. ► A final optimal configuration is found using various decision-making approaches.

  19. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  20. Study on the mechanism and efficiency of simulated annealing using an LP optimization benchmark problem - 113

    International Nuclear Information System (INIS)

    Qianqian, Li; Xiaofeng, Jiang; Shaohong, Zhang

    2010-01-01

    Simulated Annealing Algorithm (SAA) for solving combinatorial optimization problems is a popular method for loading pattern optimization. The main purpose of this paper is to understand the underlying search mechanism of SAA and to study its efficiency. In this study, a general SAA that employs random pair exchange of fuel assemblies to search for the optimum fuel Loading Pattern (LP) is applied to an exhaustively searched LP optimization benchmark problem. All the possible LPs of the benchmark problem have been enumerated and evaluated via the use of the very fast and accurate Hybrid Harmonics and Linear Perturbation (HHLP) method, such that the mechanism of SA for LP optimization can be explicitly analyzed and its search efficiency evaluated. The generic core geometry itself dictates that only a small number LPs can be generated by performing random single pair exchanges and that the LPs are necessarily mostly similar to the initial LP. This phase space effect turns out to be the basic mechanism in SAA that can explain its efficiency and good local search ability. A measure of search efficiency is introduced which shows that the stochastic nature of SAA greatly influences the variability of its search efficiency. It is also found that using fuel assembly k-infinity distribution as a technique to filter the LPs can significantly enhance the SAA search efficiency. (authors)

  1. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  2. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    Science.gov (United States)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  3. Study on Design Optimization of Centrifugal Compressors Considering Efficiency and Weight

    International Nuclear Information System (INIS)

    Lee, Younghwan; Kang, Shinhyoung; Ha, Kyunggu

    2015-01-01

    Various centrifugal compressors are currently used extensively in industrial fields, where the design requirements are more complicated. This makes it more difficult to determine the optimal design point of a centrifugal compressor. Traditionally, the efficiency is an important factor for optimization. In this study, the weight of the compressor was also considered. The aim of this study was to present the design tendency considering the stage efficiency and weight. In addition, this study suggested possibility of a selection of compressor design objectives at an early design stage based on the optimization results. Only a vaneless diffuser was considered in this case. The Kriging method was used with sample points from 1D design program data. The optimal points were determined in a substitute design space.

  4. Study on Design Optimization of Centrifugal Compressors Considering Efficiency and Weight

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Younghwan; Kang, Shinhyoung [Seoul National University, Seoul (Korea, Republic of); Ha, Kyunggu [Hyundai Motor Group, Ulsan (Korea, Republic of)

    2015-04-15

    Various centrifugal compressors are currently used extensively in industrial fields, where the design requirements are more complicated. This makes it more difficult to determine the optimal design point of a centrifugal compressor. Traditionally, the efficiency is an important factor for optimization. In this study, the weight of the compressor was also considered. The aim of this study was to present the design tendency considering the stage efficiency and weight. In addition, this study suggested possibility of a selection of compressor design objectives at an early design stage based on the optimization results. Only a vaneless diffuser was considered in this case. The Kriging method was used with sample points from 1D design program data. The optimal points were determined in a substitute design space.

  5. Optimization of thermal efficiency of nuclear central power like as PWR

    International Nuclear Information System (INIS)

    Lapa, Nelbia da Silva

    2005-10-01

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  6. Global Sensitivity Analysis of High Speed Shaft Subsystem of a Wind Turbine Drive Train

    Directory of Open Access Journals (Sweden)

    Saeed Asadi

    2018-01-01

    Full Text Available The wind turbine dynamics are complex and critical area of study for the wind industry. Quantification of the effective factors to wind turbine performance is valuable for making improvements to both power performance and turbine health. In this paper, the global sensitivity analysis of validated mathematical model for high speed shaft drive train test rig has been developed in order to evaluate the contribution of systems input parameters to the specified objective functions. The drive train in this study consists of a 3-phase induction motor, flexible shafts, shafts’ coupling, bearing housing, and disk with an eccentric mass. The governing equations were derived by using the Lagrangian formalism and were solved numerically by Newmark method. The variance based global sensitivity indices are introduced to evaluate the contribution of input structural parameters correlated to the objective functions. The conclusion from the current research provides informative beneficial data in terms of design and optimization of a drive train setup and also can provide better understanding of wind turbine drive train system dynamics with respect to different structural parameters, ultimately designing more efficient drive trains. Finally, the proposed global sensitivity analysis (GSA methodology demonstrates the detectability of faults in different components.

  7. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    Science.gov (United States)

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  8. A logical approach to optimize the nanostructured lipid carrier system of irinotecan: efficient hybrid design methodology

    International Nuclear Information System (INIS)

    Negi, Lalit Mohan; Talegaonkar, Sushama; Jaggi, Manu

    2013-01-01

    Development of an effective formulation involves careful optimization of a number of excipient and process variables. Sometimes the number of variables is so large that even the most efficient optimization designs require a very large number of trials which put stress on costs as well as time. A creative combination of a number of design methods leads to a smaller number of trials. This study was aimed at the development of nanostructured lipid carriers (NLCs) by using a combination of different optimization methods. A total of 11 variables were first screened using the Plackett–Burman design for their effects on formulation characteristics like size and entrapment efficiency. Four out of 11 variables were found to have insignificant effects on the formulation parameters and hence were screened out. Out of the remaining seven variables, four (concentration of tween-80, lecithin, sodium taurocholate, and total lipid) were found to have significant effects on the size of the particles while the other three (phase ratio, drug to lipid ratio, and sonication time) had a higher influence on the entrapment efficiency. The first four variables were optimized for their effect on size using the Taguchi L9 orthogonal array. The optimized values of the surfactants and lipids were kept constant for the next stage, where the sonication time, phase ratio, and drug:lipid ratio were varied using the Box–Behnken design response surface method to optimize the entrapment efficiency. Finally, by performing only 38 trials, we have optimized 11 variables for the development of NLCs with a size of 143.52 ± 1.2 nm, zeta potential of −32.6 ± 0.54 mV, and 98.22 ± 2.06% entrapment efficiency. (paper)

  9. Effects of upper body parameters on biped walking efficiency studied by dynamic optimization

    Directory of Open Access Journals (Sweden)

    Kang An

    2016-12-01

    Full Text Available Walking efficiency is one of the considerations for designing biped robots. This article uses the dynamic optimization method to study the effects of upper body parameters, including upper body length and mass, on walking efficiency. Two minimal actuations, hip joint torque and push-off impulse, are used in the walking model, and minimal constraints are set in a free search using the dynamic optimization. Results show that there is an optimal solution of upper body length for the efficient walking within a range of walking speed and step length. For short step length, walking with a lighter upper body mass is found to be more efficient and vice versa. It is also found that for higher speed locomotion, the increase of the upper body length and mass can make the walking gait optimal rather than other kind of gaits. In addition, the typical strategy of an optimal walking gait is that just actuating the swing leg at the beginning of the step.

  10. An Efficient Approach for Solving Mesh Optimization Problems Using Newton’s Method

    Directory of Open Access Journals (Sweden)

    Jibum Kim

    2014-01-01

    Full Text Available We present an efficient approach for solving various mesh optimization problems. Our approach is based on Newton’s method, which uses both first-order (gradient and second-order (Hessian derivatives of the nonlinear objective function. The volume and surface mesh optimization algorithms are developed such that mesh validity and surface constraints are satisfied. We also propose several Hessian modification methods when the Hessian matrix is not positive definite. We demonstrate our approach by comparing our method with nonlinear conjugate gradient and steepest descent methods in terms of both efficiency and mesh quality.

  11. Direct shaft torque measurements in a transient turbine facility

    International Nuclear Information System (INIS)

    Beard, Paul F; Povey, Thomas

    2011-01-01

    This paper describes the development and implementation of a shaft torque measurement system for the Oxford Turbine Research Facility (formerly the Turbine Test Facility (TTF) at QinetiQ, Farnborough), or OTRF. As part of the recent EU TATEF II programme, the facility was upgraded to allow turbine efficiency measurements to be performed. A shaft torque measurement system was developed as part of this upgrade. The system is unique in that, to the authors' knowledge, it provided the first direct measurement of shaft torque in a transient turbine facility although the system has wider applicability to rotating test facilities in which power measurement is a requirement. The adopted approach removes the requirement to quantify bearing friction, which can be difficult to accurately calibrate under representative operating conditions. The OTRF is a short duration (approximately 0.4 s run time) isentropic light-piston facility capable of matching all of the non-dimensional parameters important for aerodynamic and heat studies, namely Mach number, Reynolds number, non-dimensional speed, stage pressure ratio and gas-to-wall temperature ratio. The single-stage MT1 turbine used for this study is a highly loaded unshrouded design, and as such is relevant to modern military, or future civil aero-engine design. Shaft torque was measured directly using a custom-built strain gauge-based torque measurement system in the rotating frame of reference. This paper describes the development of this measurement system. The system was calibrated, including the effects of temperature, to a traceable primary standard using a purpose-built facility. The bias and precision uncertainties of the measured torque were ±0.117% and ±0.183%, respectively. To accurately determine the shaft torque developed by a turbine in the OTRF, small corrections due to inertial torque (associated with changes in the rotational speed) and aerodynamic drag (windage) are required. The methods for performing these

  12. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  13. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  14. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  15. Multiobjective optimal design of runner blade using efficiency and draft tube pulsation criteria

    International Nuclear Information System (INIS)

    Pilev, I M; Sotnikov, A A; Rigin, V E; Semenova, A V; Cherny, S G; Chirkov, D V; Bannikov, D V; Skorospelov, V A

    2012-01-01

    In the present work new criteria of optimal design method for turbine runner [1] are proposed. Firstly, based on the efficient method which couples direct simulation of 3D turbulent flow and engineering semi empirical formulas, the combined method is built for hydraulic energy losses estimation in the whole turbine water passage and the efficiency criterion is formulated. Secondly, the criterion of dynamic loads minimization is developed for those caused by vortex rope precession downstream of the runner. This criterion is based on the finding that the monotonic increase of meridional velocity component in the direction to runner hub, downstream of its blades, provides for decreasing the intensity of vortex rope and thereafter, minimization of pressure pulsation amplitude. The developed algorithm was applied to optimal design of 640 MW Francis turbine runner. It can ensure high efficiency at best efficiency operating point as well as diminished pressure pulsations at full load regime.

  16. Cost efficiency and optimal scale of electricity distribution firms in Taiwan: An application of metafrontier analysis

    International Nuclear Information System (INIS)

    Huang, Y.-J.; Chen, K.-H.; Yang, C.-H.

    2010-01-01

    This paper analyzes the cost efficiency and optimal scale of Taiwan's electricity distribution industry. Due to the substantial difference in network density, firms may differ widely in production technology. We employ the stochastic metafrontier approach to estimate the cost efficiency of 24 distribution units during the period 1997-2002. Empirical results find that the average cost efficiency is overestimated using the traditional stochastic frontier model, especially for low density regions. The average cost efficiency of the high density group is significantly higher than that of the low density group as it benefits from network economies. This study also calculates both short-term and long-term optimal scales of electricity distribution firms, lending policy implications for the deregulation of the electricity distribution industry.

  17. Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.

    Science.gov (United States)

    Velichkin, Vladimir A.; Zavyalov, Vladimir A.

    2018-03-01

    This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.

  18. HOC Based Blind Identification of Hydroturbine Shaft Volterra System

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2017-01-01

    Full Text Available In order to identify the quadratic Volterra system simplified from the hydroturbine shaft system, a blind identification method based on the third-order cumulants and a reversely recursive method are proposed. The input sequence of the system under consideration is an unobservable independent identically distributed (i.i.d., zero-mean and non-Gaussian stationary signal, and the observed signals are the superposition of the system output signal and Gaussian noise. To calculate the third-order moment of the output signal, a computer loop judgment method is put forward to determine the coefficient. When using optimization method to identify the time domain kernels, we combined the traditional optimization algorithm (direct search method with genetic algorithm (GA and constituted the hybrid genetic algorithm (HGA. Finally, according to the prototype observation signal and the time domain kernel parameters obtained from identification, the input signal of the system can be gained recursively. To test the proposed method, three numerical experiments and engineering application have been carried out. The results show that the method is applicable to the blind identification of the hydroturbine shaft system and has strong universality; the input signal obtained by the reversely recursive method can be approximately taken as the random excitation acted on the runner of the hydroturbine shaft system.

  19. An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation

    Science.gov (United States)

    Farhadi, Bita; Naseri, Mosayeb

    2016-08-01

    The photovoltaic performance of an efficient double junction InGaN/CIGS solar cell including a CdS antireflector top cover layer is studied using Silvaco ATLAS software. In this study, to gain a desired structure, the different design parameters, including the CIGS various band gaps, the doping concentration and the thickness of CdS layer are optimized. The simulation indicates that under current matching condition, an optimum efficiency of 40.42% is achieved.

  20. Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

    OpenAIRE

    Leila Torkaman; Nasser Ghassembaglou

    2015-01-01

    Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured ...

  1. Power efficiency optimization of disk-loaded waveguide traveling wave structure of electron linear accelerator

    International Nuclear Information System (INIS)

    Yang Jinghe; Li Jinhai; Li Chunguang

    2014-01-01

    Disk-loaded waveguide traveling wave structure (TWS), which is widely used in scientific research and industry, is a vital accelerating structure in electron linear accelerator. The power efficiency is an important parameter for designing TWS, which greatly effects the expenses for the fabrication and commercial running. The key parameters related with power efficiency were studied for TWS optimization. The result was proved by experiment result, and it shows some help for accelerator engineering. (authors)

  2. Integrated analysis of rock mass deformation within shaft protective pillar

    Directory of Open Access Journals (Sweden)

    Ewa Warchala

    2016-01-01

    Full Text Available The paper presents an analysis of the rock mass deformation resulting from mining in the vicinity of the shaft protection pillar. A methodology of deformation prediction is based on a deterministic method using Finite Element Method (FEM. The FEM solution is based on the knowledge of the geomechanical properties of the various geological formations, tectonic faults, types of mining systems, and the complexity of the behaviour of the rock mass. The analysis gave the stress and displacement fields in the rock mass. Results of the analysis will allow for design of an optimal mining system. The analysis is illustrated by an example of the shaft R-VIII Rudna Mine KGHM Polish Copper SA.

  3. Optimising a shaft's geometry by applying genetic algorithms

    Directory of Open Access Journals (Sweden)

    María Alejandra Guzmán

    2005-05-01

    Full Text Available Many engnieering design tasks involve optimising several conflicting goals; these types of problem are known as Multiobjective Optimisation Problems (MOPs. Evolutionary techniques have proved to be an effective tool for finding solutions to these MOPs during the last decade, Variations on the basic generic algorithm have been particulary proposed by different researchers for finding rapid optimal solutions to MOPs. The NSGA (Non-dominated Sorting Generic Algorithm has been implemented in this paper for finding an optimal design for a shaft subjected to cyclic loads, the conflycting goals being minimum weight and minimum lateral deflection.

  4. Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory

    Directory of Open Access Journals (Sweden)

    Jaśkowski Wojciech

    2018-01-01

    Full Text Available The shaft hoist assembly is the base of underground mining plant. Its efficiency and correct operation is subject to restrictive legal regulations and is controlled on a daily visual assessment by shaft crew and energomechanics. In addition, in the regular interval, the shaft hoist assembly is subject to a thorough inventory, which includes the determination of the geometrical relationships between the hoisting machine, the headframe and the shaft with its housing. Inventory measurements for shaft and headframe are used for years of conventional geodetic methods including mechanical or laser plumbing and tachymetric surveys. Additional precision levelling is also used for measuring shafts of hoisting machines and rope pulleys. Continuous modernization of measuring technology makes it possible to implement the further methods to the above mentioned purposes. The comparison of the accuracy and the economics of performing measurements based on many years of experience with comprehensive inventory of shaft hoist assembly using various research techniques was made and detailed in the article.

  5. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    Science.gov (United States)

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  6. Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2016-10-01

    Full Text Available The recast of the energy performance of buildings directive (EPBD describes a comparative methodological framework to promote energy efficiency and establish minimum energy performance requirements in buildings at the lowest costs. The aim of the cost-optimal methodology is to foster the achievement of nearly zero energy buildings (nZEBs, the new target for all new buildings by 2020, characterized by a high performance with a low energy requirement almost covered by renewable sources. The paper presents the results of the application of the cost-optimal methodology in two existing buildings located in the Mediterranean area. These buildings are a kindergarten and a nursery school that differ in construction period, materials and systems. Several combinations of measures have been applied to derive cost-effective efficient solutions for retrofitting. The cost-optimal level has been identified for each building and the best performing solutions have been selected considering both a financial and a macroeconomic analysis. The results illustrate the suitability of the methodology to assess cost-optimality and energy efficiency in school building refurbishment. The research shows the variants providing the most cost-effective balance between costs and energy saving. The cost-optimal solution reduces primary energy consumption by 85% and gas emissions by 82%–83% in each reference building.

  7. Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems

    International Nuclear Information System (INIS)

    Cao, Dingzhou; Murat, Alper; Chinnam, Ratna Babu

    2013-01-01

    This paper proposes a decomposition-based approach to exactly solve the multi-objective Redundancy Allocation Problem for series-parallel systems. Redundancy allocation problem is a form of reliability optimization and has been the subject of many prior studies. The majority of these earlier studies treat redundancy allocation problem as a single objective problem maximizing the system reliability or minimizing the cost given certain constraints. The few studies that treated redundancy allocation problem as a multi-objective optimization problem relied on meta-heuristic solution approaches. However, meta-heuristic approaches have significant limitations: they do not guarantee that Pareto points are optimal and, more importantly, they may not identify all the Pareto-optimal points. In this paper, we treat redundancy allocation problem as a multi-objective problem, as is typical in practice. We decompose the original problem into several multi-objective sub-problems, efficiently and exactly solve sub-problems, and then systematically combine the solutions. The decomposition-based approach can efficiently generate all the Pareto-optimal solutions for redundancy allocation problems. Experimental results demonstrate the effectiveness and efficiency of the proposed method over meta-heuristic methods on a numerical example taken from the literature.

  8. Genotype by environment interaction in sunflower (Helianthus annus L.) to optimize trial network efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barrios, P.; Castro, M.; Pérez, O.; Vilaró, D.; Gutiérrez, L.

    2017-07-01

    Modeling genotype by environment interaction (GEI) is one of the most challenging aspects of plant breeding programs. The use of efficient trial networks is an effective way to evaluate GEI to define selection strategies. Furthermore, the experimental design and the number of locations, replications, and years are crucial aspects of multi-environment trial (MET) network optimization. The objective of this study was to evaluate the efficiency and performance of a MET network of sunflower (Helianthus annuus L.). Specifically, we evaluated GEI in the network by delineating mega-environments, estimating genotypic stability and identifying relevant environmental covariates. Additionally, we optimized the network by comparing experimental design efficiencies. We used the National Evaluation Network of Sunflower Cultivars of Uruguay (NENSU) in a period of 20 years. MET plot yield and flowering time information was used to evaluate GEI. Additionally, meteorological information was studied for each sunflower physiological stage. An optimal network under these conditions should have three replications, two years of evaluation and at least three locations. The use of incomplete randomized block experimental design showed reasonable performance. Three mega-environments were defined, explained mainly by different management of sowing dates. Late sowings dates had the worst performance in grain yield and oil production, associated with higher temperatures before anthesis and fewer days allocated to grain filling. The optimization of MET networks through the analysis of the experimental design efficiency, the presence of GEI, and appropriate management strategies have a positive impact on the expression of yield potential and selection of superior cultivars.

  9. How to share our risks efficiently? Principles for optimal social insurance and pension provision

    NARCIS (Netherlands)

    Teulings, C.N.

    2010-01-01

    The efficient organisation of social insurance is an important problem for modern societies. The paper discusses evidence that shocks in labour income have largely persistent effects and analyses the implications of this observation for the optimal design of institutions for wage contracting, social

  10. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  11. Improving adsorption dryer energy efficiency by simultaneous optimization and heat integration

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Conventionally, energy-saving techniques in drying technology are sequential in nature. First, the dryer is optimized without heat recovery and then, based on the obtained process conditions, heat recovery possibilities are explored. This work presents a methodology for energy-efficient adsorption

  12. OPTIMIZATION OF THE CRITERION FOR ESTIMATING THE TECHNOLOGY EFFICIENCY OF PACKING-CASE-PIECE LOADS DELIVERY

    OpenAIRE

    O. Severyn; O. Shulika

    2017-01-01

    The results of optimization of gravimetric coefficients for indexes included in the integral criterion of estimation of the efficiency of transport-technological charts of cargo delivery are resulted. The values of gravimetric coefficients are determined on the basis of two methods of experimental researches: questioning of respondents among the specialists of motor transport production and imitation design.

  13. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos

    2009-01-01

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature

  14. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br

    2009-04-15

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.

  15. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    Science.gov (United States)

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-05-04

    Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.

  16. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach

  17. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

  18. An Optimization Scheme for Water Pump Control in Smart Fish Farm with Efficient Energy Consumption

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2018-06-01

    Full Text Available Healthy fish production requires intensive care and ensuring stable and healthy production environment inside the farm tank is a challenging task. An Internet of Things (IoT based automated system is highly desirable that can continuously monitor the fish tanks with optimal resources utilization. Significant cost reduction can be achieved if farm equipment and water pumps are operated only when required using optimization schemes. In this paper, we present a general system design for smart fish farms. We have developed an optimization scheme for water pump control to maintain desired water level in fish tank with efficient energy consumption through appropriate selection of pumping flow rate and tank filling level. Proposed optimization scheme attempts to achieve a trade-off between pumping duration and flow rate through selection of optimized water level. Kalman filter algorithm is applied to remove error in sensor readings. We observed through simulation results that optimization scheme achieve significant reduction in energy consumption as compared to the two alternate schemes, i.e., pumping with maximum and minimum flow rates. Proposed system can help in collecting the data about the farm for long-term analysis and better decision making in future for efficient resource utilization and overall profit maximization.

  19. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    Science.gov (United States)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  20. Analysis and Optimization of Wireless Power Transfer Efficiency Considering the Tilt Angle of a Coil

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-01-01

    Full Text Available Wireless power transfer (WPT based on magnetic resonant coupling is a promising technology in many industrial applications. Efficiency of the WPT system usually depends on the tilt angle of the transmitter or the receiver coil. This work analyzes the effect of the tilt angle on the efficiency of the WPT system with horizontal misalignment. The mutual inductance between two coils located at arbitrary positions with tilt angles is calculated using a numerical analysis based on the Neumann formula. The efficiency of the WPT system with a tilted coil is extracted using an equivalent circuit model with extracted mutual inductance. By analyzing the results, we propose an optimal tilt angle to maximize the efficiency of the WPT system. The best angle to maximize the efficiency depends on the radii of the two coils and their relative position. The calculated efficiencies versus the tilt angle for various WPT cases, which change the radius of RX (r2 = 0.075 m, 0.1 m, 0.15 m and the horizontal distance (y = 0 m, 0.05 m, 0.1 m, are compared with the experimental results. The analytically extracted efficiencies and the extracted optimal tilt angles agree well with those of the experimental results.

  1. Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals

    Science.gov (United States)

    Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús

    2017-10-01

    This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.

  2. Correlation of operating parameters on turbine shaft vibrations

    Science.gov (United States)

    Dixit, Harsh Kumar; Rajora, Rajeev

    2016-05-01

    The new generation of condition monitoring and diagnostics system plays an important role in efficient functioning of power plants. In most of the rotating machine, defects can be detected by such a system much before dangerous situation occurs. It allows the efficient use of stationary on-line continuous monitoring system for condition monitoring and diagnostics as well. Condition monitoring of turbine shaft can not only reduce expenses of maintenance of turbo generator of power plants but also prevents likely shutdown of plant, thereby increases plant load factor. Turbo visionary parameters are essential part of health diagnosis system of turbo generator. Particularly steam pressure, steam temperature and lube oil temperature are important parameters to monitor because they are having much influence on turbine shaft vibration and also governing systems are available for change values of those parameters. This paper includes influence of turbo visionary parameters i.e., steam temperature, steam pressure, lube oil temperature, turbine speed and load on turbine shaft vibration at turbo generator at 195 MW unit-6,Kota Super Thermal Power Station by measuring vibration amplitude and analyze them in MATLAB.

  3. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  4. Efficient approach for reliability-based optimization based on weighted importance sampling approach

    International Nuclear Information System (INIS)

    Yuan, Xiukai; Lu, Zhenzhou

    2014-01-01

    An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology

  5. Efficiency optimization of wireless power transmission systems for active capsule endoscopes.

    Science.gov (United States)

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-10-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.

  6. Efficiency optimization of wireless power transmission systems for active capsule endoscopes

    International Nuclear Information System (INIS)

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-01-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils

  7. Using combined system of shaft guides for buckets during shaft deepening

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.; Ivenskii, N.S.; Alekhin, P.I.

    1981-06-01

    This paper discusses a system of shaft guides used in the Krasnopol'evsk underground coal mine. The existing skip shaft 514 m deep is deepened to a depth of 700 m. Shaft design is adapted to a system of two pairs of skips, however, only one pair of skips is in operation and the other has been removed. The free space can be used to remove rock material from shaft bottom. It is noted that a system of buckets moving along elastic shaft guides made of rope or along rigid shaft guides can be used. Both solutions have numerous advantages. If rope guides are used time consuming installation of shaft guides is unnecessary in the zone close to the bottom. If rigid guides are used capacity of the bucket can be significantly increased. A system which combines advantages of both solutions is used: in the lower part of the shaft being deepened, buckets are guided by rope, and in the upper zone in which rigid shaft guides have been installed the bucket moves along rigid guides and rope guides simultaneously. Design of the element guiding the bucket is shown in two diagrams. It is noted that using the combined system of shaft guides increases capacity of the hoisting system by 1.5 times.

  8. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    Science.gov (United States)

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  9. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    Science.gov (United States)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  10. A least squares approach for efficient and reliable short-term versus long-term optimization

    DEFF Research Database (Denmark)

    Christiansen, Lasse Hjuler; Capolei, Andrea; Jørgensen, John Bagterp

    2017-01-01

    The uncertainties related to long-term forecasts of oil prices impose significant financial risk on ventures of oil production. To minimize risk, oil companies are inclined to maximize profit over short-term horizons ranging from months to a few years. In contrast, conventional production...... optimization maximizes long-term profits over horizons that span more than a decade. To address this challenge, the oil literature has introduced short-term versus long-term optimization. Ideally, this problem is solved by a posteriori multi-objective optimization methods that generate an approximation...... the balance between the objectives, leaving an unfulfilled potential to increase profits. To promote efficient and reliable short-term versus long-term optimization, this paper introduces a natural way to characterize desirable Pareto points and proposes a novel least squares (LS) method. Unlike hierarchical...

  11. An Optimal Design Method of Centrifugal Compressors in Consideration of the Efficiency and the Noise

    International Nuclear Information System (INIS)

    Ha, K. G.; Sung, S. M.; Kang, S. H.

    2007-01-01

    A centrifugal compressor is a principal part of the fuelcell vehicles, aircraft and home appliances. Therefore not only efficiency but also compact size and a low operation RPM for noise reducing turn into important criteria of centrifugal compressors design. But those criteria are in conflict each other often. In the case of a RPM in particular, it is profitable to lower the RPM for a noise reduction and an endurance. But for a compact size and a light weight, the reverse has a beneficial effect undoubtedly. So it is necessary to introduce a new optimization concept in the centrifugal compressor design. An one dimensional optimal design method for the centrifugal compressor considering a impeller, a vaneless diffuser and a volute at a time is described. The new optimization process and underlying design methods of centrifugal compressors and some optimal design results are included in the paper

  12. Torsional vibrations of shafts of mechanical systems

    Science.gov (United States)

    Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.

    2018-03-01

    The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.

  13. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  14. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  15. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  16. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  17. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery

    International Nuclear Information System (INIS)

    Wiens, A J; Nahon, M

    2012-01-01

    Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)

  18. Shaft sealing issue in CO2 storage sites

    Science.gov (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.

    2012-04-01

    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  19. An efficient and rigorous thermodynamic library and optimal-control of a cryogenic air separation unit

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    2017-01-01

    -linear model based control to achieve optimal techno-economic performance. Accordingly, this work presents a computationally efficient and novel approach for solving a tray-by-tray equilibrium model and its implementation for open-loop optimal-control of a cryogenic distillation column. Here, the optimisation...... objective is to reduce the cost of compression in a volatile electricity market while meeting the production requirements, i.e. product flow rate and purity. This model is implemented in Matlab and uses the ThermoLib rigorous thermodynamic library. The present work represents a first step towards plant...

  20. Optimization of Growth Medium for Efficient Cultivation of Lactobacillus salivarius i 24 using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Lim, C. H.

    2007-01-01

    Full Text Available Production of Lactobacillus salivarius i 24, a probiotic strain for chicken, was studied in batch fermentation using 500 mL Erlenmeyer flask. Response surface method (RSM was used to optimize the medium for efficient cultivation of the bacterium. The factors investigated were yeast extract, glucose and initial culture pH. A polynomial regression model with cubic and quartic terms was used for the analysis of the experimental data. Estimated optimal conditions of the factors for growth of L. salivarius i 24 were; 3.32 % (w/v glucose, 4.31 % (w/v yeast extract and initial culture pH of 6.10.

  1. Modeling and Optimization of M/G/1-Type Queueing Networks: An Efficient Sensitivity Analysis Approach

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2010-01-01

    Full Text Available A mathematical model for M/G/1-type queueing networks with multiple user applications and limited resources is established. The goal is to develop a dynamic distributed algorithm for this model, which supports all data traffic as efficiently as possible and makes optimally fair decisions about how to minimize the network performance cost. An online policy gradient optimization algorithm based on a single sample path is provided to avoid suffering from a “curse of dimensionality”. The asymptotic convergence properties of this algorithm are proved. Numerical examples provide valuable insights for bridging mathematical theory with engineering practice.

  2. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.

    Science.gov (United States)

    Ramrakhyani, A K; Mirabbasi, S; Mu Chiao

    2011-02-01

    Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

  3. Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Castro, Joseph Pete Jr. (; .); Giunta, Anthony Andrew

    2006-01-01

    Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and

  4. Shaft Seal Compensates for Cold Flow

    Science.gov (United States)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  5. Documentation and verification of the SHAFT code

    International Nuclear Information System (INIS)

    St John, C.M.

    1991-12-01

    The SHAFT code incorporates equations to compute stresses in a shaft liner when the rock through which a shaft passes is subject to known three-dimensional states of stress or strain. The deformation modes considered are hoop deformation, axial deformation, and shear on a plane normal to the shaft axis. Interaction between the liner and the soil and rock is considered, and it is assumed that the liner is in place before loading is applied. This code is intended to be used interactively but creates a permanent record complete with necessary quality assurance information. The code has been carefully verified for the case of generalized plane strain, in which an arbitrary axial strain can be defined. It may also be used for plane stress analysis. Output is given in the form of stresses at selected sample points in the linear and the rock and a simple graphical representation of the distribution of stress through the liner. 12 figs., 13 tabs

  6. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  7. Optimal energy efficiency policies and regulatory demand-side management tests: How well do they match?

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2010-01-01

    Under conventional models, subsidizing energy efficiency requires electricity to be priced below marginal cost. Its benefits increase when electricity prices increase to finance the subsidy. With high prices, subsidies are counterproductive unless consumers fail to make efficiency investments when private benefits exceed costs. If the gain from adopting efficiency is only reduced electricity spending, capping revenues from energy sales may induce a utility to substitute efficiency for generation when the former is less costly. This goes beyond standard 'decoupling' of distribution revenues from sales, requiring complex energy price regulation. The models' results are used to evaluate tests in the 2002 California Standard Practice Manual for assessing demand-side management programs. Its 'Ratepayer Impact Measure' test best conforms to the condition that electricity price is too low. Its 'Total Resource Cost' and 'Societal Cost' tests resemble the condition for expanded decoupling. No test incorporates optimality conditions apart from consumer choice failure.

  8. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John; Lee, Jon; Margulies, Susan

    2010-01-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  9. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John

    2010-06-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  10. FIXTURING DEVICE FOR DRILLING A STRAIGHT SHAFT

    Directory of Open Access Journals (Sweden)

    SUSAC, Florin

    2017-05-01

    Full Text Available The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  11. Incidence and epidemiology of tibial shaft fractures.

    Science.gov (United States)

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    Science.gov (United States)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  13. Toward Improved Rotor-Only Axial Fans—Part II: Design Optimization for Maximum Efficiency

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Thompson, M. C.; Sørensen, Jens Nørkær

    2000-01-01

    Numerical design optimization of the aerodynamic performance of axial fans is carried out, maximizing the efficiency in a designinterval of flow rates. Tip radius, number of blades, and angular velocity of the rotor are fixed, whereas the hub radius andspanwise distributions of chord length......, stagger angle, and camber angle are varied to find the optimum rotor geometry.Constraints ensure a pressure rise above a specified target and an angle of attack on the blades below stall. The optimizationscheme is used to investigate the dependence of maximum efficiency on the width of the design interval...

  14. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...

  15. Efficiency-optimized low-cost TDPAC spectrometer using a versatile routing/coincidence unit

    International Nuclear Information System (INIS)

    Renteria, M.; Bibiloni, A. G.; Darriba, G. N.; Errico, L. A.; Munoz, E. L.; Richard, D.; Runco, J.

    2008-01-01

    A highly efficient, reliable, and low-cost γ-γ TDPAC spectrometer, PACAr, optimized for 181 Hf-implanted low-activity samples, is presented. A versatile EPROM-based routing/coincidence unit was developed and implemented to be use with the memory-card-based multichannel analyzer hosted in a personal computer. The excellent energy resolution and very good overall resolution and efficiency of PACAr are analyzed and compare with advanced and already tested fast-fast and slow-fast PAC spectrometers.

  16. Efficiency-optimized low-cost TDPAC spectrometer using a versatile routing/coincidence unit

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, M., E-mail: renteria@fisica.unlp.edu.ar; Bibiloni, A. G.; Darriba, G. N.; Errico, L. A.; Munoz, E. L.; Richard, D.; Runco, J. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)

    2008-01-15

    A highly efficient, reliable, and low-cost {gamma}-{gamma} TDPAC spectrometer, PACAr, optimized for {sup 181}Hf-implanted low-activity samples, is presented. A versatile EPROM-based routing/coincidence unit was developed and implemented to be use with the memory-card-based multichannel analyzer hosted in a personal computer. The excellent energy resolution and very good overall resolution and efficiency of PACAr are analyzed and compare with advanced and already tested fast-fast and slow-fast PAC spectrometers.

  17. Optimization of the working process of the axial compressor according to the criterion of efficiency

    Science.gov (United States)

    Baturin, O. V.; Popov, G. M.; Goryachkin, E. S.; Novikova, Yu D.

    2017-01-01

    The paper shows search results of the optimal shape of low pressure compressor blades of the industrial gas turbine plant using methods of computational fluid dynamics and multicriteria methods of mathematical optimization. The essence of the methods is that an increase in compressor efficiency should be achieved by increasing the degree of compression up to 2%, and reducing the air flow to 8% relative to basic engine parameters. However, the compressor design elements should be retained as maximally unchanged as possible. During the work, the calculation model of the workflow in the test compressor has been developed and verified in the NUMECA software package, the automated algorithm of the blades shape change has been also developed using a small number of variables, while maintaining its stress-strain state. It allows reducing the number of changeable variables more than twofold. As the result of this study, the option of compressor performance was found, which can increase its efficiency by 1.3% (abs.).

  18. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    JongHyup Lee

    2016-08-01

    Full Text Available For practical deployment of wireless sensor networks (WSN, WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.

  19. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Science.gov (United States)

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  20. Designing optimum diameter of skip shafts in mines with inclined or steep coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1981-07-01

    This paper discusses methods of increasing depth of operating shaft mines considering optimization of hoisting systems. The following solutions are analyzed: removing mined rock material to the surface, to operating horizon, to the deepest horizon, removing rock to the deepest horizon by enlarging a large diameter borehole. It is suggested that removing rock material to the surface is most economical. This solution is sometimes difficult to implement due to design of mine shafts. If a shaft is equipped with two pairs of skips, or with a pair of skips and two independent skips, one skip or a pair of skips can be removed to form free space for buckets used to hoist mined rock and coal. The bucket moves along rope shaft guides. Analysis of the optimum hoisting systems in shaft mines for coal mines with the following design capacity is carried out: 0.9, 1.2, 1.5 and 1.8 Mmt a year. The following depth of working horizons is evaluated: 600, 800, 1000, 1200, 1400 and 1600 m. It is assumed that coal and rock are hoisted separately. Advance rate ranges from 10 to 50 m/month. The results of analysis are shown in two tables. It is suggested that from the point of view of increasing depth of active mine shafts the following solutions are optimum: 7 m shaft with a system of three independently moving skips (two for coal, one for rock material), and 8 m shaft equipped with a pair of skips and two independent skips (one of the independently moving skips is used for rock hoisting). 4 refs.

  1. Networks that optimize a trade-off between efficiency and dynamical resilience

    International Nuclear Information System (INIS)

    Brede, Markus; Vries, Bert J.M. de

    2009-01-01

    In this Letter we study networks that have been optimized to realize a trade-off between communication efficiency and dynamical resilience. While the first is related to the average shortest pathlength, we argue that the second can be measured by the largest eigenvalue of the adjacency matrix of the network. Best efficiency is realized in star-like configurations, while enhanced resilience is related to the avoidance of short loops and degree homogeneity. Thus crucially, very efficient networks are not resilient while very resilient networks lack in efficiency. Networks that realize a trade-off between both limiting cases exhibit core-periphery structures, where the average degree of core nodes decreases but core size increases as the weight is gradually shifted from a strong requirement for efficiency and limited resilience towards a smaller requirement for efficiency and a strong demand for resilience. We argue that both, efficiency and resilience are important requirements for network design and highlight how networks can be constructed that allow for both.

  2. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  3. Efficient and Optimal Capital Accumulation under a Non Renewable Resource Constraint

    OpenAIRE

    Amigues, Jean-Pierre; Moreaux, Michel

    2008-01-01

    Usual resource models with capital accumulation focus upon simple one to one process transforming output either into some consumption good or into some capitalgood. We consider a bisectoral model where the capital good, labor and a non renewable resource are used to produce the consumption good and the capital good. Capitalaccumulation is an irreversible process and capital is depreciating over time. In thisframework we reconsider the usual results of the efficient and optimal growth theoryun...

  4. Time efficient optimization of instance based problems with application to tone onset detection

    OpenAIRE

    Bauer, Nadja; Friedrichs, Klaus; Weihs, Claus

    2016-01-01

    A time efficient optimization technique for instance based problems is proposed, where for each parameter setting the target function has to be evaluated on a large set of problem instances. Computational time is reduced by beginning with a performance estimation based on the evaluation of a representative subset of instances. Subsequently, only promising settings are evaluated on the whole data set. As application a comprehensive music onset detection algorithm is introduce...

  5. Asymptotic optimality and efficient computation of the leave-subject-out cross-validation

    KAUST Repository

    Xu, Ganggang

    2012-12-01

    Although the leave-subject-out cross-validation (CV) has been widely used in practice for tuning parameter selection for various nonparametric and semiparametric models of longitudinal data, its theoretical property is unknown and solving the associated optimization problem is computationally expensive, especially when there are multiple tuning parameters. In this paper, by focusing on the penalized spline method, we show that the leave-subject-out CV is optimal in the sense that it is asymptotically equivalent to the empirical squared error loss function minimization. An efficient Newton-type algorithm is developed to compute the penalty parameters that optimize the CV criterion. Simulated and real data are used to demonstrate the effectiveness of the leave-subject-out CV in selecting both the penalty parameters and the working correlation matrix. © 2012 Institute of Mathematical Statistics.

  6. Combination of Compensations and Multi-Parameter Coil for Efficiency Optimization of Inductive Power Transfer System

    Directory of Open Access Journals (Sweden)

    Guozhen Hu

    2017-12-01

    Full Text Available A loosely coupled inductive power transfer (IPT system for industrial track applications has been researched in this paper. The IPT converter using primary Inductor-Capacitor-Inductor (LCL network and secondary parallel-compensations is analyzed combined coil design for optimal operating efficiency. Accurate mathematical analytical model and expressions of self-inductance and mutual inductance are proposed to achieve coil parameters. Furthermore, the optimization process is performed combined with the proposed resonant compensations and coil parameters. The results are evaluated and discussed using finite element analysis (FEA. Finally, an experimental prototype is constructed to verify the proposed approach and the experimental results show that the optimization can be better applied to industrial track distributed IPT system.

  7. Asymptotic optimality and efficient computation of the leave-subject-out cross-validation

    KAUST Repository

    Xu, Ganggang; Huang, Jianhua Z.

    2012-01-01

    Although the leave-subject-out cross-validation (CV) has been widely used in practice for tuning parameter selection for various nonparametric and semiparametric models of longitudinal data, its theoretical property is unknown and solving the associated optimization problem is computationally expensive, especially when there are multiple tuning parameters. In this paper, by focusing on the penalized spline method, we show that the leave-subject-out CV is optimal in the sense that it is asymptotically equivalent to the empirical squared error loss function minimization. An efficient Newton-type algorithm is developed to compute the penalty parameters that optimize the CV criterion. Simulated and real data are used to demonstrate the effectiveness of the leave-subject-out CV in selecting both the penalty parameters and the working correlation matrix. © 2012 Institute of Mathematical Statistics.

  8. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    Science.gov (United States)

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used

  9. On the Optimization of a Probabilistic Data Aggregation Framework for Energy Efficiency in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Stella Kafetzoglou

    2015-08-01

    Full Text Available Among the key aspects of the Internet of Things (IoT is the integration of heterogeneous sensors in a distributed system that performs actions on the physical world based on environmental information gathered by sensors and application-related constraints and requirements. Numerous applications of Wireless Sensor Networks (WSNs have appeared in various fields, from environmental monitoring, to tactical fields, and healthcare at home, promising to change our quality of life and facilitating the vision of sensor network enabled smart cities. Given the enormous requirements that emerge in such a setting—both in terms of data and energy—data aggregation appears as a key element in reducing the amount of traffic in wireless sensor networks and achieving energy conservation. Probabilistic frameworks have been introduced as operational efficient and performance effective solutions for data aggregation in distributed sensor networks. In this work, we introduce an overall optimization approach that improves and complements such frameworks towards identifying the optimal probability for a node to aggregate packets as well as the optimal aggregation period that a node should wait for performing aggregation, so as to minimize the overall energy consumption, while satisfying certain imposed delay constraints. Primal dual decomposition is employed to solve the corresponding optimization problem while simulation results demonstrate the operational efficiency of the proposed approach under different traffic and topology scenarios.

  10. On the Optimization of a Probabilistic Data Aggregation Framework for Energy Efficiency in Wireless Sensor Networks.

    Science.gov (United States)

    Kafetzoglou, Stella; Aristomenopoulos, Giorgos; Papavassiliou, Symeon

    2015-08-11

    Among the key aspects of the Internet of Things (IoT) is the integration of heterogeneous sensors in a distributed system that performs actions on the physical world based on environmental information gathered by sensors and application-related constraints and requirements. Numerous applications of Wireless Sensor Networks (WSNs) have appeared in various fields, from environmental monitoring, to tactical fields, and healthcare at home, promising to change our quality of life and facilitating the vision of sensor network enabled smart cities. Given the enormous requirements that emerge in such a setting-both in terms of data and energy-data aggregation appears as a key element in reducing the amount of traffic in wireless sensor networks and achieving energy conservation. Probabilistic frameworks have been introduced as operational efficient and performance effective solutions for data aggregation in distributed sensor networks. In this work, we introduce an overall optimization approach that improves and complements such frameworks towards identifying the optimal probability for a node to aggregate packets as well as the optimal aggregation period that a node should wait for performing aggregation, so as to minimize the overall energy consumption, while satisfying certain imposed delay constraints. Primal dual decomposition is employed to solve the corresponding optimization problem while simulation results demonstrate the operational efficiency of the proposed approach under different traffic and topology scenarios.

  11. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  12. An efficient identification approach for stable and unstable nonlinear systems using Colliding Bodies Optimization algorithm.

    Science.gov (United States)

    Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P

    2015-11-01

    This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Development of an Optimal Controller and Validation Test Stand for Fuel Efficient Engine Operation

    Science.gov (United States)

    Rehn, Jack G., III

    There are numerous motivations for improvements in automotive fuel efficiency. As concerns over the environment grow at a rate unmatched by hybrid and electric automotive technologies, the need for reductions in fuel consumed by current road vehicles has never been more present. Studies have shown that a major cause of poor fuel consumption in automobiles is improper driving behavior, which cannot be mitigated by purely technological means. The emergence of autonomous driving technologies has provided an opportunity to alleviate this inefficiency by removing the necessity of a driver. Before autonomous technology can be relied upon to reduce gasoline consumption on a large scale, robust programming strategies must be designed and tested. The goal of this thesis work was to design and deploy an autonomous control algorithm to navigate a four cylinder, gasoline combustion engine through a series of changing load profiles in a manner that prioritizes fuel efficiency. The experimental setup is analogous to a passenger vehicle driving over hilly terrain at highway speeds. The proposed approach accomplishes this using a model-predictive, real-time optimization algorithm that was calibrated to the engine. Performance of the optimal control algorithm was tested on the engine against contemporary cruise control. Results indicate that the "efficient'' strategy achieved one to two percent reductions in total fuel consumed for all load profiles tested. The consumption data gathered also suggests that further improvements could be realized on a different subject engine and using extended models and a slightly modified optimal control approach.

  14. Optimization of the n-type HPGe detector parameters to theoretical determination of efficiency curves

    International Nuclear Information System (INIS)

    Rodriguez-Rodriguez, A.; Correa-Alfonso, C.M.; Lopez-Pino, N.; Padilla-Cabal, F.; D'Alessandro, K.; Corrales, Y.; Garcia-Alvarez, J. A.; Perez-Mellor, A.; Baly-Gil, L.; Machado, A.

    2011-01-01

    A highly detailed characterization of a 130 cm 3 n-type HPGe detector, employed in low - background gamma spectrometry measurements, was done. Precise measured data and several Monte Carlo (MC) calculations have been combined to optimize the detector parameters. HPGe crystal location inside the Aluminum end-cap as well as its dimensions, including the borehole radius and height, were determined from frontal and lateral scans. Additionally, X-ray radiography and Computed Axial Tomography (CT) studies were carried out to complement the information about detector features. Using seven calibrated point sources ( 241 Am, 133 Ba, 57,60 Co, 137 Cs, 22 Na and 152 Eu), photo-peak efficiency curves at three different source - detector distances (SDD) were obtained. Taking into account the experimental values, an optimization procedure by means of MC simulations (MCNPX 2.6 code) were performed. MC efficiency curves were calculated specifying the optimized detector parameters in the MCNPX input files. Efficiency calculation results agree with empirical data, showing relative deviations lesser 10%. (Author)

  15. Toward efficient optimization of wind farm layouts: Utilizing exact gradient information

    International Nuclear Information System (INIS)

    Guirguis, David; Romero, David A.; Amon, Cristina H.

    2016-01-01

    Highlights: • A mathematical programming approach is proposed to solve the WFLO problem. • Differentiable mathematical models are developed to handle land-use constraints. • Test cases with significant land-use constraints are solved efficiently. • The proposed approach outperforms genetic algorithm. - Abstract: The Wind Farm Layout Optimization (WFLO) problem has attracted a lot of attention from researchers and industry practitioners, as it has been proven that better placement of wind turbines can increase the overall efficiency and the total revenue of a wind farm. Although the engineering wake models are commonly used for layout optimization, the literature seems to have settled on using metaheuristics and stochastic optimization methods. In the present study, we show the effectiveness of non-linear mathematical programming in solving continuous-variable WFLO problems by utilizing exact gradient information of the problem’s objective and constraints. Moreover, mathematical models for handling land-use constraints are developed to solve highly constrained practical problems. For demonstration purposes, the results were compared with those obtained by a genetic algorithm, using a set of test cases that have been frequently used in the WFLO literature. Additional test cases with higher dimensionality, significant land-availability constraints and higher wind farm turbine densities (i.e., turbines per square kilometer) are devised and solved to show the merits of the proposed approach. Our results show the superiority of mathematical programing in solving this problem, as evidenced by the resulting wind farm efficiency and the computational cost required to obtain the solutions.

  16. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    Science.gov (United States)

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Parametric Analysis of a Two-Shaft Aeroderivate Gas Turbine of 11.86 MW

    Directory of Open Access Journals (Sweden)

    R. Lugo-Leyte

    2015-08-01

    Full Text Available The aeroderivate gas turbines are widely used for power generation in the oil and gas industry. In offshore marine platforms, the aeroderivative gas turbines provide the energy required to drive mechanically compressors, pumps and electric generators. Therefore, the study of the performance of aeroderivate gas turbines based on a parametric analysis is relevant to carry out a diagnostic of the engine, which can lead to operational as well as predictive and/or corrective maintenance actions. This work presents a methodology based on the exergetic analysis to estimate the irrevesibilities and exergetic efficiencies of the main components of a two-shaft aeroderivate gas turbine. The studied engine is the Solar Turbine Mars 100, which is rated to provide 11.86 MW. In this engine, the air is compressed in an axial compressor achieving a pressure ratio of 17.7 relative to ambient conditions and a high pressure turbine inlet temperature of 1220 °C. Even if the thermal efficiency associated to the pressure ratio of 17.7 is 1% lower than the maximum thermal efficiency, the irreversibilities related to this pressure ratio decrease approximately 1 GW with respect to irreversibilities of the optimal pressure ratio for the thermal efficiency. In addition, this paper contributes to develop a mathematical model to estimate the high turbine inlet temperature as well as the pressure ratio of the low and high pressure turbines.

  18. Real time PI-backstepping induction machine drive with efficiency optimization.

    Science.gov (United States)

    Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader

    2017-09-01

    This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers.

    Science.gov (United States)

    Kim, Hye-Na; Vahidinia, Sanaz; Holt, Amanda L; Sweeney, Alison M; Yang, Shu

    2017-11-01

    It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks.

    Science.gov (United States)

    Shi, Shengchao; Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-09-04

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach's method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.

  1. Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach

    International Nuclear Information System (INIS)

    Salari, Ehsan; Craft, David; Wala, Jeremiah

    2012-01-01

    To formulate and solve the fluence-map merging procedure of the recently-published VMAT treatment-plan optimization method, called vmerge, as a bi-criteria optimization problem. Using an exact merging method rather than the previously-used heuristic, we are able to better characterize the trade-off between the delivery efficiency and dose quality. vmerge begins with a solution of the fluence-map optimization problem with 180 equi-spaced beams that yields the ‘ideal’ dose distribution. Neighboring fluence maps are then successively merged, meaning that they are added together and delivered as a single map. The merging process improves the delivery efficiency at the expense of deviating from the initial high-quality dose distribution. We replace the original merging heuristic by considering the merging problem as a discrete bi-criteria optimization problem with the objectives of maximizing the treatment efficiency and minimizing the deviation from the ideal dose. We formulate this using a network-flow model that represents the merging problem. Since the problem is discrete and thus non-convex, we employ a customized box algorithm to characterize the Pareto frontier. The Pareto frontier is then used as a benchmark to evaluate the performance of the standard vmerge algorithm as well as two other similar heuristics. We test the exact and heuristic merging approaches on a pancreas and a prostate cancer case. For both cases, the shape of the Pareto frontier suggests that starting from a high-quality plan, we can obtain efficient VMAT plans through merging neighboring fluence maps without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a network optimization approach to the merging problem. Contrasting the trade-off curves of the

  2. Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach.

    Science.gov (United States)

    Salari, Ehsan; Wala, Jeremiah; Craft, David

    2012-09-07

    To formulate and solve the fluence-map merging procedure of the recently-published VMAT treatment-plan optimization method, called VMERGE, as a bi-criteria optimization problem. Using an exact merging method rather than the previously-used heuristic, we are able to better characterize the trade-off between the delivery efficiency and dose quality. VMERGE begins with a solution of the fluence-map optimization problem with 180 equi-spaced beams that yields the 'ideal' dose distribution. Neighboring fluence maps are then successively merged, meaning that they are added together and delivered as a single map. The merging process improves the delivery efficiency at the expense of deviating from the initial high-quality dose distribution. We replace the original merging heuristic by considering the merging problem as a discrete bi-criteria optimization problem with the objectives of maximizing the treatment efficiency and minimizing the deviation from the ideal dose. We formulate this using a network-flow model that represents the merging problem. Since the problem is discrete and thus non-convex, we employ a customized box algorithm to characterize the Pareto frontier. The Pareto frontier is then used as a benchmark to evaluate the performance of the standard VMERGE algorithm as well as two other similar heuristics. We test the exact and heuristic merging approaches on a pancreas and a prostate cancer case. For both cases, the shape of the Pareto frontier suggests that starting from a high-quality plan, we can obtain efficient VMAT plans through merging neighboring fluence maps without substantially deviating from the initial dose distribution. The trade-off curves obtained by the various heuristics are contrasted and shown to all be equally capable of initial plan simplifications, but to deviate in quality for more drastic efficiency improvements. This work presents a network optimization approach to the merging problem. Contrasting the trade-off curves of the merging

  3. Extremely Efficient Design of Organic Thin Film Solar Cells via Learning-Based Optimization

    Directory of Open Access Journals (Sweden)

    Mine Kaya

    2017-11-01

    Full Text Available Design of efficient thin film photovoltaic (PV cells require optical power absorption to be computed inside a nano-scale structure of photovoltaics, dielectric and plasmonic materials. Calculating power absorption requires Maxwell’s electromagnetic equations which are solved using numerical methods, such as finite difference time domain (FDTD. The computational cost of thin film PV cell design and optimization is therefore cumbersome, due to successive FDTD simulations. This cost can be reduced using a surrogate-based optimization procedure. In this study, we deploy neural networks (NNs to model optical absorption in organic PV structures. We use the corresponding surrogate-based optimization procedure to maximize light trapping inside thin film organic cells infused with metallic particles. Metallic particles are known to induce plasmonic effects at the metal–semiconductor interface, thus increasing absorption. However, a rigorous design procedure is required to achieve the best performance within known design guidelines. As a result of using NNs to model thin film solar absorption, the required time to complete optimization is decreased by more than five times. The obtained NN model is found to be very reliable. The optimization procedure results in absorption enhancement greater than 200%. Furthermore, we demonstrate that once a reliable surrogate model such as the developed NN is available, it can be used for alternative analyses on the proposed design, such as uncertainty analysis (e.g., fabrication error.

  4. Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot

    Science.gov (United States)

    Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei

    2012-07-01

    Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.

  5. Energy efficiency optimization in distribution transformers considering Spanish distribution regulation policy

    International Nuclear Information System (INIS)

    Pezzini, Paola; Gomis-Bellmunt, Oriol; Frau-Valenti, Joan; Sudria-Andreu, Antoni

    2010-01-01

    In transmission and distribution systems, the high number of installed transformers, a loss source in networks, suggests a good potential for energy savings. This paper presents how the Spanish Distribution regulation policy, Royal Decree 222/2008, affects the overall energy efficiency in distribution transformers. The objective of a utility is the maximization of the benefit, and in case of failures, to install a chosen transformer in order to maximize the profit. Here, a novel method to optimize energy efficiency, considering the constraints set by the Spanish Distribution regulation policy, is presented; its aim is to achieve the objectives of the utility when installing new transformers. The overall energy efficiency increase is a clear result that can help in meeting the requirements of European environmental plans, such as the '20-20-20' action plan.

  6. Energy efficiency optimization in distribution transformers considering Spanish distribution regulation policy

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Paola [Centre d' Innovacio en Convertidors Estatics i Accionaments (CITCEA-UPC), E.T.S. Enginyeria Industrial Barcelona, Universitat Politecnica Catalunya, Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); Gomis-Bellmunt, Oriol; Sudria-Andreu, Antoni [Centre d' Innovacio en Convertidors Estatics i Accionaments (CITCEA-UPC), E.T.S. Enginyeria Industrial Barcelona, Universitat Politecnica Catalunya, Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Josep Pla, B2, Pl. Baixa, 08019 Barcelona (Spain); Frau-Valenti, Joan [ENDESA, Carrer Joan Maragall, 16 07006 Palma (Spain)

    2010-12-15

    In transmission and distribution systems, the high number of installed transformers, a loss source in networks, suggests a good potential for energy savings. This paper presents how the Spanish Distribution regulation policy, Royal Decree 222/2008, affects the overall energy efficiency in distribution transformers. The objective of a utility is the maximization of the benefit, and in case of failures, to install a chosen transformer in order to maximize the profit. Here, a novel method to optimize energy efficiency, considering the constraints set by the Spanish Distribution regulation policy, is presented; its aim is to achieve the objectives of the utility when installing new transformers. The overall energy efficiency increase is a clear result that can help in meeting the requirements of European environmental plans, such as the '20-20-20' action plan. (author)

  7. Optimization design of hydroturbine rotors according to the efficiency-strength criteria

    Science.gov (United States)

    Bannikov, D. V.; Yesipov, D. V.; Cherny, S. G.; Chirkov, D. V.

    2010-12-01

    The hydroturbine runner designing [1] is optimized by efficient methods for calculation of head loss in entire flow-through part of the turbine and deformation state of the blade. Energy losses are found at modelling of the spatial turbulent flow and engineering semi-empirical formulae. State of deformation is determined from the solution of the linear problem of elasticity for the isolated blade at hydrodynamic pressure with the method of boundary elements. With the use of the proposed system, the problem of the turbine runner design with the capacity of 640 MW providing the preset dependence of efficiency on the turbine work mode (efficiency criterion) is solved. The arising stresses do not exceed the critical value (strength criterion).

  8. Optimization of Multi-layer Active Magnetic Regenerator towards Compact and Efficient Refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2016-01-01

    Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat r....... In addition, simulations are carried out to investigate the potential of applying nanofluid in future magnetic refrigerators.......Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat...... their Curie temperature. Simulations are implemented to investigate how to layer the FOPT materials for obtaining higher cooling capacity. Moreover, based on entropy generation minimization, optimization of the regenerator geometry and related operating parameters is presented for improving the AMR efficiency...

  9. An Optimal Balance between Efficiency and Safety of Urban Drainage Networks

    Science.gov (United States)

    Seo, Y.

    2014-12-01

    Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.

  10. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    Science.gov (United States)

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  11. Designing vertical mine shafts under conditions of increasing shaft depth with rock hoisting to the operating mining level

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-05-01

    A system for shaft excavation in deep coal mines with mining depth exceeding 1,000 m is discussed. During mine sinking rocks are removed to the ground surface. When depth of a deep mine shaft is increased rocks are removed to the operating mining level, causing lower investment costs than the system with rock hoisting to the ground surface. The Yuzhgiproshakht design firm carries out investigations on the optimum methods for increasing shaft depth in coal mines. Coal mines with the following coal output are included in evaluations: 0.9, 1.2, 1.5, and 1.8 Mt/year. Mine shaft depth of 600, 800, 1000, 1200, 1400 and 1600 m is analyzed. Shaft depth is increased by 100, 200, 300 or 400 m. Shaft sinking rate ranges from 10 to 70 m/month. Effects of rock hoisting from the shaft bottom on the hoisting scheme in a mine shaft are analyzed. Position of hoisting bucket in relation to cages or skips moving in a shaft is investigated. Investigation results are given in 5 schemes. Analyses show that use of a shaft sinking system with rock hoisting to the ground surface during shaft excavation and with rock hoisting to the operating mining level during shaft depth increasing is economical when a shaft with skips is from 7 to 8 m in diameter or when a cage shaft is 6 m, 7 m or 8 m in diameter. Use of standardized shaft excavation systems is recommended. (In Russian)

  12. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  13. Mobility Aware Energy Efficient Clustering for MANET: A Bio-Inspired Approach with Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Naghma Khatoon

    2017-01-01

    Full Text Available Mobility awareness and energy efficiency are two indispensable optimization problems in mobile ad hoc networks (MANETs where nodes move unpredictably in any direction with restricted battery life, resulting in frequent change in topology. These constraints are widely studied to increase the lifetime of such networks. This paper focuses on the problems of mobility as well as energy efficiency to develop a clustering algorithm inspired by multiagent stochastic parallel search technique of particle swarm optimization. The election of cluster heads takes care of mobility and remaining energy as well as the degree of connectivity for selecting nodes to serve as cluster heads for longer duration of time. The cluster formation is presented by taking multiobjective fitness function using particle swarm optimization. The proposed work is experimented extensively in the NS-2 network simulator and compared with the other existing algorithms. The results show the effectiveness of our proposed algorithm in terms of network lifetime, average number of clusters formed, average number of reclustering required, energy consumption, and packet delivery ratio.

  14. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    Directory of Open Access Journals (Sweden)

    Eleonora Sforza

    Full Text Available Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  15. Distributed Bees Algorithm Parameters Optimization for a Cost Efficient Target Allocation in Swarms of Robots

    Directory of Open Access Journals (Sweden)

    Álvaro Gutiérrez

    2011-11-01

    Full Text Available Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA, previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce.

  16. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  17. Mechanised drivage of roads, slopes and shafts

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The variety of methods of work and the individual nature of statistics available from members makes a comparison of operational activity in this field very difficult. There is considerable variation between members drivage requirements on a ton per metre driven basis. This is primarily dictated by the natural conditions and the consequent methods of work adopted. The cost contribution to coal production from the drivage or heading activity appears to lie between 10 and 30 percent where the method is mainly longwall, and approximately 70 percent where it is mainly roof and pillar. There is therefore an opportunity for significant overall cost reduction if the drivage process itself can be made more efficient and, beyond the activity itself, it appears likely that there should be scope for increasing the tons per metre driven. On the basis of a postulated average roadway life of 5 to 6 years, the subsequent cost of maintenance may add a significant long term burden particularly in deep and highly stressed strata. The R and D work aimed at improved roadway siting, strata consolidation and provision of roof support systems which do not require repair is thus likely to have a basic effect on production costs. Data on shaft construction is limited; but this activity must have major importance to members anticipating increase in production or transfer of production sites; and the likely criteria for operational effectiveness seem likely to be speed of construction rather than purely initial construction cost. There is a relative scarcity of specific mention of debris disposal systems. On the tons/metre data quoted it would however appear that debris disposal from drivages requires some 20 percent or more of colliery haulage demand and must be a significant factor in colliery economics.

  18. Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; Xu, Xiangyang; He, Xiaoyuan

    2018-02-01

    The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.

  19. Optimal Cross-Layer Design for Energy Efficient D2D Sharing Systems

    KAUST Repository

    Alabbasi, Abdulrahman

    2016-11-23

    In this paper, we propose a cross-layer design, which optimizes the energy efficiency of a potential future 5G spectrum-sharing environment, in two sharing scenarios. In the first scenario, underlying sharing is considered. We propose and minimize a modified energy per good bit (MEPG) metric, with respect to the spectrum sharing user’s transmission power and media access frame length. The cellular users, legacy users, are protected by an outage probability constraint. To optimize the non-convex targeted problem, we utilize the generalized convexity theory and verify the problem’s strictly pseudoconvex structure. We also derive analytical expressions of the optimal resources. In the second scenario, we minimize a generalized MEPG function while considering a probabilistic activity of cellular users and its impact on the MEPG performance of the spectrum sharing users. Finally, we derive the associated optimal resource allocation of this problem. Selected numerical results show the improvement of the proposed system compared with other systems.

  20. Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation.

    Science.gov (United States)

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    Multiple trait integration (MTI) is a multi-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) through backcross breeding. From a breeding standpoint, MTI involves four steps: single event introgression, event pyramiding, trait fixation, and version testing. This study explores the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events in the light of the overall goal of MTI of recovering equivalent performance in the finished hybrid conversion along with reliable expression of the value-added traits. Using the results to optimize single event introgression (Peng et al. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed, 2013) which produced single event conversions of recurrent parents (RPs) with ≤8 cM of residual non-recurrent parent (NRP) germplasm with ~1 cM of NRP germplasm in the 20 cM regions flanking the event, this study focused on optimizing process efficiency in the second and third steps in MTI: event pyramiding and trait fixation. Using computer simulation and probability theory, we aimed to (1) fit an optimal breeding strategy for pyramiding of eight events into the female RP and seven in the male RP, and (2) identify optimal breeding strategies for trait fixation to create a 'finished' conversion of each RP homozygous for all events. In addition, next-generation seed needs were taken into account for a practical approach to process efficiency. Building on work by Ishii and Yonezawa (Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537-546, 2007a), a symmetric crossing schedule for event pyramiding was devised for stacking eight (seven) events in a given RP. Options for trait fixation breeding strategies considered selfing and doubled haploid approaches to achieve homozygosity

  1. Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria

    Science.gov (United States)

    Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.

    2017-02-01

    This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.

  2. LOW-CALORIES RAISINS OBTAINED BY COMBINED DEHYDRATION: PROCESS OPTIMIZATION AND EVALUATION OF THE ANTIOXIDANT EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Mariana B. Laborde

    2015-03-01

    Full Text Available A healthy dehydrated food of high nutritional-quality and added-value was developed: low-calories raisin obtained by an ultrasonic assisted combined-dehydration with two-stage osmotic treatment (D3S complemented by drying. Pink Red Globe grape produced at Mendoza (Argentina, experienced a substitution of sugar by natural sweetener Stevia in two osmotic stages under different conditions (treatment with/without ultrasound; sweetener concentration 18, 20, 22% w/w; time 35, 75, 115 minutes, evaluating soluble solids (SS, moisture (M, total polyphenols (PF, antioxidant efficiency (AE and sugar profile. The multiple optimization of the process by response surface methodology and desirability analysis, allowed to minimize M, maximize SS (Stevia incorporation, and preserve the maximum amount of PF. After the first stage, the optimal treatment reduced the majority sugars of the grape in 32% (sucrose, glucose, and the 57% at the end of the dehydration process.

  3. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  4. Efficiency Optimization Control of IPM Synchronous Motor Drives with Online Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Sadegh Vaez-Zadeh

    2011-04-01

    Full Text Available This paper describes an efficiency optimization control method for high performance interior permanent magnet synchronous motor drives with online estimation of motor parameters. The control system is based on an input-output feedback linearization method which provides high performance control and simultaneously ensures the minimization of the motor losses. The controllable electrical loss can be minimized by the optimal control of the armature current vector. It is shown that parameter variations except at near the nominal conditions have undesirable effect on the controller performance. Therefore, a parameter estimation method based on the second method of Lyapunov is presented which guarantees the stability and convergence of the estimation. The extensive simulation results show the feasibility of the proposed controller and observer and their desirable performances.

  5. Shaft siting decision report: Final report

    International Nuclear Information System (INIS)

    1985-11-01

    The purpose of this study is to identify and establish relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors which impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 49 refs., 2 figs., 5 tabs

  6. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.

    Science.gov (United States)

    Jiang, Z; Chen, W; Burkhart, C

    2013-11-01

    Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  7. Optimal sampling plan for clean development mechanism energy efficiency lighting projects

    International Nuclear Information System (INIS)

    Ye, Xianming; Xia, Xiaohua; Zhang, Jiangfeng

    2013-01-01

    Highlights: • A metering cost minimisation model is built to assist the sampling plan for CDM projects. • The model minimises the total metering cost by the determination of optimal sample size. • The required 90/10 criterion sampling accuracy is maintained. • The proposed metering cost minimisation model is applicable to other CDM projects as well. - Abstract: Clean development mechanism (CDM) project developers are always interested in achieving required measurement accuracies with the least metering cost. In this paper, a metering cost minimisation model is proposed for the sampling plan of a specific CDM energy efficiency lighting project. The problem arises from the particular CDM sampling requirement of 90% confidence and 10% precision for the small-scale CDM energy efficiency projects, which is known as the 90/10 criterion. The 90/10 criterion can be met through solving the metering cost minimisation problem. All the lights in the project are classified into different groups according to uncertainties of the lighting energy consumption, which are characterised by their statistical coefficient of variance (CV). Samples from each group are randomly selected to install power meters. These meters include less expensive ones with less functionality and more expensive ones with greater functionality. The metering cost minimisation model will minimise the total metering cost through the determination of the optimal sample size at each group. The 90/10 criterion is formulated as constraints to the metering cost objective. The optimal solution to the minimisation problem will therefore minimise the metering cost whilst meeting the 90/10 criterion, and this is verified by a case study. Relationships between the optimal metering cost and the population sizes of the groups, CV values and the meter equipment cost are further explored in three simulations. The metering cost minimisation model proposed for lighting systems is applicable to other CDM projects as

  8. Ipsilateral humeral neck and shaft fractures

    Directory of Open Access Journals (Sweden)

    Zhu Bin

    2017-01-01

    Full Text Available Background/Aim. Fractures of the proximal humerus or shaft are common, however, ipsilateral neck and shaft humerus fracture is a rare phenomenon. This combination injury is challenging for orthopaedic surgeons because of its complex treatment options at present. The purpose of this study was to review a series of ipsilateral humeral neck and shaft fractures to study the fracture pattern, complications and treatment outcomes of each treatment options used. Methods. A total of six patients (four female and two male with the average age of 42.8 years (range: 36–49 years was collected and reviewed retrospectively. Two of them were treated with double plates and four with antegrade intramedullary nail. According to the Neer’s classification, all proximal fractures were two-part surgical neck fractures. All humeral shaft fractures were located at the middle of one third. Five fractures were simple transverse (A3, one fragmented wedge fracture (B3. One patient had associated radial nerve palsy. Results. All surgical neck fractures except one united uneventfully in the average time span of 8.7 weeks. Four humeral shaft fractures healed in near anatomic alignment. The remaining two patients had the nonunion with no radiological signs of fracture healing. The average University of California, Los Angeles End-Results (UCLA score was 23.1. On the contrary, the average American Shoulder and Elbow Surgeon's (ASES score was 73.3. The patients treated with antegrade intramedullary nails presented 70.5 points. The ASES scores were 79 in the double plates group. Conclusions. Ipsilateral humeral shaft and neck fracture is extremely rare. Both antegrade intramedullar nailing and double plates result in healing of fractures. However the risk of complication is lower in the double plating group.

  9. Robust active combustion control for the optimization of environmental performance and energy efficiency

    Science.gov (United States)

    Demayo, Trevor Nat

    Criteria pollutant regulations, climate change concerns, and energy conservation efforts are placing strict constraints in the design and operation of advanced, stationary combustion systems. To ensure minimal pollutant emissions and maximal efficiency at every instant of operation while preventing reaction blowout, combustion systems need to react and adapt in real-time to external changes. This study describes the development, demonstration, and evaluation of a multivariable feedback control system, designed to maximize the performance of natural gas-fired combustion systems. A feedback sensor array was developed to monitor reaction stability and measure combustion performance as a function of NOx, CO, and O, emissions. Acoustic and UV chemiluminescent emissions were investigated for use as stability indicators. Modulated signals of CH* and CO2* chemiluminescence were found to correlate well with the onset of lean blowout. A variety of emissions sensors were tested and evaluated, including conventional CEMS', micro-fuel cells, a zirconia NOx transducer, and a rapid response predictive NOx sensor based on UV flame chemiluminescence. A dual time-scale controller was designed to actively optimize operating conditions by maximizing a multivariable performance function J using a linear direction set search algorithm. The controller evaluated J under slow, quasi steady-state conditions, while dynamically monitoring the reaction zone at high speed for pre-blowout instabilities or boundary condition violations. To establish the input control parameters, two burner systems were selected: a 30 kW air-swirl, generic research burner, and a 120 kW scaled, fuel-staged, industrial boiler burner. The parameters, chosen to most affect burner performance, consisted of air swirl intensity and excess air for the generic burner, and fuel-staging and excess air for the boiler burner. A set of optimization parameters was also established to ensure efficient and deterministic

  10. Optimizing efficiency on conventional transformer based low power AC/DC standby power supplies

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2004-01-01

    This article describes the research results for simple and cheap methods to reduce the idle- and load-losses in very low power conventional transformer based power supplies intended for standby usage. In this case "very low power" means 50 Hz/230 V-AC to 5 V-DC@1 W. The efficiency is measured...... on two common power supply topologies designed for this power level. The two described topologies uses either a series (or linear) or a buck regulation approach. Common to the test power supplies is they either are using a standard cheap off-the-shelf transformer, or one, which are loss optimized by very...

  11. Optimization of E-DCH channel power ratios to maximize link level efficiency

    DEFF Research Database (Denmark)

    Zarco, Carlos Ruben Delgado; Malone, Jaime Tito; Wigard, Jeroen

    2006-01-01

    For the WCDMA/HSUPA concept, a key to ensuring high spectral efficiency is to correctly adjust the transmission power ratios among the data and control channels. This paper provides optimal values for the power ratio between the Enhanced-Dedicated Physical Data Channel (E-DPDCH) and the Dedicated...... rate (typical values ranging from 8.1 to 9.9 dB) and the RSN target (maintaining or decreasing their value as the target increases). These results show that it is more link efficient to increase the DPCCH transmission power with the bit rate (and the E-DPDCH's by applying the power ratio) than...... to maintain a constant DPCCH transmission power and just increase the EDPDCH to DPCCH power ratio....

  12. Analysis of parameters effects on crack breathing and propagation in shaft of rotor dynamic systems

    Directory of Open Access Journals (Sweden)

    M. Serier

    2013-01-01

    Full Text Available In this paper the design of experiment method is used to investigate and explain the effects of the rotor parameters on crack breathing and propagation in the shaft. Three factors are considered which have an influence on the behavior and the propagation of the crack: the rotational speed, the length of the rotor and the diameter of the shaft. The elaborated mathematical model allows determining the effects and interaction of speed, diameter and length on crack breathing mechanism.The model also determines the optimal values of the parameters to achieve high performance.

  13. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators

    International Nuclear Information System (INIS)

    Sheng, Shiqi; Tu, Z C

    2013-01-01

    A unified χ-criterion for heat devices (including heat engines and refrigerators), which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance (de Tomás et al 2012 Phys. Rev. E 85 010104), is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures T c and T h ( > T c ). By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum χ asymptotically approaches √(ε C ) when the relative temperature difference between two heat baths ε C -1 ≡(T h -T c )/T c is sufficiently small. Correspondingly, the efficiency at maximum χ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be η C /2+η C 2 /8 up to the second order term of η C ≡ (T h − T c )/T h , which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left–right symmetry (Esposito et al 2009 Phys. Rev. Lett. 102 130602). (fast track communication)

  14. Construction of blind shafts with the PVS 3500 planetary full shaft drilling machine

    International Nuclear Information System (INIS)

    Glogowski, P.; Kolditz, H.

    1992-01-01

    The PVS 3500 planetary full shaft drilling machine has proved as a prototype in the construction of two blind shafts. The drilling rate of 8 m/shift or 25.6 m 3 /MS is outstanding for the initial use of this drilling machine. Blind shafts were cut from the solid by a dry drilling method for the first time. It opens up the possibility of making available storage boreholes for larger quantities of radioactive waste with low activity and for toxic waste materials. (orig.)

  15. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  16. Efficient 3D multi-region prostate MRI segmentation using dual optimization.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.

  17. Optimization of phenol biodegradation by efficient bacteria isolated from petrochemical effluents

    Directory of Open Access Journals (Sweden)

    M. Shahriari Moghadam

    2016-05-01

    Full Text Available Phenol is an environmental pollutant present in industrial wastewaters such as refineries, coal processing and petrochemicals products. In this study three phenol degrading bacteria from Arak Petrochemical Complex effluent were isolated which consume phenol. Molecular analysis was used to identify bacteria and isolated bacteria were identified as Rhodococcus pyridinivorans (NS1, Advenella faeciporci (NS2 and Pseudomonas aeroginosa (NS3. Among the isolated strains, NS1 had the highest ability to degrade phenol. In order to observe the best yield in phenol biodegradation using NS1, optimization was performed using one factor at a time of experimental design to investigate the effect of four factors, including pH, temperature, phosphate and urea concentration. The optimal biodegradation condition through or tho pathway was pH = 8, urea = 1 g/L, temperature = 30°C and K2HPO4 = 0.5 g/L. Under the suggested condition, a biodegradation efficiency of 100% was achieved. Moreover, NS1 has shown growth and phenol degradation in concentrations between 250 to 2000 mg/L. In a nutshell, the results revealed thatphenol efficiently consumed by NS1 as the sole carbon source. Obviously, the isolate strain may be seen as an important tool in the bioremediation of wastewater effluent, petrochemical complex.

  18. Optimization model for school transportation design based on economic and social efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Heddebaut, O.; Ciommo, F. di

    2016-07-01

    The purpose of this paper is to design a model that allows to suggest new planning proposals on school transport, so that greater efficiency operational will be achieved. It is a multi-objective optimization problem including the minimization of the cost of busing and minimizes the total travel time of all students. The foundation of the model is the planning routes made by bus due to changes in the starting time in schools, so the buses are able to perform more than one route. The methodology is based on the School Bus Routing Problem, so that routes from different schools within a given time window are connected, and within the restrictions of the problem, the system costs are minimized. The proposed model is programmed to be applied in any generic case. This is a multi-objective problem, in which there will be several possible solutions, depending on the weight to be assigned to each of the variables involved, economic point of view versus social point of view. Therefore, the proposed model is helpful for policy planning school transportation, supporting the decision making under conditions of economic and social efficiency. The model has been applied in some schools located in an area of Cantabria (Spain), resulting in 71 possible optimal options that minimize the cost of school transport between 2,7% and 35,1% regarding to the current routes of school transport, with different school start time and minimum travel time for students. (Author)

  19. Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review)

    International Nuclear Information System (INIS)

    Sewsynker-Sukai, Yeshona; Faloye, Funmilayo; Kana, Evariste Bosco Gueguim

    2016-01-01

    In view of the looming energy crisis as a result of depleting fossil fuel resources and environmental concerns from greenhouse gas emissions, the need for sustainable energy sources has secured global attention. Research is currently focused towards renewable sources of energy due to their availability and environmental friendliness. Biofuel production like other bioprocesses is controlled by several process parameters including pH, temperature and substrate concentration; however, the improvement of biofuel production requires a robust process model that accurately relates the effect of input variables to the process output. Artificial neural networks (ANNs) have emerged as a tool for modelling complex, non-linear processes. ANNs are applied in the prediction of various processes; they are useful for virtual experimentations and can potentially enhance bioprocess research and development. In this study, recent findings on the application of ANN for the modelling and optimization of biohydrogen, biogas, biodiesel, microbial fuel cell technology and bioethanol are reviewed. In addition, comparative studies on the modelling efficiency of ANN and other techniques such as the response surface methodology are briefly discussed. The review highlights the efficiency of ANNs as a modelling and optimization tool in biofuel process development

  20. A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2012-12-01

    Full Text Available Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.

  1. Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds

    Science.gov (United States)

    Stilp, Christian E.; Kluender, Keith R.

    2012-01-01

    To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057

  2. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  3. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection.

    Science.gov (United States)

    Zhang, Minliang; Chen, Qian; Tao, Tianyang; Feng, Shijie; Hu, Yan; Li, Hui; Zuo, Chao

    2017-08-21

    Temporal phase unwrapping (TPU) is an essential algorithm in fringe projection profilometry (FPP), especially when measuring complex objects with discontinuities and isolated surfaces. Among others, the multi-frequency TPU has been proven to be the most reliable algorithm in the presence of noise. For a practical FPP system, in order to achieve an accurate, efficient, and reliable measurement, one needs to make wise choices about three key experimental parameters: the highest fringe frequency, the phase-shifting steps, and the fringe pattern sequence. However, there was very little research on how to optimize these parameters quantitatively, especially considering all three aspects from a theoretical and analytical perspective simultaneously. In this work, we propose a new scheme to determine simultaneously the optimal fringe frequency, phase-shifting steps and pattern sequence under multi-frequency TPU, robustly achieving high accuracy measurement by a minimum number of fringe frames. Firstly, noise models regarding phase-shifting algorithms as well as 3-D coordinates are established under a projector defocusing condition, which leads to the optimal highest fringe frequency for a FPP system. Then, a new concept termed frequency-to-frame ratio (FFR) that evaluates the magnitude of the contribution of each frame for TPU is defined, on which an optimal phase-shifting combination scheme is proposed. Finally, a judgment criterion is established, which can be used to judge whether the ratio between adjacent fringe frequencies is conducive to stably and efficiently unwrapping the phase. The proposed method provides a simple and effective theoretical framework to improve the accuracy, efficiency, and robustness of a practical FPP system in actual measurement conditions. The correctness of the derived models as well as the validity of the proposed schemes have been verified through extensive simulations and experiments. Based on a normal monocular 3-D FPP hardware system

  4. Optimized efficiency of all-electric ships by dc hybrid power systems

    Science.gov (United States)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  5. Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2016-01-01

    Full Text Available The Machine-Part Cell Formation Problem (MPCFP is a NP-Hard optimization problem that consists in grouping machines and parts in a set of cells, so that each cell can operate independently and the intercell movements are minimized. This problem has largely been tackled in the literature by using different techniques ranging from classic methods such as linear programming to more modern nature-inspired metaheuristics. In this paper, we present an efficient parallel version of the Migrating Birds Optimization metaheuristic for solving the MPCFP. Migrating Birds Optimization is a population metaheuristic based on the V-Flight formation of the migrating birds, which is proven to be an effective formation in energy saving. This approach is enhanced by the smart incorporation of parallel procedures that notably improve performance of the several sorting processes performed by the metaheuristic. We perform computational experiments on 1080 benchmarks resulting from the combination of 90 well-known MPCFP instances with 12 sorting configurations with and without threads. We illustrate promising results where the proposal is able to reach the global optimum in all instances, while the solving time with respect to a nonparallel approach is notably reduced.

  6. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure.

    Science.gov (United States)

    Schumann, Marcel; Armen, Roger S

    2013-05-30

    Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.

  7. A tool for efficient, model-independent management optimization under uncertainty

    Science.gov (United States)

    White, Jeremy; Fienen, Michael N.; Barlow, Paul M.; Welter, Dave E.

    2018-01-01

    To fill a need for risk-based environmental management optimization, we have developed PESTPP-OPT, a model-independent tool for resource management optimization under uncertainty. PESTPP-OPT solves a sequential linear programming (SLP) problem and also implements (optional) efficient, “on-the-fly” (without user intervention) first-order, second-moment (FOSM) uncertainty techniques to estimate model-derived constraint uncertainty. Combined with a user-specified risk value, the constraint uncertainty estimates are used to form chance-constraints for the SLP solution process, so that any optimal solution includes contributions from model input and observation uncertainty. In this way, a “single answer” that includes uncertainty is yielded from the modeling analysis. PESTPP-OPT uses the familiar PEST/PEST++ model interface protocols, which makes it widely applicable to many modeling analyses. The use of PESTPP-OPT is demonstrated with a synthetic, integrated surface-water/groundwater model. The function and implications of chance constraints for this synthetic model are discussed.

  8. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    Science.gov (United States)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  9. Efficient solution to the stagnation problem of the particle swarm optimization algorithm for phase diversity.

    Science.gov (United States)

    Qi, Xin; Ju, Guohao; Xu, Shuyan

    2018-04-10

    The phase diversity (PD) technique needs optimization algorithms to minimize the error metric and find the global minimum. Particle swarm optimization (PSO) is very suitable for PD due to its simple structure, fast convergence, and global searching ability. However, the traditional PSO algorithm for PD still suffers from the stagnation problem (premature convergence), which can result in a wrong solution. In this paper, the stagnation problem of the traditional PSO algorithm for PD is illustrated first. Then, an explicit strategy is proposed to solve this problem, based on an in-depth understanding of the inherent optimization mechanism of the PSO algorithm. Specifically, a criterion is proposed to detect premature convergence; then a redistributing mechanism is proposed to prevent premature convergence. To improve the efficiency of this redistributing mechanism, randomized Halton sequences are further introduced to ensure the uniform distribution and randomness of the redistributed particles in the search space. Simulation results show that this strategy can effectively solve the stagnation problem of the PSO algorithm for PD, especially for large-scale and high-dimension wavefront sensing and noisy conditions. This work is further verified by an experiment. This work can improve the robustness and performance of PD wavefront sensing.

  10. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Science.gov (United States)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  11. Recent quality of ultra large rotor shafts

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Morita, Kikuo; Kikuchi, Hideo; Takada, Masayoshi

    1983-01-01

    Large size and high quality are required for rotor shafts accompanying recent trend of thermal and nuclear power generation toward large capacity. As for the low pressure rotor shafts for large capacity turbines, the disks and a shaft tend to be made into one body instead of conventional shrink fit construction, because of the experience of rotor accidents and the improvement of reliability. Therefore the ingots required become more and more large, and excellent production techniques are required for steel making, forging and heat treatment. Kobe Steel Ltd. have made about 20 large generator shafts from 420 t and 500 t ingots, and confirmed their stable high quality. Also a one-body low pressure rotor of 2600 mm diameter was made for trial, and its quality was examined. It was confirmed that the effect of forging and heat treatment was given sufficiently, and the production techniques for super-large one-body rotors were established. In steel making, vacuum degassing was applied twice to decrease hydrogen content, and VV restriction forging and pre-stage treatment were carried out. The properties of large rotors are reported. (Kako, I.)

  12. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  13. Exploratory shaft conceptual design report: Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Permian Basin locatd in the western part of Texas. Conceptualized designs for other possible locations (Paradox Basin in Utah and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  14. Exploratory shaft conceptual design report: Paradox Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Paradox Basin located in the southeastern part of Utah. Conceptualized designs for other possible locations (Permian Basin in Texas and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  15. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production

    International Nuclear Information System (INIS)

    Nabavi-Pelesaraei, Ashkan; Hosseinzadeh-Bandbafha, Homa; Qasemi-Kordkheili, Peyman; Kouchaki-Penchah, Hamed; Riahi-Dorcheh, Farshid

    2016-01-01

    In this study a non-parametric method of DEA (Data Envelopment Analysis) and MOGA (Multi-Objective Genetic Algorithm) were used to estimate the energy efficiency and greenhouse gas emissions reduction of wheat farmers in Ahvaz county of Iran. Data were collected using a face-to-face questionnaire method from 39 farmers. The results showed that based on constant returns to scale model, 41.02% of wheat farms were efficient, though based on variable returns to scale model it was 53.23%. The average of technical, pure technical and scale efficiency of wheat farms were 0.94, 0.95 and 0.98, respectively. By following the recommendations of this study, 3640.90 MJ ha"−"1 could be saved (9.13% of total input energy). Moreover, 42 optimal units were found by MOGA. The total energy required and GHG (greenhouse gas) emissions of the best generation of MOGA were about 23105 MJ ha"−"1 and 340 kgCO_2_e_q_. ha"−"1, respectively. The results revealed that the total energy required of MOGA was less than DEA, significantly. Also, the GHG emissions of present, DEA and MOGA farms were about 903, 837 and 340 kgCO_2_e_q_. ha"−"1, respectively. - Highlights: • We analyze the energy efficiency and GHG emissions of wheat production in Iran. • The technical and pure technical efficiencies were 0.94 and 0.95 respectively. • DEA can be saved total energy and GHG emissions 9.13% and 7.28% respectively. • MOGA can be reduced total energy and GHG emissions more than DEA significantly.

  16. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  17. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission.

    Science.gov (United States)

    Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam

    2011-07-14

    Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for 13.56 MHz carrier frequency and 12 cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

  18. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  19. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    Science.gov (United States)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  20. Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-10-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable advances in the performance of pressurized irrigation networks. Nowadays, the use of micro hydropower in water systems is being analysed to improve the overall energy efficiency. In this line, the present research is focused on the proposal and development of a novel optimization strategy for increasing the energy efficiency in pressurized irrigation networks by energy recovering. The recovered energy is maximized considering different objective functions, including feasibility index: the best energy converter must be selected, operating in its best efficiency conditions by variation of its rotational speed, providing the required flow in each moment. These flows (previously estimated through farmers’ habits are compared with registered values of flow in the main line with very suitable calibration results, getting a Nash–Sutcliffe value above 0.6 for different time intervals, and a PBIAS index below 10% in all time interval range. The methodology was applied to a Vallada network obtaining a maximum recovered energy of 58.18 MWh/year (41.66% of the available energy, improving the recovered energy values between 141 and 184% when comparing to energy recovery considering a constant rotational speed. The proposal of this strategy shows the real possibility of installing micro hydropower machines to improve the water–energy nexus management in pressurized systems.

  1. Computationally efficient design of optimal output feedback strategies for controllable passive damping devices

    International Nuclear Information System (INIS)

    Kamalzare, Mahmoud; Johnson, Erik A; Wojtkiewicz, Steven F

    2014-01-01

    Designing control strategies for smart structures, such as those with semiactive devices, is complicated by the nonlinear nature of the feedback control, secondary clipping control and other additional requirements such as device saturation. The usual design approach resorts to large-scale simulation parameter studies that are computationally expensive. The authors have previously developed an approach for state-feedback semiactive clipped-optimal control design, based on a nonlinear Volterra integral equation that provides for the computationally efficient simulation of such systems. This paper expands the applicability of the approach by demonstrating that it can also be adapted to accommodate more realistic cases when, instead of full state feedback, only a limited set of noisy response measurements is available to the controller. This extension requires incorporating a Kalman filter (KF) estimator, which is linear, into the nominal model of the uncontrolled system. The efficacy of the approach is demonstrated by a numerical study of a 100-degree-of-freedom frame model, excited by a filtered Gaussian random excitation, with noisy acceleration sensor measurements to determine the semiactive control commands. The results show that the proposed method can improve computational efficiency by more than two orders of magnitude relative to a conventional solver, while retaining a comparable level of accuracy. Further, the proposed approach is shown to be similarly efficient for an extensive Monte Carlo simulation to evaluate the effects of sensor noise levels and KF tuning on the accuracy of the response. (paper)

  2. Determining the optimal spacing of deepening of vertical mine

    Energy Technology Data Exchange (ETDEWEB)

    Durov, Ye.M.

    1983-01-01

    Light is shed on a technique for determining the optimal spacing of shafts for deepening for the examined parameters of operational and deepening operations. The presented results of studies may be used in designing new shafts, in preparing levels and in reconstruction of existing shafts with slanted and steep stratum bedding.

  3. Connect-disconnect coupling for preadjusted rigid shafts

    Science.gov (United States)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  4. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  5. Procedure for determining the optimum rate of increasing shaft depth

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-03-01

    Presented is an economic analysis of increasing shaft depth during mine modernization. Investigations carried out by the Yuzhgiproshakht Institute are analyzed. The investigations are aimed at determining the optimum shaft sinking rate (the rate which reduces investment to the minimum). The following factors are considered: coal output of a mine (0.9, 1.2, 1.5 and 1.8 Mt/year), depth at which the new mining level is situated (600, 800, 1200, 1400 and 1600 m), four schemes of increasing depth of 2 central shafts (rock hoisting to ground surface, rock hoisting to the existing level, rock haulage to the developed level, rock haulage to the level being developed using a large diameter borehole drilled from the new level to the shaft bottom and enlarged from shaft bottom to the new level), shaft sinking rate (10, 20, 30, 40, 50 and 60 m/month), range of increasing shaft depth (the difference between depth of the shaft before and after increasing its depth by 100, 200, 300 and 400 m). Comparative evaluations show that the optimum shaft sinking rate depends on the scheme for rock hoisting (one of 4 analyzed), range of increasing shaft depth and gas content in coal seams. The optimum shaft sinking rate ranges from 20 to 40 m/month in coal mines with low methane content and from 20 to 30 m/month in gassy coal mines. The planned coal output of a mine does not influence the optimum shaft sinking rate.

  6. Comparison of Solid and Hollow Torque Transducer Shaft Response in a High Alloy Stainless Steel

    Science.gov (United States)

    Milby, Christopher L.; Hecox, Bryan G.; Wiewel, Joseph L.; Boley, Mark S.

    2007-03-01

    Recent investigations of the torque transducer response function (ambient field signal versus applied torque or shear stress) have been conducted in a 13% chromium and 8% nickel stainless steel alloy in both the hollow shaft and solid shaft configuration. An understanding of both is needed for applications with differing yield strength and hardness requirements. Axial hysteresis measurements conducted before and after heat treatment exhibited little difference in coercivity and retentivity between the two sample types. However, the field mapping and transducer sensitivity studies showed the hollow shaft configuration to have a far superior degree of polarization in the sensory region and to exhibit an enhanced sensitivity, especially after heat treatment. This is most likely due to its more efficient provision of closed circumferential geometry for the field lines and improved grain alignment during heat treatment.

  7. Development and Manufacturing Technology of Prototype Monoblock Low Pressure Rotor Shaft by 650ton Large Ingot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Duk-Yong; Kim, Dong-Soo; Kim, Jungyeup; Lee, Jongwook; Ko, Seokhee [Doosan Heavy Industries and Construction, Changwon(Korea, Republic of)

    2016-10-15

    In order to establish the manufacturing technology for monoblock LP rotor shaft, DHI has produced the prototype monoblock LP rotor shaft with a maximum diameter of φ 2,800 mm using 650 ton ingot and investigated the mechanical properties and the internal quality of the ingot. As a result, the quality and mechanical properties required the large rotor shaft for nuclear power plant met a target. These results indicate that DHI can be contributed to increasing demands with high efficiency and capacity at the nuclear power plant. Additionally, some tests such as high cycle fatigue (HCF), low cycle fatigue (LCF), fracture toughness (K1C/J1C) and dynamic crack propagation velocity (da/dN) are in progress.

  8. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    Science.gov (United States)

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example

  9. APPLICATION OF ELECTRONIC TACHEOMETER FOR PREAND POST-CONSTRUCTION SURVEY OF ELEVATOR SHAFT

    Directory of Open Access Journals (Sweden)

    M. S. Nesterionok

    2015-01-01

    Full Text Available Floor-by-floor survey of installed elements of an elevator shaft using coordinate method and tacheometer is also inhibited by the necessity to determine device installation points for floors of every mounting horizon that leads to additional measurements due to conditions of the completed building framework and presence of a great number of situational disturbances and then it entails significant time expenditure and diminution of accuracy in the obtained results. Technical capabilities of the modern electronic tacheometer substantially simplify an accomplishment of the mission because the device can be applied not only in function of vertical projection but it can be used for preand post-construction survey of the elevator shaft with the help of advanced radiation method. While using the given method the electronic tacheometer equipped with diagonal ocular is installed over a bearing sign in the elevator pit and control points of the elevator shaft are determined with the help of specially developed portable beam deflector in the form of disc with radius r, which is fixed to a handle rod and orientated perpendicularly to a laser beam. An innovation diagram for preand post-construction survey of elevator shaft has been developed while applying this type of deflector. The diagram is characterized by high efficiency due to the fact that one tacheometer installation makes it possible to execute highly accurate, complete plane and high-level surveying of the whole elevator shaft including doorways, door sills and jambs.The paper proposes a new method for pre and post construction survey of the elevator shaft using the electronic tacheometer while applying specially developed beam deflector that ensures a geometric fixing of one or simultaneously two surveying points to spatial coordinate system where the preand post-construction survey is carried out. The method is characterized by high geometric accuracy and technological efficiency.

  10. On the efficiency of a randomized mirror descent algorithm in online optimization problems

    Science.gov (United States)

    Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.

    2015-04-01

    A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.

  11. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition

    Directory of Open Access Journals (Sweden)

    Vito Janko

    2017-12-01

    Full Text Available The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  12. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    Science.gov (United States)

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  13. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †

    Science.gov (United States)

    Janko, Vito

    2017-01-01

    The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301

  14. Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.

  15. Optimal production of renewable hydrogen based on an efficient energy management strategy

    International Nuclear Information System (INIS)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Seferlis, Panos; Bezergianni, Stella; Papadopoulou, Simira; Voutetakis, Spyros

    2013-01-01

    This work presents the development of a flexible energy management strategy (EMS) for a renewable hydrogen production unit through water electrolysis with solar power. The electricity flow of the unit is controlled by a smart microgrid and the overall unattended operation is achieved by a supervisory control system. The proposed approach formalizes the knowledge regarding the system operation using a finite-state machine (FSM) which is subsequently combined with a propositional-based logic to describe the transitions among various process states. The operating rules for the integrated system are derived by taking into account both the operating constraints and the interaction effects among the individual subsystems in a systematic way. Optimal control system parameter values are obtained so that a system performance criterion incorporating efficient and economic operation is satisfied. The resulted EMS has been deployed to the industrial automation system that monitors and controls a small-scale experimental solar hydrogen production unit. The overall performance of the proposed EMS in the experimental unit has been evaluated over short-term and long-term operating periods resulting in smooth and efficient hydrogen production. - Highlights: • Development of an energy management strategy based on a finite-state machine and propositional-based reasoning. • Deployment of the energy-aware algorithm to an autonomous renewable hydrogen production unit. • Supervisory control of the electricity flow by a smart microgrid using an industrial automation system. • Unattended operation and remote monitoring incorporating subsystem interactions in a systematic way. • Optimal hydrogen production regardless of the weather conditions through water electrolysis with solar power

  16. Spatially Explicit Estimation of Optimal Light Use Efficiency for Improved Satellite Data Driven Ecosystem Productivity Modeling

    Science.gov (United States)

    Madani, N.; Kimball, J. S.; Running, S. W.

    2014-12-01

    Remote sensing based light use efficiency (LUE) models, including the MODIS (MODerate resolution Imaging Spectroradiometer) MOD17 algorithm are commonly used for regional estimation and monitoring of vegetation gross primary production (GPP) and photosynthetic carbon (CO2) uptake. A common model assumption is that plants in a biome matrix operate at their photosynthetic capacity under optimal climatic conditions. A prescribed biome maximum light use efficiency parameter defines the maximum photosynthetic carbon conversion rate under prevailing climate conditions and is a large source of model uncertainty. Here, we used tower (FLUXNET) eddy covariance measurement based carbon flux data for estimating optimal LUE (LUEopt) over a North American domain. LUEopt was first estimated using tower observed daily carbon fluxes, meteorology and satellite (MODIS) observed fraction of photosynthetically active radiation (FPAR). LUEopt was then spatially interpolated over the domain using empirical models derived from independent geospatial data including global plant traits, surface soil moisture, terrain aspect, land cover type and percent tree cover. The derived LUEopt maps were then used as primary inputs to the MOD17 LUE algorithm for regional GPP estimation; these results were evaluated against tower observations and alternate MOD17 GPP estimates determined using Biome-specific LUEopt constants. Estimated LUEopt shows large spatial variability within and among different land cover classes indicated from a sparse North American tower network. Leaf nitrogen content and soil moisture are two important factors explaining LUEopt spatial variability. GPP estimated from spatially explicit LUEopt inputs shows significantly improved model accuracy against independent tower observations (R2 = 0.76; Mean RMSE plant trait information can explain spatial heterogeneity in LUEopt, leading to improved GPP estimates from satellite based LUE models.

  17. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  18. The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing

    Directory of Open Access Journals (Sweden)

    Sébastien Bissey

    2017-10-01

    Full Text Available Electricity demand shifting and reduction still raise a huge interest for end-users at the household level, especially because of the ongoing design of a dynamic pricing approach. In particular, end-users must act as the starting point for decreasing their consumption during peak hours to prevent the need to extend the grid and thus save considerable costs. This article points out the relevance of a fuzzy logic algorithm to efficiently predict short term load consumption (STLC. This approach is the cornerstone of a new home energy management (HEM algorithm which is able to optimize the cost of electricity consumption, while smoothing the peak demand. The fuzzy logic modeling involves a strong reliance on a complete database of real consumption data from many instrumented show houses. The proposed HEM algorithm enables any end-user to manage his electricity consumption with a high degree of flexibility and transparency, and “reshape” the load profile. For example, this can be mainly achieved using smart control of a storage system coupled with remote management of the electric appliances. The simulation results demonstrate that an accurate prediction of STLC gives the possibility of achieving optimal planning and operation of the HEM system.

  19. Efficient production of Aschersonia placenta protoplasts for transformation using optimization algorithms.

    Science.gov (United States)

    Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong

    2016-07-01

    The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.

  20. Optimal Tradable Credits Scheme and Congestion Pricing with the Efficiency Analysis to Congestion

    Directory of Open Access Journals (Sweden)

    Ge Gao

    2015-01-01

    Full Text Available We allow for three traffic scenarios: the tradable credits scheme, congestion pricing, and no traffic measure. The utility functions of different modes (car, bus, and bicycle are developed by considering the income’s impact on travelers’ behaviors. Their purpose is to analyze the demand distribution of different modes. A social optimization model is built aiming at maximizing the social welfare. The optimal tradable credits scheme (distribution of credits, credits charging, and the credit price, congestion pricing fees, bus frequency, and bus fare are obtained by solving the model. Mode choice behavior under the tradable credits scheme is also studied. Numerical examples are presented to demonstrate the model’s availability and explore the effects of the three schemes on traffic system’s performance. Results show congestion pricing would earn more social welfare than the other traffic measures. However, tradable credits scheme will give travelers more consumer surplus than congestion pricing. Travelers’ consumer surplus with congestion pricing is the minimum, which injures the travelers’ benefits. Tradable credits scheme is considered the best scenario by comparing the three scenarios’ efficiency.

  1. Use of Debye's series to determine the optimal edge-effect terms for computing the extinction efficiencies of spheroids.

    Science.gov (United States)

    Lin, Wushao; Bi, Lei; Liu, Dong; Zhang, Kejun

    2017-08-21

    The extinction efficiencies of atmospheric particles are essential to determining radiation attenuation and thus are fundamentally related to atmospheric radiative transfer. The extinction efficiencies can also be used to retrieve particle sizes or refractive indices through particle characterization techniques. This study first uses the Debye series to improve the accuracy of high-frequency extinction formulae for spheroids in the context of Complex angular momentum theory by determining an optimal number of edge-effect terms. We show that the optimal edge-effect terms can be accurately obtained by comparing the results from the approximate formula with their counterparts computed from the invariant imbedding Debye series and T-matrix methods. An invariant imbedding T-matrix method is employed for particles with strong absorption, in which case the extinction efficiency is equivalent to two plus the edge-effect efficiency. For weakly absorptive or non-absorptive particles, the T-matrix results contain the interference between the diffraction and higher-order transmitted rays. Therefore, the Debye series was used to compute the edge-effect efficiency by separating the interference from the transmission on the extinction efficiency. We found that the optimal number strongly depends on the refractive index and is relatively insensitive to the particle geometry and size parameter. By building a table of optimal numbers of edge-effect terms, we developed an efficient and accurate extinction simulator that has been fully tested for randomly oriented spheroids with various aspect ratios and a wide range of refractive indices.

  2. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  3. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    International Nuclear Information System (INIS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-01-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  4. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.

  5. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    Science.gov (United States)

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.

    Directory of Open Access Journals (Sweden)

    Saket Navlakha

    2015-07-01

    Full Text Available Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.

  7. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Kamesh [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore, these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address

  8. Concepts for backfilling and sealing of shafts

    International Nuclear Information System (INIS)

    Pierau, B.

    1990-01-01

    The disposal site is situated at a depth of 1000 to 1200 meters. It is covered by very thick cretatious mudstone layers forming the main barrier against the spread of radioactively contaminated water into the biosphere. Because of the excavation works and the resulting stress redistributions, the material surrounding the shafts is probably broken up, which leads to increased permeability in comparison with the intact rock. It is planned to backfill the shafts with an insoluble mineral mixture including a fine fraction necessary to achieve the sealing required. The joints and cracks in the brocken-up surrounding material are believed to be sealed by themselves due to swelling of the mudstone. Some strata of the mudstone contain more than 20% of smektite, a swelling clay mineral. Those regions, where the broken-up zone cannot be considered sure to self-seal due to swelling, are planned to be sealed by pressure grouting using clay suspension. (orig./HP) [de

  9. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  10. Power and efficiency optimization for combined Brayton and inverse Brayton cycles

    International Nuclear Information System (INIS)

    Zhang Wanli; Chen Lingen; Sun Fengrui

    2009-01-01

    A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure

  11. Optimization of expression JTAT protein with emphasis on transformation efficiency and IPTG concentration

    Directory of Open Access Journals (Sweden)

    Endang Tri Margawati

    2017-12-01

    Full Text Available One of small accessory genes between pol and env is tat gene encoding TAT protein. This research was aimed to optimize the expression of Jembrana TAT (JTAT protein with preparing Escherichia coli (E. coli in advance using adopted methods of M1 (MgCl2 + CaCl2 and M2 (CaCl2 + Glycerol. The best transformation efficiency resulting from a better transformation method was used to subsequent expression of JTAT protein. A synthetic tat gene encoding protein JTAT was previously cloned into pBT-hisC. Concentration of 200; 400; 600 µM IPTG was induced to a small volume culture (200 ml; OD600 = 4, incubated for 3 h. Pellets were harvested by centrifugation (4000 rpm; 4 °C; 15 min. Buffer B (10 mM Immidazole was added into pellets, lysed by freeze-thaw followed by sonication. Supernatant was collected by centrifugation (10,000 rpm; 4 °C; 20 min and purified using Ni-NTA Agarose resin, released by elution buffer (E containing 400 mM Immidazole to collect purified protein twice (E1, E2. The protein was characterized by SDS-PAGE and Western Blot (WB, quantified (at λ595 nm with BSA standard method in prior. The result showed that transformation efficiency was better in M2 (2.53 × 106 than M1 (3.10 × 105. The JTAT protein was expressed at a right size of 11.8 kDa. Concentration of 200 µM IPTG produced a significantly better protein yield (1.500 ± 0.089 mg/ml; P < 0.05 than 600 µM IPTG (0.896 ± 0.052 mg/ml and not different to 400 µM IPTG (1.298 ± 0.080 mg/ml. This research indicated that transformation efficiency needs to be taken account in prior of optimization of the protein expression.

  12. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2018-01-01

    Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s-1, corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.

  13. New sensorless, efficient optimized and stabilized v/f control for pmsm machines

    Science.gov (United States)

    Jafari, Seyed Hesam

    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.

  14. Optimal Design of a High Efficiency LLC Resonant Converter with a Narrow Frequency Range for Voltage Regulation

    Directory of Open Access Journals (Sweden)

    Junhao Luo

    2018-05-01

    Full Text Available As a key factor in the design of a voltage-adjustable LLC resonant converter, frequency regulation range is very important to the optimization of magnetic components and efficiency improvement. This paper presents a novel optimal design method for LLC resonant converters, which can narrow the frequency variation range and ensure high efficiency under the premise of a required gain achievement. A simplified gain model was utilized to simplify the calculation and the expected efficiency was initially set as 96.5%. The restricted area of parameter optimization design can be obtained by taking the intersection of the gain requirement, the efficiency requirement, and three restrictions of ZVS (Zero Voltage Switch. The proposed method was verified by simulation and experiments of a 150 W prototype. The results show that the proposed method can achieve ZVS from full-load to no-load conditions and can reach 1.6 times the normalized voltage gain in the frequency variation range of 18 kHz with a peak efficiency of up to 96.3%. Moreover, the expected efficiency is adjustable, which means a converter with a higher efficiency can be designed. The proposed method can also be used for the design of large-power LLC resonant converters to obtain a wide output voltage range and higher efficiency.

  15. OPTIMIZATION OF HORMONE COMPOSITION OF NUTRIENT MEDIUM FOR IN VITRO EFFICIENT REGENERATION OF BREAD WHEAT

    Directory of Open Access Journals (Sweden)

    E. D. Nikitina

    2016-08-01

    Full Text Available Optimal values of phytohormones in the differential nutrient medium providing the efficient realization of morphogenetic potencies of four spring bread wheat varieties (Skala, Spectr, Zarnitsa and Zhnitsa from immature embryo cultures have been determined. For callus induction explants 1.5 – 1.7 mmin size were used, which were subsequently passed to the medium by Linsmaier&Skoog possessing 0.8 % of agar, 3 % of sucrose and 2.0 mg l-1 dichlorophenoxyacetic acid (2,4-D. Cell cultures were incubated in darkness at the temperature 26±1 °С. 30 – 35 days after in accordance with the scheme of complete factorial experiment of 32 type calli were passed to differential medium supplemented with 2,4-D at levels 0.5; 2.5; 4.0 mg l-1 and with kinetin (6-furfurylaminopurine at levels 0.5; 2.25 and 4.0 mg l-1. Number of replications for each of 9 variants was four. As a result, 20 mathematic models (4 varieties × 5 stages of regeneration designed as polynomial quadric equation were obtained. On the ground of the analysis of models it was established that optimal values for factors are not equal both for cultures of genotypes analyzed and for different regeneration stages. For callus tissues of Skala and Spectr an optimal value of kinetin for all regeneration stages was 0.5 mg l-1 except for the frequency of morphogenesis. Optimal values of 2,4-D for the same varieties were within 2.3 – 3.2 mg l-1. For cell cultures of Zarnitsa and Zhnitsa recommended concentration intervals made up 1.3 – 2.2 mg l-1 on kinetin except for the frequency of rhizogenesis, and 1.9 – 2.7 on 2,4-D. The level of exogenous phytohormones necessary for stem differentiation was lower than the one for root formation. The dependence of morphogenesis results on the hormonal status of the explant has been discussed.

  16. Work on a transfer tunnel access shaft

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Civil engineers work on one of the access shafts from the SPS to the LHC transfer tunnel, which will allow components and equipment to be lowered directly so that minimal transport is required. The transfer tunnel will take a proton beam from the SPS pre-accelerator and inject it into the clockwise circulating ring in the LHC where the beam will be accelerated to a final energy of 7 TeV.

  17. A method to generate fully multi-scale optimal interpolation by combining efficient single process analyses, illustrated by a DINEOF analysis spiced with a local optimal interpolation

    Directory of Open Access Journals (Sweden)

    J.-M. Beckers

    2014-10-01

    Full Text Available We present a method in which the optimal interpolation of multi-scale processes can be expanded into a succession of simpler interpolations. First, we prove how the optimal analysis of a superposition of two processes can be obtained by different mathematical formulations involving iterations and analysis focusing on a single process. From the different mathematical equivalent formulations, we then select the most efficient ones by analyzing the behavior of the different possibilities in a simple and well-controlled test case. The clear guidelines deduced from this experiment are then applied to a real situation in which we combine large-scale analysis of hourly Spinning Enhanced Visible and Infrared Imager (SEVIRI satellite images using data interpolating empirical orthogonal functions (DINEOF with a local optimal interpolation using a Gaussian covariance. It is shown that the optimal combination indeed provides the best reconstruction and can therefore be exploited to extract the maximum amount of useful information from the original data.

  18. Combustion Efficiency, Flameout Operability Limits and General Design Optimization for Integrated Ramjet-Scramjet Hypersonic Vehicles

    Science.gov (United States)

    Mbagwu, Chukwuka Chijindu

    High speed, air-breathing hypersonic vehicles encounter a varied range of engine and operating conditions traveling along cruise/ascent missions at high altitudes and dynamic pressures. Variations of ambient pressure, temperature, Mach number, and dynamic pressure can affect the combustion conditions in conflicting ways. Computations were performed to understand propulsion tradeoffs that occur when a hypersonic vehicle travels along an ascent trajectory. Proper Orthogonal Decomposition methods were applied for the reduction of flamelet chemistry data in an improved combustor model. Two operability limits are set by requirements that combustion efficiency exceed selected minima and flameout be avoided. A method for flameout prediction based on empirical Damkohler number measurements is presented. Operability limits are plotted that define allowable flight corridors on an altitude versus flight Mach number performance map; fixed-acceleration ascent trajectories were considered for this study. Several design rules are also presented for a hypersonic waverider with a dual-mode scramjet engine. Focus is placed on ''vehicle integration" design, differing from previous ''propulsion-oriented" design optimization. The well-designed waverider falls between that of an aircraft (high lift-to-drag ratio) and a rocket (high thrust-to-drag ratio). 84 variations of an X-43-like vehicle were run using the MASIV scramjet reduced order model to examine performance tradeoffs. Informed by the vehicle design study, variable-acceleration trajectory optimization was performed for three constant dynamic pressures ascents. Computed flameout operability limits were implemented as additional constraints to the optimization problem. The Michigan-AFRL Scramjet In-Vehicle (MASIV) waverider model includes finite-rate chemistry, applied scaling laws for 3-D turbulent mixing, ram-scram transition and an empirical value of the flameout Damkohler number. A reduced-order modeling approach is justified

  19. Hovering efficiency comparison of rotary and flapping flight for a rigid and rectangular wings via dimensionless multi-objective optimization.

    Science.gov (United States)

    Bayiz, Yagiz Efe; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo

    2018-03-20

    In this work, a multi-objective optimization framework is developed for optimizing low-Reynolds number (Re) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying Re and Rossby number (Ro, or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing lift coefficient and minimizing power coefficient in dimensionless space, which explicitly reveal the trade off between lift generation and power consumption. The results indicate that revolving wings are more efficient if the required average lift coefficient CL is low (< 1 for Re = 100 and < 1.6 for Re = 8000), while flapping wings are more efficient in achieving higher CL. Using dimensionless power loading as the single objective performance measure to be maximized, rotary flight is more efficient than flapping wings for Re > 100 regardless of the amount of energy storage assumed in the flapping-wing actuation mechanism, while flapping flight becomes more efficient for Re < 100. It is observed that wings with low Ro perform better if higher CL is needed, whereas higher Ro cases are more efficient at CL < 0.9 region. However, for the selected geometry and Re, the efficiency is weakly dependent on Ro if the dimensionless power loading is maximized. © 2018 IOP Publishing Ltd.

  20. Hierarchical Control with Virtual Resistance Optimization for Efficiency Enhancement and State-of-Charge Balancing in DC Microgrids

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    This paper proposes a hierarchical control scheme which applies optimization method into DC microgrids in order to improve the system overall efficiency while considering the State-of-Charge (SoC) balancing at the same time. Primary droop controller, secondary voltage restoration controller...... and tertiary optimization tool formulate the complete hierarchical control system. Virtual resistances are taken as the decision variables for achieving the objective. simulation results are presented to verify the proposed approach....

  1. Simulation of a coal-fired power plant using mathematical programming algorithms in order to optimize its efficiency

    International Nuclear Information System (INIS)

    Tzolakis, G.; Papanikolaou, P.; Kolokotronis, D.; Samaras, N.; Tourlidakis, A.; Tomboulides, A.

    2012-01-01

    Since most of the world's electric energy production is mainly based on fossil fuels and need for better efficiency of the energy conversion systems is imminent, mathematical programming algorithms were applied for the simulation and optimization of a detailed model of an existing lignite-fired power plant in Kozani, Greece (KARDIA IV). The optimization of its overall thermal efficiency, using as control variables the mass flow rates of the steam turbine extractions and the fuel consumption, was performed with the use of the simulation and optimization software gPROMS. The power plant components' mathematical models were imported in software by the authors and the results showed that further increase to the overall thermal efficiency of the plant can be achieved (a 0.55% absolute increase) through reduction of the HP turbine's and increase of the LP turbine's extractions mass flow rates and the parallel reduction of the fuel consumption by 2.05% which also results to an equivalent reduction of the greenhouse gasses. The setup of the mathematical model and the flexibility of gPROMS, make this software applicable to various power plants. - Highlights: ► Modeling and simulation of the flue gases circuit of a specific plant. ► Designing of modules in gPROMS FO (Foreign Objects). ► Simulation of the complete detailed plant with gPROMS. ► Optimization using a non-linear optimization algorithm of the plant's efficiency.

  2. Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves.

    Science.gov (United States)

    Bloom, Guillaume; Larat, Christian; Lallier, Eric; Lee-Bouhours, Mane-Si Laure; Loiseaux, Brigitte; Huignard, Jean-Pierre

    2011-02-10

    We have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm. The optimized beam splitter has both a high efficiency (∼96%) and a good intensity uniformity (∼0.2%). The fabrication error tolerances are numerically calculated, and it is shown that this subwavelength array generator could be fabricated with current electron beam writers and inductively coupled plasma etching. Finally, we studied the effect of a simple and realistic antireflection coating on the performance of the beam splitter.

  3. Optimizing MRI Logistics: Prospective Analysis of Performance, Efficiency, and Patient Throughput.

    Science.gov (United States)

    Beker, Kevin; Garces-Descovich, Alejandro; Mangosing, Jason; Cabral-Goncalves, Ines; Hallett, Donna; Mortele, Koenraad J

    2017-10-01

    The objective of this study is to optimize MRI logistics through evaluation of MRI workflow and analysis of performance, efficiency, and patient throughput in a tertiary care academic center. For 2 weeks, workflow data from two outpatient MRI scanners were prospectively collected and stratified by value added to the process (i.e., value-added time, business value-added time, or non-value-added time). Two separate time cycles were measured: the actual MRI process cycle as well as the complete length of patient stay in the department. In addition, the impact and frequency of delays across all observations were measured. A total of 305 MRI examinations were evaluated, including body (34.1%), neurologic (28.9%), musculoskeletal (21.0%), and breast examinations (16.1%). The MRI process cycle lasted a mean of 50.97 ± 24.4 (SD) minutes per examination; the mean non-value-added time was 13.21 ± 18.77 minutes (25.87% of the total process cycle time). The mean length-of-stay cycle was 83.51 ± 33.63 minutes; the mean non-value-added time was 24.33 ± 24.84 minutes (29.14% of the total patient stay). The delay with the highest frequency (5.57%) was IV or port placement, which had a mean delay of 22.82 minutes. The delay with the greatest impact on time was MRI arthrography for which joint injection of contrast medium was necessary but was not accounted for in the schedule (mean delay, 42.2 minutes; frequency, 1.64%). Of 305 patients, 34 (11.15%) did not arrive at or before their scheduled time. Non-value-added time represents approximately one-third of the total MRI process cycle and patient length of stay. Identifying specific delays may expedite the application of targeted improvement strategies, potentially increasing revenue, efficiency, and overall patient satisfaction.

  4. Optimization of Kaplan turbines. A contribution to economic efficiency; Optimierung von Kaplan-Turbinen. Ein Beitrag zur Betriebswirtschaftlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Sevcik, Petr

    2009-07-01

    The Kaplan turbine has the best theoretical efficiency chart in the total range of operation. In order to achieve these good properties, the turbine has to be adjusted optimally. In general, these settings are performed by the manufacturer of turbines during commissioning. In practice one often meets Kaplan turbines where the scenery does not correspond to the optimal control line. The author of the contribution under consideration reports on possible causes for these errors and also methods of how this scenery can be optimized cost-effectively and how to minimize power losses.

  5. A Thrust Allocation Method for Efficient Dynamic Positioning of a Semisubmersible Drilling Rig Based on the Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Luman Zhao

    2015-01-01

    Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.

  6. An Optimized Protocol to Increase Virus-Induced Gene Silencing Efficiency and Minimize Viral Symptoms in Petunia

    OpenAIRE

    Broderick, Shaun R.; Jones, Michelle L.

    2013-01-01

    Virus-induced gene silencing (VIGS) is used to down-regulate endogenous plant genes. VIGS efficiency depends on viral proliferation and systemic movement throughout the plant. Although tobacco rattle virus (TRV)-based VIGS has been successfully used in petunia (Petunia × hybrida), the protocol has not been thoroughly optimized for efficient and uniform gene down-regulation in this species. Therefore, we evaluated six parameters that improved VIGS in petunia. Inoculation of mechanically wounde...

  7. Thermal and Performance Analysis of a Gasification Boiler and Its Energy Efficiency Optimization

    Directory of Open Access Journals (Sweden)

    Jan Valíček

    2017-07-01

    Full Text Available The purpose of this study was to determine a method for multi-parametric output regulation of a gasification boiler especially designed for heating or for hot water heating in buildings. A new method of regulation is offered, namely more parametric regulation via proportional-integral-derivative (PID controllers that are capable of controlling the calculated values of pressure, temperature and fan speed. These values of pressure, temperature and fan speed are calculated in a completely new way, and calculations of setpoints for determination of optimal parameters lead to an increase in boilers efficiency and power output. Results of measurements show that changes at the mouth of the stack draft due atmospheric influences occur in times with high intensity and high frequency, while power parameters, or boiler power output amplitudes and fan speed automatically “copy” those changes proportionally due to instantaneous fan speed changes. The proposed method of regulation of the gasification boiler power output according to the technical solution enables a simple, cheap, express and continuous maintenance of high power output at low concentrations of the exhaust gases of the gasification boilers from the viewpoint of the boiler user, as well as from the perspective of development and production it allows a continuous control monitoring of these parameters.

  8. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk.

    Science.gov (United States)

    Li, Kai; Qin, Jin-Cheng; Liu, Chen-Guang; Bai, Feng-Wu

    2016-12-01

    Jerusalem artichoke (JA) is a potential energy crop for biorefinery due to its unique agronomic traits such as resistance to environmental stresses and high biomass yield in marginal lands. Although JA tubers have been explored for inulin extraction and biofuels production, there is little concern on its stalk (JAS). In this article, the pretreatment of JAS by alkaline hydrogen peroxide was optimized using the response surface methodology to improve sugars yield and reduce chemicals usage. Scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were applied to characterize the structures of the pretreated JAS to evaluate the effectiveness of the pretreatment. Furthermore, the feeding of the pretreated JAS and cellulase was performed for high solid uploading (up to 30%) to increase ethanol titer, and simultaneous saccharification and fermentation with 55.6g/L ethanol produced, 36.5% more than that produced through separate hydrolysis and fermentation, was validated to be more efficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    Science.gov (United States)

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  10. Efficient Extracellular Expression of Phospholipase D in Escherichia Coli with an Optimized Signal Peptide

    Science.gov (United States)

    Yang, Leyun; Xu, Yu; Chen, Yong; Ying, Hanjie

    2018-01-01

    New secretion vectors containing the synthetic signal sequence (OmpA’) was constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli Phospholipase D structural gene (Accession number:NC_018658) fused to various signal sequence were expressed from the Lac promoter in E. coli Rosetta strains by induction with 0.4mM IPTG at 28°C for 48h. SDS-PaGe analysis of expression and subcellular fractions of recombinant constructs revealed the translocation of Phospholipase D (PLD) not only to the medium but also remained in periplasm of E. coli with OmpA’ signal sequence at the N-terminus of PLD. Thus the study on the effects of various surfactants on PLD extracellular production in Escherichia coli in shake flasks revealed that optimal PLD extracellular production could be achieved by adding 0.4% Triton X-100 into the medium. The maximal extracellular PLD production and extracellular enzyme activity were 0.23mg ml-1 and 16U ml-1, respectively. These results demonstrate the possibility of efficient secretory production of recombinant PLD in E. coli should be a potential industrial applications.

  11. Detective quantum efficiency: a standard test to ensure optimal detector performance and low patient exposures

    Science.gov (United States)

    Escartin, Terenz R.; Nano, Tomi F.; Cunningham, Ian A.

    2016-03-01

    The detective quantum efficiency (DQE), expressed as a function of spatial frequency, describes the ability of an x-ray detector to produce high signal-to-noise ratio (SNR) images. While regulatory and scientific communities have used the DQE as a primary metric for optimizing detector design, the DQE is rarely used by end users to ensure high system performance is maintained. Of concern is that image quality varies across different systems for the same exposures with no current measures available to describe system performance. Therefore, here we conducted an initial DQE measurement survey of clinical x-ray systems using a DQE-testing instrument to identify their range of performance. Following laboratory validation, experiments revealed that the DQE of five different systems under the same exposure level (8.0 μGy) ranged from 0.36 to 0.75 at low spatial frequencies, and 0.02 to 0.4 at high spatial frequencies (3.5 cycles/mm). Furthermore, the DQE dropped substantially with decreasing detector exposure by a factor of up to 1.5x in the lowest spatial frequency, and a factor of 10x at 3.5 cycles/mm due to the effect of detector readout noise. It is concluded that DQE specifications in purchasing decisions, combined with periodic DQE testing, are important factors to ensure patients receive the health benefits of high-quality images for low x-ray exposures.

  12. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    Science.gov (United States)

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  13. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    Science.gov (United States)

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  14. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach

    International Nuclear Information System (INIS)

    Gimelli, A.; Luongo, A.; Muccillo, M.

    2017-01-01

    Highlights: • Multi-objective optimization method for ORC design has been addressed. • Trade-off between electric efficiency and overall heat exchangers area is evaluated. • The heat exchangers area was used as objective function to minimize the plant cost. • MDM was considered as organic working fluid for the thermodynamic cycle. • Electric efficiency: 14.1–18.9%. Overall heat exchangers area: 446–1079 m 2 . - Abstract: Multi-objective optimization could be, in the industrial sector, a fundamental strategic approach for defining the target design specifications and operating parameters of new competitive products for the market, especially in renewable energy and energy savings fields. Vector optimization mostly enabled the determination of a set of optimal solutions characterized by different costs, sizes, efficiencies and other key features. The designer can subsequently select the solution with the best compromise between the objective functions for the specific application and constraints. In this paper, a multi-objective optimization problem addressing an Organic Rankine Cycle system is solved with consideration for the electric efficiency and overall heat exchangers area as quantities that should be optimized. In fact, considering that the overall capital cost of the ORC system is dominated by the cost of the heat exchangers rather than that of the pump and turbine, this area is related to the cost of the plant and so it was used to indirectly optimize the economic system performance. For this reason, although cost data have not been used, the heat exchangers area was used as a second objective function to minimize the plant cost. Pareto optimal solutions highlighted a trade-off between the two conflicting objective functions. Octamethyltrisiloxane (MDM) was considered organic working fluid, while the following input parameters were used as decision variables: minimum and maximum pressure of the thermodynamic cycle; superheating and subcooling

  15. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    Science.gov (United States)

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Diagnosis of power generator sets by analyzing the crank shaft angular speed

    International Nuclear Information System (INIS)

    Desbazeille, M.

    2010-07-01

    This thesis deals with the diagnosis of a powerful 20-cylinder diesel engine which runs a generator set in a nuclear plant. The objective is to make a diagnosis by analyzing the crank shaft angular speed variations. Only combustion related faults are investigated. As the engine is very large, the first crank shaft natural modes are in the low frequencies. Torsional vibrations of the flexible crank shaft strongly complicate the analysis of the angular speed variations. Little attention has been paid to such large engines in the literature. First, a dynamical model with the assumption of a flexible crank shaft is established. The parameters of the model are optimized with the help of actual data. Then, an original automated diagnosis based on pattern recognition of the angular speed waveforms is proposed. Indeed, any faulty cylinder in combustion stroke will distort the angular speed waveform in a specific way which depends on its location with respect to nodes and anti-nodes of the modes. Reference patterns, representative of the engine conditions, are computed with the model constituting the main originality of this work. Promising results are obtained in operational phase. An experimental fuel leakage fault was correctly diagnosed, including detection and localization of the faulty cylinder and an indication of the severity of the fault. (author)

  17. Structural Modifications for Torsional Vibration Control of Shafting Systems Based on Torsional Receptances

    Directory of Open Access Journals (Sweden)

    Zihao Liu

    2016-01-01

    Full Text Available Torsional vibration of shafts is a very important problem in engineering, in particular in ship engines and aeroengines. Due to their high levels of integration and complexity, it is hard to get their accurate structural data or accurate modal data. This lack of data is unhelpful to vibration control in the form of structural modifications. Besides, many parts in shaft systems are not allowed to be modified such as rotary inertia of a pump or an engine, which is designed for achieving certain functions. This paper presents a strategy for torsional vibration control of shaft systems in the form of structural modifications based on receptances, which does not need analytical or modal models of the systems under investigation. It only needs the torsional receptances of the system, which can be obtained by testing simple auxiliary structure attached to relevant locations of the shaft system and using the finite element model (FEM of the simple structure. An optimization problem is constructed to determine the required structural modifications, based on the actual requirements of modal frequencies and mode shapes. A numerical experiment is set up and the influence of several system parameters is analysed. Several scenarios of constraints in practice are considered. The numerical simulation results demonstrate the effectiveness of this method and its feasibility in solving torsional vibration problems in practice.

  18. Improved efficiency of lifting freight on inclined mine shafts

    Energy Technology Data Exchange (ETDEWEB)

    Molchanov, A A

    1980-01-01

    Design and operating principles are described for a self-propelled inclined lifter with hinged-lever mechanism of forced compression of the drive wheels to the rails. Limit values are defined for the main parameters of the traction device.

  19. An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

    OpenAIRE

    Phan, Thanh Duoc; Lim, James; Tanyimboh, Tiku T.; Sha, Wei

    2013-01-01

    The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal sol...

  20. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  1. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  2. Grouting of nuclear waste vault shafts

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating ground water. Of particular concern in vault sealing are the physical and chemical properties of the sealing materials its long-term durability and stability and the techniques used for its emplacement. Present grouting technology and grout material are reviewed in terms of the particular needs of shaft grouting. Areas requiring research and development are indicated

  3. Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences

    DEFF Research Database (Denmark)

    Baldini, Mattia; Klinge Jacobsen, Henrik

    2016-01-01

    the improvements made in the energy saving field. Indeed, little attention has been paid to implement energy efficiency measures, which has resulted in scenarios where expedients for a wise use of energy (e.g. energy savings and renewables share) are unbalanced. The aim of this paper is to review and evaluate...... international experiences on finding the optimal trade-off between efficiency improvements and additional renewable energy supply. A critical review of each technique, focusing on purposes, methodology and outcomes, is provided along with a review of tools adopted for the analyses. The models are categorized...... trade-off between renewables and energy efficiency measures in energy-systems under different objectives....

  4. Cooling Tower Optimization A Simple Way to Generate Green Megawatts and to Increase the Efficiency of a Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    2014-07-01

    The profitability of nuclear power plants is worldwide challenged by low electricity prices. One hand low cost shale gas is offering a low price electricity production , other hand additional taxes on fuel are reducing the operating income of nuclear power stations. The optimization of cooling towers can help to increase the efficiency and profit of a nuclear power plant. (Author)

  5. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression

    DEFF Research Database (Denmark)

    Radzisheuskaya, Aliaksandra; Shlyueva, Daria; Müller, Iris

    2016-01-01

    CRISPR interference (CRISPRi) represents a newly developed tool for targeted gene repression. It has great application potential for studying gene function and mapping gene regulatory elements. However, the optimal parameters for efficient single guide RNA (sgRNA) design for CRISPRi are not fully...

  6. Optimization of an Efficient and Sustainable Sonogashira Cross-Coupling Protocol

    KAUST Repository

    Walter, Philipp E.

    2012-12-01

    Cross coupling reactions are a well-established tool in modern organic synthesis and play a crucial role in the synthesis of a high number of organic compounds. Their importance is highlighted by the Nobel Prize in chemistry to Suzuki, Heck and Negishi in 2010. The increasing importance of sustainability requirements in chemical production has furthermore promoted the development of cross-coupling protocols that comply with the principles of “Green Chemistry”1. The Sonogashira reaction is today the most versatile and powerful way to generate aryl alkynes, a moiety recurring in many pharmaceutical and natural products. Despite many improvements to the original reaction, reports on generally applicable protocols that work under sustainable conditions are scarce. Our group recently reported an efficient protocol for a copperfree Sonogashira cross-coupling at low temperature, in aqueous medium and with no addition of organic solvents or additives2. The goal of this work was to further investigate the effects of different reaction parameters on the catalytic activity in order to optimize the protocol. Limitations of the protocol were tested in respect to reaction temperature, heating method, atmosphere, base type and amount, catalyst loading, reaction time and work up procedure. The reaction worked successfully under air and results were not affected by the presence of oxygen in the water phase. Among a variety of bases tested, triethylamine was confirmed to give the best results and its required excess could be reduced from nine to four equivalents. Catalyst loading could also be reduced by up to 90%: Good to near quantitative yields for a broad range of substrates were achieved using a catalyst concentration of 0.25mol% and 5 eq of Et3N at 50°C while more reactive substrates could be coupled with a catalyst concentration as low as 0.025mol%. Filtration experiments showed the possibility of a simplified work up procedure and a protocol completely free of organic

  7. Toward an optimal control strategy for sweet pepper production 2. optimization of the yield pattern and energy efficiency

    NARCIS (Netherlands)

    Henten, van E.J.; Buwalda, F.; Zwart, de H.F.; Gelder, de A.; Hemming, J.

    2006-01-01

    Sweet pepper production is characterized by large fluctuations in fruit yield in time. These fluctuations have a detrimental effect on the operational planning of labor at nursery level as well as on the efficiency of the supply chain. At the same time, the dependence of temperate zone greenhouse

  8. Optimal designs for one- and two-color microarrays using mixed models: a comparative evaluation of their efficiencies.

    Science.gov (United States)

    Lima Passos, Valéria; Tan, Frans E S; Winkens, Bjorn; Berger, Martijn P F

    2009-01-01

    Comparative studies between the one- and two-color microarrays provide supportive evidence for similarities of results on differential gene expression. So far, no design comparisons between the two platforms have been undertaken. With the objective of comparing optimal designs of one- and two-color microarrays in their statistical efficiencies, techniques of design optimization were applied within a mixed model framework. A- and D-optimal designs for the one- and two-color platforms were sought for a 3 x 3 factorial experiment. The results suggest that the choice of the platform will not affect the "subjects to groups" allocation, being concordant in the two designs. However, under financial constraints, the two-color arrays are expected to have a slight upper hand in terms of efficiency of model parameters estimates, once the price of arrays is more expensive than that of subjects. This statement is especially valid for microarray studies envisaging class comparisons.

  9. Residual torsional properties of composite shafts subjected to impact loadings

    International Nuclear Information System (INIS)

    Sevkat, Ercan; Tumer, Hikmet

    2013-01-01

    Highlights: • Impact loading reduces the torsional strength of composite shaft. • Impact energy level determines the severity of torsional strength reduction. • Hybrid composite shafts can be manufactured by mixing two types of filament. • Maximum torque capacity of shafts can be estimated using finite element method. - Abstract: This paper presents an experimental and numerical study to investigate residual torsional properties of composite shafts subjected to impact loadings. E-glass/epoxy, carbon/epoxy and E-glass–carbon/epoxy hybrid composite shafts were manufactured by filament winding method. Composite shafts were impacted at 5, 10, 20 and 40 J energy levels. Force–time and energy–time histories of impact tests were recorded. One composite shaft with no impact, and four composite shafts with impact damage, five in total, were tested under torsion. Torque-twisting angle relations for each test were obtained. Reduction at maximum torque and maximum twisting angle induced by impact loadings were calculated. While 5 J impact did not cause significant reduction at maximum torque and maximum twisting angle, remaining impact loadings caused 34–67% reduction at maximum torque, and 30–61% reduction at maximum twisting angle. Reductions increased with increasing energy levels and varied depending on the material of composite shafts. The 3-D finite element (FE) software, Abaqus, incorporated with an elastic orthotropic model, was then used to simulate the torsion tests. Good agreement between experimental and numerical results was achieved

  10. Increasing shaft depth with rock hoisting to the surface. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-06-01

    Schemes of shaft construction with increasing shaft depth depend on: shaft depth, shaft diameter, types of hoisting systems, schemes of shaft reinforcement. Investigations carried out in underground coal mines in the USSR show that waste rock haulage to the surface by an independent hoisting system is most economical. Installation of this system depends on the existing hoisting scheme. When one of the operating cages or skips can be removed without a negative influence on mine operation the system of rock waste hoisting is used. The hoisting bucket used for rock removal from the shaft bottom moves in the shaft section from which one of the cages or skips has been removed. Examples of using this scheme in Donbass, Kuzbass and other coal basins are given. Economic aspects of waste material hoisting to the surface are analyzed. The system is economical when the remaining hoisting system can accept additional loads after removal of a cage or skip from the shaft. Investigations show that use of a bucket with a capacity from 2.5 to 3.0 m/sup 3/ for waste rock removal from the shaft being modernized and deepened is most economical.

  11. Design optimization for permanent magnet machine with efficient slot per pole ratio

    Science.gov (United States)

    Potnuru, Upendra Kumar; Rao, P. Mallikarjuna

    2018-04-01

    This paper presents a methodology for the enhancement of a Brush Less Direct Current motor (BLDC) with 6Poles and 8slots. In particular; it is focused on amulti-objective optimization using a Genetic Algorithmand Grey Wolf Optimization developed in MATLAB. The optimization aims to maximize the maximum output power value and minimize the total losses of a motor. This paper presents an application of the MATLAB optimization algorithms to brushless DC (BLDC) motor design, with 7 design parameters chosen to be free. The optimal design parameters of the motor derived by GA are compared with those obtained by Grey Wolf Optimization technique. A comparative report on the specified enhancement approaches appearsthat Grey Wolf Optimization technique has a better convergence.

  12. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  13. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Directory of Open Access Journals (Sweden)

    Yaodong Xing

    2012-08-01

    Full Text Available Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  14. An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Amalnick, M.S.; Ghaderi, S.F.; Asadzadeh, S.M.

    2007-01-01

    This paper introduces an integrated approach based on data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT) for total energy efficiency assessment and optimization in energy intensive manufacturing sectors. Total energy efficiency assessment and optimization of the proposed approach considers structural indicators in addition conventional consumption and manufacturing sector output indicators. The validity of the DEA model is verified and validated by PCA and NT through Spearman correlation experiment. Moreover, the proposed approach uses the measure-specific super-efficiency DEA model for sensitivity analysis to determine the critical energy carriers. Four energy intensive manufacturing sectors are discussed in this paper: iron and steel, pulp and paper, petroleum refining and cement manufacturing sectors. To show superiority and applicability, the proposed approach has been applied to refinery sub-sectors of some OECD (Organization for Economic Cooperation and Development) countries. This study has several unique features which are: (1) a total approach which considers structural indicators in addition to conventional energy efficiency indicators; (2) a verification and validation mechanism for DEA by PCA and NT and (3) utilization of DEA for total energy efficiency assessment and consumption optimization of energy intensive manufacturing sectors

  15. Joint Optimized CPU and Networking Control Scheme for Improved Energy Efficiency in Video Streaming on Mobile Devices

    Directory of Open Access Journals (Sweden)

    Sung-Woong Jo

    2017-01-01

    Full Text Available Video streaming service is one of the most popular applications for mobile users. However, mobile video streaming services consume a lot of energy, resulting in a reduced battery life. This is a critical problem that results in a degraded user’s quality of experience (QoE. Therefore, in this paper, a joint optimization scheme that controls both the central processing unit (CPU and wireless networking of the video streaming process for improved energy efficiency on mobile devices is proposed. For this purpose, the energy consumption of the network interface and CPU is analyzed, and based on the energy consumption profile a joint optimization problem is formulated to maximize the energy efficiency of the mobile device. The proposed algorithm adaptively adjusts the number of chunks to be downloaded and decoded in each packet. Simulation results show that the proposed algorithm can effectively improve the energy efficiency when compared with the existing algorithms.

  16. Characterizing the Incentive Compatible and Pareto Optimal Efficiency Space for Two Players, k Items, Public Budget and Quasilinear Utilities

    Directory of Open Access Journals (Sweden)

    Anat Lerner

    2014-04-01

    Full Text Available We characterize the efficiency space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto-optimal combinatorial auctions in a model with two players and k nonidentical items. We examine a model with multidimensional types, private values and quasilinear preferences for the players with one relaxation: one of the players is subject to a publicly known budget constraint. We show that if it is publicly known that the valuation for the largest bundle is less than the budget for at least one of the players, then Vickrey-Clarke-Groves (VCG uniquely fulfills the basic properties of being deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal. Our characterization of the efficient space for deterministic budget constrained combinatorial auctions is similar in spirit to that of Maskin 2000 for Bayesian single-item constrained efficiency auctions and comparable with Ausubel and Milgrom 2002 for non-constrained combinatorial auctions.

  17. Optimizing cationic and neutral lipids for efficient gene delivery at high serum content.

    Science.gov (United States)

    Chan, Chia-Ling; Ewert, Kai K; Majzoub, Ramsey N; Hwu, Yeu-Kuang; Liang, Keng S; Leal, Cecília; Safinya, Cyrus R

    2014-01-01

    Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential application in gene therapy. A key challenge in creating CL-DNA complexes for application is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of a high serum content on TE, even though this may provide design guidelines for application in vivo. We prepared CL-DNA complexes in which we varied the neutral lipid [1,2-dioleoyl-sn-glycerophosphatidylcholine, glycerol-monooleate (GMO), cholesterol], the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, particularly at a high serum content. Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We propose guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. Copyright © 2014 John Wiley & Sons, Ltd.

  18. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts

    Directory of Open Access Journals (Sweden)

    Nikolaev Aleksandr

    2017-01-01

    Full Text Available In the existing shaft air heater installations (AHI, that heat the air for air suppliers in cold seasons, a heater channel is used. Some parts of the air from the heater go to the channel, other parts are sucked through a pithead by the general shaft pressure drawdown formed by the main ventilation installation (MVI. When this happens, a mix of two air flows leads to a shaft heat regime violation that can break pressurization of intertubular sealers. The problem of energy saving while airing underground mining enterprises is also very important. The proposed solution of both tasks due to the application of an air curtain is described in the article. In cold seasons the air treatment process should be used and it is offered to place an air curtain in the air suppliers shaft above the place of interface of the calorifer channel to a trunk in order to avoid an infiltration (suction of air through the pithead. It’s recommended to use an air curtain in a ventilation shaft because it reduces external air leaks thereby improving energy efficiency of the MVI work. During the mathematical modeling of ventilation and air preparation process (in SolidWorks Flowsimulation software package it was found out that the use of the air curtain in the air supply shaft can increase the efficiency of the AHI, and reduce the electricity consumption for ventilation in the ventilation shaft.

  19. Removable control rod drive shaft guide

    International Nuclear Information System (INIS)

    Ales, M.W.; Brown, S.K.; Dixon, L.D.

    1988-01-01

    A removable control rod drive shaft guide is described for a control rod ''guide'' structure card, comprising: a. a substantially annular shaped main body portion having a central axial bore for receiving a control rod drive shaft and an upper exterior groove for receiving removal tooling; b. the main body portion having a reduced outer diameter at its lower section; c. a shoulder portion integral with the main body portion for supporting the main body portion on the guide structure card; d. the shoulder portion having a substantially radial bore and the reduced outer diameter lower section having a slot in alignment with the radial bore; e. a locking arm ''pivotaly'' mounted in the radial bore which protrudes into the slot and is movable between a first normal locking position for engaging the guide structure card and a second release position; f. a spring received within a second axial bore in the main body portion and biased against the locking arm for urging and locking arm into the first normal locking position; and g. a release tab at one end of the locking arm for moving the locking arm into the second release position

  20. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    International Nuclear Information System (INIS)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-01-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  1. Efficiency of particle swarm optimization applied on fuzzy logic DC motor speed control

    Directory of Open Access Journals (Sweden)

    Allaoua Boumediene

    2008-01-01

    Full Text Available This paper presents the application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization (PSO. Firstly, the controller designed according to Fuzzy Logic rules is such that the systems are fundamentally robust. Secondly, the Fuzzy Logic controller (FLC used earlier was optimized with PSO so as to obtain optimal adjustment of the membership functions only. Finally, the FLC is completely optimized by Swarm Intelligence Algorithms. Digital simulation results demonstrate that in comparison with the FLC the designed FLC-PSO speed controller obtains better dynamic behavior and superior performance of the DC motor, as well as perfect speed tracking with no overshoot.

  2. Efficient Design and Optimization of a Flow Control System for Supersonic Mixed Compression Inlets, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SynGenics Corporation proposes a program that unites mathematical and statistical processes, Response Surface Methodology, and multicriterial optimization methods to...

  3. Optimizing lengths of confidence intervals: fourth-order efficiency in location models

    NARCIS (Netherlands)

    Klaassen, C.; Venetiaan, S.

    2010-01-01

    Under regularity conditions the maximum likelihood estimator of the location parameter in a location model is asymptotically efficient among translation equivariant estimators. Additional regularity conditions warrant third- and even fourth-order efficiency, in the sense that no translation

  4. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2015-01-01

    Full Text Available Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Present work encompasses production optimization and nanoimmobilization of an α-amylase from moderately halophilic Marinobacter sp. EMB8. Media ingredients and culture conditions were optimized by “one-at-a-time approach.” Starch was found to be the best carbon source at 5% (w/v concentration. Glucose acted as catabolic repressor for amylase production. Salt proved critical for amylase production and maximum production was attained at 5% (w/v NaCl. Optimization of various culture parameters resulted in 48.0 IU/mL amylase production, a 12-fold increase over that of unoptimized condition (4.0 IU/mL. α-Amylase was immobilized on 3-aminopropyl functionalized silica nanoparticles using glutaraldehyde as cross-linking agent. Optimization of various parameters resulted in 96% immobilization efficiency. Starch hydrolyzing efficiency of immobilized enzyme was comparatively better. Immobilized α-amylase retained 75% of its activity after 5th cycle of repeated use.

  5. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  6. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  7. Shaft Position Influence on Technical Characteristics of Universal Two-Stages Helical Speed Reducers

    OpenAIRE

    Мilan Rackov; Zeljko Kanovic; Sinisa Kuzmanovic; Ruzica Trbojevic

    2005-01-01

    Purchasers of speed reducers decide on buying those reducers, that can the most approximately satisfy their demands with much smaller costs. Amount of used material, ie. mass and dimensions of gear unit influences on gear units price. Mass and dimensions of gear unit, besides output torque, gear unit ratio and efficiency, are the most important parameters of technical characteristics of gear units and their quality. Centre distance and position of shafts have significant influence on output t...

  8. Optimal Control as a method for Diesel engine efficiency assessment including pressure and NO_x constraints

    International Nuclear Information System (INIS)

    Guardiola, Carlos; Climent, Héctor; Pla, Benjamín; Reig, Alberto

    2017-01-01

    Highlights: • Optimal Control is applied for heat release shaping in internal combustion engines. • Optimal Control allows to assess the engine performance with a realistic reference. • The proposed method gives a target heat release law to define control strategies. - Abstract: The present paper studies the optimal heat release law in a Diesel engine to maximise the indicated efficiency subject to different constraints, namely: maximum cylinder pressure, maximum cylinder pressure derivative, and NO_x emission restrictions. With this objective, a simple but also representative model of the combustion process has been implemented. The model consists of a 0D energy balance model aimed to provide the pressure and temperature evolutions in the high pressure loop of the engine thermodynamic cycle from the gas conditions at the intake valve closing and the heat release law. The gas pressure and temperature evolutions allow to compute the engine efficiency and NO_x emissions. The comparison between model and experimental results shows that despite the model simplicity, it is able to reproduce the engine efficiency and NO_x emissions. After the model identification and validation, the optimal control problem is posed and solved by means of Dynamic Programming (DP). Also, if only pressure constraints are considered, the paper proposes a solution that reduces the computation cost of the DP strategy in two orders of magnitude for the case being analysed. The solution provides a target heat release law to define injection strategies but also a more realistic maximum efficiency boundary than the ideal thermodynamic cycles usually employed to estimate the maximum engine efficiency.

  9. A cost-efficient method to optimize package size in emerging markets

    NARCIS (Netherlands)

    Gamez-Alban, H.M.; Soto-Cardona, O.C.; Mejia Argueta, C.; Sarmiento, A.T.

    2015-01-01

    Packaging links the entire supply chain and coordinates all participants in the process to give a flexible and effective response to customer needs in order to maximize satisfaction at optimal cost. This research proposes an optimization model to define the minimum total cost combination of outer

  10. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks

    Science.gov (United States)

    Bistra Dilkina; Rachel Houtman; Carla P. Gomes; Claire A. Montgomery; Kevin S. McKelvey; Katherine Kendall; Tabitha A. Graves; Richard Bernstein; Michael K. Schwartz

    2016-01-01

    Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a...

  11. Fractures of the shafts of the tibia and fibula

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C.

    1985-01-01

    Fractures of the shafts of the tibia and fibula are the most common long bone fractures. This chapter discusses tibial and fibular shaft fractures. Treatment of tibial and fibular fractures is similar and, therefore, reference is primarily made to the tibia. Diagnostic techniques are also evaluated

  12. Boundary integral method for torsion of composite shafts

    International Nuclear Information System (INIS)

    Chou, S.I.; Mohr, J.A.

    1987-01-01

    The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

  13. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft ...

    African Journals Online (AJOL)

    Background: Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be ...

  14. New endoscope shaft for endoscopic transsphenoidal pituitary surgery.

    NARCIS (Netherlands)

    Lindert, E.J. van; Grotenhuis, J.A.

    2005-01-01

    OBJECTIVE: To describe a new endoscope shaft developed for suction-aspiration during endoscopic transsphenoidal pituitary surgery. METHODS: A custom-made shaft for a Wolf endoscope (Richard Wolf GmbH, Knittlingen, Germany) was developed with a height of 10 mm and a width of 5 mm, allowing an

  15. Proceedings of the conference on shaft drilling technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the following topics, Market analysis, World-wide operations, Innovative drilling and boring, Raise boring, Shaft lining and fittings, Entry considerations for the Yucca Mountain exploratory shaft facility for potential Radioactive Waste Disposal, Drilling rigs in the coal industry

  16. 46 CFR 171.100 - Shaft tunnels and stern tubes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Shaft tunnels and stern tubes. 171.100 Section 171.100... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.100 Shaft tunnels and... passengers on an international voyage. (b) The watertight seal in the bulkhead between the stern tube space...

  17. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  18. Hair Shaft Abnormality in Children: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Ghasem Rahmatpour Rokni

    2017-08-01

    Full Text Available Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We conducted a review study to assess hair shaft abnormality in children. Materials and Methods We conducted a review of all papers published on hair shaft abnormalities. A literature search was performed using PubMed, Scopus and Google Scholar on papers publish from 1990 to 2016. The search terms were: hair shaft abnormality, Hair loss, Hair fragility. All abstracts and full text English-language articles were studied. Results While common developmental and structural features are shared in hair follicles and hair shafts. Anomalies of the hair shaft are separated into those with and those without increased hair fragility. Conclusion Although hair has no vital function, it may serve as an indicator for human health. Clinical and morphological hair abnormalities can be clues to specific complex disorders. Hair shaft abnormalities can be inherited or acquired, can reflect a local problem or a systemic disease.

  19. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  20. Performance of meta power rotor shaft torque meter

    DEFF Research Database (Denmark)

    Schmidt Paulsen, U.

    2002-01-01

    The present report describes the novel experimental facility in detecting shaft torque in the transmission system (main rotor shaft, exit stage of gearbox) of a wind turbine, the results and the perspectives in using this concept. The measurements arecompared with measurements, based on existing ...

  1. An efficient auto TPT stitch guidance generation for optimized standard cell design

    Science.gov (United States)

    Samboju, Nagaraj C.; Choi, Soo-Han; Arikati, Srini; Cilingir, Erdem

    2015-03-01

    As the technology continues to shrink below 14nm, triple patterning lithography (TPT) is a worthwhile lithography methodology for printing dense layers such as Metal1. However, this increases the complexity of standard cell design, as it is very difficult to develop a TPT compliant layout without compromising on the area. Hence, this emphasizes the importance to have an accurate stitch generation methodology to meet the standard cell area requirement as defined by the technology shrink factor. In this paper, we present an efficient auto TPT stitch guidance generation technique for optimized standard cell design. The basic idea here is to first identify the conflicting polygons based on the Fix Guidance [1] solution developed by Synopsys. Fix Guidance is a reduced sub-graph containing minimum set of edges along with the connecting polygons; by eliminating these edges in a design 3-color conflicts can be resolved. Once the conflicting polygons are identified using this method, they are categorized into four types [2] - (Type 1 to 4). The categorization is based on number of interactions a polygon has with the coloring links and the triangle loops of fix guidance. For each type a certain criteria for keep-out region is defined, based on which the final stitch guidance locations are generated. This technique provides various possible stitch locations to the user and helps the user to select the best stitch location considering both design flexibility (max. pin access/small area) and process-preferences. Based on this technique, a standard cell library for place and route (P and R) can be developed with colorless data and a stitch marker defined by designer using our proposed method. After P and R, the full chip (block) would contain the colorless data and standard cell stitch markers only. These stitch markers are considered as "must be stitch" candidates. Hence during full chip decomposition it is not required to generate and select the stitch markers again for the

  2. Design of production process main shaft process with lean manufacturing to improve productivity

    Science.gov (United States)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Anizar; Syahputri, K.

    2018-02-01

    This object research is one of manufacturing companies that produce oil palm machinery parts. In the production process there is delay in the completion of the Main shaft order. Delays in the completion of the order indicate the low productivity of the company in terms of resource utilization. This study aimed to obtain a draft improvement of production processes that can improve productivity by identifying and eliminating activities that do not add value (non-value added activity). One approach that can be used to reduce and eliminate non-value added activity is Lean Manufacturing. This study focuses on the identification of non-value added activity with value stream mapping analysis tools, while the elimination of non-value added activity is done with tools 5 whys and implementation of pull demand system. Based on the research known that non-value added activity on the production process of the main shaft is 9,509.51 minutes of total lead time 10,804.59 minutes. This shows the level of efficiency (Process Cycle Efficiency) in the production process of the main shaft is still very low by 11.89%. Estimation results of improvement showed a decrease in total lead time became 4,355.08 minutes and greater process cycle efficiency that is equal to 29.73%, which indicates that the process was nearing the concept of lean production.

  3. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  4. Energy efficiency of freezing tunnels: towards an optimal operation of compressors and air fans

    Energy Technology Data Exchange (ETDEWEB)

    Widell, Kristina Norne

    2012-07-01

    Fish is one of Norway's main exports, and can be shipped fresh, frozen or dried. This thesis examines the freezing of fish in batch tunnels and ways to increase the energy efficiency of this process. A fish freezing plant on the west coast of Norway was used as a baseline case and measurements were made of the freezing system. Different aspects of this system were simulated, mainly using MATLAB.The focus was on the compressors and the freezing tunnels of an industrial refrigeration system. The compressors and the freezing tunnel fans are the largest consumers of electricity, but they are often not operated at the highest efficiency. An analysis of the compressor operation showed that it was far from optimal, with several compressors often operating at part-load simultaneously. These were screw compressors regulated by slide valves, which provide easy capacity control, but also have low energy efficiency. The refrigeration system had several different sized compressors, and the results showed that it was possible to run the system with only one compressor at part-load operation. The total coefficient of performance was improved by as much as 29% for a low production period. A further analysis showed that installing a variable speed drive on one compressor would also improve energy efficiency and make capacity regulation straightforward.The freezing system included five batch freezing tunnels, each of which had a freezing capacity of more than 100 tonnes of pelagic fish. A typical freezing period lasted typically 20 h and decreased the fish temperature to -18?C or below. The main task was to develop a computer program that could simulate the freezing process and the refrigeration system and locate opportunities for improvement. The air velocities inside the freezing tunnel varied with location, which were pinpointed using the computational fluid dynamics software program Airpak. These velocities were used in freezing time calculations. It was shown that a guide

  5. Ipsilateral femoral neck and shaft fractures: An overlooked association

    International Nuclear Information System (INIS)

    Daffner, R.H.; Riemer, B.L.; Butterfield, S.L.

    1991-01-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG)

  6. Ipsilateral femoral neck and shaft fractures: An overlooked association

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H. (Dept. of Diagnostic Radiology, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA)); Riemer, B.L.; Butterfield, S.L. (Dept. of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA))

    1991-05-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG).

  7. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals

    Science.gov (United States)

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  8. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    Science.gov (United States)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  9. Density-optimized efficiency for magneto-optical production of a stable molecular Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Matt [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland); Collin, Anssi [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland); Suominen, Kalle-Antti [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland); Javanainen, Juha [Department of Physics, University of Connecticut, Storrs, CT 06269-3046 (United States)

    2003-08-01

    Although photoassociation and the Feshbach resonance are feasible means in principle for creating a molecular Bose-Einstein condensate (MBEC) from an already quantum-degenerate gas of atoms, collision-induced mean-field shifts and irreversible decay place practical constraints on the efficient Raman delivery of stable molecules. Focusing on stimulated Raman adiabatic passage, we propose that the efficiency of both mechanisms for producing a stable MBEC can be improved by treating the density of the initial atom condensate as an optimization parameter.

  10. Exploratory Shaft Facility quality assurance impact evaluation

    International Nuclear Information System (INIS)

    1987-08-01

    This report addresses the impact of the quality assurance practices used for the Exploratory Shaft Facility (ESF) design, and construction in licensing as part of the repository. Acceptance criteria used for evaluating the suitability of ESF QA practices are based on documents that had not been invoked for repository design or construction activities at the time of this evaluation. This report identifies the QA practices necessary for ESF design and construction licensability. A review and evaluation of QA practices for ESF design and construction resulted in the following conclusions. QA practices were found to be acceptable with a few exceptions. QA practices for construction activities were found to be insufficiently documented in implementing procedures to allow a full and effective evaluation for licensing purposes. Recommendations are provided for mitigating impacts to ensure compatibility of the QA practices with those considered necessary for repository licensing. 8 refs., 3 tabs

  11. Energy efficiency in process plants with emphasis on heat exchanger networks : optimization, thermodynamics and insight

    Energy Technology Data Exchange (ETDEWEB)

    Anantharaman, Rahul

    2011-07-01

    lower than those presented in the literature. The examples showed the efficiency of the Sequential Framework in that even though there a four nested loops in the framework, the 'best' solution is reached within a few iterations. This is primarily due to the capability of the stream match generator to identify superior Heat Load Distributions (HLDs) leading to low total heat transfer area and low Total Annualized Cost.The three sub-problems in the Sequential Framework, minimum number of units (MILP model), stream match generator ('vertical' MILP model) and network generation and optimization (NLP model), are described with details on their formulation. In the minimum number of units sub-problem, it is shown that stream supply temperature are sufficient to define temperature intervals. The importance and role of Exchanger Minimum Approach Temperature (EMAT) in the stream match generator model is shown and motivated the addition of an EMAT loop in the Sequential Framework.One of the limiting factors in the methodology is related to the computational complexity of the two MILP sub-problems where significant improvements are required to prevent combinatorial explosion. To ease this problem for the minimum number of units MILP sub-problem, it is modified to reduce the gap using physical insights and heuristics. Another novel approach tested was to reformulate some parts of the model by use of some ideas from set partitioning problems. Results show that even though both methods succeed in tightening the LP relaxation, the model solution times remain too long to overcome the size in the Sequential Framework. A problem difficulty indicator is explored to identify computationally expensive problems prior to solution. For the stream match generator MILP sub-problem, the model is modified to reduce the gap using physical insights. The objective is changed to include binary variables and priorities were set for these variables. Though these modifications showed

  12. Topology optimization and laser additive manufacturing in design process of efficiency lightweight aerospace parts

    Science.gov (United States)

    Fetisov, K. V.; Maksimov, P. V.

    2018-05-01

    The paper presents the application of topology optimization and laser additive manufacturing in the design of lightweight aerospace parts. At the beginning a brief overview of the topology optimization algorithm SIMP is given, one of the most commonly used algorithm in FEA software. After that, methodology of parts design with using topology optimization is discussed as well as issues related to designing for additive manufacturing. In conclusion, the practical application of the proposed methodologies is presented using the example of one complex assembly unit. As a result of the new design approach, the mass of product was reduced five times, and twenty parts were replaced by one.

  13. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    Science.gov (United States)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  14. Tibial shaft fractures in football players

    Directory of Open Access Journals (Sweden)

    Daisley Susan

    2007-06-01

    Full Text Available Abstract Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8% of these were football related. All patients were male with a mean age of 23 years (range 15 to 29 and shin guards were worn in 95.8% of cases. 11/24 (45.8% were treated conservatively, 11/24 (45.8% by Grosse Kemp intramedullary nail and 2/24 (8.3% with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction.

  15. Adaptive autonomous Communications Routing Optimizer for Network Efficiency Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing network efficiency for NASA's Space Networking resources is a large, complex, distributed problem, requiring substantial collaboration. We propose the...

  16. Optimal elastic coupling in form of one mechanical spring to improve energy efficiency of walking bipedal robots

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fabian; Römer, Ulrich, E-mail: ulrich.roemer@kit.edu; Fidlin, Alexander; Seemann, Wolfgang [Institute of Engineering Mechanics, Karlsruhe Institute of Technology (Germany)

    2016-11-15

    This paper presents a method to optimize the energy efficiency of walking bipedal robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings—mechanical springs with movement speed independent parameters. The considered planar robot consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators in the knee joints and an elastic coupling between the shanks. It is modeled as underactuated system to make use of its natural dynamics and feedback controlled via input–output linearization. A numerical optimization of the joint angle trajectories as well as the elastic couplings is performed to minimize the average energy expenditure over the whole speed range. The elastic couplings increase the swing leg motion’s natural frequency thus making smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg. The process of energy turnover is investigated in detail for the robot with and without elastic coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology and of joint friction are analyzed. It is shown that the optimization of the robot’s motion and elastic coupling towards energy efficiency leads to a slightly slower convergence rate of the controller, yet no loss of stability, but a lower sensitivity with respect to disturbances. The optimal elastic coupling discovered via numerical optimization is a linear torsion spring with transmissions between the shanks. A design proposal for this elastic coupling—which does not affect the robot’s trunk and parallel shank motion and can be used to enhance an existing robot—is given for planar as well as spatial robots.

  17. Optimal Cross-Layer Design for Energy Efficient D2D Sharing Systems

    KAUST Repository

    Alabbasi, AbdulRahman; Shihada, Basem

    2016-01-01

    modified energy per good bit (MEPG) metric, with respect to the spectrum sharing user’s transmission power and media access frame length. The cellular users, legacy users, are protected by an outage probability constraint. To optimize the non

  18. Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    OpenAIRE

    Thiruvenkadam, T; Karthikeyani, V

    2014-01-01

    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...

  19. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Litvinov, I. V.

    2015-01-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main...... time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow....

  20. Efficiency of timing delays and electrode positions in optimization of biventricular pacing: a simulation study.

    Science.gov (United States)

    Miri, Raz; Graf, Iulia M; Dössel, Olaf

    2009-11-01

    Electrode positions and timing delays influence the efficacy of biventricular pacing (BVP). Accordingly, this study focuses on BVP optimization, using a detailed 3-D electrophysiological model of the human heart, which is adapted to patient-specific anatomy and pathophysiology. The research is effectuated on ten heart models with left bundle branch block and myocardial infarction derived from magnetic resonance and computed tomography data. Cardiac electrical activity is simulated with the ten Tusscher cell model and adaptive cellular automaton at physiological and pathological conduction levels. The optimization methods are based on a comparison between the electrical response of the healthy and diseased heart models, measured in terms of root mean square error (E(RMS)) of the excitation front and the QRS duration error (E(QRS)). Intra- and intermethod associations of the pacing electrodes and timing delays variables were analyzed with statistical methods, i.e., t -test for dependent data, one-way analysis of variance for electrode pairs, and Pearson model for equivalent parameters from the two optimization methods. The results indicate that lateral the left ventricle and the upper or middle septal area are frequently (60% of cases) the optimal positions of the left and right electrodes, respectively. Statistical analysis proves that the two optimization methods are in good agreement. In conclusion, a noninvasive preoperative BVP optimization strategy based on computer simulations can be used to identify the most beneficial patient-specific electrode configuration and timing delays.

  1. An Efficient Approach for Energy Consumption Optimization and Management in Residential Building Using Artificial Bee Colony and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2016-01-01

    Full Text Available The energy management in residential buildings according to occupant’s requirement and comfort is of vital importance. There are many proposals in the literature addressing the issue of user’s comfort and energy consumption (management with keeping different parameters in consideration. In this paper, we have utilized artificial bee colony (ABC optimization algorithm for maximizing user comfort and minimizing energy consumption simultaneously. We propose a complete user friendly and energy efficient model with different components. The user set parameters and the environmental parameters are inputs of the ABC, and the optimized parameters are the output of the ABC. The error differences between the environmental parameters and the ABC optimized parameters are inputs of fuzzy controllers, which give the required energy as the outputs. The purpose of the optimization algorithm is to maximize the comfort index and minimize the error difference between the user set parameters and the environmental parameters, which ultimately decreases the power consumption. The experimental results show that the proposed model is efficient in achieving high comfort index along with minimized energy consumption.

  2. An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid

    Directory of Open Access Journals (Sweden)

    Hafiz Majid Hussain

    2018-01-01

    Full Text Available The traditional power grid is inadequate to overcome modern day challenges. As the modern era demands the traditional power grid to be more reliable, resilient, and cost-effective, the concept of smart grid evolves and various methods have been developed to overcome these demands which make the smart grid superior over the traditional power grid. One of the essential components of the smart grid, home energy management system (HEMS enhances the energy efficiency of electricity infrastructure in a residential area. In this aspect, we propose an efficient home energy management controller (EHEMC based on genetic harmony search algorithm (GHSA to reduce electricity expense, peak to average ratio (PAR, and maximize user comfort. We consider EHEMC for a single home and multiple homes with real-time electricity pricing (RTEP and critical peak pricing (CPP tariffs. In particular, for multiple homes, we classify modes of operation for the appliances according to their energy consumption with varying operation time slots. The constrained optimization problem is solved using heuristic algorithms: wind-driven optimization (WDO, harmony search algorithm (HSA, genetic algorithm (GA, and proposed algorithm GHSA. The proposed algorithm GHSA shows higher search efficiency and dynamic capability to attain optimal solutions as compared to existing algorithms. Simulation results also show that the proposed algorithm GHSA outperforms the existing algorithms in terms of reduction in electricity cost, PAR, and maximize user comfort.

  3. Optimizing the recovery efficiency of Finnish oil combating vessels in the Gulf of Finland using Bayesian Networks.

    Science.gov (United States)

    Lehikoinen, Annukka; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari

    2013-02-19

    Oil transport has greatly increased in the Gulf of Finland over the years, and risks of an oil accident occurring have risen. Thus, an effective oil combating strategy is needed. We developed a Bayesian Network (BN) to examine the recovery efficiency and optimal disposition of the Finnish oil combating vessels in the Gulf of Finland (GoF), Eastern Baltic Sea. Four alternative home harbors, five accident points, and ten oil combating vessels were included in the model to find the optimal disposition policy that would maximize the recovery efficiency. With this composition, the placement of the oil combating vessels seems not to have a significant effect on the recovery efficiency. The process seems to be strongly controlled by certain random factors independent of human action, e.g. wave height and stranding time of the oil. Therefore, the success of oil combating is rather uncertain, so it is also important to develop activities that aim for preventing accidents. We found that the model developed is suitable for this type of multidecision optimization. The methodology, results, and practices are further discussed.

  4. Energy Efficient Pico Cell Range Expansion and Density Joint Optimization for Heterogeneous Networks with eICIC

    Directory of Open Access Journals (Sweden)

    Yanzan Sun

    2018-03-01

    Full Text Available Heterogeneous networks, constituted by conventional macro cells and overlaying pico cells, have been deemed a promising paradigm to support the deluge of data traffic with higher spectral efficiency and Energy Efficiency (EE. In order to deploy pico cells in reality, the density of Pico Base Stations (PBSs and the pico Cell Range Expansion (CRE are two important factors for the network spectral efficiency as well as EE improvement. However, associated with the range and density evolution, the inter-tier interference within the heterogeneous architecture will be challenging, and the time domain Enhanced Inter-cell Interference Coordination (eICIC technique becomes necessary. Aiming to improve the network EE, the above factors are jointly considered in this paper. More specifically, we first derive the closed-form expression of the network EE as a function of the density of PBSs and pico CRE bias based on stochastic geometry theory, followed by a linear search algorithm to optimize the pico CRE bias and PBS density, respectively. Moreover, in order to realize the pico CRE bias and PBS density joint optimization, a heuristic algorithm is proposed to achieve the network EE maximization. Numerical simulations show that our proposed pico CRE bias and PBS density joint optimization algorithm can improve the network EE significantly with low computational complexity.

  5. Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center

    International Nuclear Information System (INIS)

    Cho, Jinkyun; Kim, Yundeok

    2016-01-01

    Highlights: • Energy-optimized data center’s cooling solutions were derived for four different climate zones. • We studied practical technologies of green data center that greatly improved energy efficiency. • We identified the relationship between mutually dependent factors in datacenter cooling systems. • We evaluated the effect of the dedicated cooling system applications. • Power Usage Effectiveness (PUE) was computed with energy simulation for data centers. - Abstract: Data centers are approximately 50 times more energy-intensive than general buildings. The rapidly increasing energy demand for data center operation has motivated efforts to better understand data center electricity use and to identify strategies that reduce the environmental impact. This research is presented analytical approach to the energy efficiency optimization of high density data center, in a synergy with relevant performance analysis of corresponding case study. This paper builds on data center energy modeling efforts by characterizing climate and cooling system differences among data centers and then evaluating their consequences for building energy use. Representative climate conditions for four regions are applied to data center energy models for several different prototypical cooling types. This includes cooling system, supplemental cooling solutions, design conditions and controlling the environment of ICT equipment were generally used for each climate zone, how these affect energy efficiency, and how the prioritization of system selection is derived. Based on the climate classification and the required operating environmental conditions for data centers suggested by the ASHRAE TC 9.9, a dedicated data center energy evaluation tool was taken to examine the potential energy savings of the cooling technology. Incorporating economizer use into the cooling systems would increase the variation in energy efficiency among geographic regions, indicating that as data centers

  6. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface.

    Science.gov (United States)

    Böhm, Harald; Hösl, Matthias

    2010-09-17

    Increased boot shaft stiffness may have a noticeable impact on the range of motion of the ankle joint. Therefore, the ability of the ankle joint to generate power for propulsion might be impaired. This might result in compensatory changes at the knee and hip joint. Besides, adaptability of the subtalar joint to uneven surface might be reduced, which could in turn affect stability. The aim of the study was therefore to investigate the influence of boot shaft stiffness on biomechanical gait parameters. Fifteen healthy young adults walked over coarse gravel wearing two different hiking boots that differed by 50% in passive shaft stiffness. Leg kinematics, kinetics and electromyography were measured. Gait velocity and indicators for stability were not different when walking with the hard and soft boot shaft over the gravel surface. However, the hard boot shaft decreased the ankle range of motion as well as the eccentric energy absorbed at the ankle joint. As a consequence, compensatory changes at the knee joint were observed. Co-contraction was increased, and greater eccentric energy was absorbed. Therefore, the efficiency of gait with hard boots might be decreased and joint loading at the knee might be increased, which might cause early fatigue of knee muscles during walking or hiking. The results of this study suggest that stiffness and blocking of joint motion at the ankle should not be equated with safety. A trade-off between lateral stiffness and free natural motion of the ankle joint complex might be preferable.

  7. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  8. Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits

    Directory of Open Access Journals (Sweden)

    Kajsa Ljungberg

    2010-10-01

    Full Text Available Kajsa Ljungberg1, Kateryna Mishchenko2, Sverker Holmgren11Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden; 2Department of Mathematics and Physics, Mälardalen University College, Västerås, SwedenAbstract: We present a two-phase strategy for optimizing a multidimensional, nonconvex function arising during genetic mapping of quantitative traits. Such traits are believed to be affected by multiple so called QTL, and searching for d QTL results in a d-dimensional optimization problem with a large number of local optima. We combine the global algorithm DIRECT with a number of local optimization methods that accelerate the final convergence, and adapt the algorithms to problem-specific features. We also improve the evaluation of the QTL mapping objective function to enable exploitation of the smoothness properties of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at least six dimensions and up to ten times faster than currently used QTL mapping algorithms.Keywords: global optimization, QTL mapping, DIRECT 

  9. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  10. Use of maize wastewater for the cultivation of the Pleurotus spp. mushroom and optimization of its biological efficiency.

    Science.gov (United States)

    Loss, Edenes; Royer, Andrea Rafaela; Barreto-Rodrigues, Marcio; Barana, Ana Claudia

    2009-07-30

    This study evaluated the Pleurotus spp. mushroom production process using an effluent from the maize agroindustrial process as a carbon and nitrogen source and as a wetting agent. A complete experimental design based on factorial planning was used to optimize the biological efficiency and evaluate the effect of the concentration of effluent, pH and species of Pleurotus. The results indicated that the effluent affects the biological efficiency for the production of both species of mushrooms at all pH values studied. The maximum biological efficiency predicted by the model (81.36%) corresponded to the point defined by the effluent contents (X(1)=1), pH (X(2)=-1) and fungus species (X(3)=1), specifically 50%, 5.0 and P. floridae, respectively. The results demonstrated that the effluent is a good alternative for the production of Pleurotus mushrooms.

  11. Luminescence and efficiency optimization of InGaN/GaN core-shell nanowire LEDs by numerical modelling

    Science.gov (United States)

    Römer, Friedhard; Deppner, Marcus; Andreev, Zhelio; Kölper, Christopher; Sabathil, Matthias; Strassburg, Martin; Ledig, Johannes; Li, Shunfeng; Waag, Andreas; Witzigmann, Bernd

    2012-02-01

    We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k . p Schrödinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.

  12. Shaft Position Influence on Technical Characteristics of Universal Two-Stages Helical Speed Reducers

    Directory of Open Access Journals (Sweden)

    Мilan Rackov

    2005-10-01

    Full Text Available Purchasers of speed reducers decide on buying those reducers, that can the most approximately satisfy their demands with much smaller costs. Amount of used material, ie. mass and dimensions of gear unit influences on gear units price. Mass and dimensions of gear unit, besides output torque, gear unit ratio and efficiency, are the most important parameters of technical characteristics of gear units and their quality. Centre distance and position of shafts have significant influence on output torque, gear unit ratio and mass of gear unit through overall dimension of gear unit housing. Thus these characteristics are dependent on each other. This paper deals with analyzing of centre distance and shaft position influence on output torque and ratio of universal two stages gear units.

  13. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  14. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  15. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  16. Dynamic analysis of cross shaft type universal joint with clearance

    International Nuclear Information System (INIS)

    Lu, Jian Wei; Wang, Gong Cheng; Chen, Hao; Vakakis, Alexander F.; Bergman, Lawrence A.

    2013-01-01

    Cross shaft type universal joint is widely used in ground vehicles to transfer torque between two intersecting axes, and its transmission feature can make a great contribution to NVH performance of the vehicle. We looked at the assembling clearance at cross shaft neck, and presented a dynamic model of cross shaft type universal joint with clearance at cross shaft neck. Two-state model is applied to describe the contact force between the cross shaft and driving joint fork based on Hertz theorem, and lumped mass method is applied to build up the dynamic model of the universal joint. Based on this model, numerical analysis is carried out to discuss the transmission feature of the universal joint with clearance at cross shaft neck, and the influence of clearance on the dynamic behavior of the system is evaluated with numerical results based on time history, power spectrum, and phase portrait. The method and conclusions presented are helpful to improvement of the transmission feature of cross shaft type universal joint.

  17. The Treeterbi and Parallel Treeterbi algorithms: efficient, optimal decoding for ordinary, generalized and pair HMMs

    DEFF Research Database (Denmark)

    Keibler, Evan; Arumugam, Manimozhiyan; Brent, Michael R

    2007-01-01

    MOTIVATION: Hidden Markov models (HMMs) and generalized HMMs been successfully applied to many problems, but the standard Viterbi algorithm for computing the most probable interpretation of an input sequence (known as decoding) requires memory proportional to the length of the sequence, which can...... be prohibitive. Existing approaches to reducing memory usage either sacrifice optimality or trade increased running time for reduced memory. RESULTS: We developed two novel decoding algorithms, Treeterbi and Parallel Treeterbi, and implemented them in the TWINSCAN/N-SCAN gene-prediction system. The worst case...... asymptotic space and time are the same as for standard Viterbi, but in practice, Treeterbi optimally decodes arbitrarily long sequences with generalized HMMs in bounded memory without increasing running time. Parallel Treeterbi uses the same ideas to split optimal decoding across processors, dividing latency...

  18. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    Science.gov (United States)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  19. Efficient operation scheduling for adsorption chillers using predictive optimization-based control methods

    Science.gov (United States)

    Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz

    2017-10-01

    Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.

  20. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    Science.gov (United States)

    Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.

    2015-11-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.